content
large_stringlengths
0
6.46M
path
large_stringlengths
3
331
license_type
large_stringclasses
2 values
repo_name
large_stringlengths
5
125
language
large_stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.46M
extension
large_stringclasses
75 values
text
stringlengths
0
6.46M
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ec2_operations.R \name{ec2_import_snapshot} \alias{ec2_import_snapshot} \title{Imports a disk into an EBS snapshot} \usage{ ec2_import_snapshot(ClientData, ClientToken, Description, DiskContainer, DryRun, Encrypted, KmsKeyId, RoleName, TagSpecifications) } \arguments{ \item{ClientData}{The client-specific data.} \item{ClientToken}{Token to enable idempotency for VM import requests.} \item{Description}{The description string for the import snapshot task.} \item{DiskContainer}{Information about the disk container.} \item{DryRun}{Checks whether you have the required permissions for the action, without actually making the request, and provides an error response. If you have the required permissions, the error response is \code{DryRunOperation}. Otherwise, it is \code{UnauthorizedOperation}.} \item{Encrypted}{Specifies whether the destination snapshot of the imported image should be encrypted. The default CMK for EBS is used unless you specify a non-default AWS Key Management Service (AWS KMS) CMK using \code{KmsKeyId}. For more information, see \href{https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html}{Amazon EBS Encryption} in the \emph{Amazon Elastic Compute Cloud User Guide}.} \item{KmsKeyId}{An identifier for the symmetric AWS Key Management Service (AWS KMS) customer master key (CMK) to use when creating the encrypted snapshot. This parameter is only required if you want to use a non-default CMK; if this parameter is not specified, the default CMK for EBS is used. If a \code{KmsKeyId} is specified, the \code{Encrypted} flag must also be set. The CMK identifier may be provided in any of the following formats: \itemize{ \item Key ID \item Key alias. The alias ARN contains the \code{arn:aws:kms} namespace, followed by the Region of the CMK, the AWS account ID of the CMK owner, the \code{alias} namespace, and then the CMK alias. For example, arn:aws:kms:\emph{us-east-1}:\emph{012345678910}:alias/\emph{ExampleAlias}. \item ARN using key ID. The ID ARN contains the \code{arn:aws:kms} namespace, followed by the Region of the CMK, the AWS account ID of the CMK owner, the \code{key} namespace, and then the CMK ID. For example, arn:aws:kms:\emph{us-east-1}:\emph{012345678910}:key/\emph{abcd1234-a123-456a-a12b-a123b4cd56ef}. \item ARN using key alias. The alias ARN contains the \code{arn:aws:kms} namespace, followed by the Region of the CMK, the AWS account ID of the CMK owner, the \code{alias} namespace, and then the CMK alias. For example, arn:aws:kms:\emph{us-east-1}:\emph{012345678910}:alias/\emph{ExampleAlias}. } AWS parses \code{KmsKeyId} asynchronously, meaning that the action you call may appear to complete even though you provided an invalid identifier. This action will eventually report failure. The specified CMK must exist in the Region that the snapshot is being copied to. Amazon EBS does not support asymmetric CMKs.} \item{RoleName}{The name of the role to use when not using the default role, 'vmimport'.} \item{TagSpecifications}{The tags to apply to the snapshot being imported.} } \value{ A list with the following syntax:\preformatted{list( Description = "string", ImportTaskId = "string", SnapshotTaskDetail = list( Description = "string", DiskImageSize = 123.0, Encrypted = TRUE|FALSE, Format = "string", KmsKeyId = "string", Progress = "string", SnapshotId = "string", Status = "string", StatusMessage = "string", Url = "string", UserBucket = list( S3Bucket = "string", S3Key = "string" ) ), Tags = list( list( Key = "string", Value = "string" ) ) ) } } \description{ Imports a disk into an EBS snapshot. } \section{Request syntax}{ \preformatted{svc$import_snapshot( ClientData = list( Comment = "string", UploadEnd = as.POSIXct( "2015-01-01" ), UploadSize = 123.0, UploadStart = as.POSIXct( "2015-01-01" ) ), ClientToken = "string", Description = "string", DiskContainer = list( Description = "string", Format = "string", Url = "string", UserBucket = list( S3Bucket = "string", S3Key = "string" ) ), DryRun = TRUE|FALSE, Encrypted = TRUE|FALSE, KmsKeyId = "string", RoleName = "string", TagSpecifications = list( list( ResourceType = "client-vpn-endpoint"|"customer-gateway"|"dedicated-host"|"dhcp-options"|"egress-only-internet-gateway"|"elastic-ip"|"elastic-gpu"|"export-image-task"|"export-instance-task"|"fleet"|"fpga-image"|"host-reservation"|"image"|"import-image-task"|"import-snapshot-task"|"instance"|"internet-gateway"|"key-pair"|"launch-template"|"local-gateway-route-table-vpc-association"|"natgateway"|"network-acl"|"network-interface"|"network-insights-analysis"|"network-insights-path"|"placement-group"|"reserved-instances"|"route-table"|"security-group"|"snapshot"|"spot-fleet-request"|"spot-instances-request"|"subnet"|"traffic-mirror-filter"|"traffic-mirror-session"|"traffic-mirror-target"|"transit-gateway"|"transit-gateway-attachment"|"transit-gateway-connect-peer"|"transit-gateway-multicast-domain"|"transit-gateway-route-table"|"volume"|"vpc"|"vpc-peering-connection"|"vpn-connection"|"vpn-gateway"|"vpc-flow-log", Tags = list( list( Key = "string", Value = "string" ) ) ) ) ) } } \keyword{internal}
/cran/paws.compute/man/ec2_import_snapshot.Rd
permissive
TWarczak/paws
R
false
true
5,448
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ec2_operations.R \name{ec2_import_snapshot} \alias{ec2_import_snapshot} \title{Imports a disk into an EBS snapshot} \usage{ ec2_import_snapshot(ClientData, ClientToken, Description, DiskContainer, DryRun, Encrypted, KmsKeyId, RoleName, TagSpecifications) } \arguments{ \item{ClientData}{The client-specific data.} \item{ClientToken}{Token to enable idempotency for VM import requests.} \item{Description}{The description string for the import snapshot task.} \item{DiskContainer}{Information about the disk container.} \item{DryRun}{Checks whether you have the required permissions for the action, without actually making the request, and provides an error response. If you have the required permissions, the error response is \code{DryRunOperation}. Otherwise, it is \code{UnauthorizedOperation}.} \item{Encrypted}{Specifies whether the destination snapshot of the imported image should be encrypted. The default CMK for EBS is used unless you specify a non-default AWS Key Management Service (AWS KMS) CMK using \code{KmsKeyId}. For more information, see \href{https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html}{Amazon EBS Encryption} in the \emph{Amazon Elastic Compute Cloud User Guide}.} \item{KmsKeyId}{An identifier for the symmetric AWS Key Management Service (AWS KMS) customer master key (CMK) to use when creating the encrypted snapshot. This parameter is only required if you want to use a non-default CMK; if this parameter is not specified, the default CMK for EBS is used. If a \code{KmsKeyId} is specified, the \code{Encrypted} flag must also be set. The CMK identifier may be provided in any of the following formats: \itemize{ \item Key ID \item Key alias. The alias ARN contains the \code{arn:aws:kms} namespace, followed by the Region of the CMK, the AWS account ID of the CMK owner, the \code{alias} namespace, and then the CMK alias. For example, arn:aws:kms:\emph{us-east-1}:\emph{012345678910}:alias/\emph{ExampleAlias}. \item ARN using key ID. The ID ARN contains the \code{arn:aws:kms} namespace, followed by the Region of the CMK, the AWS account ID of the CMK owner, the \code{key} namespace, and then the CMK ID. For example, arn:aws:kms:\emph{us-east-1}:\emph{012345678910}:key/\emph{abcd1234-a123-456a-a12b-a123b4cd56ef}. \item ARN using key alias. The alias ARN contains the \code{arn:aws:kms} namespace, followed by the Region of the CMK, the AWS account ID of the CMK owner, the \code{alias} namespace, and then the CMK alias. For example, arn:aws:kms:\emph{us-east-1}:\emph{012345678910}:alias/\emph{ExampleAlias}. } AWS parses \code{KmsKeyId} asynchronously, meaning that the action you call may appear to complete even though you provided an invalid identifier. This action will eventually report failure. The specified CMK must exist in the Region that the snapshot is being copied to. Amazon EBS does not support asymmetric CMKs.} \item{RoleName}{The name of the role to use when not using the default role, 'vmimport'.} \item{TagSpecifications}{The tags to apply to the snapshot being imported.} } \value{ A list with the following syntax:\preformatted{list( Description = "string", ImportTaskId = "string", SnapshotTaskDetail = list( Description = "string", DiskImageSize = 123.0, Encrypted = TRUE|FALSE, Format = "string", KmsKeyId = "string", Progress = "string", SnapshotId = "string", Status = "string", StatusMessage = "string", Url = "string", UserBucket = list( S3Bucket = "string", S3Key = "string" ) ), Tags = list( list( Key = "string", Value = "string" ) ) ) } } \description{ Imports a disk into an EBS snapshot. } \section{Request syntax}{ \preformatted{svc$import_snapshot( ClientData = list( Comment = "string", UploadEnd = as.POSIXct( "2015-01-01" ), UploadSize = 123.0, UploadStart = as.POSIXct( "2015-01-01" ) ), ClientToken = "string", Description = "string", DiskContainer = list( Description = "string", Format = "string", Url = "string", UserBucket = list( S3Bucket = "string", S3Key = "string" ) ), DryRun = TRUE|FALSE, Encrypted = TRUE|FALSE, KmsKeyId = "string", RoleName = "string", TagSpecifications = list( list( ResourceType = "client-vpn-endpoint"|"customer-gateway"|"dedicated-host"|"dhcp-options"|"egress-only-internet-gateway"|"elastic-ip"|"elastic-gpu"|"export-image-task"|"export-instance-task"|"fleet"|"fpga-image"|"host-reservation"|"image"|"import-image-task"|"import-snapshot-task"|"instance"|"internet-gateway"|"key-pair"|"launch-template"|"local-gateway-route-table-vpc-association"|"natgateway"|"network-acl"|"network-interface"|"network-insights-analysis"|"network-insights-path"|"placement-group"|"reserved-instances"|"route-table"|"security-group"|"snapshot"|"spot-fleet-request"|"spot-instances-request"|"subnet"|"traffic-mirror-filter"|"traffic-mirror-session"|"traffic-mirror-target"|"transit-gateway"|"transit-gateway-attachment"|"transit-gateway-connect-peer"|"transit-gateway-multicast-domain"|"transit-gateway-route-table"|"volume"|"vpc"|"vpc-peering-connection"|"vpn-connection"|"vpn-gateway"|"vpc-flow-log", Tags = list( list( Key = "string", Value = "string" ) ) ) ) ) } } \keyword{internal}
library(glmnet) mydata = read.table("./TrainingSet/LassoBIC/bone.csv",head=T,sep=",") x = as.matrix(mydata[,4:ncol(mydata)]) y = as.matrix(mydata[,1]) set.seed(123) glm = cv.glmnet(x,y,nfolds=10,type.measure="mae",alpha=0.1,family="gaussian",standardize=FALSE) sink('./Model/EN/Lasso/bone/bone_028.txt',append=TRUE) print(glm$glmnet.fit) sink()
/Model/EN/Lasso/bone/bone_028.R
no_license
leon1003/QSMART
R
false
false
345
r
library(glmnet) mydata = read.table("./TrainingSet/LassoBIC/bone.csv",head=T,sep=",") x = as.matrix(mydata[,4:ncol(mydata)]) y = as.matrix(mydata[,1]) set.seed(123) glm = cv.glmnet(x,y,nfolds=10,type.measure="mae",alpha=0.1,family="gaussian",standardize=FALSE) sink('./Model/EN/Lasso/bone/bone_028.txt',append=TRUE) print(glm$glmnet.fit) sink()
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/shiny-recorder.R \name{record_session} \alias{record_session} \title{Record a Session for Load Test} \usage{ record_session( target_app_url, host = "127.0.0.1", port = 8600, output_file = "recording.log", open_browser = TRUE, connect_api_key = NULL ) } \arguments{ \item{target_app_url}{The URL of the deployed application.} \item{host}{The host where the proxy will run. Usually localhost is used.} \item{port}{The port for the reverse proxy. Default is 8600. Change this default if port 8600 is used by another service.} \item{output_file}{The name of the generated recording file.} \item{open_browser}{Whether to open a browser on the proxy (default=\code{TRUE}) or not (\code{FALSE}).} \item{connect_api_key}{An RStudio Connect api key. It may be useful to use \code{Sys.getenv("CONNECT_API_KEY")}.} } \value{ Creates a recording file that can be used as input to the \code{shinycannon} command-line load generation tool. } \description{ This function creates a \href{https://en.wikipedia.org/wiki/Reverse_proxy}{reverse proxy} at \verb{http://host:port} (http://127.0.0.1:8600 by default) that intercepts and records activity between your web browser and the Shiny application at \code{target_app_url}. } \details{ By default, after creating the reverse proxy, a web browser is opened automatically. As you interact with the application in the web browser, activity is written to the \code{output_file} (\code{recording.log} by default). To shut down the reverse proxy and complete the recording, close the web browser tab or window. Recordings are used as input to the \code{shinycannon} command-line load-generation tool which can be obtained from the \href{https://rstudio.github.io/shinyloadtest/index.html}{shinyloadtest documentation site}. } \section{\code{fileInput}/\code{DT}/\verb{HTTP POST} support}{ Shiny's \code{shiny::fileInput()} input for uploading files, the \code{DT} package, and potentially other packages make HTTP POST requests to the target application. Because POST requests can be large, they are not stored directly in the recording file. Instead, new files adjacent to the recording are created for each HTTP POST request intercepted. The adjacent files are named after the recording with the pattern \verb{<output_file>.post.<N>}, where \verb{<output_file>} is the chosen recording file name and \verb{<N>} is the number of the request. If present, these adjacent files must be kept alongside the recording file when the recording is played back with the \code{shinycannon} tool. } \examples{ \dontrun{ record_session("https://example.com/your-shiny-app/") } } \seealso{ \href{https://rstudio.github.io/shinyloadtest/}{\code{shinyloadtest} articles} }
/man/record_session.Rd
no_license
rstudio/shinyloadtest
R
false
true
2,790
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/shiny-recorder.R \name{record_session} \alias{record_session} \title{Record a Session for Load Test} \usage{ record_session( target_app_url, host = "127.0.0.1", port = 8600, output_file = "recording.log", open_browser = TRUE, connect_api_key = NULL ) } \arguments{ \item{target_app_url}{The URL of the deployed application.} \item{host}{The host where the proxy will run. Usually localhost is used.} \item{port}{The port for the reverse proxy. Default is 8600. Change this default if port 8600 is used by another service.} \item{output_file}{The name of the generated recording file.} \item{open_browser}{Whether to open a browser on the proxy (default=\code{TRUE}) or not (\code{FALSE}).} \item{connect_api_key}{An RStudio Connect api key. It may be useful to use \code{Sys.getenv("CONNECT_API_KEY")}.} } \value{ Creates a recording file that can be used as input to the \code{shinycannon} command-line load generation tool. } \description{ This function creates a \href{https://en.wikipedia.org/wiki/Reverse_proxy}{reverse proxy} at \verb{http://host:port} (http://127.0.0.1:8600 by default) that intercepts and records activity between your web browser and the Shiny application at \code{target_app_url}. } \details{ By default, after creating the reverse proxy, a web browser is opened automatically. As you interact with the application in the web browser, activity is written to the \code{output_file} (\code{recording.log} by default). To shut down the reverse proxy and complete the recording, close the web browser tab or window. Recordings are used as input to the \code{shinycannon} command-line load-generation tool which can be obtained from the \href{https://rstudio.github.io/shinyloadtest/index.html}{shinyloadtest documentation site}. } \section{\code{fileInput}/\code{DT}/\verb{HTTP POST} support}{ Shiny's \code{shiny::fileInput()} input for uploading files, the \code{DT} package, and potentially other packages make HTTP POST requests to the target application. Because POST requests can be large, they are not stored directly in the recording file. Instead, new files adjacent to the recording are created for each HTTP POST request intercepted. The adjacent files are named after the recording with the pattern \verb{<output_file>.post.<N>}, where \verb{<output_file>} is the chosen recording file name and \verb{<N>} is the number of the request. If present, these adjacent files must be kept alongside the recording file when the recording is played back with the \code{shinycannon} tool. } \examples{ \dontrun{ record_session("https://example.com/your-shiny-app/") } } \seealso{ \href{https://rstudio.github.io/shinyloadtest/}{\code{shinyloadtest} articles} }
#Load files into data structures #Test Files subject_test<-read.csv("./test/subject_test.txt", header=FALSE) x_test<-read.csv("./test/x_test.txt", header=FALSE, sep="") y_test<-read.csv("./test/y_test.txt", header=FALSE) #Train Files subject_train<-read.csv("./train/subject_train.txt", header=FALSE) x_train<-read.csv("./train/x_train.txt", header=FALSE, sep="") y_train<-read.csv("./train/y_train.txt", header=FALSE) #Row merge train and test files x<-rbind(x_test,x_train) y<-rbind(y_test,y_train) subject<-rbind(subject_test,subject_train) #Treating Activity Labels activity_labels<-read.csv("activity_labels.txt", header=FALSE, sep=" ") #discard the number id and let only the label activity_labels<-activity_labels[,2] #Treating Features features<-read.csv("features.txt", header=FALSE, sep=" ") #discard the number id and let only the label features<-features[,2] #naming variables names(x)<-features names(y)<-"activity" names(subject)<-"subject" # Kill all measurements that are not mean or standard deviation. x<-x[,grep("std|mean",features)] #Change activity number by activity names # #Loop on activity names and assign as label i=1 while(i<=nrow(y)){ y[i,]<-as.character(activity_labels[as.numeric(y[i,])]) i<-i+1 } #combining all datasets whole_data<-cbind(subject,y,x) #extract summarized data summarized_data<-aggregate(whole_data,by=list(whole_data$subject,whole_data$activity),FUN=mean) #removing messy columns drops <- c("subject","activity") summarized_data<-summarized_data[ , !(names(summarized_data) %in% drops)]
/run_analysis.r
no_license
simonmerino/getting_and_cleaning_data
R
false
false
1,619
r
#Load files into data structures #Test Files subject_test<-read.csv("./test/subject_test.txt", header=FALSE) x_test<-read.csv("./test/x_test.txt", header=FALSE, sep="") y_test<-read.csv("./test/y_test.txt", header=FALSE) #Train Files subject_train<-read.csv("./train/subject_train.txt", header=FALSE) x_train<-read.csv("./train/x_train.txt", header=FALSE, sep="") y_train<-read.csv("./train/y_train.txt", header=FALSE) #Row merge train and test files x<-rbind(x_test,x_train) y<-rbind(y_test,y_train) subject<-rbind(subject_test,subject_train) #Treating Activity Labels activity_labels<-read.csv("activity_labels.txt", header=FALSE, sep=" ") #discard the number id and let only the label activity_labels<-activity_labels[,2] #Treating Features features<-read.csv("features.txt", header=FALSE, sep=" ") #discard the number id and let only the label features<-features[,2] #naming variables names(x)<-features names(y)<-"activity" names(subject)<-"subject" # Kill all measurements that are not mean or standard deviation. x<-x[,grep("std|mean",features)] #Change activity number by activity names # #Loop on activity names and assign as label i=1 while(i<=nrow(y)){ y[i,]<-as.character(activity_labels[as.numeric(y[i,])]) i<-i+1 } #combining all datasets whole_data<-cbind(subject,y,x) #extract summarized data summarized_data<-aggregate(whole_data,by=list(whole_data$subject,whole_data$activity),FUN=mean) #removing messy columns drops <- c("subject","activity") summarized_data<-summarized_data[ , !(names(summarized_data) %in% drops)]
\name{ch_ews} \alias{ch_ews} \title{Description: Conditional Heteroskedasticity} \usage{ ch_ews(timeseries, winsize = 10, alpha = 0.1, optim = TRUE, lags = 4, logtransform = FALSE, interpolate = FALSE) } \arguments{ \item{timeseries}{a numeric vector of the observed timeseries values or a numeric matrix where the first column represents the time index and the second the observed timeseries values. Use vectors/matrices with headings.} \item{winsize}{is length of the rolling window expressed as percentage of the timeseries length (must be numeric between 0 and 100). Default is 10\%.} \item{alpha}{is the significance threshold (must be numeric). Default is 0.1.} \item{optim}{logical. If TRUE an autoregressive model is fit to the data within the rolling window using AIC optimization. Otherwise an autoregressive model of specific order \code{lags} is selected.} \item{lags}{is a parameter that determines the specific order of an autoregressive model to fit the data. Default is 4.} \item{logtransform}{logical. If TRUE data are logtransformed prior to analysis as log(X+1). Default is FALSE.} \item{interpolate}{logical. If TRUE linear interpolation is applied to produce a timeseries of equal length as the original. Default is FALSE (assumes there are no gaps in the timeseries).} } \value{ \code{ch_ews} returns a matrix that contains: \item{time}{the time index.} \item{r.squared}{the R2 values of the regressed residuals.} \item{critical.value}{the chi-square critical value based on the desired \code{alpha} level for 1 degree of freedom divided by the number of residuals used in the regression.} \item{test.result}{logical. It indicates whether conditional heteroskedasticity was significant.} \item{ar.fit.order}{the order of the specified autoregressive model- only informative if \code{optim} FALSE was selected.} In addition, \code{ch_ews} plots the original timeseries and the R2 where the level of significance is also indicated. } \description{ \code{ch_ews} is used to estimate changes in conditional heteroskedasticity within rolling windows along a timeseries } \details{ see ref below Arguments: } \examples{ data(foldbif) out=ch_ews(foldbif, winsize=50, alpha=0.05, optim=TRUE, lags) } \author{ T. Cline, modified by V. Dakos } \references{ Seekell, D. A., et al (2011). 'Conditional heteroscedasticity as a leading indicator of ecological regime shifts.' \emph{American Naturalist} 178(4): 442-451 Dakos, V., et al (2012).'Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data.' \emph{PLoS ONE} 7(7): e41010. doi:10.1371/journal.pone.0041010 } \seealso{ \code{\link{generic_ews}}; \code{\link{ddjnonparam_ews}}; \code{\link{bdstest_ews}}; \code{\link{sensitivity_ews}}; \code{\link{surrogates_ews}}; \code{\link{ch_ews}}; \code{movpotential_ews}; \code{livpotential_ews} } \keyword{early-warning}
/man/ch_ews.Rd
no_license
hjl2014/earlywarnings
R
false
false
2,957
rd
\name{ch_ews} \alias{ch_ews} \title{Description: Conditional Heteroskedasticity} \usage{ ch_ews(timeseries, winsize = 10, alpha = 0.1, optim = TRUE, lags = 4, logtransform = FALSE, interpolate = FALSE) } \arguments{ \item{timeseries}{a numeric vector of the observed timeseries values or a numeric matrix where the first column represents the time index and the second the observed timeseries values. Use vectors/matrices with headings.} \item{winsize}{is length of the rolling window expressed as percentage of the timeseries length (must be numeric between 0 and 100). Default is 10\%.} \item{alpha}{is the significance threshold (must be numeric). Default is 0.1.} \item{optim}{logical. If TRUE an autoregressive model is fit to the data within the rolling window using AIC optimization. Otherwise an autoregressive model of specific order \code{lags} is selected.} \item{lags}{is a parameter that determines the specific order of an autoregressive model to fit the data. Default is 4.} \item{logtransform}{logical. If TRUE data are logtransformed prior to analysis as log(X+1). Default is FALSE.} \item{interpolate}{logical. If TRUE linear interpolation is applied to produce a timeseries of equal length as the original. Default is FALSE (assumes there are no gaps in the timeseries).} } \value{ \code{ch_ews} returns a matrix that contains: \item{time}{the time index.} \item{r.squared}{the R2 values of the regressed residuals.} \item{critical.value}{the chi-square critical value based on the desired \code{alpha} level for 1 degree of freedom divided by the number of residuals used in the regression.} \item{test.result}{logical. It indicates whether conditional heteroskedasticity was significant.} \item{ar.fit.order}{the order of the specified autoregressive model- only informative if \code{optim} FALSE was selected.} In addition, \code{ch_ews} plots the original timeseries and the R2 where the level of significance is also indicated. } \description{ \code{ch_ews} is used to estimate changes in conditional heteroskedasticity within rolling windows along a timeseries } \details{ see ref below Arguments: } \examples{ data(foldbif) out=ch_ews(foldbif, winsize=50, alpha=0.05, optim=TRUE, lags) } \author{ T. Cline, modified by V. Dakos } \references{ Seekell, D. A., et al (2011). 'Conditional heteroscedasticity as a leading indicator of ecological regime shifts.' \emph{American Naturalist} 178(4): 442-451 Dakos, V., et al (2012).'Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data.' \emph{PLoS ONE} 7(7): e41010. doi:10.1371/journal.pone.0041010 } \seealso{ \code{\link{generic_ews}}; \code{\link{ddjnonparam_ews}}; \code{\link{bdstest_ews}}; \code{\link{sensitivity_ews}}; \code{\link{surrogates_ews}}; \code{\link{ch_ews}}; \code{movpotential_ews}; \code{livpotential_ews} } \keyword{early-warning}
# SPDX-Copyright: Copyright (c) Capital One Services, LLC # SPDX-License-Identifier: Apache-2.0 # Copyright 2017 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS # OF ANY KIND, either express or implied. # # UNIT TESTS: Output Helper Functions # # Unit tests that look at the various helper functions in the output # such as checking that something is not null and generating section headers. # library(testthat) context('out_helperFunctions.R') test_that("isNotNull", { expect_that(isNotNull(NULL), is_false()) expect_that(isNotNull(1), is_true()) }) test_that("outputSectionHeader", { # Little to do here - just check the header is what we expect expect_equal(outputSectionHeader("Foo") , "\nFoo\n===\n") })
/dataCompareR/tests/testthat/test_outHelperFunctions.R
permissive
Lextuga007/dataCompareR
R
false
false
1,115
r
# SPDX-Copyright: Copyright (c) Capital One Services, LLC # SPDX-License-Identifier: Apache-2.0 # Copyright 2017 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS # OF ANY KIND, either express or implied. # # UNIT TESTS: Output Helper Functions # # Unit tests that look at the various helper functions in the output # such as checking that something is not null and generating section headers. # library(testthat) context('out_helperFunctions.R') test_that("isNotNull", { expect_that(isNotNull(NULL), is_false()) expect_that(isNotNull(1), is_true()) }) test_that("outputSectionHeader", { # Little to do here - just check the header is what we expect expect_equal(outputSectionHeader("Foo") , "\nFoo\n===\n") })
### Plot comparing distributions of total damage for various uncertainty settings on a log-log scale plotFigure5b <- function(res.unc, total.damage, ifPdf=TRUE, fileName="figures/UncertaintyLog.pdf") { total.mf.damage <- res.unc$mf total.slr.damage <- res.unc$slr total.dam.damage <- res.unc$dam if(ifPdf) pdf(file="figures/UncertaintyLog.pdf", width=10, height=5, points=12) par(mex=0.75, mar=c(5,4,2,2)+0.1) buckets <- seq(log(50),log(165000), by=0.1) buckets <- exp(buckets) my.hist <- hist(total.damage, breaks=buckets, plot=FALSE) my.slr.hist <- hist(total.slr.damage, breaks=buckets, plot=FALSE) my.mf.hist <- hist(total.mf.damage, breaks=buckets, plot=FALSE) my.dam.hist <- hist(total.dam.damage, breaks=buckets, plot=FALSE) plot(log(my.slr.hist$breaks[-1]), log(my.slr.hist$counts), type="h", col="#7D26CD", main="", ylab="Log frequency", xlab="Total damage 2016-2100 (million NOK)", lwd=2, axes=FALSE) ticks <- c(50, 150, 500, 1500, 5000, 15000, 50000, 150000) axis(1, at = log(ticks), labels=ticks) axis(2) box() lines(log(my.hist$breaks[-1])+0.02, log(my.hist$counts), col="black", type="h", lwd=2) lines(log(my.mf.hist$breaks[-1])+0.04, log(my.mf.hist$counts), col="orange", type="h", lwd=2) lines(log(my.dam.hist$breaks[-1])+0.06, log(my.dam.hist$counts), col="#008B45", type="h", lwd=2) abline(v=log(sum(res.unc$yearly.median)), col="gray50", lwd=2) points(log(median(total.damage)), 7.8, col="black", pch=16) points(log(median(total.slr.damage)),7.8, col="#7D26CD", pch=16) points(log(median(total.dam.damage)),7.8, col="#008B45", pch=16) points(log(sum(res.unc$yearly.median)),7.8, col="gray50", pch=16) points(log(median(total.mf.damage)),7.8, col="orange", pch=16) legend("topright", legend=c("Full uncertainty","SLR uncertainty","Effect uncertainty", "Damage uncertainty", "No uncertainty"), col=c("black", "#7D26CD", "orange", "#008B45", "gray50"), lty=1, lwd=2) if(ifPdf) dev.off() }
/code/BergenDecisions/plotFigure5b.R
no_license
eSACP/SeaLevelDecisions
R
false
false
2,085
r
### Plot comparing distributions of total damage for various uncertainty settings on a log-log scale plotFigure5b <- function(res.unc, total.damage, ifPdf=TRUE, fileName="figures/UncertaintyLog.pdf") { total.mf.damage <- res.unc$mf total.slr.damage <- res.unc$slr total.dam.damage <- res.unc$dam if(ifPdf) pdf(file="figures/UncertaintyLog.pdf", width=10, height=5, points=12) par(mex=0.75, mar=c(5,4,2,2)+0.1) buckets <- seq(log(50),log(165000), by=0.1) buckets <- exp(buckets) my.hist <- hist(total.damage, breaks=buckets, plot=FALSE) my.slr.hist <- hist(total.slr.damage, breaks=buckets, plot=FALSE) my.mf.hist <- hist(total.mf.damage, breaks=buckets, plot=FALSE) my.dam.hist <- hist(total.dam.damage, breaks=buckets, plot=FALSE) plot(log(my.slr.hist$breaks[-1]), log(my.slr.hist$counts), type="h", col="#7D26CD", main="", ylab="Log frequency", xlab="Total damage 2016-2100 (million NOK)", lwd=2, axes=FALSE) ticks <- c(50, 150, 500, 1500, 5000, 15000, 50000, 150000) axis(1, at = log(ticks), labels=ticks) axis(2) box() lines(log(my.hist$breaks[-1])+0.02, log(my.hist$counts), col="black", type="h", lwd=2) lines(log(my.mf.hist$breaks[-1])+0.04, log(my.mf.hist$counts), col="orange", type="h", lwd=2) lines(log(my.dam.hist$breaks[-1])+0.06, log(my.dam.hist$counts), col="#008B45", type="h", lwd=2) abline(v=log(sum(res.unc$yearly.median)), col="gray50", lwd=2) points(log(median(total.damage)), 7.8, col="black", pch=16) points(log(median(total.slr.damage)),7.8, col="#7D26CD", pch=16) points(log(median(total.dam.damage)),7.8, col="#008B45", pch=16) points(log(sum(res.unc$yearly.median)),7.8, col="gray50", pch=16) points(log(median(total.mf.damage)),7.8, col="orange", pch=16) legend("topright", legend=c("Full uncertainty","SLR uncertainty","Effect uncertainty", "Damage uncertainty", "No uncertainty"), col=c("black", "#7D26CD", "orange", "#008B45", "gray50"), lty=1, lwd=2) if(ifPdf) dev.off() }
## Course Project 2 for Exploratory Data Analysis ## Plot 1 ## This first line will likely take a few seconds. Be patient! NEI <- readRDS("./FNEI_data/summarySCC_PM25.rds") SCC <- readRDS("./FNEI_data/Source_Classification_Code.rds") ## Drawing Plot ## Have total emissions from PM2.5 decreased in the United States from ## 1999 to 2008? Using the base plotting system, make a plot showing the total ## PM2.5 emission from all sources for each of the years 1999, 2002, 2005, and 2008. ## Loading needed libraries library(dplyr) ## Transforming column Year in a factor NEI$year = factor(NEI$year) ## Getting the data ## Due to amount of Emissions is high we're using tons unit NEI_total <- group_by(NEI, year) %>% summarise(total.Emissions.million.tons = sum(Emissions)/1000000) ## Drawing the plot barplot(NEI_total$total.Emissions.million.tons, main=expression("Total emissions from PM"[2.5]*" in the United States"), xlab="Years", ylab=expression("Amount of PM"[2.5]*" emitted, in million tons"), names.arg=NEI_total$year, col = "red") # Making png file dev.copy(png, file = "plot1.png") dev.off()
/CourseProject2/Plot1.R
no_license
sagospe/ExploratoryDataAnalysis
R
false
false
1,164
r
## Course Project 2 for Exploratory Data Analysis ## Plot 1 ## This first line will likely take a few seconds. Be patient! NEI <- readRDS("./FNEI_data/summarySCC_PM25.rds") SCC <- readRDS("./FNEI_data/Source_Classification_Code.rds") ## Drawing Plot ## Have total emissions from PM2.5 decreased in the United States from ## 1999 to 2008? Using the base plotting system, make a plot showing the total ## PM2.5 emission from all sources for each of the years 1999, 2002, 2005, and 2008. ## Loading needed libraries library(dplyr) ## Transforming column Year in a factor NEI$year = factor(NEI$year) ## Getting the data ## Due to amount of Emissions is high we're using tons unit NEI_total <- group_by(NEI, year) %>% summarise(total.Emissions.million.tons = sum(Emissions)/1000000) ## Drawing the plot barplot(NEI_total$total.Emissions.million.tons, main=expression("Total emissions from PM"[2.5]*" in the United States"), xlab="Years", ylab=expression("Amount of PM"[2.5]*" emitted, in million tons"), names.arg=NEI_total$year, col = "red") # Making png file dev.copy(png, file = "plot1.png") dev.off()
##Matrix inversion is usually a costly computation and there may be some benefit to caching ##the inverse of a matrix rather than computing it repeatedly. ##The following functions cache the inverse of a matrix. ## This function creates a special "matrix" object that can cache its inverse makeCacheMatrix <- function(x = matrix()) { i <- NULL set <- function(y){ x <<- y i <<- NULL } get <- function() x setinverse <- function(inverse) i <<- inverse getinverse <- function() i list (set=set, get=get, setinverse=setinverse, getinverse=getinverse) } ##This function computes the inverse of the special "matrix" returned by makeCacheMatrix above. ##If the inverse has already been calculated (and the matrix has not changed), the function ##retrieves the inverse from the cache. cacheSolve <- function(x, ...) { i <- x$getinverse() if(!is.null(i)){ message("getting cached data") return(i) } data <- x$get() i <- solve(data) x$setinverse(i) i }
/cachematrix.R
no_license
SpotConlon/ProgrammingAssignment2
R
false
false
1,066
r
##Matrix inversion is usually a costly computation and there may be some benefit to caching ##the inverse of a matrix rather than computing it repeatedly. ##The following functions cache the inverse of a matrix. ## This function creates a special "matrix" object that can cache its inverse makeCacheMatrix <- function(x = matrix()) { i <- NULL set <- function(y){ x <<- y i <<- NULL } get <- function() x setinverse <- function(inverse) i <<- inverse getinverse <- function() i list (set=set, get=get, setinverse=setinverse, getinverse=getinverse) } ##This function computes the inverse of the special "matrix" returned by makeCacheMatrix above. ##If the inverse has already been calculated (and the matrix has not changed), the function ##retrieves the inverse from the cache. cacheSolve <- function(x, ...) { i <- x$getinverse() if(!is.null(i)){ message("getting cached data") return(i) } data <- x$get() i <- solve(data) x$setinverse(i) i }
#' @title wiki_graph data #' #' @description wiki_graph: DataFrame containing three columns (v1, v2, w) and 18 entries. #' @docType data #' @format The \code{data.frame} contains 3 variables: #' \describe{ #' \item{v1}{nodes} #' \item{v2}{nodes} #' \item{w}{weights between the nodes} #' } #' #' "wiki_graph"
/R/wiki_graph.r
no_license
senseiyukisan/732A94
R
false
false
315
r
#' @title wiki_graph data #' #' @description wiki_graph: DataFrame containing three columns (v1, v2, w) and 18 entries. #' @docType data #' @format The \code{data.frame} contains 3 variables: #' \describe{ #' \item{v1}{nodes} #' \item{v2}{nodes} #' \item{w}{weights between the nodes} #' } #' #' "wiki_graph"
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/gating-functions.R \name{drawInterval} \alias{drawInterval} \title{Draw Interval(s) to Gate Flow Cytometry Populations.} \usage{ drawInterval(fr, channels, alias = NULL, plot = TRUE, axis = "x", labels = TRUE, ...) } \arguments{ \item{fr}{a \code{\link[flowCore:flowFrame-class]{flowFrame}} object containing the flow cytometry data for plotting and gating.} \item{channels}{vector of channel names to use for plotting, can be of length 1 for 1-D density histogram or length 2 for 2-D scatter plot.} \item{alias}{the name(s) of the populations to be gated. If multiple population names are supplied (e.g. \code{c("CD3,"CD4)}) multiple gates will be returned. \code{alias} is \code{NULL} by default which will halt the gating routine.} \item{plot}{logical indicating whether the data should be plotted. This feature allows for constructing gates of different types over existing plots which may already contain a different gate type.} \item{axis}{indicates whether the \code{"x"} or \code{"y"} axis should be gated for 2-D interval gates.} \item{labels}{logical indicating whether to include \code{\link{plotLabels}} for the gated population(s), \code{TRUE} by default.} \item{...}{additional arguments for \code{\link{plotCyto,flowFrame-method}}.} } \value{ a\code{\link[flowCore:filters-class]{filters}} list containing the constructed \code{\link[flowCore:rectangleGate]{rectangleGate}} object(s). } \description{ \code{drawInterval} constructs an interactive plotting window for user to select the lower and upper bounds of a population (through mouse click) which is constructed into a \code{\link[flowCore:rectangleGate]{rectangleGate}} object and stored in a \code{\link[flowCore:filters-class]{filters}} list. Both 1-D and 2-D interval gates are supported, for 2-D interval gates an additional argument \code{axis} must be supplied to indicate which axis should be gated. } \seealso{ \code{\link{plotCyto1d,flowFrame-method}} \code{\link{plotCyto2d,flowFrame-method}} \code{\link{drawGate}} } \author{ Dillon Hammill (Dillon.Hammill@anu.edu.au) } \keyword{draw,} \keyword{gating,} \keyword{interval} \keyword{manual,} \keyword{openCyto,} \keyword{rectangleGate,}
/man/drawInterval.Rd
no_license
gfinak/cytoRSuite
R
false
true
2,262
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/gating-functions.R \name{drawInterval} \alias{drawInterval} \title{Draw Interval(s) to Gate Flow Cytometry Populations.} \usage{ drawInterval(fr, channels, alias = NULL, plot = TRUE, axis = "x", labels = TRUE, ...) } \arguments{ \item{fr}{a \code{\link[flowCore:flowFrame-class]{flowFrame}} object containing the flow cytometry data for plotting and gating.} \item{channels}{vector of channel names to use for plotting, can be of length 1 for 1-D density histogram or length 2 for 2-D scatter plot.} \item{alias}{the name(s) of the populations to be gated. If multiple population names are supplied (e.g. \code{c("CD3,"CD4)}) multiple gates will be returned. \code{alias} is \code{NULL} by default which will halt the gating routine.} \item{plot}{logical indicating whether the data should be plotted. This feature allows for constructing gates of different types over existing plots which may already contain a different gate type.} \item{axis}{indicates whether the \code{"x"} or \code{"y"} axis should be gated for 2-D interval gates.} \item{labels}{logical indicating whether to include \code{\link{plotLabels}} for the gated population(s), \code{TRUE} by default.} \item{...}{additional arguments for \code{\link{plotCyto,flowFrame-method}}.} } \value{ a\code{\link[flowCore:filters-class]{filters}} list containing the constructed \code{\link[flowCore:rectangleGate]{rectangleGate}} object(s). } \description{ \code{drawInterval} constructs an interactive plotting window for user to select the lower and upper bounds of a population (through mouse click) which is constructed into a \code{\link[flowCore:rectangleGate]{rectangleGate}} object and stored in a \code{\link[flowCore:filters-class]{filters}} list. Both 1-D and 2-D interval gates are supported, for 2-D interval gates an additional argument \code{axis} must be supplied to indicate which axis should be gated. } \seealso{ \code{\link{plotCyto1d,flowFrame-method}} \code{\link{plotCyto2d,flowFrame-method}} \code{\link{drawGate}} } \author{ Dillon Hammill (Dillon.Hammill@anu.edu.au) } \keyword{draw,} \keyword{gating,} \keyword{interval} \keyword{manual,} \keyword{openCyto,} \keyword{rectangleGate,}
test_that("default options", { withr::local_options(list( gargle_oauth_cache = NULL, gargle_oob_default = NULL, gargle_oauth_email = NULL, gargle_quiet = NULL )) expect_identical(gargle_oauth_cache(), NA) expect_false(gargle_oob_default()) expect_null(gargle_oauth_email()) expect_true(gargle_quiet()) }) test_that("gargle API key", { key <- gargle_api_key() expect_true(is_string(key)) })
/tests/testthat/test-assets.R
permissive
MarkEdmondson1234/gargle
R
false
false
429
r
test_that("default options", { withr::local_options(list( gargle_oauth_cache = NULL, gargle_oob_default = NULL, gargle_oauth_email = NULL, gargle_quiet = NULL )) expect_identical(gargle_oauth_cache(), NA) expect_false(gargle_oob_default()) expect_null(gargle_oauth_email()) expect_true(gargle_quiet()) }) test_that("gargle API key", { key <- gargle_api_key() expect_true(is_string(key)) })
## dependencies of the MTMM script ## ASREML library needs a valid license library(lattice) library(asreml) library(msm) library(nadiv) ## libraries for single GWAS library(foreach) library(iterators) library(parallel) # libraries for plotting library(ggplot2) library(dplyr) #scriopts to source. All scripts can be found in the github folder. Be sure to set the right working directory source('scripts/emma.r') source('scripts/mtmm_estimates_as4.r') source('scripts/plots_gwas.r') source('scripts/plot_mtmm.r') source('scripts/mtmm_cluster.r') source('scripts/mtmm_part2.r') source('scripts/gwas.r')
/scripts/prepare_mtmm.r
no_license
salarshaaf/MTMM
R
false
false
604
r
## dependencies of the MTMM script ## ASREML library needs a valid license library(lattice) library(asreml) library(msm) library(nadiv) ## libraries for single GWAS library(foreach) library(iterators) library(parallel) # libraries for plotting library(ggplot2) library(dplyr) #scriopts to source. All scripts can be found in the github folder. Be sure to set the right working directory source('scripts/emma.r') source('scripts/mtmm_estimates_as4.r') source('scripts/plots_gwas.r') source('scripts/plot_mtmm.r') source('scripts/mtmm_cluster.r') source('scripts/mtmm_part2.r') source('scripts/gwas.r')
library(dplyr) library(tidyr) # Load LDAvis inputs #' Note: data witheld because they contain third party content setwd("C:/Users/Sensonomic Admin/Dropbox/Oxford/DPhil/Deforestation review/Deforestation_messaging_analysis_GitHub/Deforestation_messaging_analysis/") load("Data/mongabay_LDAVIS_inputs.Rdata") #' @param theta matrix, with each row containing the probability distribution #' over topics for a document, with as many rows as there are documents in the #' corpus, and as many columns as there are topics in the model. #' @param doc.length integer vector containing the number of tokens in each #' document of the corpus. # compute counts of tokens across K topics (length-K vector): # (this determines the areas of the default topic circles when no term is # highlighted) topic.frequency <- colSums(theta * doc.length) topic.proportion <- topic.frequency/sum(topic.frequency) #' @param phi matrix, with each row containing the distribution over terms #' for a topic, with as many rows as there are topics in the model, and as #' many columns as there are terms in the vocabulary. # token counts for each term-topic combination (widths of red bars) term.topic.frequency <- phi * topic.frequency term.frequency <- colSums(term.topic.frequency) # term-topic frequency table tmp <- term.topic.frequency # reorder topics by LDAvis order load("Data/mongabay_LDAVIS_order_simple.Rdata") tmp <- term.topic.frequency[LDAVis.order,] # round down infrequent term occurrences so that we can send sparse # data to the browser: r <- row(tmp)[tmp >= 0.5] c <- col(tmp)[tmp >= 0.5] dd <- data.frame(Term = vocab[c], Topic = r, Freq = round(tmp[cbind(r, c)]), stringsAsFactors = FALSE) # Normalize token frequencies: dd[, "Freq"] <- dd[, "Freq"]/term.frequency[match(dd[, "Term"], vocab)] token.table <- dd[order(dd[, 1], dd[, 2]), ] # verify term topic frequencies match LDAvis # View(token.table[token.table$Term=="indonesia",]) # Load countries in order of deforestation join <- read.table("join_table") join <- join %>% arrange(desc(total_loss)) countries <- join$country # Create country contexts table countries_length <- length(countries) countries_list <- list() for (i in 1:countries_length) { country_table <- token.table[token.table$Term==countries[i],] countries_list[[i]] <- country_table } countries_topics <- do.call(rbind.data.frame,countries_list) rownames(countries_topics) <- NULL # Organize country context tables with dplyr. # Sort topics for each country in descending # order of their proportion. # Format tables for manuscript colnames(countries_topics) <- c("Country", "Topic", "Probability") countries_topics$Country <- factor(countries_topics$Country, levels = unique(countries_topics$Country)) # Order countries by number of mentions in each source countries_topics <- countries_topics %>% arrange(Country,desc(Probability)) #' Create summary tables showing the labels for each topic conext #' for outlier countries # Add topic names to countries topics mongabay_topic_names <- read.csv("Data/mongabay_topic_names.csv") countries_topics_names <- left_join(countries_topics,mongabay_topic_names,by="Topic") %>% select(-Label) countries_topics_names_high_prob <- countries_topics_names[countries_topics_names$Probability>0.1,] # Round down the topic probabilities to two significant digits countries_topics_names_high_prob$Probability <- round(countries_topics_names_high_prob$Probability,2) # Write topic contexts for top countries with deforestation countries_topics_top <- countries_topics_names_high_prob[countries_topics_names_high_prob$Country %in% unique(countries_topics_names_high_prob$Country)[1:10],] # Load outliers from the country mentions versus deforestation regressions load("Data/monga_outliers.Rdata") countries_topics_top$UnderRepresented <- ifelse(countries_topics_top$Country %in% monga_outliers, "Yes", "No") countries_topics_top <- countries_topics_top %>% arrange(Topic,UnderRepresented,Country) countries_topics_top$Name <- factor(countries_topics_top$Name, levels = c(levels(countries_topics_top$Name),"")) countries_topics_top[duplicated(countries_topics_top$Name),c("Topic","Name")] <- "" countries_topics_top <- countries_topics_top %>% select(Topic,Name,Country,Probability,UnderRepresented) colnames(countries_topics_top)[5] <- "Under-represented" # Write tables write.csv(countries_topics_top, "Manuscript_figures/mongabay_deforestation_top_contexts_simple.csv", row.names = FALSE)
/Topic_models/topicmodels_mallet_monga_country_contexts_simple_120319_github.R
no_license
adamformica/Deforestation_messaging_analysis
R
false
false
4,542
r
library(dplyr) library(tidyr) # Load LDAvis inputs #' Note: data witheld because they contain third party content setwd("C:/Users/Sensonomic Admin/Dropbox/Oxford/DPhil/Deforestation review/Deforestation_messaging_analysis_GitHub/Deforestation_messaging_analysis/") load("Data/mongabay_LDAVIS_inputs.Rdata") #' @param theta matrix, with each row containing the probability distribution #' over topics for a document, with as many rows as there are documents in the #' corpus, and as many columns as there are topics in the model. #' @param doc.length integer vector containing the number of tokens in each #' document of the corpus. # compute counts of tokens across K topics (length-K vector): # (this determines the areas of the default topic circles when no term is # highlighted) topic.frequency <- colSums(theta * doc.length) topic.proportion <- topic.frequency/sum(topic.frequency) #' @param phi matrix, with each row containing the distribution over terms #' for a topic, with as many rows as there are topics in the model, and as #' many columns as there are terms in the vocabulary. # token counts for each term-topic combination (widths of red bars) term.topic.frequency <- phi * topic.frequency term.frequency <- colSums(term.topic.frequency) # term-topic frequency table tmp <- term.topic.frequency # reorder topics by LDAvis order load("Data/mongabay_LDAVIS_order_simple.Rdata") tmp <- term.topic.frequency[LDAVis.order,] # round down infrequent term occurrences so that we can send sparse # data to the browser: r <- row(tmp)[tmp >= 0.5] c <- col(tmp)[tmp >= 0.5] dd <- data.frame(Term = vocab[c], Topic = r, Freq = round(tmp[cbind(r, c)]), stringsAsFactors = FALSE) # Normalize token frequencies: dd[, "Freq"] <- dd[, "Freq"]/term.frequency[match(dd[, "Term"], vocab)] token.table <- dd[order(dd[, 1], dd[, 2]), ] # verify term topic frequencies match LDAvis # View(token.table[token.table$Term=="indonesia",]) # Load countries in order of deforestation join <- read.table("join_table") join <- join %>% arrange(desc(total_loss)) countries <- join$country # Create country contexts table countries_length <- length(countries) countries_list <- list() for (i in 1:countries_length) { country_table <- token.table[token.table$Term==countries[i],] countries_list[[i]] <- country_table } countries_topics <- do.call(rbind.data.frame,countries_list) rownames(countries_topics) <- NULL # Organize country context tables with dplyr. # Sort topics for each country in descending # order of their proportion. # Format tables for manuscript colnames(countries_topics) <- c("Country", "Topic", "Probability") countries_topics$Country <- factor(countries_topics$Country, levels = unique(countries_topics$Country)) # Order countries by number of mentions in each source countries_topics <- countries_topics %>% arrange(Country,desc(Probability)) #' Create summary tables showing the labels for each topic conext #' for outlier countries # Add topic names to countries topics mongabay_topic_names <- read.csv("Data/mongabay_topic_names.csv") countries_topics_names <- left_join(countries_topics,mongabay_topic_names,by="Topic") %>% select(-Label) countries_topics_names_high_prob <- countries_topics_names[countries_topics_names$Probability>0.1,] # Round down the topic probabilities to two significant digits countries_topics_names_high_prob$Probability <- round(countries_topics_names_high_prob$Probability,2) # Write topic contexts for top countries with deforestation countries_topics_top <- countries_topics_names_high_prob[countries_topics_names_high_prob$Country %in% unique(countries_topics_names_high_prob$Country)[1:10],] # Load outliers from the country mentions versus deforestation regressions load("Data/monga_outliers.Rdata") countries_topics_top$UnderRepresented <- ifelse(countries_topics_top$Country %in% monga_outliers, "Yes", "No") countries_topics_top <- countries_topics_top %>% arrange(Topic,UnderRepresented,Country) countries_topics_top$Name <- factor(countries_topics_top$Name, levels = c(levels(countries_topics_top$Name),"")) countries_topics_top[duplicated(countries_topics_top$Name),c("Topic","Name")] <- "" countries_topics_top <- countries_topics_top %>% select(Topic,Name,Country,Probability,UnderRepresented) colnames(countries_topics_top)[5] <- "Under-represented" # Write tables write.csv(countries_topics_top, "Manuscript_figures/mongabay_deforestation_top_contexts_simple.csv", row.names = FALSE)
updateHFReturns = function(){ HF_RETURNS <- read_excel("C:/Users/blloyd.HF/Dropbox/CF_Model/Core/HF_RETURNS.xlsx", sheet = "HF Returns", col_types = c("date", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric")) HF_RETURNS = subset(HF_RETURNS, !is.na(HF_RETURNS$Date)) hf = xts::xts(HF_RETURNS[, 2:ncol(HF_RETURNS)], order.by = zoo::as.yearmon(HF_RETURNS$Date)) hf = hf[apply(hf, 1, function(r)!all(is.na(r))),] saveRDS(hf, "hf_xts.rds") }
/R/updateHFReturns.R
no_license
bplloyd/Core
R
false
false
638
r
updateHFReturns = function(){ HF_RETURNS <- read_excel("C:/Users/blloyd.HF/Dropbox/CF_Model/Core/HF_RETURNS.xlsx", sheet = "HF Returns", col_types = c("date", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric")) HF_RETURNS = subset(HF_RETURNS, !is.na(HF_RETURNS$Date)) hf = xts::xts(HF_RETURNS[, 2:ncol(HF_RETURNS)], order.by = zoo::as.yearmon(HF_RETURNS$Date)) hf = hf[apply(hf, 1, function(r)!all(is.na(r))),] saveRDS(hf, "hf_xts.rds") }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/probabilistic.R \name{hittingProbabilities} \alias{hittingProbabilities} \title{Hitting probabilities for markovchain} \usage{ hittingProbabilities(object) } \arguments{ \item{object}{the markovchain-class object} } \value{ a matrix of hitting probabilities } \description{ Given a markovchain object, this function calculates the probability of ever arriving from state i to j } \examples{ M <- markovchain:::zeros(5) M[1,1] <- M[5,5] <- 1 M[2,1] <- M[2,3] <- 1/2 M[3,2] <- M[3,4] <- 1/2 M[4,2] <- M[4,5] <- 1/2 mc <- new("markovchain", transitionMatrix = M) hittingProbabilities(mc) } \references{ R. Vélez, T. Prieto, Procesos Estocásticos, Librería UNED, 2013 } \author{ Ignacio Cordón }
/man/hittingProbabilities.Rd
no_license
cran/markovchain
R
false
true
811
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/probabilistic.R \name{hittingProbabilities} \alias{hittingProbabilities} \title{Hitting probabilities for markovchain} \usage{ hittingProbabilities(object) } \arguments{ \item{object}{the markovchain-class object} } \value{ a matrix of hitting probabilities } \description{ Given a markovchain object, this function calculates the probability of ever arriving from state i to j } \examples{ M <- markovchain:::zeros(5) M[1,1] <- M[5,5] <- 1 M[2,1] <- M[2,3] <- 1/2 M[3,2] <- M[3,4] <- 1/2 M[4,2] <- M[4,5] <- 1/2 mc <- new("markovchain", transitionMatrix = M) hittingProbabilities(mc) } \references{ R. Vélez, T. Prieto, Procesos Estocásticos, Librería UNED, 2013 } \author{ Ignacio Cordón }
#' Time needed to screen titles of unique search results #' #' This function calculates the time needed to screen the unique titles of #' search results compiled across all searched resources in a systematic #' review, based on the inputs of the number of unique articles #' ('uniqart.number', see 'uniqart.number' function), the number of titles #' that can be screened per day ('titles.day'), and the percentage of all #' titles that are double checked for consistency ('titles.checked'). Where #' full dual screening of all records is used, this will equal a percentage #' of 100 titles being checked. Default values are provided based on #' the empirical study of environmental systematic reviews by Haddaway and #' Westgate (2018) https://doi.org/10.1111/cobi.13231. tscreen.time <- function(uniqart.number=8497.706,titles.day=854,titles.checked=10){ title.screening <- ( uniqart.number / titles.day ) * ( 1 + ( titles.checked / 100 ) ) return(title.screening) }
/R/tscreen.time.R
permissive
nealhaddaway/predicter
R
false
false
973
r
#' Time needed to screen titles of unique search results #' #' This function calculates the time needed to screen the unique titles of #' search results compiled across all searched resources in a systematic #' review, based on the inputs of the number of unique articles #' ('uniqart.number', see 'uniqart.number' function), the number of titles #' that can be screened per day ('titles.day'), and the percentage of all #' titles that are double checked for consistency ('titles.checked'). Where #' full dual screening of all records is used, this will equal a percentage #' of 100 titles being checked. Default values are provided based on #' the empirical study of environmental systematic reviews by Haddaway and #' Westgate (2018) https://doi.org/10.1111/cobi.13231. tscreen.time <- function(uniqart.number=8497.706,titles.day=854,titles.checked=10){ title.screening <- ( uniqart.number / titles.day ) * ( 1 + ( titles.checked / 100 ) ) return(title.screening) }
library(ggplot2) library(dplyr) #install.packages('maps') library(maps) us_map<-map_data('state') head(us_map,3) setwd('C:/Users/pwendel/Documents/GitHub/DSGit/Coursera/R_data_viz') us_map %>% filter(region %in% c('north carolina','south carolina')) %>% ggplot(aes(x=long,y=lat))+geom_point() us_map %>% filter(region %in% c('north carolina','south carolina'))%>% ggplot(aes(x=long,y=lat,group=group))+geom_path() us_map %>% filter(region %in% c('north carolina','south carolina')) %>% ggplot(aes(x=long,y=lat,group=group,fill=region))+geom_polygon(color='black')+ theme_void() us_map %>% ggplot(aes(x=long,y=lat,group=group))+ geom_polygon(fill='lightblue',color='black')+theme_void() data(votes.repub) head(votes.repub) library(dplyr) #install.packages('viridis') library(viridis) votes.repub%>%tbl_df()%>%mutate(state=rownames(votes.repub),state=tolower(state))%>% right_join(us_map, by=c('state'='region')) %>% ggplot(aes(x=long,y=lat,group=group,fill=`1976`))+geom_polygon(color="black")+theme_void()+ scale_fill_viridis(name='Republican\nvotes (%)') #install.packages('tidyr') library(tidyr) meltvote<-votes.repub%>%tbl_df()%>%mutate(state=rownames(votes.repub),state=tolower(state))%>%gather(year,votes,-state) meltvote%>%right_join(us_map,by=c('state'='region'))%>%ggplot(aes(x=long,y=lat,group=group,fill=votes))+ geom_polygon(color='black')+theme_void()+scale_fill_viridis(name='Republican\nvotes (%)')+ facet_wrap(~year) # install.packages('readr') library(readr) serial<-read_csv(paste0("https://raw.githubusercontent.com/", "dgrtwo/serial-ggvis/master/input_data/", "serial_podcast_data/serial_map_data.csv")) head(serial) serial<-serial %>% mutate(long=-76.8854+0.00017022*x, lat=39.23822+1.371014e-04*y, tower=Type=='cell-site') serial %>% slice(c(1:3,(n()-3):n())) maryland<-map_data('county',region='maryland') head(maryland) baltimore<-maryland%>%filter(subregion %in% c('baltimore city','baltimore')) head(baltimore,3) base_bal<-ggplot(baltimore, aes(x=long,y=lat,group=group))+geom_polygon(fill='lightblue',color='black')+ theme_void() base_bal+geom_point(data=serial,aes(group=NULL,color=tower))+ scale_color_manual(name='Cell tower',values=c('black','red')) #install.packages('ggmap') ###install.packages('sp') install.packages('devtools') library(devtools) install_github('dkahle/ggmap') library(ggmap) register_google() beijing<-get_map("Beijing",zoom=12) ggmap(beijing) get_map('DFW airport',zoom=15)%>%ggmap() get_map("Baltimore County",zoom=10, source='stamen',maptype='toner')%>% ggmap()+ geom_polygon(data=baltimore,aes(x=long,y=lat,group=group), color='navy',fill='lightblue',alpha=0.2)+ geom_point(data=serial, aes(x=long,y=lat,color=tower))+ scale_color_manual(name='Cell tower',values=c('black','red')) get_map(c(-76.6,39.3),zoom=11, source='stamen',maptype='toner')%>% ggmap()+ geom_polygon(data=baltimore,aes(x=long,y=lat,group=group), color='navy',fill='lightblue',alpha=0.2)+ geom_point(data=serial, aes(x=long,y=lat,color=tower))+ scale_color_manual(name='Cell tower',values=c('black','red')) #install.packages('tigris') library(tigris) library(sp) denver_tracts<-tracts(state='CO',county=31,cb=TRUE) #install.packages('plotly') library(plotly) library(faraway) data(worldcup) plot_ly(worldcup,type='scatter',x=~Time,y=~Shots,color=I('blue')) worldcup %>% mutate(Name=rownames(worldcup))%>% plot_ly(x=~Time,y=~Shots,color=~Position)%>% add_markers(text=~paste("<b>Name:</b>",Name,'<br />', '<b>Team:</b>',Team),hoverinfo='text') read_csv('data/floyd_track.csv') %>% plot_ly(x=~datetime,y=~max_wind) %>% add_lines() %>% rangeslider() denver_tracts <- tracts(state = "CO", county = 31, cb = TRUE) load("data/fars_colorado.RData") denver_fars <- driver_data %>% filter(county == 31 & longitud < -104.5) install.packages('leaflet')
/Coursera/R_data_viz/ggmap.R
no_license
pwendel3/DSGit
R
false
false
4,018
r
library(ggplot2) library(dplyr) #install.packages('maps') library(maps) us_map<-map_data('state') head(us_map,3) setwd('C:/Users/pwendel/Documents/GitHub/DSGit/Coursera/R_data_viz') us_map %>% filter(region %in% c('north carolina','south carolina')) %>% ggplot(aes(x=long,y=lat))+geom_point() us_map %>% filter(region %in% c('north carolina','south carolina'))%>% ggplot(aes(x=long,y=lat,group=group))+geom_path() us_map %>% filter(region %in% c('north carolina','south carolina')) %>% ggplot(aes(x=long,y=lat,group=group,fill=region))+geom_polygon(color='black')+ theme_void() us_map %>% ggplot(aes(x=long,y=lat,group=group))+ geom_polygon(fill='lightblue',color='black')+theme_void() data(votes.repub) head(votes.repub) library(dplyr) #install.packages('viridis') library(viridis) votes.repub%>%tbl_df()%>%mutate(state=rownames(votes.repub),state=tolower(state))%>% right_join(us_map, by=c('state'='region')) %>% ggplot(aes(x=long,y=lat,group=group,fill=`1976`))+geom_polygon(color="black")+theme_void()+ scale_fill_viridis(name='Republican\nvotes (%)') #install.packages('tidyr') library(tidyr) meltvote<-votes.repub%>%tbl_df()%>%mutate(state=rownames(votes.repub),state=tolower(state))%>%gather(year,votes,-state) meltvote%>%right_join(us_map,by=c('state'='region'))%>%ggplot(aes(x=long,y=lat,group=group,fill=votes))+ geom_polygon(color='black')+theme_void()+scale_fill_viridis(name='Republican\nvotes (%)')+ facet_wrap(~year) # install.packages('readr') library(readr) serial<-read_csv(paste0("https://raw.githubusercontent.com/", "dgrtwo/serial-ggvis/master/input_data/", "serial_podcast_data/serial_map_data.csv")) head(serial) serial<-serial %>% mutate(long=-76.8854+0.00017022*x, lat=39.23822+1.371014e-04*y, tower=Type=='cell-site') serial %>% slice(c(1:3,(n()-3):n())) maryland<-map_data('county',region='maryland') head(maryland) baltimore<-maryland%>%filter(subregion %in% c('baltimore city','baltimore')) head(baltimore,3) base_bal<-ggplot(baltimore, aes(x=long,y=lat,group=group))+geom_polygon(fill='lightblue',color='black')+ theme_void() base_bal+geom_point(data=serial,aes(group=NULL,color=tower))+ scale_color_manual(name='Cell tower',values=c('black','red')) #install.packages('ggmap') ###install.packages('sp') install.packages('devtools') library(devtools) install_github('dkahle/ggmap') library(ggmap) register_google() beijing<-get_map("Beijing",zoom=12) ggmap(beijing) get_map('DFW airport',zoom=15)%>%ggmap() get_map("Baltimore County",zoom=10, source='stamen',maptype='toner')%>% ggmap()+ geom_polygon(data=baltimore,aes(x=long,y=lat,group=group), color='navy',fill='lightblue',alpha=0.2)+ geom_point(data=serial, aes(x=long,y=lat,color=tower))+ scale_color_manual(name='Cell tower',values=c('black','red')) get_map(c(-76.6,39.3),zoom=11, source='stamen',maptype='toner')%>% ggmap()+ geom_polygon(data=baltimore,aes(x=long,y=lat,group=group), color='navy',fill='lightblue',alpha=0.2)+ geom_point(data=serial, aes(x=long,y=lat,color=tower))+ scale_color_manual(name='Cell tower',values=c('black','red')) #install.packages('tigris') library(tigris) library(sp) denver_tracts<-tracts(state='CO',county=31,cb=TRUE) #install.packages('plotly') library(plotly) library(faraway) data(worldcup) plot_ly(worldcup,type='scatter',x=~Time,y=~Shots,color=I('blue')) worldcup %>% mutate(Name=rownames(worldcup))%>% plot_ly(x=~Time,y=~Shots,color=~Position)%>% add_markers(text=~paste("<b>Name:</b>",Name,'<br />', '<b>Team:</b>',Team),hoverinfo='text') read_csv('data/floyd_track.csv') %>% plot_ly(x=~datetime,y=~max_wind) %>% add_lines() %>% rangeslider() denver_tracts <- tracts(state = "CO", county = 31, cb = TRUE) load("data/fars_colorado.RData") denver_fars <- driver_data %>% filter(county == 31 & longitud < -104.5) install.packages('leaflet')
# Samantha Alger #Negative Strand Analysis and figures # 4/5/2018 # Clear memory of characters: ls() rm(list=ls()) # Set Working Directory setwd("~/AlgerProjects/2015_Bombus_Survey/CSV_Files") library("ggplot2") library("dplyr") library("lme4") library("car") library("plyr") # load in data Melt <- read.csv("USDAplate1Melt.csv", header=TRUE, stringsAsFactors=FALSE) Cq <- read.csv("USDAplate1cq.csv", header=TRUE, stringsAsFactors=FALSE) BombSurv <- read.csv("BombSurvNHBS.csv", header=TRUE, stringsAsFactors=FALSE) # formatting bombsurv to test Spatial Autocorralation on BeeAbund <- read.table("BeeAbund.csv", header=TRUE, sep=",", stringsAsFactors=FALSE) SpatDat <- read.table("SpatDatBuffs.csv", header=TRUE,sep=",",stringsAsFactors=FALSE) # remove unwanted sites and bombus species BombSurv<-BombSurv[!BombSurv$site==("PITH"),] BombSurv<-BombSurv[!BombSurv$site==("STOW"),] BombSurv<-BombSurv[!BombSurv$species==("Griseocollis"),] BombSurv<-BombSurv[!BombSurv$species==("Sandersonii"),] # subset BombSurv: Bomb <- dplyr::select(BombSurv, site, Ct_mean, sample_name, species, apiary_near_far, Density, genome_copbee, norm_genome_copbeeHB, target_name, virusBINY_PreFilter, virusBINY, HBSiteBin) names(Bomb)[3] <- "Sample" # merge data: #Dat <- merge(Melt, Cq, by = c("Sample", "Target")) #str(Dat) # Merge Dat and Bomb Dat <- merge(Melt, Bomb, by = c("Sample","target_name"), all.y=TRUE) #Dat <- merge(Melt, Bomb, by = c("Sample"), all.x=TRUE) DatClean <- Dat #DatClean <- DatClean[!(DatClean$Cq>33),] #DatClean <- DatClean[!(DatClean$Melt<78),] DatClean$BinaryNeg <- ifelse(DatClean$Melt > 0, 1, 0) DatClean$BinaryNeg[is.na(DatClean$BinaryNeg)] <- 0 x <- merge(DatClean, BeeAbund, by="site") DatClean <- merge(x, SpatDat, by="site") DatCleanPos <- DatClean[DatClean$virusBINY==1,] DatCleanPos[DatCleanPos$apis==0,] DatClean$isHB <- ifelse(DatClean$site=="TIRE" | DatClean$site=="CLERK" | DatClean$site=="NEK" | DatClean$site=="FLAN", "noHB", "HB") ddply(DatClean, c("target_name", "isHB"), summarise, n = length(BinaryNeg), mean = mean(BinaryNeg), sd = sqrt(((mean(BinaryNeg))*(1-mean(BinaryNeg)))/n)) # Subset for the two viruses: # For BQCV: BQ <- DatClean[DatClean$target_name=="BQCV",] # For DWV: DW <- DatClean[DatClean$target_name=="DWV",] reducedBQ <- select(BQ, BinaryNeg, Density, apis, apiary_near_far, species, site, Sample, lat, long) reducedDW <- select(DW, BinaryNeg, Density, apis, apiary_near_far, species, site, Sample, lat, long) ########################################################################### # function name: TheExtractor # description:extracts log liklihood test stats and p vals for null vs full # and the reduced models # parameters: # Full = full model (glmer or lmer) # Null = null model # Density = density removed # Colonies = colonies removed # Species = species removed ########################################################################### TheExtractor <- function(Full, Null, Colonies, Density, Species){ sumFull <- summary(Full) modelFit <- anova(Full, Null, test="LRT") Cols <- anova(Full, Colonies, test="LRT") Dens <- anova(Full, Density, test="LRT") Spec <- anova(Full, Species, test="LRT") ModFit <- list("Model Fit P"=modelFit$`Pr(>Chisq)`[2], "Model Fit Df"=modelFit$`Chi Df`[2], "Model Fit Chi2"=modelFit$Chisq[2]) ColFit <- list("Colony Fit P"=Cols$`Pr(>Chisq)`[2],"Colony Fit Df"=Cols$`Chi Df`[2],"Colony Fit Chi2"=Cols$Chisq[2]) DensFit <- list("Density Fit P"=Dens$`Pr(>Chisq)`[2],"Density Fit Df"=Dens$`Chi Df`[2],"Density Fit Chi2"=Dens$Chisq[2]) SpecFit <- list("Species Fit P"=Spec$`Pr(>Chisq)`[2],"Species Fit Df"=Spec$`Chi Df`[2],"Species Fit Chi2"=Spec$Chisq[2]) return(list(sumFull$coefficients[1:4,1:2],ModFit, ColFit, DensFit, SpecFit)) } ########################################################################### # END OF FUNCITON ########################################################################### BQCVprevModFull <- glmer(data=reducedBQ, formula = BinaryNeg ~ species + Density + apis + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModNull <- glmer(data=reducedBQ, formula = BinaryNeg ~ 1 + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModnoApis <- glmer(data=reducedBQ, formula = BinaryNeg ~ species + Density + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModnoDens <- glmer(data=reducedBQ, formula = BinaryNeg ~ species + apis + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModnoSpp <- glmer(data=reducedBQ, formula = BinaryNeg ~ Density + apis + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) # run the function to get results of models TheExtractor(Full=BQCVprevModFull, Null=BQCVprevModNull, Colonies=BQCVprevModnoApis, Density=BQCVprevModnoDens, Species = BQCVprevModnoSpp) BQCVprevModFull <- glmer(data=reducedDW, formula = BinaryNeg ~ species + Density + apis + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModNull <- glmer(data=reducedDW, formula = BinaryNeg ~ 1 + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModnoApis <- glmer(data=reducedDW, formula = BinaryNeg ~ species + Density + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModnoDens <- glmer(data=reducedDW, formula = BinaryNeg ~ species + apis + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModnoSpp <- glmer(data=reducedDW, formula = BinaryNeg ~ Density + apis + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) # run the function to get results of models TheExtractor(Full=BQCVprevModFull, Null=BQCVprevModNull, Colonies=BQCVprevModnoApis, Density=BQCVprevModnoDens, Species = BQCVprevModnoSpp) #DWVprevModFull <- glmer(data=reducedDW, formula = BinaryNeg ~ species + Density + apis + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModFull2 <- glmer(data=reducedBQ, formula = BinaryNeg ~ species + Density + apiary_near_far + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModFull3 <- glmer(data=reducedDW, formula = BinaryNeg ~ species + Density + apiary_near_far + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModNull3 <- glmer(data=reducedDW, formula = BinaryNeg ~ 1 + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModFull3noApis <- glmer(data=reducedDW, formula = BinaryNeg ~ species + Density + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModFull3noDensity <- glmer(data=reducedDW, formula = BinaryNeg ~ species + apiary_near_far + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModFull3nospecies <- glmer(data=reducedDW, formula = BinaryNeg ~ Density + apiary_near_far + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) # run the function to get results of models TheExtractor(Full=DWVprevModFull3, Null=DWVprevModNull3, Colonies=DWVprevModFull3noApis, Density=DWVprevModFull3noDensity, Species =DWVprevModFull3nospecies) DWVprevModFull3 <- glmer(data=reducedBQ, formula = BinaryNeg ~ species + Density + apiary_near_far + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModNull3 <- glmer(data=reducedBQ, formula = BinaryNeg ~ 1 + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModFull3noApis <- glmer(data=reducedBQ, formula = BinaryNeg ~ species + Density + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModFull3noDensity <- glmer(data=reducedBQ, formula = BinaryNeg ~ species + apiary_near_far + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModFull3nospecies <- glmer(data=reducedBQ, formula = BinaryNeg ~ Density + apiary_near_far + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) # run the function to get results of models TheExtractor(Full=DWVprevModFull3, Null=DWVprevModNull3, Colonies=DWVprevModFull3noApis, Density=DWVprevModFull3noDensity, Species =DWVprevModFull3nospecies) # Fig and stats for BQCV: BQ <- BQ[ which(BQ$virusBINY_PreFilter=="1"), ] #ddply summarize: plotdat <- ddply(BQ, c("target_name", "apiary_near_far"), summarise, n = length(BinaryNeg), mean = mean(BinaryNeg, na.rm=TRUE), sd = sqrt(((mean(BinaryNeg))*(1-mean(BinaryNeg)))/n)) plotdat$apiary_near_far <- ifelse(plotdat$apiary_near_far==0, "No Apiary", "Apiary") label.df <- data.frame(Group = c("S1", "S2"), Value = c(6, 9)) plot1 <- ggplot(plotdat, aes(x=apiary_near_far, y=mean, fill=target_name)) + geom_bar(stat="identity", color="black", fill = "white", position=position_dodge()) + labs(y="BQCV Replication", x="Site Type") + geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd, width = 0.2),position=position_dodge(.9)) plot1 + theme_minimal(base_size = 18) + coord_cartesian(ylim = c(0, .5)) + scale_y_continuous(labels = scales::percent) + guides(fill=FALSE) DatCleanNeg <- DatClean[DatClean$target_name=="BQCV",] #Calculate percentage of replicating infections: mean(BQ$BinaryNeg) # Overall 20% of BQCV positive bumble bees had replicating infections. #ddply summarize for species: plotdat <- ddply(BQ, c("target_name", "species"), summarise, n = length(BinaryNeg), mean = mean(BinaryNeg, na.rm=TRUE), sd = sqrt(((mean(BinaryNeg))*(1-mean(BinaryNeg)))/n)) plot1 <- ggplot(plotdat, aes(x=species, y=mean, fill=target_name)) + geom_bar(stat="identity", color="black",fill = "white", position=position_dodge()) + labs(y="Prevalence", x="Species") + geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd, width = 0.2),position=position_dodge(.9)) plot1 + theme_minimal(base_size = 18) + coord_cartesian(ylim = c(0, 1)) + scale_y_continuous(labels = scales::percent) + guides(fill=FALSE) #Percentage of replication by species: plotdat # 28% of bimacs, 11% of Vagans #For DWV: # subset for virus positive bees DW <- DW[ which(DW$virusBINY_PreFilter=="1"), ] DW$virusBINY #ddply summarize: plotdat2 <- ddply(DW, c("target_name", "apiary_near_far"), summarise, n = length(BinaryNeg), mean = mean(BinaryNeg, na.rm=TRUE), sd = sqrt(((mean(BinaryNeg))*(1-mean(BinaryNeg)))/n)) plotdat2$apiary_near_far <- ifelse(plotdat2$apiary_near_far==0, "No Apiary", "Apiary") label.df <- data.frame(Group = c("S1", "S2"), Value = c(6, 9)) plot1 <- ggplot(plotdat2, aes(x=apiary_near_far, y=mean, fill=target_name)) + geom_bar(stat="identity", color="black", fill = "white", position=position_dodge()) + labs(y="DWV Replication", x="Site Type") + geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd, width = 0.2),position=position_dodge(.9)) plot1 + theme_minimal(base_size = 18) + coord_cartesian(ylim = c(0, .5)) + scale_y_continuous(labels = scales::percent) + guides(fill=FALSE) DatCleanNeg <- DatClean[DatClean$target_name=="DWV",] chisq.test(DatCleanNeg$BinaryNeg, DatCleanNeg$apiary_near_far) chisq.test(DatCleanNeg$BinaryNeg, DatCleanNeg$species) #Calculate % of replicating infections mean(DW$BinaryNeg) # 16% of DWV positive bees had replicating infections. #ddply summarize for species: plotdat <- ddply(DW, c("target_name", "species"), summarise, n = length(BinaryNeg), mean = mean(BinaryNeg, na.rm=TRUE), sd = sqrt(((mean(BinaryNeg))*(1-mean(BinaryNeg)))/n)) #Replication by species plotdat # bimacs 22%; Vagans 12% plot1 <- ggplot(plotdat, aes(x=species, y=mean, fill=target_name)) + geom_bar(stat="identity", color="black",fill = "white", position=position_dodge()) + labs(y="Prevalence", x="Species") + geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd, width = 0.2),position=position_dodge(.9)) plot1 + theme_minimal(base_size = 18) + coord_cartesian(ylim = c(0, 1)) + scale_y_continuous(labels = scales::percent) + guides(fill=FALSE) plotdat
/2015_Bombus_Survey/NegStd.R
no_license
samanthaannalger/AlgerProjects
R
false
false
12,563
r
# Samantha Alger #Negative Strand Analysis and figures # 4/5/2018 # Clear memory of characters: ls() rm(list=ls()) # Set Working Directory setwd("~/AlgerProjects/2015_Bombus_Survey/CSV_Files") library("ggplot2") library("dplyr") library("lme4") library("car") library("plyr") # load in data Melt <- read.csv("USDAplate1Melt.csv", header=TRUE, stringsAsFactors=FALSE) Cq <- read.csv("USDAplate1cq.csv", header=TRUE, stringsAsFactors=FALSE) BombSurv <- read.csv("BombSurvNHBS.csv", header=TRUE, stringsAsFactors=FALSE) # formatting bombsurv to test Spatial Autocorralation on BeeAbund <- read.table("BeeAbund.csv", header=TRUE, sep=",", stringsAsFactors=FALSE) SpatDat <- read.table("SpatDatBuffs.csv", header=TRUE,sep=",",stringsAsFactors=FALSE) # remove unwanted sites and bombus species BombSurv<-BombSurv[!BombSurv$site==("PITH"),] BombSurv<-BombSurv[!BombSurv$site==("STOW"),] BombSurv<-BombSurv[!BombSurv$species==("Griseocollis"),] BombSurv<-BombSurv[!BombSurv$species==("Sandersonii"),] # subset BombSurv: Bomb <- dplyr::select(BombSurv, site, Ct_mean, sample_name, species, apiary_near_far, Density, genome_copbee, norm_genome_copbeeHB, target_name, virusBINY_PreFilter, virusBINY, HBSiteBin) names(Bomb)[3] <- "Sample" # merge data: #Dat <- merge(Melt, Cq, by = c("Sample", "Target")) #str(Dat) # Merge Dat and Bomb Dat <- merge(Melt, Bomb, by = c("Sample","target_name"), all.y=TRUE) #Dat <- merge(Melt, Bomb, by = c("Sample"), all.x=TRUE) DatClean <- Dat #DatClean <- DatClean[!(DatClean$Cq>33),] #DatClean <- DatClean[!(DatClean$Melt<78),] DatClean$BinaryNeg <- ifelse(DatClean$Melt > 0, 1, 0) DatClean$BinaryNeg[is.na(DatClean$BinaryNeg)] <- 0 x <- merge(DatClean, BeeAbund, by="site") DatClean <- merge(x, SpatDat, by="site") DatCleanPos <- DatClean[DatClean$virusBINY==1,] DatCleanPos[DatCleanPos$apis==0,] DatClean$isHB <- ifelse(DatClean$site=="TIRE" | DatClean$site=="CLERK" | DatClean$site=="NEK" | DatClean$site=="FLAN", "noHB", "HB") ddply(DatClean, c("target_name", "isHB"), summarise, n = length(BinaryNeg), mean = mean(BinaryNeg), sd = sqrt(((mean(BinaryNeg))*(1-mean(BinaryNeg)))/n)) # Subset for the two viruses: # For BQCV: BQ <- DatClean[DatClean$target_name=="BQCV",] # For DWV: DW <- DatClean[DatClean$target_name=="DWV",] reducedBQ <- select(BQ, BinaryNeg, Density, apis, apiary_near_far, species, site, Sample, lat, long) reducedDW <- select(DW, BinaryNeg, Density, apis, apiary_near_far, species, site, Sample, lat, long) ########################################################################### # function name: TheExtractor # description:extracts log liklihood test stats and p vals for null vs full # and the reduced models # parameters: # Full = full model (glmer or lmer) # Null = null model # Density = density removed # Colonies = colonies removed # Species = species removed ########################################################################### TheExtractor <- function(Full, Null, Colonies, Density, Species){ sumFull <- summary(Full) modelFit <- anova(Full, Null, test="LRT") Cols <- anova(Full, Colonies, test="LRT") Dens <- anova(Full, Density, test="LRT") Spec <- anova(Full, Species, test="LRT") ModFit <- list("Model Fit P"=modelFit$`Pr(>Chisq)`[2], "Model Fit Df"=modelFit$`Chi Df`[2], "Model Fit Chi2"=modelFit$Chisq[2]) ColFit <- list("Colony Fit P"=Cols$`Pr(>Chisq)`[2],"Colony Fit Df"=Cols$`Chi Df`[2],"Colony Fit Chi2"=Cols$Chisq[2]) DensFit <- list("Density Fit P"=Dens$`Pr(>Chisq)`[2],"Density Fit Df"=Dens$`Chi Df`[2],"Density Fit Chi2"=Dens$Chisq[2]) SpecFit <- list("Species Fit P"=Spec$`Pr(>Chisq)`[2],"Species Fit Df"=Spec$`Chi Df`[2],"Species Fit Chi2"=Spec$Chisq[2]) return(list(sumFull$coefficients[1:4,1:2],ModFit, ColFit, DensFit, SpecFit)) } ########################################################################### # END OF FUNCITON ########################################################################### BQCVprevModFull <- glmer(data=reducedBQ, formula = BinaryNeg ~ species + Density + apis + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModNull <- glmer(data=reducedBQ, formula = BinaryNeg ~ 1 + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModnoApis <- glmer(data=reducedBQ, formula = BinaryNeg ~ species + Density + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModnoDens <- glmer(data=reducedBQ, formula = BinaryNeg ~ species + apis + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModnoSpp <- glmer(data=reducedBQ, formula = BinaryNeg ~ Density + apis + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) # run the function to get results of models TheExtractor(Full=BQCVprevModFull, Null=BQCVprevModNull, Colonies=BQCVprevModnoApis, Density=BQCVprevModnoDens, Species = BQCVprevModnoSpp) BQCVprevModFull <- glmer(data=reducedDW, formula = BinaryNeg ~ species + Density + apis + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModNull <- glmer(data=reducedDW, formula = BinaryNeg ~ 1 + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModnoApis <- glmer(data=reducedDW, formula = BinaryNeg ~ species + Density + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModnoDens <- glmer(data=reducedDW, formula = BinaryNeg ~ species + apis + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModnoSpp <- glmer(data=reducedDW, formula = BinaryNeg ~ Density + apis + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) # run the function to get results of models TheExtractor(Full=BQCVprevModFull, Null=BQCVprevModNull, Colonies=BQCVprevModnoApis, Density=BQCVprevModnoDens, Species = BQCVprevModnoSpp) #DWVprevModFull <- glmer(data=reducedDW, formula = BinaryNeg ~ species + Density + apis + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) BQCVprevModFull2 <- glmer(data=reducedBQ, formula = BinaryNeg ~ species + Density + apiary_near_far + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModFull3 <- glmer(data=reducedDW, formula = BinaryNeg ~ species + Density + apiary_near_far + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModNull3 <- glmer(data=reducedDW, formula = BinaryNeg ~ 1 + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModFull3noApis <- glmer(data=reducedDW, formula = BinaryNeg ~ species + Density + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModFull3noDensity <- glmer(data=reducedDW, formula = BinaryNeg ~ species + apiary_near_far + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModFull3nospecies <- glmer(data=reducedDW, formula = BinaryNeg ~ Density + apiary_near_far + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) # run the function to get results of models TheExtractor(Full=DWVprevModFull3, Null=DWVprevModNull3, Colonies=DWVprevModFull3noApis, Density=DWVprevModFull3noDensity, Species =DWVprevModFull3nospecies) DWVprevModFull3 <- glmer(data=reducedBQ, formula = BinaryNeg ~ species + Density + apiary_near_far + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModNull3 <- glmer(data=reducedBQ, formula = BinaryNeg ~ 1 + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModFull3noApis <- glmer(data=reducedBQ, formula = BinaryNeg ~ species + Density + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModFull3noDensity <- glmer(data=reducedBQ, formula = BinaryNeg ~ species + apiary_near_far + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) DWVprevModFull3nospecies <- glmer(data=reducedBQ, formula = BinaryNeg ~ Density + apiary_near_far + (1|site) + (1|long) + (1|lat), family = binomial(link = "logit")) # run the function to get results of models TheExtractor(Full=DWVprevModFull3, Null=DWVprevModNull3, Colonies=DWVprevModFull3noApis, Density=DWVprevModFull3noDensity, Species =DWVprevModFull3nospecies) # Fig and stats for BQCV: BQ <- BQ[ which(BQ$virusBINY_PreFilter=="1"), ] #ddply summarize: plotdat <- ddply(BQ, c("target_name", "apiary_near_far"), summarise, n = length(BinaryNeg), mean = mean(BinaryNeg, na.rm=TRUE), sd = sqrt(((mean(BinaryNeg))*(1-mean(BinaryNeg)))/n)) plotdat$apiary_near_far <- ifelse(plotdat$apiary_near_far==0, "No Apiary", "Apiary") label.df <- data.frame(Group = c("S1", "S2"), Value = c(6, 9)) plot1 <- ggplot(plotdat, aes(x=apiary_near_far, y=mean, fill=target_name)) + geom_bar(stat="identity", color="black", fill = "white", position=position_dodge()) + labs(y="BQCV Replication", x="Site Type") + geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd, width = 0.2),position=position_dodge(.9)) plot1 + theme_minimal(base_size = 18) + coord_cartesian(ylim = c(0, .5)) + scale_y_continuous(labels = scales::percent) + guides(fill=FALSE) DatCleanNeg <- DatClean[DatClean$target_name=="BQCV",] #Calculate percentage of replicating infections: mean(BQ$BinaryNeg) # Overall 20% of BQCV positive bumble bees had replicating infections. #ddply summarize for species: plotdat <- ddply(BQ, c("target_name", "species"), summarise, n = length(BinaryNeg), mean = mean(BinaryNeg, na.rm=TRUE), sd = sqrt(((mean(BinaryNeg))*(1-mean(BinaryNeg)))/n)) plot1 <- ggplot(plotdat, aes(x=species, y=mean, fill=target_name)) + geom_bar(stat="identity", color="black",fill = "white", position=position_dodge()) + labs(y="Prevalence", x="Species") + geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd, width = 0.2),position=position_dodge(.9)) plot1 + theme_minimal(base_size = 18) + coord_cartesian(ylim = c(0, 1)) + scale_y_continuous(labels = scales::percent) + guides(fill=FALSE) #Percentage of replication by species: plotdat # 28% of bimacs, 11% of Vagans #For DWV: # subset for virus positive bees DW <- DW[ which(DW$virusBINY_PreFilter=="1"), ] DW$virusBINY #ddply summarize: plotdat2 <- ddply(DW, c("target_name", "apiary_near_far"), summarise, n = length(BinaryNeg), mean = mean(BinaryNeg, na.rm=TRUE), sd = sqrt(((mean(BinaryNeg))*(1-mean(BinaryNeg)))/n)) plotdat2$apiary_near_far <- ifelse(plotdat2$apiary_near_far==0, "No Apiary", "Apiary") label.df <- data.frame(Group = c("S1", "S2"), Value = c(6, 9)) plot1 <- ggplot(plotdat2, aes(x=apiary_near_far, y=mean, fill=target_name)) + geom_bar(stat="identity", color="black", fill = "white", position=position_dodge()) + labs(y="DWV Replication", x="Site Type") + geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd, width = 0.2),position=position_dodge(.9)) plot1 + theme_minimal(base_size = 18) + coord_cartesian(ylim = c(0, .5)) + scale_y_continuous(labels = scales::percent) + guides(fill=FALSE) DatCleanNeg <- DatClean[DatClean$target_name=="DWV",] chisq.test(DatCleanNeg$BinaryNeg, DatCleanNeg$apiary_near_far) chisq.test(DatCleanNeg$BinaryNeg, DatCleanNeg$species) #Calculate % of replicating infections mean(DW$BinaryNeg) # 16% of DWV positive bees had replicating infections. #ddply summarize for species: plotdat <- ddply(DW, c("target_name", "species"), summarise, n = length(BinaryNeg), mean = mean(BinaryNeg, na.rm=TRUE), sd = sqrt(((mean(BinaryNeg))*(1-mean(BinaryNeg)))/n)) #Replication by species plotdat # bimacs 22%; Vagans 12% plot1 <- ggplot(plotdat, aes(x=species, y=mean, fill=target_name)) + geom_bar(stat="identity", color="black",fill = "white", position=position_dodge()) + labs(y="Prevalence", x="Species") + geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd, width = 0.2),position=position_dodge(.9)) plot1 + theme_minimal(base_size = 18) + coord_cartesian(ylim = c(0, 1)) + scale_y_continuous(labels = scales::percent) + guides(fill=FALSE) plotdat
library(optimization) error_safe <- function(expr){ tryCatch(expr, error = function(e){ message("An error occurred:\n", e) NA }) } summary_hyperpar <- function(Y, X, A_block, gamma_init_A, gamma_init_B, eta_input, rho_input = 0.9, priorA = "ep", priorB = "ep"){ if(priorA == "ep"){ priorA_num = 0 } else if(priorA == "unif"){ priorA_num = 3 } else { warning("priorA should be a string `ep` for Ewens-Pitman or `unif` for the uniform.") } if(priorB == "ep"){ priorB_num = 0 } else if(priorB == "unif"){ priorB_num = 3 } else { warning("priorB should be a string `ep` for Ewens-Pitman or `unif` for the uniform.") } Rcpp::sourceCpp("src/particle_summary.cpp") source("src/fun_likelihood.R") Xorig <- X Yorig <- Y Xmeans <- rowMeans(X) X <- X - Xmeans betas_mle <- numeric(N) for(i in 1:N) betas_mle[i] <- cov(Y[i,],X[i,])/var(X[i,]) Y <- Y - betas_mle*Xmeans eta_py = eta_input sigma_py = 0 rho = rho_input N <- dim(Y)[1] t <- dim(Y)[2] n_tr <- dim(X)[1] betas_mle <- numeric(n_tr) for(i in 1:n_tr) betas_mle[i] <- cov(Y[i,],X[i,])/var(X[i,]) alphas_mle <- rowMeans(Y) - betas_mle * rowMeans(X) sigmas <- numeric(n_tr) for(i in 1:n_tr) sigmas[i] <- sd(lm(Y[i,]~X[i,])$residuals) sigma2 <- mean(sigmas^2) mu <- mean(sigmas^2) v <- var(sigmas^2) alpha_sigma <- mu^2/v + 2 beta_sigma <- mu*(alpha_sigma-1) K <- round(log(n_tr)) tmp <- (max(alphas_mle)-min(alphas_mle))/(K+1)/2 a1 <- tmp^2/sigma2*(1-0.8) a2 <- (max(abs(alphas_mle))/2)^2/sigma2 - (a1/(1-rho)) tmp <- (max(betas_mle)-min(betas_mle))/(K+1)/2 b1 <- tmp^2/sigma2*(1-0.8) b2 <- (max(abs(betas_mle))/2)^2/sigma2 - (b1/(1-rho)) partA <- gamma_init_A partB <- gamma_init_B log_post2 <- function(par){ log_post(par, priorA_num, priorB_num, partA, partB, a2, b2, rho, Y,X,A_block, alpha_sigma, beta_sigma, eta_py, sigma_py) } tmp_nm <- error_safe(optim(par = c(a1,b1), fn = log_post2, method = "Nelder-Mead")) if(!any(is.na(tmp_nm))){ a1_new <- tmp_nm$par[1] b1_new <- tmp_nm$par[2] } else { a1_new <- a1 b1_new <- b1 } tmp_new <- particle_summary(Y, X, A_block, gamma_init_A = partA, gamma_init_B = partB, a1_input = a1_new, b1_input = b1_new, a2_input = a2, b2_input = b2, alpha_sigma_input = alpha_sigma, beta_sigma_input = beta_sigma, priorA_input = priorA_num, priorB_input = priorB_num, eta_input = eta_py, rho_input = rho) final_hyperpar <- c(a1_new, a2, b1_new, b2, alpha_sigma, beta_sigma) return(list(adjusted = tmp_new, optim = tmp_nm, hyperpar = final_hyperpar)) }
/two_partitions/src/summary_hyperpar.R
no_license
cecilia-balocchi/particle-optimization
R
false
false
2,932
r
library(optimization) error_safe <- function(expr){ tryCatch(expr, error = function(e){ message("An error occurred:\n", e) NA }) } summary_hyperpar <- function(Y, X, A_block, gamma_init_A, gamma_init_B, eta_input, rho_input = 0.9, priorA = "ep", priorB = "ep"){ if(priorA == "ep"){ priorA_num = 0 } else if(priorA == "unif"){ priorA_num = 3 } else { warning("priorA should be a string `ep` for Ewens-Pitman or `unif` for the uniform.") } if(priorB == "ep"){ priorB_num = 0 } else if(priorB == "unif"){ priorB_num = 3 } else { warning("priorB should be a string `ep` for Ewens-Pitman or `unif` for the uniform.") } Rcpp::sourceCpp("src/particle_summary.cpp") source("src/fun_likelihood.R") Xorig <- X Yorig <- Y Xmeans <- rowMeans(X) X <- X - Xmeans betas_mle <- numeric(N) for(i in 1:N) betas_mle[i] <- cov(Y[i,],X[i,])/var(X[i,]) Y <- Y - betas_mle*Xmeans eta_py = eta_input sigma_py = 0 rho = rho_input N <- dim(Y)[1] t <- dim(Y)[2] n_tr <- dim(X)[1] betas_mle <- numeric(n_tr) for(i in 1:n_tr) betas_mle[i] <- cov(Y[i,],X[i,])/var(X[i,]) alphas_mle <- rowMeans(Y) - betas_mle * rowMeans(X) sigmas <- numeric(n_tr) for(i in 1:n_tr) sigmas[i] <- sd(lm(Y[i,]~X[i,])$residuals) sigma2 <- mean(sigmas^2) mu <- mean(sigmas^2) v <- var(sigmas^2) alpha_sigma <- mu^2/v + 2 beta_sigma <- mu*(alpha_sigma-1) K <- round(log(n_tr)) tmp <- (max(alphas_mle)-min(alphas_mle))/(K+1)/2 a1 <- tmp^2/sigma2*(1-0.8) a2 <- (max(abs(alphas_mle))/2)^2/sigma2 - (a1/(1-rho)) tmp <- (max(betas_mle)-min(betas_mle))/(K+1)/2 b1 <- tmp^2/sigma2*(1-0.8) b2 <- (max(abs(betas_mle))/2)^2/sigma2 - (b1/(1-rho)) partA <- gamma_init_A partB <- gamma_init_B log_post2 <- function(par){ log_post(par, priorA_num, priorB_num, partA, partB, a2, b2, rho, Y,X,A_block, alpha_sigma, beta_sigma, eta_py, sigma_py) } tmp_nm <- error_safe(optim(par = c(a1,b1), fn = log_post2, method = "Nelder-Mead")) if(!any(is.na(tmp_nm))){ a1_new <- tmp_nm$par[1] b1_new <- tmp_nm$par[2] } else { a1_new <- a1 b1_new <- b1 } tmp_new <- particle_summary(Y, X, A_block, gamma_init_A = partA, gamma_init_B = partB, a1_input = a1_new, b1_input = b1_new, a2_input = a2, b2_input = b2, alpha_sigma_input = alpha_sigma, beta_sigma_input = beta_sigma, priorA_input = priorA_num, priorB_input = priorB_num, eta_input = eta_py, rho_input = rho) final_hyperpar <- c(a1_new, a2, b1_new, b2, alpha_sigma, beta_sigma) return(list(adjusted = tmp_new, optim = tmp_nm, hyperpar = final_hyperpar)) }
#' Add a row for each unused factor level to ensure plotly displays all levels in the legend. #' #' Add a row for each unused factor level to ensure plotly displays all levels in the legend. #' #' @param data A tibble, dataframe or sf object. Required input. #' @param var A variable of class factor. #' #' @return A tibble, dataframe or sf object. Required input. #' @export #' #' @examples # library(palmerpenguins) # library(dplyr) # # penguins %>% # filter(sex == "female") %>% # add_unused_levels(sex) %>% # tail() add_unused_levels <- function(data, var) { warning("This adds a row for each unused factor level to ensure plotly displays all levels in the legend. It should be used only for input within a ggplotly object.") var <- rlang::enquo(var) var_vctr <- dplyr::pull(data, !!var) unused_levels <- setdiff(levels(var_vctr), unique(var_vctr)) if(length(unused_levels) != 0) data <- dplyr::bind_rows(data, tibble::tibble(!!var := unused_levels)) return(data) }
/R/add_unused_levels.R
permissive
StatisticsNZ/er.helpers
R
false
false
995
r
#' Add a row for each unused factor level to ensure plotly displays all levels in the legend. #' #' Add a row for each unused factor level to ensure plotly displays all levels in the legend. #' #' @param data A tibble, dataframe or sf object. Required input. #' @param var A variable of class factor. #' #' @return A tibble, dataframe or sf object. Required input. #' @export #' #' @examples # library(palmerpenguins) # library(dplyr) # # penguins %>% # filter(sex == "female") %>% # add_unused_levels(sex) %>% # tail() add_unused_levels <- function(data, var) { warning("This adds a row for each unused factor level to ensure plotly displays all levels in the legend. It should be used only for input within a ggplotly object.") var <- rlang::enquo(var) var_vctr <- dplyr::pull(data, !!var) unused_levels <- setdiff(levels(var_vctr), unique(var_vctr)) if(length(unused_levels) != 0) data <- dplyr::bind_rows(data, tibble::tibble(!!var := unused_levels)) return(data) }
# for graphing the SingleEnvAnalysis and MultiEnvAnalysis boxplot # # [Arguments] # data - SingleEnvAnalysis or MultiEnvAnalysis Outcome; # path - the path to create boxplot file # single.env - logical, whether include all environment under this trait. # graph.boxplot <- function ( data, path, single.env = FALSE, ... ) { UseMethod("graph.boxplot"); } graph.boxplot.SingleEnvAnalysis <- function ( data, path, single.env = FALSE, ... ) { if(missing(path)) path <- getwd(); #create boxplot of traits after SingleEnvAnalysis on each environment. for(i in 1:length(data$traits)) { trait.name <- data$traits[[i]]$name; if(is.null(data$traits[[i]]$analysis$sea)) { warning(cat("\tSkip the ", trait.name, " boxplot\n",sep = "")); next; } else { if(single.env) { for(j in 1:length(data$traits[[i]]$analysis$sea$envs)) { env.name <- data$traits[[i]]$analysis$sea$envs[[j]]$name; boxfile <- paste(path,"/boxplot_",trait.name,"_",env.name,".png",sep=""); if(!all(is.na(data$traits[[i]]$envs[[j]]$data[,trait.name]))) { png(boxfile); xlabel = trait.name; boxplot(as.numeric(as.character(data$traits[[i]]$envs[[j]]$data[,trait.name])), xlab = xlabel, main = paste("Boxplot of ", trait.name, sep="")); dev.off(); } } } else { env.label <- data$traits[[i]]$envs[[1]]$design$env; boxfile <- paste(path,"/boxplot_", trait.name,"_ALL_Env.png", sep= ""); if(!all(is.na(data$raw.data[,trait.name]))) { png(boxfile); xlabel = trait.name; boxplot(as.numeric(as.character(data$raw.data[,trait.name])) ~ as.factor(data$raw.data[,env.label]), data = data$raw.data, xlab = xlabel, main = paste("Boxplot of ", trait.name, sep="")); dev.off(); } } } } } graph.boxplot.MultiEnvAnalysis <- function ( data, path, single.env = FALSE, ... ) { if(missing(path)) path <- getwd(); #create boxplot of traits after SingleEnvAnalysis on each environment. for(i in 1:length(data$traits)) { trait.name <- data$traits[[i]]$name; if(is.null(data$traits[[i]]$analysis$mea)) { warning(cat("\tSkip the ", trait.name, " boxplot\n",sep = "")); next; } else { boxfile = paste(getwd(),"/boxplotMea1S_",trait.name,".png",sep = ""); if (!all(is.na(data$traits[[i]]$analysis$mea$data[,trait.name]))) { png(filename = boxfile); #par(mfrow = n2mfrow(length(respvar))); xlabel = trait.name; boxplot((data$traits[[i]]$analysis$mea$data[,trait.name]), data = data, xlab = xlabel, main = paste("Boxplot of ", trait.name, sep="")); dev.off() } } }#end stmt for(i in 1:length(data$traits)) }
/R/graph.boxplot.R
no_license
shingocat/PBTools
R
false
false
2,906
r
# for graphing the SingleEnvAnalysis and MultiEnvAnalysis boxplot # # [Arguments] # data - SingleEnvAnalysis or MultiEnvAnalysis Outcome; # path - the path to create boxplot file # single.env - logical, whether include all environment under this trait. # graph.boxplot <- function ( data, path, single.env = FALSE, ... ) { UseMethod("graph.boxplot"); } graph.boxplot.SingleEnvAnalysis <- function ( data, path, single.env = FALSE, ... ) { if(missing(path)) path <- getwd(); #create boxplot of traits after SingleEnvAnalysis on each environment. for(i in 1:length(data$traits)) { trait.name <- data$traits[[i]]$name; if(is.null(data$traits[[i]]$analysis$sea)) { warning(cat("\tSkip the ", trait.name, " boxplot\n",sep = "")); next; } else { if(single.env) { for(j in 1:length(data$traits[[i]]$analysis$sea$envs)) { env.name <- data$traits[[i]]$analysis$sea$envs[[j]]$name; boxfile <- paste(path,"/boxplot_",trait.name,"_",env.name,".png",sep=""); if(!all(is.na(data$traits[[i]]$envs[[j]]$data[,trait.name]))) { png(boxfile); xlabel = trait.name; boxplot(as.numeric(as.character(data$traits[[i]]$envs[[j]]$data[,trait.name])), xlab = xlabel, main = paste("Boxplot of ", trait.name, sep="")); dev.off(); } } } else { env.label <- data$traits[[i]]$envs[[1]]$design$env; boxfile <- paste(path,"/boxplot_", trait.name,"_ALL_Env.png", sep= ""); if(!all(is.na(data$raw.data[,trait.name]))) { png(boxfile); xlabel = trait.name; boxplot(as.numeric(as.character(data$raw.data[,trait.name])) ~ as.factor(data$raw.data[,env.label]), data = data$raw.data, xlab = xlabel, main = paste("Boxplot of ", trait.name, sep="")); dev.off(); } } } } } graph.boxplot.MultiEnvAnalysis <- function ( data, path, single.env = FALSE, ... ) { if(missing(path)) path <- getwd(); #create boxplot of traits after SingleEnvAnalysis on each environment. for(i in 1:length(data$traits)) { trait.name <- data$traits[[i]]$name; if(is.null(data$traits[[i]]$analysis$mea)) { warning(cat("\tSkip the ", trait.name, " boxplot\n",sep = "")); next; } else { boxfile = paste(getwd(),"/boxplotMea1S_",trait.name,".png",sep = ""); if (!all(is.na(data$traits[[i]]$analysis$mea$data[,trait.name]))) { png(filename = boxfile); #par(mfrow = n2mfrow(length(respvar))); xlabel = trait.name; boxplot((data$traits[[i]]$analysis$mea$data[,trait.name]), data = data, xlab = xlabel, main = paste("Boxplot of ", trait.name, sep="")); dev.off() } } }#end stmt for(i in 1:length(data$traits)) }
.onAttach <- function(...) { ## if (!interactive() || stats::runif(1) > 0.1) return() if (!interactive()) return() ## ## tips <- c( ## "Use suppressPackageStartupMessages() to eliminate package startup messages.", ## "Stackoverflow is a great place to for general help: http://stackoverflow.com.", ## "Need help getting started? Try the cookbook for R: http://www.cookbook-r.com" ## ) ## packageStartupMessage(c("Welcome to the gpusim package!\n", "Need help? blah. Report an issue on...\n", "Stackoverflow is a great place to for general help: http://stackoverflow.com")) }
/R/zzz.R
no_license
grizant/gpusim
R
false
false
661
r
.onAttach <- function(...) { ## if (!interactive() || stats::runif(1) > 0.1) return() if (!interactive()) return() ## ## tips <- c( ## "Use suppressPackageStartupMessages() to eliminate package startup messages.", ## "Stackoverflow is a great place to for general help: http://stackoverflow.com.", ## "Need help getting started? Try the cookbook for R: http://www.cookbook-r.com" ## ) ## packageStartupMessage(c("Welcome to the gpusim package!\n", "Need help? blah. Report an issue on...\n", "Stackoverflow is a great place to for general help: http://stackoverflow.com")) }
##################### ## Extact SNPs from McAllister Data ##################### library(stringr) library(VariantAnnotation) anodf <- read.csv("./data/gerardii/McAllister_Miller_Locality_Ploidy_Info.csv") fl <-"./data/gerardii/McAllister.Miller.all.mergedRefGuidedSNPs.vcf.gz" ## choose arbitrary region chlist <- list(chr1_gr = GRanges("1", IRanges(start = 7000000, end = 7100000)), chr2_gr = GRanges("10", IRanges(start = 7000000, end = 7100000))) compressVcf <- bgzip(fl, tempfile()) idx <- indexTabix(compressVcf, "vcf") tab <- TabixFile(compressVcf, idx) for (i in seq_along(chlist)) { param <- ScanVcfParam(which = chlist[[i]]) mca <- readVcf(tab, as.character(i), param) ## Keep only biallelic snps which_ba <- sapply(alt(mca), length) == 1 mca <- mca[which_ba, ] ## Remove SNPs with low MAF which_maf <- info(mca)$AF > 0.1 & info(mca)$AF < 0.9 stopifnot(length(table(sapply(which_maf, length))) == 1) which_maf <- unlist(which_maf) mca <- mca[which_maf, ] ## Extract read-count matrices DP <- geno(mca)$DP AD <- geno(mca)$AD stopifnot(length(table(sapply(AD, length))) == 2) get_elem <- function(x, num) { if (length(x) < num) { return(NA) } else { return(x[[num]]) } } refmat <- sapply(AD, get_elem, num = 1) dim(refmat) <- dim(AD) dimnames(refmat) <- dimnames(AD) altmat <- sapply(AD, get_elem, num = 2) dim(altmat) <- dim(AD) dimnames(altmat) <- dimnames(AD) if (i == 1) { sizemat_f <- DP refmat_f <- refmat locdf_f <- data.frame(snp = rownames(DP), loc = i) } else { sizemat_f <- rbind(sizemat_f, DP) refmat_f <- rbind(refmat_f, refmat) locdf <- data.frame(snp = rownames(DP), loc = i) locdf_f <- rbind(locdf_f, locdf) } } ## Remove snps with high missingness goodsnp <- rowMeans(sizemat_f, na.rm = TRUE) >= 3 sizemat_f <- sizemat_f[goodsnp, ] refmat_f <- refmat_f[goodsnp, ] locdf_f <- locdf_f[goodsnp, ] ## remove individuals with high missingness goodind <- str_split_fixed(colnames(sizemat_f), pattern = ":", n = 4)[, 1] %in% anodf$Individual sizemat_f <- sizemat_f[, goodind] refmat_f <- refmat_f[, goodind] ## split individuals based on ploidy sixind <- anodf$Individual[anodf$Ploidy.Level == 6] nonind <- anodf$Individual[anodf$Ploidy.Level == 9] candidate <- str_split_fixed(colnames(sizemat_f), pattern = ":", n = 4)[, 1] stopifnot(candidate %in% anodf$Individual) which_six <- candidate %in% sixind which_non <- candidate %in% nonind sizemat_six <- sizemat_f[, which_six] refmat_six <- refmat_f[, which_six] sizemat_non <- sizemat_f[, which_non] refmat_non <- refmat_f[, which_non] ## Remove duplicated rows which_bad_six <- duplicated(sizemat_six) & duplicated(refmat_six) sizemat_six <- sizemat_six[!which_bad_six, ] refmat_six <- refmat_six[!which_bad_six, ] which_bad_non <- duplicated(sizemat_non) & duplicated(refmat_non) sizemat_non <- sizemat_non[!which_bad_non, ] refmat_non <- refmat_non[!which_bad_non, ] locdf_f <- locdf_f[!which_bad_non, ] saveRDS(object = sizemat_six, file = "./output/mca/sizemat_hex.RDS") saveRDS(object = refmat_six, file = "./output/mca/refmat_hex.RDS") saveRDS(object = sizemat_non, file = "./output/mca/sizemat_non.RDS") saveRDS(object = refmat_non, file = "./output/mca/refmat_non.RDS") write.csv(x = locdf_f, file = "./output/mca/locdf.csv", row.names = FALSE)
/code/mca_extract.R
no_license
dcgerard/ld_simulations
R
false
false
3,360
r
##################### ## Extact SNPs from McAllister Data ##################### library(stringr) library(VariantAnnotation) anodf <- read.csv("./data/gerardii/McAllister_Miller_Locality_Ploidy_Info.csv") fl <-"./data/gerardii/McAllister.Miller.all.mergedRefGuidedSNPs.vcf.gz" ## choose arbitrary region chlist <- list(chr1_gr = GRanges("1", IRanges(start = 7000000, end = 7100000)), chr2_gr = GRanges("10", IRanges(start = 7000000, end = 7100000))) compressVcf <- bgzip(fl, tempfile()) idx <- indexTabix(compressVcf, "vcf") tab <- TabixFile(compressVcf, idx) for (i in seq_along(chlist)) { param <- ScanVcfParam(which = chlist[[i]]) mca <- readVcf(tab, as.character(i), param) ## Keep only biallelic snps which_ba <- sapply(alt(mca), length) == 1 mca <- mca[which_ba, ] ## Remove SNPs with low MAF which_maf <- info(mca)$AF > 0.1 & info(mca)$AF < 0.9 stopifnot(length(table(sapply(which_maf, length))) == 1) which_maf <- unlist(which_maf) mca <- mca[which_maf, ] ## Extract read-count matrices DP <- geno(mca)$DP AD <- geno(mca)$AD stopifnot(length(table(sapply(AD, length))) == 2) get_elem <- function(x, num) { if (length(x) < num) { return(NA) } else { return(x[[num]]) } } refmat <- sapply(AD, get_elem, num = 1) dim(refmat) <- dim(AD) dimnames(refmat) <- dimnames(AD) altmat <- sapply(AD, get_elem, num = 2) dim(altmat) <- dim(AD) dimnames(altmat) <- dimnames(AD) if (i == 1) { sizemat_f <- DP refmat_f <- refmat locdf_f <- data.frame(snp = rownames(DP), loc = i) } else { sizemat_f <- rbind(sizemat_f, DP) refmat_f <- rbind(refmat_f, refmat) locdf <- data.frame(snp = rownames(DP), loc = i) locdf_f <- rbind(locdf_f, locdf) } } ## Remove snps with high missingness goodsnp <- rowMeans(sizemat_f, na.rm = TRUE) >= 3 sizemat_f <- sizemat_f[goodsnp, ] refmat_f <- refmat_f[goodsnp, ] locdf_f <- locdf_f[goodsnp, ] ## remove individuals with high missingness goodind <- str_split_fixed(colnames(sizemat_f), pattern = ":", n = 4)[, 1] %in% anodf$Individual sizemat_f <- sizemat_f[, goodind] refmat_f <- refmat_f[, goodind] ## split individuals based on ploidy sixind <- anodf$Individual[anodf$Ploidy.Level == 6] nonind <- anodf$Individual[anodf$Ploidy.Level == 9] candidate <- str_split_fixed(colnames(sizemat_f), pattern = ":", n = 4)[, 1] stopifnot(candidate %in% anodf$Individual) which_six <- candidate %in% sixind which_non <- candidate %in% nonind sizemat_six <- sizemat_f[, which_six] refmat_six <- refmat_f[, which_six] sizemat_non <- sizemat_f[, which_non] refmat_non <- refmat_f[, which_non] ## Remove duplicated rows which_bad_six <- duplicated(sizemat_six) & duplicated(refmat_six) sizemat_six <- sizemat_six[!which_bad_six, ] refmat_six <- refmat_six[!which_bad_six, ] which_bad_non <- duplicated(sizemat_non) & duplicated(refmat_non) sizemat_non <- sizemat_non[!which_bad_non, ] refmat_non <- refmat_non[!which_bad_non, ] locdf_f <- locdf_f[!which_bad_non, ] saveRDS(object = sizemat_six, file = "./output/mca/sizemat_hex.RDS") saveRDS(object = refmat_six, file = "./output/mca/refmat_hex.RDS") saveRDS(object = sizemat_non, file = "./output/mca/sizemat_non.RDS") saveRDS(object = refmat_non, file = "./output/mca/refmat_non.RDS") write.csv(x = locdf_f, file = "./output/mca/locdf.csv", row.names = FALSE)
# utils for qsub command dots_parser <- function(..., sep_collapse = "\n") { rlang::list2(...) %>% purrr::map(vctrs::vec_cast, to = character()) %>% purrr::map_chr(stringr::str_c, collapse = sep_collapse) %>% stringr::str_c(collapse = sep_collapse) } try_system <- function(x, trial_times = 5L) { if (trial_times <= 0L) rlang::abort(paste0("Error occurred in ", x), "command_error") res <- try(system(x, intern = TRUE)) if (class(res) == "try-error") { try_system(x, trial_times - 1L) } else { return(res) } } seq_int_chr <- function(from_to_by){ from = to = by = integer() c(from, to, by) %<-% (from_to_by %>% vctrs::vec_cast(integer())) if (is.na(from) || is.na(to) || is.na(by)) { "undefined" }else{ seq.int(from, to, by) %>% as.character() } } qsub_verbose <- function(ID_body, task, time){ stringr::str_glue("ID: ", crayon::cyan(ID_body), "\ntaskid: ", crayon::cyan(stringr::str_c(task, collapse = ", ")), "\ntime: ", crayon::cyan(time)) %>% cli::cat_line() } parse_id <- function(ID) { ID_vec <- stringr::str_split(ID, "\\.|-|:")[[1]] %>% as.integer() list( ID_body = ID_vec[1], task = ID_vec[2:4] %>% seq_int_chr() ) } read_shebang <- function(path) { con = file(path, "r") if (readChar(con, 2L) == "#!") shebang <- readLines(con, n = 1L) else shebang <- NA_character_ close(con) shebang }
/R/utils-qsub.R
no_license
sinnhazime/jobwatcher
R
false
false
1,422
r
# utils for qsub command dots_parser <- function(..., sep_collapse = "\n") { rlang::list2(...) %>% purrr::map(vctrs::vec_cast, to = character()) %>% purrr::map_chr(stringr::str_c, collapse = sep_collapse) %>% stringr::str_c(collapse = sep_collapse) } try_system <- function(x, trial_times = 5L) { if (trial_times <= 0L) rlang::abort(paste0("Error occurred in ", x), "command_error") res <- try(system(x, intern = TRUE)) if (class(res) == "try-error") { try_system(x, trial_times - 1L) } else { return(res) } } seq_int_chr <- function(from_to_by){ from = to = by = integer() c(from, to, by) %<-% (from_to_by %>% vctrs::vec_cast(integer())) if (is.na(from) || is.na(to) || is.na(by)) { "undefined" }else{ seq.int(from, to, by) %>% as.character() } } qsub_verbose <- function(ID_body, task, time){ stringr::str_glue("ID: ", crayon::cyan(ID_body), "\ntaskid: ", crayon::cyan(stringr::str_c(task, collapse = ", ")), "\ntime: ", crayon::cyan(time)) %>% cli::cat_line() } parse_id <- function(ID) { ID_vec <- stringr::str_split(ID, "\\.|-|:")[[1]] %>% as.integer() list( ID_body = ID_vec[1], task = ID_vec[2:4] %>% seq_int_chr() ) } read_shebang <- function(path) { con = file(path, "r") if (readChar(con, 2L) == "#!") shebang <- readLines(con, n = 1L) else shebang <- NA_character_ close(con) shebang }
library(dplyr) library(ggplot2) #Read the data into R NEI <- readRDS("./data/summarySCC_PM25.rds") SCC <- readRDS("./data/Source_Classification_Code.rds") #merge data based on SCC number, cut out non motor vehicle, cut out non-baltimore fips, #order by year merged <- merge(NEI, SCC, by = "SCC") merged.BAL <- merged[merged$fips == "24510" & merged$type == "ON-ROAD", ] merged.LA <- merged[merged$fips == "06037" & merged$type == "ON-ROAD", ] #sum it up based on years agg.BAL <- aggregate(Emissions ~ year, merged.BAL, sum) agg.LA <- aggregate(Emissions ~ year, merged.LA, sum) agg.merge <- rbind(agg.BAL, agg.LA) fips <- as.factor(c("25410", "25410", "25410", "25410", "06037", "06037", "06037", "06037")) agg.merge <- cbind(agg.merge, fips) #make the graph of pm2.5 sums by year png("plot6.png", width = 640, height = 480) plot6 <- ggplot(agg.merge, aes(factor(year), Emissions)) + facet_grid(. ~ fips) + geom_bar(stat = "identity", aes(fill = year, color = year)) + labs(title = expression(PM[2.5] * " sums from 1999-2008 for ON ROAD Vehicles between Baltimore(24510) and LA(06037)")) + labs(x = "Year", y = expression("Sum of " * PM[2.5] * " levels")) print(plot6) dev.off()
/plot6.R
no_license
nschampions2004/Exploratory-Data-Analysis-Programming-Assignment-2
R
false
false
1,197
r
library(dplyr) library(ggplot2) #Read the data into R NEI <- readRDS("./data/summarySCC_PM25.rds") SCC <- readRDS("./data/Source_Classification_Code.rds") #merge data based on SCC number, cut out non motor vehicle, cut out non-baltimore fips, #order by year merged <- merge(NEI, SCC, by = "SCC") merged.BAL <- merged[merged$fips == "24510" & merged$type == "ON-ROAD", ] merged.LA <- merged[merged$fips == "06037" & merged$type == "ON-ROAD", ] #sum it up based on years agg.BAL <- aggregate(Emissions ~ year, merged.BAL, sum) agg.LA <- aggregate(Emissions ~ year, merged.LA, sum) agg.merge <- rbind(agg.BAL, agg.LA) fips <- as.factor(c("25410", "25410", "25410", "25410", "06037", "06037", "06037", "06037")) agg.merge <- cbind(agg.merge, fips) #make the graph of pm2.5 sums by year png("plot6.png", width = 640, height = 480) plot6 <- ggplot(agg.merge, aes(factor(year), Emissions)) + facet_grid(. ~ fips) + geom_bar(stat = "identity", aes(fill = year, color = year)) + labs(title = expression(PM[2.5] * " sums from 1999-2008 for ON ROAD Vehicles between Baltimore(24510) and LA(06037)")) + labs(x = "Year", y = expression("Sum of " * PM[2.5] * " levels")) print(plot6) dev.off()
# Script for loading in all count data and assessing QC # To do the following: # 1) Load all gene count data for all samples # 2) Convert to TPM and log(TPM+1) # 3) Convert Ensembl gene IDs to symbol # 4) Convert gene symbol counts to TPM # Functions #### # Convert a dataframe of TPM into log(tpm+1) TPMTologTpm <- function(tpm) { for(i in c(1:ncol(tpm))) { tpm[,i] <- log(tpm[,i]+1) } return(tpm) } # Main code #### # 0. Prepare environment setwd("~/Documents/EPICC/Data/Expression");library(data.table) library(dplyr);'%ni%' <- Negate('%in%') # 1. Load data and reformat ready for normalisation #### # Load gene count matrix from 4.2.1.3 EPICC <- as.data.frame(fread('ProcessedCounts/All_EPICC_counts.txt')) # Load pre-compiled gene length data load(file="outputforNormalisation.RData");alllens <- as.data.frame(output) alllens$GeneID <- row.names(alllens);row.names(alllens) <- c(1:nrow(alllens));alllens <- alllens[,c(3,1)] alllens <- alllens[-grep("PAR_Y",alllens$GeneID),] alllens$GeneID <- gsub('(ENSG\\d+)\\.\\d+','\\1',alllens$GeneID) alllens <- alllens[order(alllens$GeneID),] # Merge data together EPICC <- merge(EPICC,alllens,by='GeneID') # 2. Convert raw gene counts to TPM and log(TPM+1) #### # a. Normalise for gene length: gene counts / gene length (in kb) normEPICC <- EPICC[,grep('C',colnames(EPICC))];row.names(normEPICC) <- EPICC$GeneID for(i in c(1:ncol(normEPICC))) { normEPICC[,i] <- normEPICC[,i]/(EPICC$Length/1000) } # b. Normalise for sequencing depth: sum the normalised gene counts and divide by a million # then divide each normalised gene count by that samples scaling factor for(i in c(1:ncol(normEPICC))) { sfactor <- sum(normEPICC[,i])/1000000 normEPICC[,i] <- normEPICC[,i]/sfactor } epiccTPM <- normEPICC # TPM to log(TPM+1) epicclogTPM <- TPMTologTpm(epiccTPM) # Output TPM and log(TPM+1) files # TPM epiccTPM$GeneID <- row.names(epiccTPM);epiccTPM <- epiccTPM[,c(ncol(epiccTPM),1:(ncol(epiccTPM)-1))] write.table(epiccTPM,"~/Documents/EPICC/Data/Expression/ProcessedCounts/All_EPICC_tpm.txt",sep='\t',quote=F,row.names = F) # logTPM epicclogTPM$GeneID <- row.names(epicclogTPM);epicclogTPM <- epicclogTPM[,c(ncol(epicclogTPM),1:(ncol(epicclogTPM)-1))] write.table(epicclogTPM,"~/Documents/EPICC/Data/Expression/ProcessedCounts/All_EPICC_logtpm.txt",sep='\t',quote=F,row.names = F) # 3. Convert Ensembl raw gene counts to gene symbols #### # Load in data mapping ensembl gene IDs to gene symbols geneinfo <- read.table("~/Documents/EPICC/Data/Expression/compiledGeneInfo.txt",header=T) counts <- as.data.frame(fread("~/Documents/EPICC/Data/Expression/ProcessedCounts/All_EPICC_counts.txt")) merged <- merge(geneinfo,counts,by='GeneID');merged <- merge(merged,alllens,by='GeneID') merged <- merged[,c('GeneID','Name','Length',colnames(merged)[grep('C\\d\\d\\d',colnames(merged))])] # Assess duplicate gene names alldups <- unique(merged[which(duplicated(merged$Name)),'Name']);epiccTMP <- merged merged <- merged[which(merged$Name %ni% alldups),] for(i in c(1:length(alldups))) { dupped <- epiccTMP[which(epiccTMP$Name==alldups[i]),] counts <- colSums(dupped[,c(3:ncol(merged))]) len <- dupped[which(dupped$Length==max(dupped$Length)),'Length'][1] merged <- rbind(merged,c('Dupped',alldups[i],len,counts)) } merged <- merged[,c(2:ncol(merged))];merged <- merged[order(merged$Name),] for(col in c(2:ncol(merged))) { merged[,col] <- as.integer(merged[,col]) } # Output symcounts <- merged;symcounts$GeneID <- symcounts$Name symcounts <- symcounts[,c(ncol(symcounts),3:(ncol(symcounts)-1))] write.table(symcounts,"~/Documents/EPICC/Data/Expression/ProcessedCounts/All_EPICC_symbol_counts.txt",sep='\t',quote=F,row.names = F) # 4. Convert gene symbol counts to TPM and log(TPM+1) #### # a. Normalise for gene length: do gene counts / gene length (in kb) symEPICC <- merged[,colnames(merged)[grep('C\\d\\d\\d',colnames(merged))]];row.names(symEPICC) <- merged$Name for(i in c(1:ncol(symEPICC))) { symEPICC[,i] <- symEPICC[,i]/(merged$Length/1000) } # b. Normalise for sequencing depth: sum the normalised gene counts and divide by a million # then divide each normalised gene count by that samples scaling factor for(i in c(1:ncol(symEPICC))) { sfactor <- sum(symEPICC[,i])/1000000 symEPICC[,i] <- symEPICC[,i]/sfactor } symTPM <- symEPICC # TPM to log(TPM+1) symlogTPM <- TPMTologTpm(symTPM) # Output TPM and logTPM files # TPM symTPM$GeneID <- row.names(symTPM);symTPM <- symTPM[,c(ncol(symTPM),1:(ncol(symTPM)-1))] write.table(symTPM,"~/Documents/EPICC/Data/Expression/ProcessedCounts/All_EPICC_symbol_tpm.txt",sep='\t',quote=F,row.names = F) # logTPM symlogTPM$GeneID <- row.names(symlogTPM);symlogTPM <- symlogTPM[,c(ncol(symlogTPM),1:(ncol(symlogTPM)-1))] write.table(symlogTPM,"~/Documents/EPICC/Data/Expression/ProcessedCounts/All_EPICC_symbol_logtpm.txt",sep='\t',quote=F,row.names = F)
/4.2.2.1.NormaliseCountsTPM.R
no_license
JacobHouseham/analysis_and_plotting_scripts
R
false
false
4,870
r
# Script for loading in all count data and assessing QC # To do the following: # 1) Load all gene count data for all samples # 2) Convert to TPM and log(TPM+1) # 3) Convert Ensembl gene IDs to symbol # 4) Convert gene symbol counts to TPM # Functions #### # Convert a dataframe of TPM into log(tpm+1) TPMTologTpm <- function(tpm) { for(i in c(1:ncol(tpm))) { tpm[,i] <- log(tpm[,i]+1) } return(tpm) } # Main code #### # 0. Prepare environment setwd("~/Documents/EPICC/Data/Expression");library(data.table) library(dplyr);'%ni%' <- Negate('%in%') # 1. Load data and reformat ready for normalisation #### # Load gene count matrix from 4.2.1.3 EPICC <- as.data.frame(fread('ProcessedCounts/All_EPICC_counts.txt')) # Load pre-compiled gene length data load(file="outputforNormalisation.RData");alllens <- as.data.frame(output) alllens$GeneID <- row.names(alllens);row.names(alllens) <- c(1:nrow(alllens));alllens <- alllens[,c(3,1)] alllens <- alllens[-grep("PAR_Y",alllens$GeneID),] alllens$GeneID <- gsub('(ENSG\\d+)\\.\\d+','\\1',alllens$GeneID) alllens <- alllens[order(alllens$GeneID),] # Merge data together EPICC <- merge(EPICC,alllens,by='GeneID') # 2. Convert raw gene counts to TPM and log(TPM+1) #### # a. Normalise for gene length: gene counts / gene length (in kb) normEPICC <- EPICC[,grep('C',colnames(EPICC))];row.names(normEPICC) <- EPICC$GeneID for(i in c(1:ncol(normEPICC))) { normEPICC[,i] <- normEPICC[,i]/(EPICC$Length/1000) } # b. Normalise for sequencing depth: sum the normalised gene counts and divide by a million # then divide each normalised gene count by that samples scaling factor for(i in c(1:ncol(normEPICC))) { sfactor <- sum(normEPICC[,i])/1000000 normEPICC[,i] <- normEPICC[,i]/sfactor } epiccTPM <- normEPICC # TPM to log(TPM+1) epicclogTPM <- TPMTologTpm(epiccTPM) # Output TPM and log(TPM+1) files # TPM epiccTPM$GeneID <- row.names(epiccTPM);epiccTPM <- epiccTPM[,c(ncol(epiccTPM),1:(ncol(epiccTPM)-1))] write.table(epiccTPM,"~/Documents/EPICC/Data/Expression/ProcessedCounts/All_EPICC_tpm.txt",sep='\t',quote=F,row.names = F) # logTPM epicclogTPM$GeneID <- row.names(epicclogTPM);epicclogTPM <- epicclogTPM[,c(ncol(epicclogTPM),1:(ncol(epicclogTPM)-1))] write.table(epicclogTPM,"~/Documents/EPICC/Data/Expression/ProcessedCounts/All_EPICC_logtpm.txt",sep='\t',quote=F,row.names = F) # 3. Convert Ensembl raw gene counts to gene symbols #### # Load in data mapping ensembl gene IDs to gene symbols geneinfo <- read.table("~/Documents/EPICC/Data/Expression/compiledGeneInfo.txt",header=T) counts <- as.data.frame(fread("~/Documents/EPICC/Data/Expression/ProcessedCounts/All_EPICC_counts.txt")) merged <- merge(geneinfo,counts,by='GeneID');merged <- merge(merged,alllens,by='GeneID') merged <- merged[,c('GeneID','Name','Length',colnames(merged)[grep('C\\d\\d\\d',colnames(merged))])] # Assess duplicate gene names alldups <- unique(merged[which(duplicated(merged$Name)),'Name']);epiccTMP <- merged merged <- merged[which(merged$Name %ni% alldups),] for(i in c(1:length(alldups))) { dupped <- epiccTMP[which(epiccTMP$Name==alldups[i]),] counts <- colSums(dupped[,c(3:ncol(merged))]) len <- dupped[which(dupped$Length==max(dupped$Length)),'Length'][1] merged <- rbind(merged,c('Dupped',alldups[i],len,counts)) } merged <- merged[,c(2:ncol(merged))];merged <- merged[order(merged$Name),] for(col in c(2:ncol(merged))) { merged[,col] <- as.integer(merged[,col]) } # Output symcounts <- merged;symcounts$GeneID <- symcounts$Name symcounts <- symcounts[,c(ncol(symcounts),3:(ncol(symcounts)-1))] write.table(symcounts,"~/Documents/EPICC/Data/Expression/ProcessedCounts/All_EPICC_symbol_counts.txt",sep='\t',quote=F,row.names = F) # 4. Convert gene symbol counts to TPM and log(TPM+1) #### # a. Normalise for gene length: do gene counts / gene length (in kb) symEPICC <- merged[,colnames(merged)[grep('C\\d\\d\\d',colnames(merged))]];row.names(symEPICC) <- merged$Name for(i in c(1:ncol(symEPICC))) { symEPICC[,i] <- symEPICC[,i]/(merged$Length/1000) } # b. Normalise for sequencing depth: sum the normalised gene counts and divide by a million # then divide each normalised gene count by that samples scaling factor for(i in c(1:ncol(symEPICC))) { sfactor <- sum(symEPICC[,i])/1000000 symEPICC[,i] <- symEPICC[,i]/sfactor } symTPM <- symEPICC # TPM to log(TPM+1) symlogTPM <- TPMTologTpm(symTPM) # Output TPM and logTPM files # TPM symTPM$GeneID <- row.names(symTPM);symTPM <- symTPM[,c(ncol(symTPM),1:(ncol(symTPM)-1))] write.table(symTPM,"~/Documents/EPICC/Data/Expression/ProcessedCounts/All_EPICC_symbol_tpm.txt",sep='\t',quote=F,row.names = F) # logTPM symlogTPM$GeneID <- row.names(symlogTPM);symlogTPM <- symlogTPM[,c(ncol(symlogTPM),1:(ncol(symlogTPM)-1))] write.table(symlogTPM,"~/Documents/EPICC/Data/Expression/ProcessedCounts/All_EPICC_symbol_logtpm.txt",sep='\t',quote=F,row.names = F)
\name{residualspaper} \alias{residualspaper} \docType{data} \title{ Data and Code From JRSS Discussion Paper on Residuals } \description{ This dataset contains the point patterns used as examples in the paper of Baddeley et al (2005). [Figure 2 is already available in \pkg{spatstat} as the \code{\link{copper}} dataset.] R code is also provided to reproduce all the Figures displayed in Baddeley et al (2005). The component \code{plotfig} is a function, which can be called with a numeric or character argument specifying the Figure or Figures that should be plotted. See the Examples. } \format{ \code{residualspaper} is a list with the following components: \describe{ \item{Fig1}{ The locations of Japanese pine seedlings and saplings from Figure 1 of the paper. A point pattern (object of class \code{"ppp"}). } \item{Fig3}{ The Chorley-Ribble data from Figure 3 of the paper. A list with three components, \code{lung}, \code{larynx} and \code{incin}. Each is a matrix with 2 columns giving the coordinates of the lung cancer cases, larynx cancer cases, and the incinerator, respectively. Coordinates are Eastings and Northings in km. } \item{Fig4a}{ The synthetic dataset in Figure 4 (a) of the paper. } \item{Fig4b}{ The synthetic dataset in Figure 4 (b) of the paper. } \item{Fig4c}{ The synthetic dataset in Figure 4 (c) of the paper. } \item{Fig11}{ The covariate displayed in Figure 11. A pixel image (object of class \code{"im"}) whose pixel values are distances to the nearest line segment in the \code{copper} data. } \item{plotfig}{A function which will compute and plot any of the Figures from the paper. The argument of \code{plotfig} is either a numeric vector or a character vector, specifying the Figure or Figures to be plotted. See the Examples. } } } \usage{data(residualspaper)} \examples{ \dontrun{ data(residualspaper) X <- residualspaper$Fig4a summary(X) plot(X) # reproduce all Figures residualspaper$plotfig() # reproduce Figures 1 to 10 residualspaper$plotfig(1:10) # reproduce Figure 7 (a) residualspaper$plotfig("7a") } } \source{ Figure 1: Prof M. Numata. Data kindly supplied by Professor Y. Ogata with kind permission of Prof M. Tanemura. Figure 3: Professor P.J. Diggle (rescaled by \adrian) Figure 4 (a,b,c): \adrian } \references{ Baddeley, A., Turner, R., \ifelse{latex}{\out{M\o ller}}{Moller}, J. and Hazelton, M. (2005) Residual analysis for spatial point processes. \emph{Journal of the Royal Statistical Society, Series B} \bold{67}, 617--666. } \keyword{datasets} \keyword{spatial} \keyword{models}
/man/residualspaper.Rd
no_license
h32049/spatstat
R
false
false
2,787
rd
\name{residualspaper} \alias{residualspaper} \docType{data} \title{ Data and Code From JRSS Discussion Paper on Residuals } \description{ This dataset contains the point patterns used as examples in the paper of Baddeley et al (2005). [Figure 2 is already available in \pkg{spatstat} as the \code{\link{copper}} dataset.] R code is also provided to reproduce all the Figures displayed in Baddeley et al (2005). The component \code{plotfig} is a function, which can be called with a numeric or character argument specifying the Figure or Figures that should be plotted. See the Examples. } \format{ \code{residualspaper} is a list with the following components: \describe{ \item{Fig1}{ The locations of Japanese pine seedlings and saplings from Figure 1 of the paper. A point pattern (object of class \code{"ppp"}). } \item{Fig3}{ The Chorley-Ribble data from Figure 3 of the paper. A list with three components, \code{lung}, \code{larynx} and \code{incin}. Each is a matrix with 2 columns giving the coordinates of the lung cancer cases, larynx cancer cases, and the incinerator, respectively. Coordinates are Eastings and Northings in km. } \item{Fig4a}{ The synthetic dataset in Figure 4 (a) of the paper. } \item{Fig4b}{ The synthetic dataset in Figure 4 (b) of the paper. } \item{Fig4c}{ The synthetic dataset in Figure 4 (c) of the paper. } \item{Fig11}{ The covariate displayed in Figure 11. A pixel image (object of class \code{"im"}) whose pixel values are distances to the nearest line segment in the \code{copper} data. } \item{plotfig}{A function which will compute and plot any of the Figures from the paper. The argument of \code{plotfig} is either a numeric vector or a character vector, specifying the Figure or Figures to be plotted. See the Examples. } } } \usage{data(residualspaper)} \examples{ \dontrun{ data(residualspaper) X <- residualspaper$Fig4a summary(X) plot(X) # reproduce all Figures residualspaper$plotfig() # reproduce Figures 1 to 10 residualspaper$plotfig(1:10) # reproduce Figure 7 (a) residualspaper$plotfig("7a") } } \source{ Figure 1: Prof M. Numata. Data kindly supplied by Professor Y. Ogata with kind permission of Prof M. Tanemura. Figure 3: Professor P.J. Diggle (rescaled by \adrian) Figure 4 (a,b,c): \adrian } \references{ Baddeley, A., Turner, R., \ifelse{latex}{\out{M\o ller}}{Moller}, J. and Hazelton, M. (2005) Residual analysis for spatial point processes. \emph{Journal of the Royal Statistical Society, Series B} \bold{67}, 617--666. } \keyword{datasets} \keyword{spatial} \keyword{models}
# Decision Tree Model # Importing the dataset dataset = read.csv('Position_Salaries.csv') dataset = dataset[2:3] # Splitting the dataset into the Training set and Test set # # install.packages('caTools') # library(caTools) # set.seed(123) # split = sample.split(dataset$Salary, SplitRatio = 2/3) # training_set = subset(dataset, split == TRUE) # test_set = subset(dataset, split == FALSE) # Feature Scaling # training_set = scale(training_set) # test_set = scale(test_set) # Fitting the Regression Model to the dataset # Create your regressor here #install.packages('rpart') # no feature scalling required in this model as this not Eudicena distance in Decison Tree regressor = rpart(formula = Salary~ ., data = dataset, control = rpart.control(minsplit = 1)) # set conditions of split # Predicting a new result y_pred = predict(regressor, data.frame(Level = 6.5)) # Visualising the Regression Model results # install.packages('ggplot2') #library(ggplot2) ggplot() + geom_point(aes(x = dataset$Level, y = dataset$Salary), colour = 'red') + geom_line(aes(x = dataset$Level, y = predict(regressor, newdata = dataset)), colour = 'blue') + ggtitle('Truth or Bluff (Decision Tree Model)') + xlab('Level') + ylab('Salary') # Visualising the Regression Model results (for higher resolution and smoother curve) # install.packages('ggplot2') #library(ggplot2) x_grid = seq(min(dataset$Level), max(dataset$Level), 0.01) ggplot() + geom_point(aes(x = dataset$Level, y = dataset$Salary), colour = 'red') + geom_line(aes(x = x_grid, y = predict(regressor, newdata = data.frame(Level = x_grid))), colour = 'blue') + ggtitle('Truth or Bluff ( Decision Tree Regression Model)') + xlab('Level') + ylab('Salary')
/P2_Regression——回归分析/Decision Tree.R
no_license
ningningliu/Machine-Learning-in-Data-Science
R
false
false
1,808
r
# Decision Tree Model # Importing the dataset dataset = read.csv('Position_Salaries.csv') dataset = dataset[2:3] # Splitting the dataset into the Training set and Test set # # install.packages('caTools') # library(caTools) # set.seed(123) # split = sample.split(dataset$Salary, SplitRatio = 2/3) # training_set = subset(dataset, split == TRUE) # test_set = subset(dataset, split == FALSE) # Feature Scaling # training_set = scale(training_set) # test_set = scale(test_set) # Fitting the Regression Model to the dataset # Create your regressor here #install.packages('rpart') # no feature scalling required in this model as this not Eudicena distance in Decison Tree regressor = rpart(formula = Salary~ ., data = dataset, control = rpart.control(minsplit = 1)) # set conditions of split # Predicting a new result y_pred = predict(regressor, data.frame(Level = 6.5)) # Visualising the Regression Model results # install.packages('ggplot2') #library(ggplot2) ggplot() + geom_point(aes(x = dataset$Level, y = dataset$Salary), colour = 'red') + geom_line(aes(x = dataset$Level, y = predict(regressor, newdata = dataset)), colour = 'blue') + ggtitle('Truth or Bluff (Decision Tree Model)') + xlab('Level') + ylab('Salary') # Visualising the Regression Model results (for higher resolution and smoother curve) # install.packages('ggplot2') #library(ggplot2) x_grid = seq(min(dataset$Level), max(dataset$Level), 0.01) ggplot() + geom_point(aes(x = dataset$Level, y = dataset$Salary), colour = 'red') + geom_line(aes(x = x_grid, y = predict(regressor, newdata = data.frame(Level = x_grid))), colour = 'blue') + ggtitle('Truth or Bluff ( Decision Tree Regression Model)') + xlab('Level') + ylab('Salary')
library(mvtnorm) library(OpenMx) set.seed(1) cov <- matrix(0, 12, 12) cov[1:4,1:4] <- rWishart(1, 4, diag(4))[,,1] cov[5:8,5:8] <- rWishart(1, 4, diag(4))[,,1] cov[9:12,9:12] <- rWishart(1, 4, diag(4))[,,1] mean <- rnorm(12, sd=sqrt(diag(cov))) mxOption(NULL, "maxOrdinalPerBlock", 12) lk1 <- omxMnor(cov, mean, matrix(-1, 12, 1), matrix(1, 12, 1)) omxCheckCloseEnough(lk1, 1.41528651675062e-05, 1e-7) mxOption(NULL, "maxOrdinalPerBlock", 4) lk2 <- omxMnor(cov, mean, matrix(-1, 12, 1), matrix(1, 12, 1)) omxCheckCloseEnough(lk1, lk2, 1e-7) mxOption(NULL, "maxOrdinalPerBlock", 3) lk3 <- omxMnor(cov, mean, matrix(-1, 12, 1), matrix(1, 12, 1)) omxCheckTrue(lk1 != lk3) omxCheckCloseEnough(lk1, lk3, 5e-6) mxOption(NULL, "maxOrdinalPerBlock", 2) lk4 <- omxMnor(cov, mean, matrix(-1, 12, 1), matrix(1, 12, 1)) omxCheckTrue(lk1 != lk4) omxCheckCloseEnough(lk1, lk4, 1e-5) mxOption(NULL, "maxOrdinalPerBlock", 1) lk5 <- omxMnor(cov, mean, matrix(-1, 12, 1), matrix(1, 12, 1)) omxCheckTrue(lk1 != lk5) omxCheckCloseEnough(lk1, lk5, 1e-4) # ---------------- cov <- diag(rlnorm(2)) mean <- matrix(runif(2), 2, 1) mxOption(NULL, "maxOrdinalPerBlock", 2) lk1 <- omxMnor(cov, mean, matrix(c(-1,-Inf), 2, 1), matrix(c(Inf,1), 2, 1)) omxCheckCloseEnough(lk1, pmvnorm(lower=c(-1,-Inf), upper=c(Inf,1), mean=c(mean), sigma=cov)) mxOption(NULL, "maxOrdinalPerBlock", 1) lk2 <- omxMnor(cov, mean, matrix(c(-1,-Inf), 2, 1), matrix(c(Inf,1), 2, 1)) omxCheckCloseEnough(lk1, lk2) omxCheckEquals(omxMnor(cov, mean, matrix(c(-Inf,-Inf), 2, 1), matrix(c(Inf,Inf), 2, 1)), 1.0) # ---------------- blocks <- 10 perBlock <- 5 cov <- matrix(0, blocks*perBlock, blocks*perBlock) for (bl in 1:blocks) { ind <- seq(1+(bl-1)*perBlock, bl*perBlock) cov[ind, ind] <- rWishart(1, perBlock*2, diag(perBlock))[,,1] } mean <- rnorm(nrow(cov), sd=sqrt(diag(cov))) mxOption(NULL, "maxOrdinalPerBlock", 12) lk1 <- omxMnor(cov, mean, matrix(-1, blocks*perBlock, 1), matrix(1, blocks*perBlock, 1)) omxCheckCloseEnough(log(lk1), -115.15, .1)
/inst/models/passing/omxMnor.R
no_license
Ewan-Keith/OpenMx
R
false
false
2,163
r
library(mvtnorm) library(OpenMx) set.seed(1) cov <- matrix(0, 12, 12) cov[1:4,1:4] <- rWishart(1, 4, diag(4))[,,1] cov[5:8,5:8] <- rWishart(1, 4, diag(4))[,,1] cov[9:12,9:12] <- rWishart(1, 4, diag(4))[,,1] mean <- rnorm(12, sd=sqrt(diag(cov))) mxOption(NULL, "maxOrdinalPerBlock", 12) lk1 <- omxMnor(cov, mean, matrix(-1, 12, 1), matrix(1, 12, 1)) omxCheckCloseEnough(lk1, 1.41528651675062e-05, 1e-7) mxOption(NULL, "maxOrdinalPerBlock", 4) lk2 <- omxMnor(cov, mean, matrix(-1, 12, 1), matrix(1, 12, 1)) omxCheckCloseEnough(lk1, lk2, 1e-7) mxOption(NULL, "maxOrdinalPerBlock", 3) lk3 <- omxMnor(cov, mean, matrix(-1, 12, 1), matrix(1, 12, 1)) omxCheckTrue(lk1 != lk3) omxCheckCloseEnough(lk1, lk3, 5e-6) mxOption(NULL, "maxOrdinalPerBlock", 2) lk4 <- omxMnor(cov, mean, matrix(-1, 12, 1), matrix(1, 12, 1)) omxCheckTrue(lk1 != lk4) omxCheckCloseEnough(lk1, lk4, 1e-5) mxOption(NULL, "maxOrdinalPerBlock", 1) lk5 <- omxMnor(cov, mean, matrix(-1, 12, 1), matrix(1, 12, 1)) omxCheckTrue(lk1 != lk5) omxCheckCloseEnough(lk1, lk5, 1e-4) # ---------------- cov <- diag(rlnorm(2)) mean <- matrix(runif(2), 2, 1) mxOption(NULL, "maxOrdinalPerBlock", 2) lk1 <- omxMnor(cov, mean, matrix(c(-1,-Inf), 2, 1), matrix(c(Inf,1), 2, 1)) omxCheckCloseEnough(lk1, pmvnorm(lower=c(-1,-Inf), upper=c(Inf,1), mean=c(mean), sigma=cov)) mxOption(NULL, "maxOrdinalPerBlock", 1) lk2 <- omxMnor(cov, mean, matrix(c(-1,-Inf), 2, 1), matrix(c(Inf,1), 2, 1)) omxCheckCloseEnough(lk1, lk2) omxCheckEquals(omxMnor(cov, mean, matrix(c(-Inf,-Inf), 2, 1), matrix(c(Inf,Inf), 2, 1)), 1.0) # ---------------- blocks <- 10 perBlock <- 5 cov <- matrix(0, blocks*perBlock, blocks*perBlock) for (bl in 1:blocks) { ind <- seq(1+(bl-1)*perBlock, bl*perBlock) cov[ind, ind] <- rWishart(1, perBlock*2, diag(perBlock))[,,1] } mean <- rnorm(nrow(cov), sd=sqrt(diag(cov))) mxOption(NULL, "maxOrdinalPerBlock", 12) lk1 <- omxMnor(cov, mean, matrix(-1, blocks*perBlock, 1), matrix(1, blocks*perBlock, 1)) omxCheckCloseEnough(log(lk1), -115.15, .1)
setwd("C:/Adatok/coursera_edX/4_Exploratory Data analysis/Quizes_Assignments/Assignment2") unzip("exdata-data-NEI_data.zip") NEI <- readRDS("summarySCC_PM25.rds") SCC <- readRDS("Source_Classification_Code.rds") library(plyr) d<-ddply(NEI,.(year),summarise, sum = sum(Emissions)) #returns a dataframe with the year and the sum(Emissions) #Plot1 png("plot1.png", width= 480, height= 480) par(bg="thistle1", pch=19, mar= c(5.1, 4.1, 4.1, 2.1)) plot(x= d$year, y= d$sum, col= "blue", xlab="Year", ylab= "Total emission of PM2.5 [tonnes]", main= "Total emission of PM2.5 from all sources in the USA") dev.off()
/plot1.R
no_license
Enoana/datasciencecoursera
R
false
false
620
r
setwd("C:/Adatok/coursera_edX/4_Exploratory Data analysis/Quizes_Assignments/Assignment2") unzip("exdata-data-NEI_data.zip") NEI <- readRDS("summarySCC_PM25.rds") SCC <- readRDS("Source_Classification_Code.rds") library(plyr) d<-ddply(NEI,.(year),summarise, sum = sum(Emissions)) #returns a dataframe with the year and the sum(Emissions) #Plot1 png("plot1.png", width= 480, height= 480) par(bg="thistle1", pch=19, mar= c(5.1, 4.1, 4.1, 2.1)) plot(x= d$year, y= d$sum, col= "blue", xlab="Year", ylab= "Total emission of PM2.5 [tonnes]", main= "Total emission of PM2.5 from all sources in the USA") dev.off()
outFile = commandArgs(trailingOnly = TRUE)[1] ## setwd("~/rvtests/regression/test/") source("ScoreTest.R") set.seed(0) n = 10000 x = rnorm(n) y = rbinom(n, 1, 1/ ( 1 + exp( - (1 + 0.5 *x)))) # output x, y X = cbind(rep(1,n), x) write.table(file = "input.x", X, row.names = F, col.names =F) write.table(file = "input.y", y, row.names = F, col.names =F) # wald ret = glm(y~x, family="binomial") summary(ret) beta = coef(ret) v = vcov(ret) p.wald = coef(summary(ret))[2,4] conn = file(outFile, "w") cat("wald_beta\t", file = conn) cat(beta, file = conn, append = TRUE) cat("\n", file = conn) cat("wald_vcov\t", file = conn) cat(v, file = conn, append = TRUE) cat("\n", file = conn) cat("wald_p\t", file = conn) cat(p.wald, file = conn, append = TRUE) cat("\n", file = conn) #permutation beta.real = coef(glm(y~x, family = "binomial"))[2] permutated_beta<-function(a){ y.sample = sample(y) coef(glm(y.sample~x, family = "binomial"))[2] } beta.perm = sapply(seq(1000), permutated_beta) p.perm = sum(abs(beta.perm) >= abs(beta.real)) / length(beta.perm) p.perm cat("permutation_p\t", file = conn) cat(p.perm, file = conn, append = TRUE) cat("\n", file = conn) #p.score = linear.score(Xcol=x, Y=y)$pvalue p.score = logistic.score(Xcol=x, Y=y)$pvalue cat("score_p\t", file = conn) cat(p.score, file = conn, append = TRUE) cat("\n", file = conn) close(conn)
/regression/test/testLogisticRegression.R
no_license
Shicheng-Guo/rvtests
R
false
false
1,369
r
outFile = commandArgs(trailingOnly = TRUE)[1] ## setwd("~/rvtests/regression/test/") source("ScoreTest.R") set.seed(0) n = 10000 x = rnorm(n) y = rbinom(n, 1, 1/ ( 1 + exp( - (1 + 0.5 *x)))) # output x, y X = cbind(rep(1,n), x) write.table(file = "input.x", X, row.names = F, col.names =F) write.table(file = "input.y", y, row.names = F, col.names =F) # wald ret = glm(y~x, family="binomial") summary(ret) beta = coef(ret) v = vcov(ret) p.wald = coef(summary(ret))[2,4] conn = file(outFile, "w") cat("wald_beta\t", file = conn) cat(beta, file = conn, append = TRUE) cat("\n", file = conn) cat("wald_vcov\t", file = conn) cat(v, file = conn, append = TRUE) cat("\n", file = conn) cat("wald_p\t", file = conn) cat(p.wald, file = conn, append = TRUE) cat("\n", file = conn) #permutation beta.real = coef(glm(y~x, family = "binomial"))[2] permutated_beta<-function(a){ y.sample = sample(y) coef(glm(y.sample~x, family = "binomial"))[2] } beta.perm = sapply(seq(1000), permutated_beta) p.perm = sum(abs(beta.perm) >= abs(beta.real)) / length(beta.perm) p.perm cat("permutation_p\t", file = conn) cat(p.perm, file = conn, append = TRUE) cat("\n", file = conn) #p.score = linear.score(Xcol=x, Y=y)$pvalue p.score = logistic.score(Xcol=x, Y=y)$pvalue cat("score_p\t", file = conn) cat(p.score, file = conn, append = TRUE) cat("\n", file = conn) close(conn)
# Combine smolt, covariate and side stream datasets for the time series source("00-Functions/packages-and-paths.R") source("01-Data/data-smolts.R") source("01-Data/data-covariates.R") source("01-Data/data-sides.R") dat0216_all<-as_tibble(dat_smolts_0216)%>% full_join(dat_flow_0216, by=NULL)%>% full_join(dat_temp_0216, by=NULL)%>% mutate(date = as_date(paste(Year, Month, Day)))%>% left_join(., wttr_0216, by = "date") # Use function smdwrg_m to collect annual data from 2017-> data17 <- smdwrg_m(nls17, wtemp17, disc_all, wttr17) data18 <- smdwrg_m(nls18, wtemp18, disc_all, wttr18) data19 <- smdwrg_m(nls19, wtemp19, disc_all, wttr19) data20 <- smdwrg_m(nls20, wtemp20, disc_all, wttr20) data21 <- smdwrg_m(nls21, wtemp21, disc_all, wttr21) dat1721_all <-bind_rows(data17[[2]], data18[[2]])%>% bind_rows(data19[[2]]) %>% bind_rows(data20[[2]]) %>% bind_rows(data21[[2]])#%>% #mutate(date=as.Date(date)) # Don't use, this messes the dates for some strange reason! # COMBINE smolt and covariate data from 2002-2016 and 2017-> data0221 <- full_join(dat0216_all, dat1721_all) # Set schools if smolts== 0 or 1 data0221 <- data0221 %>% mutate( schools = if_else(smolts==0, 0.001, schools), schools = if_else(smolts==1, 1, schools) ) dat<-full_join(data0221,side_east)%>%# Combine with side stream data full_join(side_west)%>% select(-humi, -wind, -press) dat_m <- left_join(dat, tempsum %>% select(date,tempSum30), by = "date") df0221<-s_dat_jags(dat_m, years, n_days) saveRDS(df0221, file="01-Data/df0221.RDS") saveRDS(dat_m, file="01-Data/dat0221.RDS") #View(data0221%>%filter(Year==2018)) #View(dat1721_all%>%filter(Year==2018)) #View(dat_m%>%filter(Year==2018)) # View(dat) # View(dat%>%filter(is.na(side_east)==F |is.na(side_west)==F)) # View(dat%>%filter(Year==2002))
/01-Data/data-combine.R
permissive
hennip/Utsjoki-smolts
R
false
false
1,821
r
# Combine smolt, covariate and side stream datasets for the time series source("00-Functions/packages-and-paths.R") source("01-Data/data-smolts.R") source("01-Data/data-covariates.R") source("01-Data/data-sides.R") dat0216_all<-as_tibble(dat_smolts_0216)%>% full_join(dat_flow_0216, by=NULL)%>% full_join(dat_temp_0216, by=NULL)%>% mutate(date = as_date(paste(Year, Month, Day)))%>% left_join(., wttr_0216, by = "date") # Use function smdwrg_m to collect annual data from 2017-> data17 <- smdwrg_m(nls17, wtemp17, disc_all, wttr17) data18 <- smdwrg_m(nls18, wtemp18, disc_all, wttr18) data19 <- smdwrg_m(nls19, wtemp19, disc_all, wttr19) data20 <- smdwrg_m(nls20, wtemp20, disc_all, wttr20) data21 <- smdwrg_m(nls21, wtemp21, disc_all, wttr21) dat1721_all <-bind_rows(data17[[2]], data18[[2]])%>% bind_rows(data19[[2]]) %>% bind_rows(data20[[2]]) %>% bind_rows(data21[[2]])#%>% #mutate(date=as.Date(date)) # Don't use, this messes the dates for some strange reason! # COMBINE smolt and covariate data from 2002-2016 and 2017-> data0221 <- full_join(dat0216_all, dat1721_all) # Set schools if smolts== 0 or 1 data0221 <- data0221 %>% mutate( schools = if_else(smolts==0, 0.001, schools), schools = if_else(smolts==1, 1, schools) ) dat<-full_join(data0221,side_east)%>%# Combine with side stream data full_join(side_west)%>% select(-humi, -wind, -press) dat_m <- left_join(dat, tempsum %>% select(date,tempSum30), by = "date") df0221<-s_dat_jags(dat_m, years, n_days) saveRDS(df0221, file="01-Data/df0221.RDS") saveRDS(dat_m, file="01-Data/dat0221.RDS") #View(data0221%>%filter(Year==2018)) #View(dat1721_all%>%filter(Year==2018)) #View(dat_m%>%filter(Year==2018)) # View(dat) # View(dat%>%filter(is.na(side_east)==F |is.na(side_west)==F)) # View(dat%>%filter(Year==2002))
library(ggplot2) rm(list = ls(all = TRUE)) gc() setwd("d:/coursera/Course-Project-2") NEI <- readRDS("summarySCC_PM25.rds") SCC <- readRDS("Source_Classification_Code.rds") baltimoreNEI <- subset(NEI, NEI$fips == "24510") baltimore <- aggregate(Emissions ~ year + type, baltimoreNEI, sum) ggp <- ggplot(baltimoreNEI,aes(factor(year),Emissions,fill=type)) + geom_bar(stat="identity") + theme_bw() + guides(fill=FALSE)+ facet_grid(.~type,scales = "free",space="free") + labs(x="Year", y=expression("Total emission of PM2.5 (tons)")) + labs(title=expression("PM2.5 Emissions in the Baltimore City, Maryland by Source Type")) print(ggp) dev.copy(png, file = "plot3.png", width = 480, height = 480) dev.off()
/Plot3.R
no_license
ivkrasnikov/Course-Project-2
R
false
false
720
r
library(ggplot2) rm(list = ls(all = TRUE)) gc() setwd("d:/coursera/Course-Project-2") NEI <- readRDS("summarySCC_PM25.rds") SCC <- readRDS("Source_Classification_Code.rds") baltimoreNEI <- subset(NEI, NEI$fips == "24510") baltimore <- aggregate(Emissions ~ year + type, baltimoreNEI, sum) ggp <- ggplot(baltimoreNEI,aes(factor(year),Emissions,fill=type)) + geom_bar(stat="identity") + theme_bw() + guides(fill=FALSE)+ facet_grid(.~type,scales = "free",space="free") + labs(x="Year", y=expression("Total emission of PM2.5 (tons)")) + labs(title=expression("PM2.5 Emissions in the Baltimore City, Maryland by Source Type")) print(ggp) dev.copy(png, file = "plot3.png", width = 480, height = 480) dev.off()
g.triSS <- function(params, respvec, VC, TIn){ ##### # ! # ######################################################################## ## I replaced TIn$eta1 with TIn$mar1. Same for TIn$eta2 and TIn$eta3 ## ######################################################################## mean1 <- TIn$theta12 * TIn$mar1 mean2 <- TIn$theta13 * TIn$mar1 mean3 <- TIn$theta12 * TIn$mar2 mean4 <- TIn$theta23 * TIn$mar2 mean5 <- TIn$theta13 * TIn$mar3 mean6 <- TIn$theta23 * TIn$mar3 ################################################################ var1 <- 1 - TIn$theta12^2 var2 <- 1 - TIn$theta13^2 var3 <- 1 - TIn$theta23^2 cov1 <- TIn$theta23 - TIn$theta12 * TIn$theta13 cov2 <- TIn$theta13 - TIn$theta12 * TIn$theta23 cov3 <- TIn$theta12 - TIn$theta13 * TIn$theta23 cov1 <- mmf(cov1, max.pr = VC$max.pr) cov2 <- mmf(cov2, max.pr = VC$max.pr) cov3 <- mmf(cov3, max.pr = VC$max.pr) ##### # ! # ######################################################################## ## I replaced TIn$eta1 with TIn$mar1. Same for TIn$eta2 and TIn$eta3 ## ######################################################################## d.1 <- dnorm(TIn$mar1) d.2 <- dnorm(TIn$mar2) d.3 <- dnorm(TIn$mar3) p.1.11 <- mm(pbinorm( TIn$mar2[VC$inde2.1], TIn$mar3, mean1 = mean1[VC$inde2], mean2 = mean2[VC$inde2], var1 = var1, var2 = var2, cov12 = cov1) , min.pr = VC$min.pr, max.pr = VC$max.pr) p.1.10 <- mm(pbinorm( TIn$mar2[VC$inde2.1], -TIn$mar3, mean1 = mean1[VC$inde2], mean2 = -mean2[VC$inde2], var1 = var1, var2 = var2, cov12 = -cov1) , min.pr = VC$min.pr, max.pr = VC$max.pr) p.2.11 <- mm(pbinorm( TIn$mar1[VC$inde2], TIn$mar3, mean1 = mean3[VC$inde2.1], mean2 = mean4[VC$inde2.1], var1 = var1, var2 = var3, cov12 = cov2), min.pr = VC$min.pr, max.pr = VC$max.pr ) p.2.10 <- mm(pbinorm( TIn$mar1[VC$inde2], -TIn$mar3, mean1 = mean3[VC$inde2.1], mean2 = -mean4[VC$inde2.1], var1 = var1, var2 = var3, cov12 = -cov2), min.pr = VC$min.pr, max.pr = VC$max.pr ) p.3.11 <- mm(pbinorm( TIn$mar1[VC$inde2], TIn$mar2[VC$inde2.1], mean1 = mean5, mean2 = mean6, var1 = var2, var2 = var3, cov12 = cov3), min.pr = VC$min.pr, max.pr = VC$max.pr ) p.3.10 <- mm(pbinorm( TIn$mar1[VC$inde2], -TIn$mar2[VC$inde2.1], mean1 = mean5, mean2 = -mean6, var1 = var2, var2 = var3, cov12 = -cov3) , min.pr = VC$min.pr, max.pr = VC$max.pr) upst.1 <- mm( pnorm( (TIn$mar2 - TIn$theta12 * TIn$mar1[VC$inde1])/sqrt(1 - TIn$theta12^2)) , min.pr = VC$min.pr, max.pr = VC$max.pr) upst.2 <- mm( pnorm( (TIn$mar1[VC$inde1] - TIn$theta12 * TIn$mar2 )/sqrt(1 - TIn$theta12^2)) , min.pr = VC$min.pr, max.pr = VC$max.pr) ################################################################################################ ##### # ! # ############################### ## The next 6 lines are new ## ############################### dmar1 <- probm(TIn$eta1, VC$margins[1], only.pr = FALSE, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr)$d.n dmar2 <- probm(TIn$eta2, VC$margins[2], only.pr = FALSE, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr)$d.n dmar3 <- probm(TIn$eta3, VC$margins[3], only.pr = FALSE, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr)$d.n dF1.de1 <- (1/d.1) * dmar1 dF2.de2 <- (1/d.2) * dmar2 dF3.de3 <- (1/d.3) * dmar3 ################################################################### dl.dF1.1 <- - respvec$cy1/TIn$p0 * d.1 dl.dF1.1[VC$inde1] <- respvec$y1.cy2/TIn$p10 * (d.1[VC$inde1] - d.1[VC$inde1] * upst.1) dl.dF1.1[VC$inde2] <- respvec$y1.y2.cy3/TIn$p110 * d.1[VC$inde2] * p.1.10 + respvec$y1.y2.y3/TIn$p111 * d.1[VC$inde2] * p.1.11 dl.dF1 <- dl.dF1.1 ##### # ! # ########################### ## The following is new: ## ########################### dl.de1 <- dl.dF1 * dF1.de1 ################################ dl.dF2.1 <- - respvec$y1.cy2/TIn$p10 * d.2 * upst.2 dl.dF2.1[VC$inde2.1] <- respvec$y1.y2.cy3/TIn$p110 * d.2[VC$inde2.1] * p.2.10 + respvec$y1.y2.y3/TIn$p111 * d.2[VC$inde2.1] * p.2.11 dl.dF2 <- dl.dF2.1 ##### # ! # ########################### ## The following is new: ## ########################### dl.de2 <- dl.dF2 * dF2.de2 ################################ dl.dF3 <- - respvec$y1.y2.cy3/TIn$p110 * d.3 * p.3.11 + respvec$y1.y2.y3/TIn$p111 * d.3 * p.3.11 ##### # ! # ########################### ## The following is new: ## ########################### dl.de3 <- dl.dF3 * dF3.de3 ################################ ##### # ! # ######################################################################## ## I replaced TIn$eta1 with TIn$mar1. Same for TIn$eta2 and TIn$eta3 ## ######################################################################## mean.12 <- ( TIn$mar1[VC$inde1] * (TIn$theta13 - TIn$theta12 * TIn$theta23) + TIn$mar2 * (TIn$theta23 - TIn$theta12 * TIn$theta13) )/( 1 - TIn$theta12^2 ) mean.13 <- ( TIn$mar1[VC$inde2] * (TIn$theta12 - TIn$theta13 * TIn$theta23) + TIn$mar3 * (TIn$theta23 - TIn$theta12 * TIn$theta13) )/( 1 - TIn$theta13^2 ) mean.23 <- ( TIn$mar2[VC$inde2.1] * (TIn$theta12 - TIn$theta13 * TIn$theta23) + TIn$mar3 * (TIn$theta13 - TIn$theta12 * TIn$theta23) )/( 1 - TIn$theta23^2 ) ############################################################################################################ deno <- 1 - TIn$theta12^2 - TIn$theta13^2 - TIn$theta23^2 + 2 * TIn$theta12 * TIn$theta13 * TIn$theta23 sd.12 <- sqrt( deno / ( 1 - TIn$theta12^2 ) ) sd.13 <- sqrt( deno / ( 1 - TIn$theta13^2 ) ) sd.23 <- sqrt( deno / ( 1 - TIn$theta23^2 ) ) ##### # ! # ######################################################################## ## I replaced TIn$eta1 with TIn$mar1. Same for TIn$eta2 and TIn$eta3 ## ######################################################################## p12.g <- mm( pnorm( (TIn$mar3 - mean.12[VC$inde2.1])/sd.12) , min.pr = VC$min.pr, max.pr = VC$max.pr) p13.g <- mm( pnorm( (TIn$mar2[VC$inde2.1] - mean.13 )/sd.13) , min.pr = VC$min.pr, max.pr = VC$max.pr) p23.g <- mm( pnorm( (TIn$mar1[VC$inde2] - mean.23 )/sd.23) , min.pr = VC$min.pr, max.pr = VC$max.pr) ######################################################################## p12.g.c <- mm(1 - p12.g, min.pr = VC$min.pr, max.pr = VC$max.pr) p13.g.c <- mm(1 - p13.g, min.pr = VC$min.pr, max.pr = VC$max.pr) p23.g.c <- mm(1 - p23.g, min.pr = VC$min.pr, max.pr = VC$max.pr) ##### # ! # ######################################################################## ## I replaced TIn$eta1 with TIn$mar1. Same for TIn$eta2 and TIn$eta3 ## ######################################################################## d11.12 <- dbinorm( TIn$mar1[VC$inde1] , TIn$mar2, cov12 = TIn$theta12) d11.13 <- dbinorm( TIn$mar1[VC$inde2] , TIn$mar3, cov12 = TIn$theta13) d11.23 <- dbinorm( TIn$mar2[VC$inde2.1], TIn$mar3, cov12 = TIn$theta23) ######################################################################## dl.dtheta12.1 <- - respvec$y1.cy2/TIn$p10 * d11.12 dl.dtheta12.1[VC$inde2.1] <- respvec$y1.y2.cy3/TIn$p110 * d11.12[VC$inde2.1] * p12.g.c + respvec$y1.y2.y3/TIn$p111 * d11.12[VC$inde2.1] * p12.g dl.dtheta12 <- dl.dtheta12.1 dl.dtheta13 <- - respvec$y1.y2.cy3/TIn$p110 * d11.13 * p13.g + respvec$y1.y2.y3/TIn$p111 * d11.13 * p13.g dl.dtheta23 <- - respvec$y1.y2.cy3/TIn$p110 * d11.23 * p23.g + respvec$y1.y2.y3/TIn$p111 * d11.23 * p23.g if(VC$Chol == FALSE){ dtheta12.dtheta12.st <- 4 * exp( 2 * TIn$theta12.st )/( exp(2 * TIn$theta12.st) + 1 )^2 dtheta13.dtheta13.st <- 4 * exp( 2 * TIn$theta13.st )/( exp(2 * TIn$theta13.st) + 1 )^2 dtheta23.dtheta23.st <- 4 * exp( 2 * TIn$theta23.st )/( exp(2 * TIn$theta23.st) + 1 )^2 dl.dtheta12.st <- dl.dtheta12 * dtheta12.dtheta12.st dl.dtheta13.st <- dl.dtheta13 * dtheta13.dtheta13.st dl.dtheta23.st <- dl.dtheta23 * dtheta23.dtheta23.st } if(VC$Chol == TRUE){ dl.dtheta <- matrix(0,length(VC$inde1),3) dl.dtheta[VC$inde1, 1] <- dl.dtheta12 dl.dtheta[VC$inde2, 2] <- dl.dtheta13 dl.dtheta[VC$inde2, 3] <- dl.dtheta23 dth12.dth12.st <- 1/(1 + TIn$theta12.st^2)^(3/2) dth12.dth13.st <- 0 dth12.dth23.st <- 0 dth13.dth12.st <- 0 dth13.dth13.st <- (1 + TIn$theta23.st^2)/(1 + TIn$theta13.st^2 + TIn$theta23.st^2)^(3/2) dth13.dth23.st <- - (TIn$theta13.st * TIn$theta23.st)/(1 + TIn$theta13.st^2 + TIn$theta23.st^2)^(3/2) dth23.dth12.st <- TIn$theta13.st/sqrt((1 + TIn$theta12.st^2) * (1 + TIn$theta13.st^2 + TIn$theta23.st^2)) - (TIn$theta12.st * (TIn$theta12.st * TIn$theta13.st + TIn$theta23.st))/((1 + TIn$theta12.st^2)^(3/2) * sqrt(1 + TIn$theta13.st^2 + TIn$theta23.st^2)) dth23.dth13.st <- TIn$theta12.st/sqrt((1 + TIn$theta12.st^2) * (1 + TIn$theta13.st^2 + TIn$theta23.st^2)) - (TIn$theta13.st * (TIn$theta12.st * TIn$theta13.st + TIn$theta23.st))/(sqrt(1 + TIn$theta12.st^2) * (1 + TIn$theta13.st^2 + TIn$theta23.st^2)^(3/2)) dth23.dth23.st <- 1/sqrt((1 + TIn$theta12.st^2) * (1 + TIn$theta13.st^2 + TIn$theta23.st^2)) - (TIn$theta23.st * (TIn$theta12.st * TIn$theta13.st + TIn$theta23.st))/(sqrt(1 + TIn$theta12.st^2) * (1 + TIn$theta13.st^2 + TIn$theta23.st^2)^(3/2)) dtheta.theta.st <- matrix( c( dth12.dth12.st, dth13.dth12.st, dth23.dth12.st, dth12.dth13.st, dth13.dth13.st, dth23.dth13.st, dth12.dth23.st, dth13.dth23.st, dth23.dth23.st ), 3 , 3) dl.dtheta.st <- dl.dtheta %*% dtheta.theta.st dl.dtheta12.st <- dl.dtheta.st[, 1] dl.dtheta12.st <- dl.dtheta12.st[VC$inde1] dl.dtheta13.st <- dl.dtheta.st[, 2] dl.dtheta13.st <- dl.dtheta13.st[VC$inde2] dl.dtheta23.st <- dl.dtheta.st[, 3] dl.dtheta23.st <- dl.dtheta23.st[VC$inde2] } ##### # ! # ####################################################### ## In GTRIVec: 3rd, 4th, 9th and 10th lines are new ## ####################################################### GTRIVec <- list(p12.g = p12.g, p13.g = p13.g, p23.g = p23.g, p12.g.c = p12.g.c, p13.g.c = p13.g.c, p23.g.c = p23.g.c, d.1 = d.1, d.2 = d.2, d.3 = d.3, dmar1 = dmar1, dmar2 = dmar2, dmar3 = dmar3, d11.12 = d11.12, d11.13 = d11.13, d11.23 = d11.23, p.1.11 = p.1.11, p.1.10 = p.1.10, p.2.11 = p.2.11, p.2.10 = p.2.10, p.3.11 = p.3.11, p.3.10 = p.3.10, dF1.de1 = dF1.de1, dF2.de2 = dF2.de2, dF3.de3 = dF3.de3, dl.dF1 = dl.dF1, dl.dF2 = dl.dF2, dl.dF3 = dl.dF3, dl.de1 = VC$weights*dl.de1, dl.de2 = VC$weights[VC$inde1]*dl.de2, dl.de3 = VC$weights[VC$inde2]*dl.de3, dl.dtheta12.st = VC$weights[VC$inde1]*dl.dtheta12.st, dl.dtheta13.st = VC$weights[VC$inde2]*dl.dtheta13.st, dl.dtheta23.st = VC$weights[VC$inde2]*dl.dtheta23.st, mean.12 = mean.12, mean.13 = mean.13, mean.23 = mean.23, sd.12 = sd.12, sd.13 = sd.13, sd.23 = sd.23, upst.1 = upst.1, upst.2 = upst.2, dl.dtheta12 =dl.dtheta12, dl.dtheta13 = dl.dtheta13, dl.dtheta23 = dl.dtheta23) GTRIVec }
/R/g.triSS.r
no_license
cran/GJRM
R
false
false
12,159
r
g.triSS <- function(params, respvec, VC, TIn){ ##### # ! # ######################################################################## ## I replaced TIn$eta1 with TIn$mar1. Same for TIn$eta2 and TIn$eta3 ## ######################################################################## mean1 <- TIn$theta12 * TIn$mar1 mean2 <- TIn$theta13 * TIn$mar1 mean3 <- TIn$theta12 * TIn$mar2 mean4 <- TIn$theta23 * TIn$mar2 mean5 <- TIn$theta13 * TIn$mar3 mean6 <- TIn$theta23 * TIn$mar3 ################################################################ var1 <- 1 - TIn$theta12^2 var2 <- 1 - TIn$theta13^2 var3 <- 1 - TIn$theta23^2 cov1 <- TIn$theta23 - TIn$theta12 * TIn$theta13 cov2 <- TIn$theta13 - TIn$theta12 * TIn$theta23 cov3 <- TIn$theta12 - TIn$theta13 * TIn$theta23 cov1 <- mmf(cov1, max.pr = VC$max.pr) cov2 <- mmf(cov2, max.pr = VC$max.pr) cov3 <- mmf(cov3, max.pr = VC$max.pr) ##### # ! # ######################################################################## ## I replaced TIn$eta1 with TIn$mar1. Same for TIn$eta2 and TIn$eta3 ## ######################################################################## d.1 <- dnorm(TIn$mar1) d.2 <- dnorm(TIn$mar2) d.3 <- dnorm(TIn$mar3) p.1.11 <- mm(pbinorm( TIn$mar2[VC$inde2.1], TIn$mar3, mean1 = mean1[VC$inde2], mean2 = mean2[VC$inde2], var1 = var1, var2 = var2, cov12 = cov1) , min.pr = VC$min.pr, max.pr = VC$max.pr) p.1.10 <- mm(pbinorm( TIn$mar2[VC$inde2.1], -TIn$mar3, mean1 = mean1[VC$inde2], mean2 = -mean2[VC$inde2], var1 = var1, var2 = var2, cov12 = -cov1) , min.pr = VC$min.pr, max.pr = VC$max.pr) p.2.11 <- mm(pbinorm( TIn$mar1[VC$inde2], TIn$mar3, mean1 = mean3[VC$inde2.1], mean2 = mean4[VC$inde2.1], var1 = var1, var2 = var3, cov12 = cov2), min.pr = VC$min.pr, max.pr = VC$max.pr ) p.2.10 <- mm(pbinorm( TIn$mar1[VC$inde2], -TIn$mar3, mean1 = mean3[VC$inde2.1], mean2 = -mean4[VC$inde2.1], var1 = var1, var2 = var3, cov12 = -cov2), min.pr = VC$min.pr, max.pr = VC$max.pr ) p.3.11 <- mm(pbinorm( TIn$mar1[VC$inde2], TIn$mar2[VC$inde2.1], mean1 = mean5, mean2 = mean6, var1 = var2, var2 = var3, cov12 = cov3), min.pr = VC$min.pr, max.pr = VC$max.pr ) p.3.10 <- mm(pbinorm( TIn$mar1[VC$inde2], -TIn$mar2[VC$inde2.1], mean1 = mean5, mean2 = -mean6, var1 = var2, var2 = var3, cov12 = -cov3) , min.pr = VC$min.pr, max.pr = VC$max.pr) upst.1 <- mm( pnorm( (TIn$mar2 - TIn$theta12 * TIn$mar1[VC$inde1])/sqrt(1 - TIn$theta12^2)) , min.pr = VC$min.pr, max.pr = VC$max.pr) upst.2 <- mm( pnorm( (TIn$mar1[VC$inde1] - TIn$theta12 * TIn$mar2 )/sqrt(1 - TIn$theta12^2)) , min.pr = VC$min.pr, max.pr = VC$max.pr) ################################################################################################ ##### # ! # ############################### ## The next 6 lines are new ## ############################### dmar1 <- probm(TIn$eta1, VC$margins[1], only.pr = FALSE, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr)$d.n dmar2 <- probm(TIn$eta2, VC$margins[2], only.pr = FALSE, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr)$d.n dmar3 <- probm(TIn$eta3, VC$margins[3], only.pr = FALSE, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr)$d.n dF1.de1 <- (1/d.1) * dmar1 dF2.de2 <- (1/d.2) * dmar2 dF3.de3 <- (1/d.3) * dmar3 ################################################################### dl.dF1.1 <- - respvec$cy1/TIn$p0 * d.1 dl.dF1.1[VC$inde1] <- respvec$y1.cy2/TIn$p10 * (d.1[VC$inde1] - d.1[VC$inde1] * upst.1) dl.dF1.1[VC$inde2] <- respvec$y1.y2.cy3/TIn$p110 * d.1[VC$inde2] * p.1.10 + respvec$y1.y2.y3/TIn$p111 * d.1[VC$inde2] * p.1.11 dl.dF1 <- dl.dF1.1 ##### # ! # ########################### ## The following is new: ## ########################### dl.de1 <- dl.dF1 * dF1.de1 ################################ dl.dF2.1 <- - respvec$y1.cy2/TIn$p10 * d.2 * upst.2 dl.dF2.1[VC$inde2.1] <- respvec$y1.y2.cy3/TIn$p110 * d.2[VC$inde2.1] * p.2.10 + respvec$y1.y2.y3/TIn$p111 * d.2[VC$inde2.1] * p.2.11 dl.dF2 <- dl.dF2.1 ##### # ! # ########################### ## The following is new: ## ########################### dl.de2 <- dl.dF2 * dF2.de2 ################################ dl.dF3 <- - respvec$y1.y2.cy3/TIn$p110 * d.3 * p.3.11 + respvec$y1.y2.y3/TIn$p111 * d.3 * p.3.11 ##### # ! # ########################### ## The following is new: ## ########################### dl.de3 <- dl.dF3 * dF3.de3 ################################ ##### # ! # ######################################################################## ## I replaced TIn$eta1 with TIn$mar1. Same for TIn$eta2 and TIn$eta3 ## ######################################################################## mean.12 <- ( TIn$mar1[VC$inde1] * (TIn$theta13 - TIn$theta12 * TIn$theta23) + TIn$mar2 * (TIn$theta23 - TIn$theta12 * TIn$theta13) )/( 1 - TIn$theta12^2 ) mean.13 <- ( TIn$mar1[VC$inde2] * (TIn$theta12 - TIn$theta13 * TIn$theta23) + TIn$mar3 * (TIn$theta23 - TIn$theta12 * TIn$theta13) )/( 1 - TIn$theta13^2 ) mean.23 <- ( TIn$mar2[VC$inde2.1] * (TIn$theta12 - TIn$theta13 * TIn$theta23) + TIn$mar3 * (TIn$theta13 - TIn$theta12 * TIn$theta23) )/( 1 - TIn$theta23^2 ) ############################################################################################################ deno <- 1 - TIn$theta12^2 - TIn$theta13^2 - TIn$theta23^2 + 2 * TIn$theta12 * TIn$theta13 * TIn$theta23 sd.12 <- sqrt( deno / ( 1 - TIn$theta12^2 ) ) sd.13 <- sqrt( deno / ( 1 - TIn$theta13^2 ) ) sd.23 <- sqrt( deno / ( 1 - TIn$theta23^2 ) ) ##### # ! # ######################################################################## ## I replaced TIn$eta1 with TIn$mar1. Same for TIn$eta2 and TIn$eta3 ## ######################################################################## p12.g <- mm( pnorm( (TIn$mar3 - mean.12[VC$inde2.1])/sd.12) , min.pr = VC$min.pr, max.pr = VC$max.pr) p13.g <- mm( pnorm( (TIn$mar2[VC$inde2.1] - mean.13 )/sd.13) , min.pr = VC$min.pr, max.pr = VC$max.pr) p23.g <- mm( pnorm( (TIn$mar1[VC$inde2] - mean.23 )/sd.23) , min.pr = VC$min.pr, max.pr = VC$max.pr) ######################################################################## p12.g.c <- mm(1 - p12.g, min.pr = VC$min.pr, max.pr = VC$max.pr) p13.g.c <- mm(1 - p13.g, min.pr = VC$min.pr, max.pr = VC$max.pr) p23.g.c <- mm(1 - p23.g, min.pr = VC$min.pr, max.pr = VC$max.pr) ##### # ! # ######################################################################## ## I replaced TIn$eta1 with TIn$mar1. Same for TIn$eta2 and TIn$eta3 ## ######################################################################## d11.12 <- dbinorm( TIn$mar1[VC$inde1] , TIn$mar2, cov12 = TIn$theta12) d11.13 <- dbinorm( TIn$mar1[VC$inde2] , TIn$mar3, cov12 = TIn$theta13) d11.23 <- dbinorm( TIn$mar2[VC$inde2.1], TIn$mar3, cov12 = TIn$theta23) ######################################################################## dl.dtheta12.1 <- - respvec$y1.cy2/TIn$p10 * d11.12 dl.dtheta12.1[VC$inde2.1] <- respvec$y1.y2.cy3/TIn$p110 * d11.12[VC$inde2.1] * p12.g.c + respvec$y1.y2.y3/TIn$p111 * d11.12[VC$inde2.1] * p12.g dl.dtheta12 <- dl.dtheta12.1 dl.dtheta13 <- - respvec$y1.y2.cy3/TIn$p110 * d11.13 * p13.g + respvec$y1.y2.y3/TIn$p111 * d11.13 * p13.g dl.dtheta23 <- - respvec$y1.y2.cy3/TIn$p110 * d11.23 * p23.g + respvec$y1.y2.y3/TIn$p111 * d11.23 * p23.g if(VC$Chol == FALSE){ dtheta12.dtheta12.st <- 4 * exp( 2 * TIn$theta12.st )/( exp(2 * TIn$theta12.st) + 1 )^2 dtheta13.dtheta13.st <- 4 * exp( 2 * TIn$theta13.st )/( exp(2 * TIn$theta13.st) + 1 )^2 dtheta23.dtheta23.st <- 4 * exp( 2 * TIn$theta23.st )/( exp(2 * TIn$theta23.st) + 1 )^2 dl.dtheta12.st <- dl.dtheta12 * dtheta12.dtheta12.st dl.dtheta13.st <- dl.dtheta13 * dtheta13.dtheta13.st dl.dtheta23.st <- dl.dtheta23 * dtheta23.dtheta23.st } if(VC$Chol == TRUE){ dl.dtheta <- matrix(0,length(VC$inde1),3) dl.dtheta[VC$inde1, 1] <- dl.dtheta12 dl.dtheta[VC$inde2, 2] <- dl.dtheta13 dl.dtheta[VC$inde2, 3] <- dl.dtheta23 dth12.dth12.st <- 1/(1 + TIn$theta12.st^2)^(3/2) dth12.dth13.st <- 0 dth12.dth23.st <- 0 dth13.dth12.st <- 0 dth13.dth13.st <- (1 + TIn$theta23.st^2)/(1 + TIn$theta13.st^2 + TIn$theta23.st^2)^(3/2) dth13.dth23.st <- - (TIn$theta13.st * TIn$theta23.st)/(1 + TIn$theta13.st^2 + TIn$theta23.st^2)^(3/2) dth23.dth12.st <- TIn$theta13.st/sqrt((1 + TIn$theta12.st^2) * (1 + TIn$theta13.st^2 + TIn$theta23.st^2)) - (TIn$theta12.st * (TIn$theta12.st * TIn$theta13.st + TIn$theta23.st))/((1 + TIn$theta12.st^2)^(3/2) * sqrt(1 + TIn$theta13.st^2 + TIn$theta23.st^2)) dth23.dth13.st <- TIn$theta12.st/sqrt((1 + TIn$theta12.st^2) * (1 + TIn$theta13.st^2 + TIn$theta23.st^2)) - (TIn$theta13.st * (TIn$theta12.st * TIn$theta13.st + TIn$theta23.st))/(sqrt(1 + TIn$theta12.st^2) * (1 + TIn$theta13.st^2 + TIn$theta23.st^2)^(3/2)) dth23.dth23.st <- 1/sqrt((1 + TIn$theta12.st^2) * (1 + TIn$theta13.st^2 + TIn$theta23.st^2)) - (TIn$theta23.st * (TIn$theta12.st * TIn$theta13.st + TIn$theta23.st))/(sqrt(1 + TIn$theta12.st^2) * (1 + TIn$theta13.st^2 + TIn$theta23.st^2)^(3/2)) dtheta.theta.st <- matrix( c( dth12.dth12.st, dth13.dth12.st, dth23.dth12.st, dth12.dth13.st, dth13.dth13.st, dth23.dth13.st, dth12.dth23.st, dth13.dth23.st, dth23.dth23.st ), 3 , 3) dl.dtheta.st <- dl.dtheta %*% dtheta.theta.st dl.dtheta12.st <- dl.dtheta.st[, 1] dl.dtheta12.st <- dl.dtheta12.st[VC$inde1] dl.dtheta13.st <- dl.dtheta.st[, 2] dl.dtheta13.st <- dl.dtheta13.st[VC$inde2] dl.dtheta23.st <- dl.dtheta.st[, 3] dl.dtheta23.st <- dl.dtheta23.st[VC$inde2] } ##### # ! # ####################################################### ## In GTRIVec: 3rd, 4th, 9th and 10th lines are new ## ####################################################### GTRIVec <- list(p12.g = p12.g, p13.g = p13.g, p23.g = p23.g, p12.g.c = p12.g.c, p13.g.c = p13.g.c, p23.g.c = p23.g.c, d.1 = d.1, d.2 = d.2, d.3 = d.3, dmar1 = dmar1, dmar2 = dmar2, dmar3 = dmar3, d11.12 = d11.12, d11.13 = d11.13, d11.23 = d11.23, p.1.11 = p.1.11, p.1.10 = p.1.10, p.2.11 = p.2.11, p.2.10 = p.2.10, p.3.11 = p.3.11, p.3.10 = p.3.10, dF1.de1 = dF1.de1, dF2.de2 = dF2.de2, dF3.de3 = dF3.de3, dl.dF1 = dl.dF1, dl.dF2 = dl.dF2, dl.dF3 = dl.dF3, dl.de1 = VC$weights*dl.de1, dl.de2 = VC$weights[VC$inde1]*dl.de2, dl.de3 = VC$weights[VC$inde2]*dl.de3, dl.dtheta12.st = VC$weights[VC$inde1]*dl.dtheta12.st, dl.dtheta13.st = VC$weights[VC$inde2]*dl.dtheta13.st, dl.dtheta23.st = VC$weights[VC$inde2]*dl.dtheta23.st, mean.12 = mean.12, mean.13 = mean.13, mean.23 = mean.23, sd.12 = sd.12, sd.13 = sd.13, sd.23 = sd.23, upst.1 = upst.1, upst.2 = upst.2, dl.dtheta12 =dl.dtheta12, dl.dtheta13 = dl.dtheta13, dl.dtheta23 = dl.dtheta23) GTRIVec }
library(ph2bye) ### Name: BB.aniplot ### Title: Sequentially monitor patients using Beta-Binomial posterior ### probability ### Aliases: BB.aniplot ### ** Examples # Using APL data r=rep(0,6) BB.aniplot(a=1,b=1,r=r, alpha=0.05, seed=1234) # Simulate binomial data B <- 10; N=1; p=0.3 r <- rbinom(n = B,size = N,prob = p) BB.aniplot(a=1,b=1,r=r,time.interval = 0.2,output = FALSE)
/data/genthat_extracted_code/ph2bye/examples/BB.aniplot.Rd.R
no_license
surayaaramli/typeRrh
R
false
false
389
r
library(ph2bye) ### Name: BB.aniplot ### Title: Sequentially monitor patients using Beta-Binomial posterior ### probability ### Aliases: BB.aniplot ### ** Examples # Using APL data r=rep(0,6) BB.aniplot(a=1,b=1,r=r, alpha=0.05, seed=1234) # Simulate binomial data B <- 10; N=1; p=0.3 r <- rbinom(n = B,size = N,prob = p) BB.aniplot(a=1,b=1,r=r,time.interval = 0.2,output = FALSE)
#' Takes the values for a single file. #' #' @param x `data.frame` with columns `"mz"`, `"rt"` and `"i"`. #' #' @param main `character(1)` with the title of the plot. #' #' @param col color for the circles. #' #' @param colramp color ramp to be used for the points' background. #' #' @param grid.color color to be used for the grid lines (or `NA` if they should #' not be plotted. #' #' @param pch The plotting character. #' #' @param layout `matrix` defining the layout of the plot, or `NULL` if #' `layout` was already called. #' #' @param ... additional parameters to be passed to the `plot` function. #' #' @md #' #' @author Johannes Rainer #' #' @noRd .plotXIC <- function(x, main = "", col = "grey", colramp = topo.colors, grid.color = "lightgrey", pch = 21, layout = matrix(1:2, ncol = 1), ...) { if (is.matrix(layout)) layout(layout) ## Chromatogram. bpi <- unlist(lapply(split(x$i, x$rt), max, na.rm = TRUE)) brks <- do.breaks(range(x$i), nint = 256) par(mar = c(0, 4, 2, 1)) plot(as.numeric(names(bpi)), bpi, xaxt = "n", col = col, main = main, bg = level.colors(bpi, at = brks, col.regions = colramp), xlab = "", pch = pch, ylab = "", las = 2, ...) mtext(side = 4, line = 0, "Intensity", cex = par("cex.lab")) grid(col = grid.color) par(mar = c(3.5, 4, 0, 1)) plot(x$rt, x$mz, main = "", pch = pch, col = col, xlab = "", ylab = "", yaxt = "n", bg = level.colors(x$i, at = brks, col.regions = colramp), ...) axis(side = 2, las = 2) grid(col = grid.color) mtext(side = 1, line = 2.5, "Retention time", cex = par("cex.lab")) mtext(side = 4, line = 0, "m/z", cex = par("cex.lab")) } #' Create a `matrix` to be used for the `layout` function to allow plotting of #' vertically arranged *sub-plots* consisting of `sub_plot` plots. #' #' @param x `integer(1)` with the number of sub-plots. #' #' @param sub_plot `integer(1)` with the number of sub-plots per cell/plot. #' #' @author Johannes Rainer #' #' @md #' #' @noRd #' #' @examples #' #' ## Assum we've got 5 *features* to plot and we want to have a two plots for #' ## each feature arranged below each other. #' #' .vertical_sub_layout(5, sub_plot = 2) .vertical_sub_layout <- function(x, sub_plot = 2) { sqrt_x <- sqrt(x) ncol <- ceiling(sqrt_x) nrow <- round(sqrt_x) rws <- split(1:(ncol * nrow * sub_plot), f = rep(1:nrow, each = sub_plot * ncol)) do.call(rbind, lapply(rws, matrix, ncol = ncol)) }
/R/functions-plotting.R
no_license
meowcat/MSnbase
R
false
false
2,591
r
#' Takes the values for a single file. #' #' @param x `data.frame` with columns `"mz"`, `"rt"` and `"i"`. #' #' @param main `character(1)` with the title of the plot. #' #' @param col color for the circles. #' #' @param colramp color ramp to be used for the points' background. #' #' @param grid.color color to be used for the grid lines (or `NA` if they should #' not be plotted. #' #' @param pch The plotting character. #' #' @param layout `matrix` defining the layout of the plot, or `NULL` if #' `layout` was already called. #' #' @param ... additional parameters to be passed to the `plot` function. #' #' @md #' #' @author Johannes Rainer #' #' @noRd .plotXIC <- function(x, main = "", col = "grey", colramp = topo.colors, grid.color = "lightgrey", pch = 21, layout = matrix(1:2, ncol = 1), ...) { if (is.matrix(layout)) layout(layout) ## Chromatogram. bpi <- unlist(lapply(split(x$i, x$rt), max, na.rm = TRUE)) brks <- do.breaks(range(x$i), nint = 256) par(mar = c(0, 4, 2, 1)) plot(as.numeric(names(bpi)), bpi, xaxt = "n", col = col, main = main, bg = level.colors(bpi, at = brks, col.regions = colramp), xlab = "", pch = pch, ylab = "", las = 2, ...) mtext(side = 4, line = 0, "Intensity", cex = par("cex.lab")) grid(col = grid.color) par(mar = c(3.5, 4, 0, 1)) plot(x$rt, x$mz, main = "", pch = pch, col = col, xlab = "", ylab = "", yaxt = "n", bg = level.colors(x$i, at = brks, col.regions = colramp), ...) axis(side = 2, las = 2) grid(col = grid.color) mtext(side = 1, line = 2.5, "Retention time", cex = par("cex.lab")) mtext(side = 4, line = 0, "m/z", cex = par("cex.lab")) } #' Create a `matrix` to be used for the `layout` function to allow plotting of #' vertically arranged *sub-plots* consisting of `sub_plot` plots. #' #' @param x `integer(1)` with the number of sub-plots. #' #' @param sub_plot `integer(1)` with the number of sub-plots per cell/plot. #' #' @author Johannes Rainer #' #' @md #' #' @noRd #' #' @examples #' #' ## Assum we've got 5 *features* to plot and we want to have a two plots for #' ## each feature arranged below each other. #' #' .vertical_sub_layout(5, sub_plot = 2) .vertical_sub_layout <- function(x, sub_plot = 2) { sqrt_x <- sqrt(x) ncol <- ceiling(sqrt_x) nrow <- round(sqrt_x) rws <- split(1:(ncol * nrow * sub_plot), f = rep(1:nrow, each = sub_plot * ncol)) do.call(rbind, lapply(rws, matrix, ncol = ncol)) }
# Some code # New
/test_code.R
no_license
alexandrashtein/test_250118
R
false
false
17
r
# Some code # New
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/translate_operations.R \name{translate_update_parallel_data} \alias{translate_update_parallel_data} \title{Updates a previously created parallel data resource by importing a new input file from Amazon S3} \usage{ translate_update_parallel_data( Name, Description = NULL, ParallelDataConfig, ClientToken ) } \arguments{ \item{Name}{[required] The name of the parallel data resource being updated.} \item{Description}{A custom description for the parallel data resource in Amazon Translate.} \item{ParallelDataConfig}{[required] Specifies the format and S3 location of the parallel data input file.} \item{ClientToken}{[required] A unique identifier for the request. This token is automatically generated when you use Amazon Translate through an AWS SDK.} } \description{ Updates a previously created parallel data resource by importing a new input file from Amazon S3. See \url{https://www.paws-r-sdk.com/docs/translate_update_parallel_data/} for full documentation. } \keyword{internal}
/cran/paws.machine.learning/man/translate_update_parallel_data.Rd
permissive
paws-r/paws
R
false
true
1,077
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/translate_operations.R \name{translate_update_parallel_data} \alias{translate_update_parallel_data} \title{Updates a previously created parallel data resource by importing a new input file from Amazon S3} \usage{ translate_update_parallel_data( Name, Description = NULL, ParallelDataConfig, ClientToken ) } \arguments{ \item{Name}{[required] The name of the parallel data resource being updated.} \item{Description}{A custom description for the parallel data resource in Amazon Translate.} \item{ParallelDataConfig}{[required] Specifies the format and S3 location of the parallel data input file.} \item{ClientToken}{[required] A unique identifier for the request. This token is automatically generated when you use Amazon Translate through an AWS SDK.} } \description{ Updates a previously created parallel data resource by importing a new input file from Amazon S3. See \url{https://www.paws-r-sdk.com/docs/translate_update_parallel_data/} for full documentation. } \keyword{internal}
library(quantmod) SPX <- getSymbols("^GSPC",auto.assign = FALSE, from = "2019-01-02", to="2020-12-31") head(SPX[,4]) # we work with the closed price SPXprice<-na.omit(SPX[,4]) # we want to work on yearly basis daysInOneYear<-365 #actual convention obstime<-as.numeric(index(SPXprice))# we can convert it to the numeric object and determine delta. n <- length(obstime) - 1 delta_i<-diff(obstime)/(daysInOneYear) logreturn<- diff(log(as.numeric(SPXprice))) minusLogLik<-function(par,logreturn,delta_i){ mu<-par[1] sig<-par[2] vecMean = (mu -0.5*sig^2)*delta_i vecsd = sig*sqrt(delta_i) -sum(dnorm(logreturn,mean=vecMean,sd=vecsd,log=TRUE)) } minusLogLik(par=c(0.5,0.2),logreturn=logreturn,delta_i=delta_i) # minus loglikelihood at mu= 0.5 sig=0.2 res<-optim(par=c(0.5,0.2),fn=minusLogLik,lower=c(-Inf,0),method="L-BFGS-B", logreturn=logreturn, delta_i=delta_i) res$par #we want to see the value of the likelihood we are able to reach so; -1*res$value #multiply it by -1 because it is a minimization : minusloglikelihood res$convergence # its 0, successful. volatility<-res$par[2] # volatiltiy on yearly basis estimated using the historical log return. volatility #Put option of Black and scholes through put-call parity PutoptBs<-function(S,K,TimeToMat, sigma, Rfree){ d1<-(log(S/K)+(Rfree+0.5*sigma^2)*(TimeToMat))/(sigma*sqrt(TimeToMat)) d2<-d1-sigma*sqrt(TimeToMat) Pt0= K*exp(-Rfree*TimeToMat)*pnorm(-d2)-S*pnorm(-d1) return(Pt0) } sigma= volatility # on yearly basis estimated through MLE #At the money option, starting on 30th of December 2020 and reaches the maturity on 27th of February 2021. SPXprice[n+1,] # t0 = 2020-12-30 S = as.numeric(SPXprice[n+1,]) K=S # at the money K S Rfree=0.015 NdaystoMat <- data.frame(date=c("2020/12/30"),tx_start=c("2021/02/27")) NdaystoMat$date_diff<-as.Date(as.character(NdaystoMat$tx_start), format="%Y/%m/%d")- as.Date(as.character(NdaystoMat$date), format="%Y/%m/%d") Maturity<-as.numeric(NdaystoMat$date_diff) Maturity # daily basis #covert Maturity on yearly basis daysInOneYear<-365 #actual convention Maturity<-Maturity/daysInOneYear Put<-PutoptBs(S=S,K=S, TimeToMat = Maturity,sigma = sigma,Rfree = Rfree) Put
/EX4.R
no_license
Murataydinunimi/Numerical-Methods-for-Finance
R
false
false
2,286
r
library(quantmod) SPX <- getSymbols("^GSPC",auto.assign = FALSE, from = "2019-01-02", to="2020-12-31") head(SPX[,4]) # we work with the closed price SPXprice<-na.omit(SPX[,4]) # we want to work on yearly basis daysInOneYear<-365 #actual convention obstime<-as.numeric(index(SPXprice))# we can convert it to the numeric object and determine delta. n <- length(obstime) - 1 delta_i<-diff(obstime)/(daysInOneYear) logreturn<- diff(log(as.numeric(SPXprice))) minusLogLik<-function(par,logreturn,delta_i){ mu<-par[1] sig<-par[2] vecMean = (mu -0.5*sig^2)*delta_i vecsd = sig*sqrt(delta_i) -sum(dnorm(logreturn,mean=vecMean,sd=vecsd,log=TRUE)) } minusLogLik(par=c(0.5,0.2),logreturn=logreturn,delta_i=delta_i) # minus loglikelihood at mu= 0.5 sig=0.2 res<-optim(par=c(0.5,0.2),fn=minusLogLik,lower=c(-Inf,0),method="L-BFGS-B", logreturn=logreturn, delta_i=delta_i) res$par #we want to see the value of the likelihood we are able to reach so; -1*res$value #multiply it by -1 because it is a minimization : minusloglikelihood res$convergence # its 0, successful. volatility<-res$par[2] # volatiltiy on yearly basis estimated using the historical log return. volatility #Put option of Black and scholes through put-call parity PutoptBs<-function(S,K,TimeToMat, sigma, Rfree){ d1<-(log(S/K)+(Rfree+0.5*sigma^2)*(TimeToMat))/(sigma*sqrt(TimeToMat)) d2<-d1-sigma*sqrt(TimeToMat) Pt0= K*exp(-Rfree*TimeToMat)*pnorm(-d2)-S*pnorm(-d1) return(Pt0) } sigma= volatility # on yearly basis estimated through MLE #At the money option, starting on 30th of December 2020 and reaches the maturity on 27th of February 2021. SPXprice[n+1,] # t0 = 2020-12-30 S = as.numeric(SPXprice[n+1,]) K=S # at the money K S Rfree=0.015 NdaystoMat <- data.frame(date=c("2020/12/30"),tx_start=c("2021/02/27")) NdaystoMat$date_diff<-as.Date(as.character(NdaystoMat$tx_start), format="%Y/%m/%d")- as.Date(as.character(NdaystoMat$date), format="%Y/%m/%d") Maturity<-as.numeric(NdaystoMat$date_diff) Maturity # daily basis #covert Maturity on yearly basis daysInOneYear<-365 #actual convention Maturity<-Maturity/daysInOneYear Put<-PutoptBs(S=S,K=S, TimeToMat = Maturity,sigma = sigma,Rfree = Rfree) Put
data("mnist_27") set.seed(1995) indexes <- createResample(mnist_27$train$y, 10) which(indexes$Resample01 == 3) which(indexes$Resample02 == 3) which(indexes$Resample03 == 3) which(indexes$Resample04 == 3) which(indexes$Resample05 == 3) which(indexes$Resample06 == 3) which(indexes$Resample07 == 3) which(indexes$Resample08 == 3) which(indexes$Resample09 == 3) which(indexes$Resample10 == 3)
/Bootstrapping_mnist.r
no_license
sb-ruisms/MachineLearningExercises
R
false
false
390
r
data("mnist_27") set.seed(1995) indexes <- createResample(mnist_27$train$y, 10) which(indexes$Resample01 == 3) which(indexes$Resample02 == 3) which(indexes$Resample03 == 3) which(indexes$Resample04 == 3) which(indexes$Resample05 == 3) which(indexes$Resample06 == 3) which(indexes$Resample07 == 3) which(indexes$Resample08 == 3) which(indexes$Resample09 == 3) which(indexes$Resample10 == 3)
\name{slice-methods} \docType{methods} \alias{get.slice} \alias{slice.fast} \alias{slice} \alias{slice,SoilProfileCollection-method} \title{Slicing of SoilProfilecollection Objects} \description{Slicing of SoilProfilecollection Objects} \usage{ # method for SoilProfileCollection objects slice(object, fm, top.down=TRUE, just.the.data=FALSE, strict=TRUE) } \arguments{ \item{object}{a SoilProfileCollection} \item{fm}{A formula: either `integer.vector ~ var1 + var2 + var3' where named variables are sliced according to `integer.vector' OR where all variables are sliced accordin to `integer.vector' `integer.vector ~.'.} \item{top.down}{logical, slices are defined from the top-down: \code{0:10} implies 0-11 depth units.} \item{just.the.data}{Logical, return just the sliced data or a new SoilProfileCollection object.} \item{strict}{Logical, should the horizonation be strictly checked for self-consistency?} } \section{Details}{ By default, slices are defined from the top-down: \code{0:10} implies 0-11 depth units. } \section{Methods}{ \describe{ \item{data = "SoilProfileCollection"}{Typical usage, where input is a \code{\link{SoilProfileCollection}}.} } } \note{\code{slab()} and \code{slice()} are much faster and require less memory if input data are either numeric or character.} \value{Either a new SoilProfileCollection with data sliced according to \code{fm}, or a \code{data.frame}.} \references{ D.E. Beaudette, P. Roudier, A.T. O'Geen, Algorithms for quantitative pedology: A toolkit for soil scientists, Computers & Geosciences, Volume 52, March 2013, Pages 258-268, 10.1016/j.cageo.2012.10.020. } \author{D.E. Beaudette} \seealso{\code{\link{slab}}} \examples{ library(aqp) # simulate some data, IDs are 1:20 d <- lapply(1:20, random_profile) d <- do.call('rbind', d) # init SoilProfilecollection object depths(d) <- id ~ top + bottom head(horizons(d)) # generate single slice at 10 cm # output is a SoilProfilecollection object s <- slice(d, 10 ~ name + p1 + p2 + p3) # generate single slice at 10 cm, output data.frame s <- slice(d, 10 ~ name + p1 + p2 + p3, just.the.data=TRUE) # generate integer slices from 0 - 26 cm # note that slices are specified by default as "top-down" # e.g. the lower depth will always by top + 1 s <- slice(d, 0:25 ~ name + p1 + p2 + p3) par(mar=c(0,1,0,1)) plot(s) # generate slices from 0 - 11 cm, for all variables s <- slice(d, 0:10 ~ .) print(s) # note that pct missing is computed for each slice, # if all vars are missing, then NA is returned d$p1[1:10] <- NA s <- slice(d, 10 ~ ., just.the.data=TRUE) print(s) \dontrun{ ## ## check sliced data ## # test that mean of 1 cm slices property is equal to the # hz-thickness weighted mean value of that property data(sp1) depths(sp1) <- id ~ top + bottom # get the first profile sp1.sub <- sp1[which(profile_id(sp1) == 'P009'), ] # compute hz-thickness wt. mean hz.wt.mean <- with( horizons(sp1.sub), sum((bottom - top) * prop) / sum(bottom - top) ) # hopefully the same value, calculated via slice() s <- slice(sp1.sub, 0:max(sp1.sub) ~ prop) hz.slice.mean <- mean(s$prop, na.rm=TRUE) # same? if(!all.equal(hz.slice.mean, hz.wt.mean)) stop('there is a bug in slice() !!!') } } \keyword{methods} \keyword{manip}
/man/SPC-slice-methods.Rd
no_license
rsbivand/aqp
R
false
false
3,270
rd
\name{slice-methods} \docType{methods} \alias{get.slice} \alias{slice.fast} \alias{slice} \alias{slice,SoilProfileCollection-method} \title{Slicing of SoilProfilecollection Objects} \description{Slicing of SoilProfilecollection Objects} \usage{ # method for SoilProfileCollection objects slice(object, fm, top.down=TRUE, just.the.data=FALSE, strict=TRUE) } \arguments{ \item{object}{a SoilProfileCollection} \item{fm}{A formula: either `integer.vector ~ var1 + var2 + var3' where named variables are sliced according to `integer.vector' OR where all variables are sliced accordin to `integer.vector' `integer.vector ~.'.} \item{top.down}{logical, slices are defined from the top-down: \code{0:10} implies 0-11 depth units.} \item{just.the.data}{Logical, return just the sliced data or a new SoilProfileCollection object.} \item{strict}{Logical, should the horizonation be strictly checked for self-consistency?} } \section{Details}{ By default, slices are defined from the top-down: \code{0:10} implies 0-11 depth units. } \section{Methods}{ \describe{ \item{data = "SoilProfileCollection"}{Typical usage, where input is a \code{\link{SoilProfileCollection}}.} } } \note{\code{slab()} and \code{slice()} are much faster and require less memory if input data are either numeric or character.} \value{Either a new SoilProfileCollection with data sliced according to \code{fm}, or a \code{data.frame}.} \references{ D.E. Beaudette, P. Roudier, A.T. O'Geen, Algorithms for quantitative pedology: A toolkit for soil scientists, Computers & Geosciences, Volume 52, March 2013, Pages 258-268, 10.1016/j.cageo.2012.10.020. } \author{D.E. Beaudette} \seealso{\code{\link{slab}}} \examples{ library(aqp) # simulate some data, IDs are 1:20 d <- lapply(1:20, random_profile) d <- do.call('rbind', d) # init SoilProfilecollection object depths(d) <- id ~ top + bottom head(horizons(d)) # generate single slice at 10 cm # output is a SoilProfilecollection object s <- slice(d, 10 ~ name + p1 + p2 + p3) # generate single slice at 10 cm, output data.frame s <- slice(d, 10 ~ name + p1 + p2 + p3, just.the.data=TRUE) # generate integer slices from 0 - 26 cm # note that slices are specified by default as "top-down" # e.g. the lower depth will always by top + 1 s <- slice(d, 0:25 ~ name + p1 + p2 + p3) par(mar=c(0,1,0,1)) plot(s) # generate slices from 0 - 11 cm, for all variables s <- slice(d, 0:10 ~ .) print(s) # note that pct missing is computed for each slice, # if all vars are missing, then NA is returned d$p1[1:10] <- NA s <- slice(d, 10 ~ ., just.the.data=TRUE) print(s) \dontrun{ ## ## check sliced data ## # test that mean of 1 cm slices property is equal to the # hz-thickness weighted mean value of that property data(sp1) depths(sp1) <- id ~ top + bottom # get the first profile sp1.sub <- sp1[which(profile_id(sp1) == 'P009'), ] # compute hz-thickness wt. mean hz.wt.mean <- with( horizons(sp1.sub), sum((bottom - top) * prop) / sum(bottom - top) ) # hopefully the same value, calculated via slice() s <- slice(sp1.sub, 0:max(sp1.sub) ~ prop) hz.slice.mean <- mean(s$prop, na.rm=TRUE) # same? if(!all.equal(hz.slice.mean, hz.wt.mean)) stop('there is a bug in slice() !!!') } } \keyword{methods} \keyword{manip}
# read and clean the data source("read_and_clean.R") # open png graphics device png("plot4.png") # set graphics canvas to four graphic panels par(mfrow = c(2, 2)) # plot of global active power in respect to time plot(sub$DateTime, sub$Global_active_power, type = "l", xlab = "", ylab = "Global Active Power") # plot of voltage in respect to time plot(sub$DateTime, sub$Voltage, type = "l", xlab = "datetime", ylab = "Voltage") # plot of sub metering 1-3 in respect to time plot(sub$DateTime, sub$Sub_metering_1, type = "l", xlab = "", ylab = "Energy sub metering") lines(x = sub$DateTime, y = sub$Sub_metering_2, col = "red") lines(x = sub$DateTime, y = sub$Sub_metering_3, col = "blue") legend("topright", c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), lty = c(1,1,1), col = c("black","red","blue"), bty="n") # plot of global reactive power in respect to time plot(sub$DateTime, sub$Global_reactive_power, type = "l", xlab = "datetime", ylab = "Global_reactive_power") # reset graphics canvas to default value par(mfrow = c(1, 1)) # save and shut down graphics device invisible(dev.off())
/plot4.R
no_license
Zyrix/ExData_Plotting1
R
false
false
1,107
r
# read and clean the data source("read_and_clean.R") # open png graphics device png("plot4.png") # set graphics canvas to four graphic panels par(mfrow = c(2, 2)) # plot of global active power in respect to time plot(sub$DateTime, sub$Global_active_power, type = "l", xlab = "", ylab = "Global Active Power") # plot of voltage in respect to time plot(sub$DateTime, sub$Voltage, type = "l", xlab = "datetime", ylab = "Voltage") # plot of sub metering 1-3 in respect to time plot(sub$DateTime, sub$Sub_metering_1, type = "l", xlab = "", ylab = "Energy sub metering") lines(x = sub$DateTime, y = sub$Sub_metering_2, col = "red") lines(x = sub$DateTime, y = sub$Sub_metering_3, col = "blue") legend("topright", c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), lty = c(1,1,1), col = c("black","red","blue"), bty="n") # plot of global reactive power in respect to time plot(sub$DateTime, sub$Global_reactive_power, type = "l", xlab = "datetime", ylab = "Global_reactive_power") # reset graphics canvas to default value par(mfrow = c(1, 1)) # save and shut down graphics device invisible(dev.off())
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/saveOutputV2.R \name{writeReplicateDataV2} \alias{writeReplicateDataV2} \title{Write protein_counts_and_intensity.json This is a wrapper of `oneProteinReplDataGeneric`, looping over all proteins.} \usage{ writeReplicateDataV2(longDTProt, outputFolder, GroupColumnName, GroupLabelType) } \arguments{ \item{longDTProt}{data.table protein information stored in long format. Columns required: `ProteinId`, `GeneName`, `Description`, `log2NInt`, `Condition`, `Replicate`, `Imputed`.} \item{outputFolder}{str. Path to folder where `data` should be saved.} } \description{ Write protein_counts_and_intensity.json This is a wrapper of `oneProteinReplDataGeneric`, looping over all proteins. }
/man/writeReplicateDataV2.Rd
permissive
MassDynamics/MassExpression
R
false
true
765
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/saveOutputV2.R \name{writeReplicateDataV2} \alias{writeReplicateDataV2} \title{Write protein_counts_and_intensity.json This is a wrapper of `oneProteinReplDataGeneric`, looping over all proteins.} \usage{ writeReplicateDataV2(longDTProt, outputFolder, GroupColumnName, GroupLabelType) } \arguments{ \item{longDTProt}{data.table protein information stored in long format. Columns required: `ProteinId`, `GeneName`, `Description`, `log2NInt`, `Condition`, `Replicate`, `Imputed`.} \item{outputFolder}{str. Path to folder where `data` should be saved.} } \description{ Write protein_counts_and_intensity.json This is a wrapper of `oneProteinReplDataGeneric`, looping over all proteins. }
require(shiny) require(ggplot2) data <- read.csv('data/cleaned-cdc-mortality-1999-2010.csv', header = TRUE) data <- data[data$Year == 2010,] shinyServer( function(input, output) { dataSubset <- reactive({ df <- subset(data, data$ICD.Chapter == input$disease) df$State <- reorder(df$State, 1 / df$Crude.Rate) # df <- df[order(df$Crude.Rate, decreasing = TRUE), ] df }) output$plot <- renderPlot({ ggplot(dataSubset(), aes(x = State, y = Crude.Rate)) + geom_bar(stat = 'identity', fill = 'navy') + geom_text(aes(x = State, y = 0, ymax = Crude.Rate, label=State, hjust = 1, vjust = 0.25), position = position_dodge(width=1), color = 'white', angle = 270, size = 4) + scale_x_discrete(breaks = NULL) + theme(panel.background = element_rect(fill = 'darkgray')) }) } )
/lecture3/HW3P1/server.R
no_license
circld/CUNY_IS608
R
false
false
976
r
require(shiny) require(ggplot2) data <- read.csv('data/cleaned-cdc-mortality-1999-2010.csv', header = TRUE) data <- data[data$Year == 2010,] shinyServer( function(input, output) { dataSubset <- reactive({ df <- subset(data, data$ICD.Chapter == input$disease) df$State <- reorder(df$State, 1 / df$Crude.Rate) # df <- df[order(df$Crude.Rate, decreasing = TRUE), ] df }) output$plot <- renderPlot({ ggplot(dataSubset(), aes(x = State, y = Crude.Rate)) + geom_bar(stat = 'identity', fill = 'navy') + geom_text(aes(x = State, y = 0, ymax = Crude.Rate, label=State, hjust = 1, vjust = 0.25), position = position_dodge(width=1), color = 'white', angle = 270, size = 4) + scale_x_discrete(breaks = NULL) + theme(panel.background = element_rect(fill = 'darkgray')) }) } )
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/boxplotsRPKM.R \name{createPairedData} \alias{createPairedData} \title{Creates a dataframe of paired sample types with a column named group} \usage{ createPairedData(df_map, pair_list) } \arguments{ \item{df_map}{A dataframe of combined non-subsampled or subsampled mapping data and metadata} \item{pair_list}{A list of vectors of length two containing paired sample types} } \value{ A dataframe of paired sample types with a column named group i.e. saliva vs. stool } \description{ Creates a dataframe of paired sample types with a column named group } \examples{ df_map_subsampled <- readMappingData("/home/vicky/Documents/CHMI/Resistome-paper/resistomeAnalysis/db/MAPPING_DATA/subsampled_argrich_merged.csv", without_US_duplicates = TRUE) pair_list <- list(c("stool", "dental"), c("stool", "saliva"), c("dental", "saliva"), c("stool", "dorsum of tongue"), c("stool", "buccal mucosa"), c("dorsum of tongue", "buccal mucosa"), c("dorsum of tongue", "dental"), c("buccal mucosa", "dental")) df_map_subsampled_pairs <- createPairedData(df_map_subsampled, pair_list) }
/man/createPairedData.Rd
permissive
blue-moon22/resistomeAnalysis
R
false
true
1,147
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/boxplotsRPKM.R \name{createPairedData} \alias{createPairedData} \title{Creates a dataframe of paired sample types with a column named group} \usage{ createPairedData(df_map, pair_list) } \arguments{ \item{df_map}{A dataframe of combined non-subsampled or subsampled mapping data and metadata} \item{pair_list}{A list of vectors of length two containing paired sample types} } \value{ A dataframe of paired sample types with a column named group i.e. saliva vs. stool } \description{ Creates a dataframe of paired sample types with a column named group } \examples{ df_map_subsampled <- readMappingData("/home/vicky/Documents/CHMI/Resistome-paper/resistomeAnalysis/db/MAPPING_DATA/subsampled_argrich_merged.csv", without_US_duplicates = TRUE) pair_list <- list(c("stool", "dental"), c("stool", "saliva"), c("dental", "saliva"), c("stool", "dorsum of tongue"), c("stool", "buccal mucosa"), c("dorsum of tongue", "buccal mucosa"), c("dorsum of tongue", "dental"), c("buccal mucosa", "dental")) df_map_subsampled_pairs <- createPairedData(df_map_subsampled, pair_list) }
#' Layouts #' #' Layout your graph. #' #' @inheritParams sg_nodes #' @param nodes,edges Nodes and edges as prepared for sigmajs. #' @param directed Whether or not to create a directed graph, passed to \code{\link[igraph]{graph_from_data_frame}}. #' @param layout An \code{igraph} layout function. #' @param save_igraph Whether to save the \code{igraph} object used internally. #' @param ... Any other parameter to pass to \code{layout} function. #' #' @details The package uses \code{igraph} internally for a lot of computations the \code{save_igraph} #' allows saving the object to speed up subsequent computations. #' #' @section Functions: #' \itemize{ #' \item{\code{sg_layout} layout your graph.} #' \item{\code{sg_get_layout} helper to get graph's \code{x} and \code{y} positions.} #' } #' #' @examples #' nodes <- sg_make_nodes(250) # 250 nodes #' edges <- sg_make_edges(nodes, n = 500) #' #' sigmajs() %>% #' sg_nodes(nodes, id, size, color) %>% #' sg_edges(edges, id, source, target) %>% #' sg_layout() #' #' nodes_coords <- sg_get_layout(nodes, edges) #' #' @return \code{sg_get_layout} returns nodes with \code{x} and \code{y} coordinates. #' #' @rdname layout #' @export sg_layout <- function(sg, directed = TRUE, layout = igraph::layout_nicely, save_igraph = TRUE, ...){ if (missing(sg)) stop("missing sg", call. = FALSE) if (!inherits(sg, "sigmajs")) stop("sg must be of class sigmajs", call. = FALSE) nodes <- .data_2_df(sg$x$data$nodes) edges <- .data_2_df(sg$x$data$edges) # clean nodes <- .rm_x_y(nodes) nodes <- sg_get_layout(nodes, edges, directed, layout, save_igraph = save_igraph, ...) nodes <- apply(nodes, 1, as.list) sg$x$data$nodes <- nodes sg } #' @rdname layout #' @export sg_get_layout <- function(nodes, edges, directed = TRUE, layout = igraph::layout_nicely, save_igraph = TRUE, ...){ if (missing(nodes) || missing(edges)) stop("missing nodes or edges", call. = FALSE) # clean edges <- .re_order(edges) nodes <- .rm_x_y(nodes) nodes <- .re_order_nodes(nodes) g <- .build_igraph(edges, directed = directed, nodes, save = save_igraph) l <- layout(g, ...) l <- as.data.frame(l) %>% dplyr::select_("x" = "V1", "y" = "V2") nodes <- dplyr::bind_cols(nodes, l) return(nodes) }
/R/layouts.R
permissive
marcofattorelli/sigmajs
R
false
false
2,323
r
#' Layouts #' #' Layout your graph. #' #' @inheritParams sg_nodes #' @param nodes,edges Nodes and edges as prepared for sigmajs. #' @param directed Whether or not to create a directed graph, passed to \code{\link[igraph]{graph_from_data_frame}}. #' @param layout An \code{igraph} layout function. #' @param save_igraph Whether to save the \code{igraph} object used internally. #' @param ... Any other parameter to pass to \code{layout} function. #' #' @details The package uses \code{igraph} internally for a lot of computations the \code{save_igraph} #' allows saving the object to speed up subsequent computations. #' #' @section Functions: #' \itemize{ #' \item{\code{sg_layout} layout your graph.} #' \item{\code{sg_get_layout} helper to get graph's \code{x} and \code{y} positions.} #' } #' #' @examples #' nodes <- sg_make_nodes(250) # 250 nodes #' edges <- sg_make_edges(nodes, n = 500) #' #' sigmajs() %>% #' sg_nodes(nodes, id, size, color) %>% #' sg_edges(edges, id, source, target) %>% #' sg_layout() #' #' nodes_coords <- sg_get_layout(nodes, edges) #' #' @return \code{sg_get_layout} returns nodes with \code{x} and \code{y} coordinates. #' #' @rdname layout #' @export sg_layout <- function(sg, directed = TRUE, layout = igraph::layout_nicely, save_igraph = TRUE, ...){ if (missing(sg)) stop("missing sg", call. = FALSE) if (!inherits(sg, "sigmajs")) stop("sg must be of class sigmajs", call. = FALSE) nodes <- .data_2_df(sg$x$data$nodes) edges <- .data_2_df(sg$x$data$edges) # clean nodes <- .rm_x_y(nodes) nodes <- sg_get_layout(nodes, edges, directed, layout, save_igraph = save_igraph, ...) nodes <- apply(nodes, 1, as.list) sg$x$data$nodes <- nodes sg } #' @rdname layout #' @export sg_get_layout <- function(nodes, edges, directed = TRUE, layout = igraph::layout_nicely, save_igraph = TRUE, ...){ if (missing(nodes) || missing(edges)) stop("missing nodes or edges", call. = FALSE) # clean edges <- .re_order(edges) nodes <- .rm_x_y(nodes) nodes <- .re_order_nodes(nodes) g <- .build_igraph(edges, directed = directed, nodes, save = save_igraph) l <- layout(g, ...) l <- as.data.frame(l) %>% dplyr::select_("x" = "V1", "y" = "V2") nodes <- dplyr::bind_cols(nodes, l) return(nodes) }
# R version 3.2.3 (2015-12-10) -- "Wooden Christmas-Tree" # # solar.R # # VERSION: 1.0-r2 # LAST UPDATED: 2016-08-19 # # ~~~~~~~~ # license: # ~~~~~~~~ # Copyright (C) 2016 Prentice Lab # # This file is part of the SPLASH model. # # SPLASH is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 2.1 of the License, or # (at your option) any later version. # # SPLASH is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with SPLASH. If not, see <http://www.gnu.org/licenses/>. # # ~~~~~~~~~ # citation: # ~~~~~~~~~ # T. W. Davis, I. C. Prentice, B. D. Stocker, R. J. Whitley, H. Wang, B. J. # Evans, A. V. Gallego-Sala, M. T. Sykes, and W. Cramer, Simple process-led # algorithms for simulating habitats (SPLASH): Robust indices of radiation # evapo-transpiration and plant-available moisture, Geoscientific Model # Development, 2016 (in progress) # # ~~~~~~~~~~~~ # description: # ~~~~~~~~~~~~ # This script contains functions to calculate daily radiation, i.e.: # berger_tls(double n, double N) # density_h2o(double tc, double pa) # dcos(double d) # dsin(double d) # # ~~~~~~~~~~ # changelog: # ~~~~~~~~~~ # - fixed Cooper's and Spencer's declination angle equations [14.11.25] # - replaced simplified_kepler with full_kepler method [14.11.25] # - added berger_tls function [15.01.13] # - updated evap function (similar to stash.py EVAP class) [15.01.13] # - updated some documentation [16.05.27] # - fixed HN- equation (iss#13) [16.08.19] # #### IMPORT SOURCES ########################################################## #source("const.R") #### DEFINE FUNCTIONS ######################################################## # ************************************************************************ # Name: berger_tls # Inputs: - double, day of year (n) # - double, days in year (N) # Returns: numeric list, true anomaly and true longitude # Features: Returns true anomaly and true longitude for a given day. # Depends: - ke ............. eccentricity of earth's orbit, unitless # - komega ......... longitude of perihelion # Ref: Berger, A. L. (1978), Long term variations of daily insolation # and quaternary climatic changes, J. Atmos. Sci., 35, 2362-2367. # ************************************************************************ berger_tls <- function(n, N) { # Variable substitutes: xee <- ke^2 xec <- ke^3 xse <- sqrt(1 - ke^2) # Mean longitude for vernal equinox: xlam <- (ke/2.0 + xec/8.0)*(1 + xse)*sin(komega*pir) - xee/4.0*(0.5 + xse)*sin(2.0*komega*pir) + xec/8.0*(1.0/3.0 + xse)*sin(3.0*komega*pir) xlam <- 2.0*xlam/pir # Mean longitude for day of year: dlamm <- xlam + (n - 80.0)*(360.0/N) # Mean anomaly: anm <- dlamm - komega ranm <- anm*pir # True anomaly (uncorrected): ranv <- ranm + (2.0*ke - xec/4.0)*sin(ranm) + 5.0/4.0*xee*sin(2.0*ranm) + 13.0/12.0*xec*sin(3.0*ranm) anv <- ranv/pir # True longitude: my_tls <- anv + komega if (my_tls < 0){ my_tls <- my_tls + 360 } else if (my_tls > 360) { my_tls <- my_tls - 360 } # True anomaly: my_nu <- my_tls - komega if (my_nu < 0){ my_nu <- my_nu + 360 } return (c(my_nu, my_tls)) } # ************************************************************************ # Name: dcos # Inputs: double (d), angle in degrees # Returns: double, cosine of angle # Features: This function calculates the cosine of an angle (d) given # in degrees. # Depends: pir # Ref: This script is based on the Javascript function written by # C Johnson, Theoretical Physicist, Univ of Chicago # - 'Equation of Time' URL: http://mb-soft.com/public3/equatime.html # - Javascript URL: http://mb-soft.com/believe/txx/astro22.js # ************************************************************************ dcos <- function(d) { cos(d*pir) } # ************************************************************************ # Name: dsin # Inputs: double (d), angle in degrees # Returns: double, sine of angle # Features: This function calculates the sine of an angle (d) given # in degrees. # Depends: pir # ************************************************************************ dsin <- function(d) { sin(d*pir) } # ************************************************************************ # Name: calc_daily_solar # Inputs: - double, latitude, degrees (lat) # - double, day of year (n) # - double, elevation (elv) *optional # - double, year (y) *optional # - double, fraction of sunshine hours (sf) *optional # - double, mean daily air temperature, deg C (tc) *optional # Returns: list object (et.srad) # $nu_deg ............ true anomaly, degrees # $lambda_deg ........ true longitude, degrees # $dr ................ distance factor, unitless # $delta_deg ......... declination angle, degrees # $hs_deg ............ sunset angle, degrees # $ra_j.m2 ........... daily extraterrestrial radiation, J/m^2 # $tau ............... atmospheric transmittivity, unitless # $ppfd_mol.m2 ....... daily photosyn. photon flux density, mol/m^2 # $hn_deg ............ net radiation hour angle, degrees # $rn_j.m2 ........... daily net radiation, J/m^2 # $rnn_j.m2 .......... daily nighttime net radiation, J/m^2 # Features: This function calculates daily radiation fluxes. # Depends: - kalb_sw ........ shortwave albedo # - kalb_vis ....... visible light albedo # - kb ............. empirical constant for longwave rad # - kc ............. empirical constant for shortwave rad # - kd ............. empirical constant for shortwave rad # - ke ............. eccentricity # - keps ........... obliquity # - kfFEC .......... from-flux-to-energy conversion, umol/J # - kGsc ........... solar constant # - berger_tls() ... calc true anomaly and longitude # - dcos() ......... cos(x*pi/180), where x is in degrees # - dsin() ......... sin(x*pi/180), where x is in degrees # - julian_day() ... date to julian day # ************************************************************************ calc_daily_solar <- function(lat, n, elv=0, y=0, sf=1, tc=23.0) { # ~~~~~~~~~~~~~~~~~~~~~~~~ FUNCTION WARNINGS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # if (lat > 90 || lat < -90) { stop("Warning: Latitude outside range of validity (-90 to 90)!") } if (n < 1 || n > 366) { stop("Warning: Day outside range of validity (1 to 366)!") } # ~~~~~~~~~~~~~~~~~~~~~~~ FUNCTION VARIABLES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # solar <- list() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 01. Calculate the number of days in yeark (kN), days # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if (y == 0) { kN <- 365 } else { kN <- (julian_day(y + 1, 1, 1) - julian_day(y, 1, 1)) } solar$kN <- kN # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 02. Calculate heliocentric longitudes (nu and lambda), degrees # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ my_helio <- berger_tls(n, kN) nu <- my_helio[1] lam <- my_helio[2] solar$nu_deg <- nu solar$lambda_deg <- lam # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 03. Calculate distance factor (dr), unitless # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Berger et al. (1993) kee <- ke^2 rho <- (1 - kee)/(1 + ke*dcos(nu)) dr <- (1/rho)^2 solar$rho <- rho solar$dr <- dr # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 04. Calculate the declination angle (delta), degrees # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Woolf (1968) delta <- asin(dsin(lam)*dsin(keps)) delta <- delta/pir solar$delta_deg <- delta # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 05. Calculate variable substitutes (u and v), unitless # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ru <- dsin(delta)*dsin(lat) rv <- dcos(delta)*dcos(lat) solar$ru <- ru solar$rv <- rv # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 06. Calculate the sunset hour angle (hs), degrees # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Note: u/v equals tan(delta) * tan(lat) if (ru/rv >= 1.0) { hs <- 180 # Polar day (no sunset) } else if (ru/rv <= -1.0) { hs <- 0 # Polar night (no sunrise) } else { hs <- acos(-1.0*ru/rv) hs <- hs / pir } solar$hs_deg <- hs # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 07. Calculate daily extraterrestrial radiation (ra_d), J/m^2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ref: Eq. 1.10.3, Duffy & Beckman (1993) ra_d <- (86400/pi)*kGsc*dr*(ru*pir*hs + rv*dsin(hs)) solar$ra_j.m2 <- ra_d # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 08. Calculate transmittivity (tau), unitless # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ref: Eq. 11, Linacre (1968); Eq. 2, Allen (1996) tau_o <- (kc + kd*sf) tau <- tau_o*(1 + (2.67e-5)*elv) solar$tau_o <- tau_o solar$tau <- tau # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 09. Calculate daily photosynthetic photon flux density (ppfd_d), mol/m^2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ppfd_d <- (1e-6)*kfFEC*(1 - kalb_vis)*tau*ra_d solar$ppfd_mol.m2 <- ppfd_d # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 10. Estimate net longwave radiation (rnl), W/m^2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ rnl <- (kb + (1 - kb)*sf)*(kA - tc) solar$rnl_w.m2 <- rnl # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 11. Calculate variable substitue (rw), W/m^2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ rw <- (1 - kalb_sw)*tau*kGsc*dr solar$rw <- rw # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 12. Calculate net radiation cross-over angle (hn), degrees # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if ((rnl - rw*ru)/(rw*rv) >= 1.0) { hn <- 0 # Net radiation is negative all day } else if ((rnl - rw*ru)/(rw*rv) <= -1.0) { hn <- 180 # Net radiation is positive all day } else { hn <- acos((rnl - rw*ru)/(rw*rv)) hn <- hn/pir } solar$hn_deg <- hn # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 13. Calculate daytime net radiation (rn_d), J/m^2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ rn_d <- (86400/pi)*(hn*pir*(rw*ru - rnl) + rw*rv*dsin(hn)) solar$rn_j.m2 <- rn_d # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 14. Calculate nighttime net radiation (rnn_d), J/m^2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # fixed iss#13 rnn_d <- (86400/pi)*( rw*rv*(dsin(hs) - dsin(hn)) + rw*ru*(hs - hn)*pir - rnl*(pi - hn*pir) ) solar$rnn_j.m2 <- rnn_d # ~~~~~~~~~~~~~~~~~~~~~~~~~~ RETURN VALUES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # return(solar) } # ************************************************************************ # Name: julian_day # Inputs: - double, year (y) # - double, month (m) # - double, day of month (i) # Returns: double, Julian day # Features: This function converts a date in the Gregorian calendar # to a Julian day number (i.e., a method of consecutative # numbering of days---does not have anything to do with # the Julian calendar!) # * valid for dates after -4712 January 1 (i.e., jde >= 0) # Ref: Eq. 7.1 J. Meeus (1991), Chapter 7 "Julian Day", Astronomical # Algorithms # ************************************************************************ julian_day <- function(y, m, i) { if (m <= 2) { y <- y - 1 m <- m + 12 } a <- floor(y/100) b <- 2 - a + floor(a/4) jde <- floor(365.25*(y + 4716)) + floor(30.6001*(m + 1)) + i + b - 1524.5 return(jde) }
/splash_r_prentice/solar.R
no_license
vedereka/PMIP4_Benchm_proj
R
false
false
13,376
r
# R version 3.2.3 (2015-12-10) -- "Wooden Christmas-Tree" # # solar.R # # VERSION: 1.0-r2 # LAST UPDATED: 2016-08-19 # # ~~~~~~~~ # license: # ~~~~~~~~ # Copyright (C) 2016 Prentice Lab # # This file is part of the SPLASH model. # # SPLASH is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 2.1 of the License, or # (at your option) any later version. # # SPLASH is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with SPLASH. If not, see <http://www.gnu.org/licenses/>. # # ~~~~~~~~~ # citation: # ~~~~~~~~~ # T. W. Davis, I. C. Prentice, B. D. Stocker, R. J. Whitley, H. Wang, B. J. # Evans, A. V. Gallego-Sala, M. T. Sykes, and W. Cramer, Simple process-led # algorithms for simulating habitats (SPLASH): Robust indices of radiation # evapo-transpiration and plant-available moisture, Geoscientific Model # Development, 2016 (in progress) # # ~~~~~~~~~~~~ # description: # ~~~~~~~~~~~~ # This script contains functions to calculate daily radiation, i.e.: # berger_tls(double n, double N) # density_h2o(double tc, double pa) # dcos(double d) # dsin(double d) # # ~~~~~~~~~~ # changelog: # ~~~~~~~~~~ # - fixed Cooper's and Spencer's declination angle equations [14.11.25] # - replaced simplified_kepler with full_kepler method [14.11.25] # - added berger_tls function [15.01.13] # - updated evap function (similar to stash.py EVAP class) [15.01.13] # - updated some documentation [16.05.27] # - fixed HN- equation (iss#13) [16.08.19] # #### IMPORT SOURCES ########################################################## #source("const.R") #### DEFINE FUNCTIONS ######################################################## # ************************************************************************ # Name: berger_tls # Inputs: - double, day of year (n) # - double, days in year (N) # Returns: numeric list, true anomaly and true longitude # Features: Returns true anomaly and true longitude for a given day. # Depends: - ke ............. eccentricity of earth's orbit, unitless # - komega ......... longitude of perihelion # Ref: Berger, A. L. (1978), Long term variations of daily insolation # and quaternary climatic changes, J. Atmos. Sci., 35, 2362-2367. # ************************************************************************ berger_tls <- function(n, N) { # Variable substitutes: xee <- ke^2 xec <- ke^3 xse <- sqrt(1 - ke^2) # Mean longitude for vernal equinox: xlam <- (ke/2.0 + xec/8.0)*(1 + xse)*sin(komega*pir) - xee/4.0*(0.5 + xse)*sin(2.0*komega*pir) + xec/8.0*(1.0/3.0 + xse)*sin(3.0*komega*pir) xlam <- 2.0*xlam/pir # Mean longitude for day of year: dlamm <- xlam + (n - 80.0)*(360.0/N) # Mean anomaly: anm <- dlamm - komega ranm <- anm*pir # True anomaly (uncorrected): ranv <- ranm + (2.0*ke - xec/4.0)*sin(ranm) + 5.0/4.0*xee*sin(2.0*ranm) + 13.0/12.0*xec*sin(3.0*ranm) anv <- ranv/pir # True longitude: my_tls <- anv + komega if (my_tls < 0){ my_tls <- my_tls + 360 } else if (my_tls > 360) { my_tls <- my_tls - 360 } # True anomaly: my_nu <- my_tls - komega if (my_nu < 0){ my_nu <- my_nu + 360 } return (c(my_nu, my_tls)) } # ************************************************************************ # Name: dcos # Inputs: double (d), angle in degrees # Returns: double, cosine of angle # Features: This function calculates the cosine of an angle (d) given # in degrees. # Depends: pir # Ref: This script is based on the Javascript function written by # C Johnson, Theoretical Physicist, Univ of Chicago # - 'Equation of Time' URL: http://mb-soft.com/public3/equatime.html # - Javascript URL: http://mb-soft.com/believe/txx/astro22.js # ************************************************************************ dcos <- function(d) { cos(d*pir) } # ************************************************************************ # Name: dsin # Inputs: double (d), angle in degrees # Returns: double, sine of angle # Features: This function calculates the sine of an angle (d) given # in degrees. # Depends: pir # ************************************************************************ dsin <- function(d) { sin(d*pir) } # ************************************************************************ # Name: calc_daily_solar # Inputs: - double, latitude, degrees (lat) # - double, day of year (n) # - double, elevation (elv) *optional # - double, year (y) *optional # - double, fraction of sunshine hours (sf) *optional # - double, mean daily air temperature, deg C (tc) *optional # Returns: list object (et.srad) # $nu_deg ............ true anomaly, degrees # $lambda_deg ........ true longitude, degrees # $dr ................ distance factor, unitless # $delta_deg ......... declination angle, degrees # $hs_deg ............ sunset angle, degrees # $ra_j.m2 ........... daily extraterrestrial radiation, J/m^2 # $tau ............... atmospheric transmittivity, unitless # $ppfd_mol.m2 ....... daily photosyn. photon flux density, mol/m^2 # $hn_deg ............ net radiation hour angle, degrees # $rn_j.m2 ........... daily net radiation, J/m^2 # $rnn_j.m2 .......... daily nighttime net radiation, J/m^2 # Features: This function calculates daily radiation fluxes. # Depends: - kalb_sw ........ shortwave albedo # - kalb_vis ....... visible light albedo # - kb ............. empirical constant for longwave rad # - kc ............. empirical constant for shortwave rad # - kd ............. empirical constant for shortwave rad # - ke ............. eccentricity # - keps ........... obliquity # - kfFEC .......... from-flux-to-energy conversion, umol/J # - kGsc ........... solar constant # - berger_tls() ... calc true anomaly and longitude # - dcos() ......... cos(x*pi/180), where x is in degrees # - dsin() ......... sin(x*pi/180), where x is in degrees # - julian_day() ... date to julian day # ************************************************************************ calc_daily_solar <- function(lat, n, elv=0, y=0, sf=1, tc=23.0) { # ~~~~~~~~~~~~~~~~~~~~~~~~ FUNCTION WARNINGS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # if (lat > 90 || lat < -90) { stop("Warning: Latitude outside range of validity (-90 to 90)!") } if (n < 1 || n > 366) { stop("Warning: Day outside range of validity (1 to 366)!") } # ~~~~~~~~~~~~~~~~~~~~~~~ FUNCTION VARIABLES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # solar <- list() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 01. Calculate the number of days in yeark (kN), days # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if (y == 0) { kN <- 365 } else { kN <- (julian_day(y + 1, 1, 1) - julian_day(y, 1, 1)) } solar$kN <- kN # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 02. Calculate heliocentric longitudes (nu and lambda), degrees # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ my_helio <- berger_tls(n, kN) nu <- my_helio[1] lam <- my_helio[2] solar$nu_deg <- nu solar$lambda_deg <- lam # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 03. Calculate distance factor (dr), unitless # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Berger et al. (1993) kee <- ke^2 rho <- (1 - kee)/(1 + ke*dcos(nu)) dr <- (1/rho)^2 solar$rho <- rho solar$dr <- dr # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 04. Calculate the declination angle (delta), degrees # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Woolf (1968) delta <- asin(dsin(lam)*dsin(keps)) delta <- delta/pir solar$delta_deg <- delta # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 05. Calculate variable substitutes (u and v), unitless # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ru <- dsin(delta)*dsin(lat) rv <- dcos(delta)*dcos(lat) solar$ru <- ru solar$rv <- rv # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 06. Calculate the sunset hour angle (hs), degrees # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Note: u/v equals tan(delta) * tan(lat) if (ru/rv >= 1.0) { hs <- 180 # Polar day (no sunset) } else if (ru/rv <= -1.0) { hs <- 0 # Polar night (no sunrise) } else { hs <- acos(-1.0*ru/rv) hs <- hs / pir } solar$hs_deg <- hs # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 07. Calculate daily extraterrestrial radiation (ra_d), J/m^2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ref: Eq. 1.10.3, Duffy & Beckman (1993) ra_d <- (86400/pi)*kGsc*dr*(ru*pir*hs + rv*dsin(hs)) solar$ra_j.m2 <- ra_d # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 08. Calculate transmittivity (tau), unitless # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ref: Eq. 11, Linacre (1968); Eq. 2, Allen (1996) tau_o <- (kc + kd*sf) tau <- tau_o*(1 + (2.67e-5)*elv) solar$tau_o <- tau_o solar$tau <- tau # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 09. Calculate daily photosynthetic photon flux density (ppfd_d), mol/m^2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ppfd_d <- (1e-6)*kfFEC*(1 - kalb_vis)*tau*ra_d solar$ppfd_mol.m2 <- ppfd_d # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 10. Estimate net longwave radiation (rnl), W/m^2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ rnl <- (kb + (1 - kb)*sf)*(kA - tc) solar$rnl_w.m2 <- rnl # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 11. Calculate variable substitue (rw), W/m^2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ rw <- (1 - kalb_sw)*tau*kGsc*dr solar$rw <- rw # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 12. Calculate net radiation cross-over angle (hn), degrees # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if ((rnl - rw*ru)/(rw*rv) >= 1.0) { hn <- 0 # Net radiation is negative all day } else if ((rnl - rw*ru)/(rw*rv) <= -1.0) { hn <- 180 # Net radiation is positive all day } else { hn <- acos((rnl - rw*ru)/(rw*rv)) hn <- hn/pir } solar$hn_deg <- hn # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 13. Calculate daytime net radiation (rn_d), J/m^2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ rn_d <- (86400/pi)*(hn*pir*(rw*ru - rnl) + rw*rv*dsin(hn)) solar$rn_j.m2 <- rn_d # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # 14. Calculate nighttime net radiation (rnn_d), J/m^2 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # fixed iss#13 rnn_d <- (86400/pi)*( rw*rv*(dsin(hs) - dsin(hn)) + rw*ru*(hs - hn)*pir - rnl*(pi - hn*pir) ) solar$rnn_j.m2 <- rnn_d # ~~~~~~~~~~~~~~~~~~~~~~~~~~ RETURN VALUES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # return(solar) } # ************************************************************************ # Name: julian_day # Inputs: - double, year (y) # - double, month (m) # - double, day of month (i) # Returns: double, Julian day # Features: This function converts a date in the Gregorian calendar # to a Julian day number (i.e., a method of consecutative # numbering of days---does not have anything to do with # the Julian calendar!) # * valid for dates after -4712 January 1 (i.e., jde >= 0) # Ref: Eq. 7.1 J. Meeus (1991), Chapter 7 "Julian Day", Astronomical # Algorithms # ************************************************************************ julian_day <- function(y, m, i) { if (m <= 2) { y <- y - 1 m <- m + 12 } a <- floor(y/100) b <- 2 - a + floor(a/4) jde <- floor(365.25*(y + 4716)) + floor(30.6001*(m + 1)) + i + b - 1524.5 return(jde) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/get_pfts.R \name{get_pfts} \alias{get_pfts} \title{Extract PFTs from css file} \usage{ get_pfts(css_file_path, delim = " ", reference = pft_lookup) } \arguments{ \item{css_file_path}{Path to CSS file} \item{delim}{File delimiter. Default = " "} \item{reference}{PFT reference table (default = pft_lookup)} } \description{ Extract PFTs from css file }
/man/get_pfts.Rd
no_license
ashiklom/edr-da
R
false
true
431
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/get_pfts.R \name{get_pfts} \alias{get_pfts} \title{Extract PFTs from css file} \usage{ get_pfts(css_file_path, delim = " ", reference = pft_lookup) } \arguments{ \item{css_file_path}{Path to CSS file} \item{delim}{File delimiter. Default = " "} \item{reference}{PFT reference table (default = pft_lookup)} } \description{ Extract PFTs from css file }
gumbelplot <- function(model_object, dist = NULL, method = if ('ggplot2' %in% installed.packages()[,'Package']) {'ggplot'} else {'base'}) { # res (init res will need to be rewritten for nim) dta <- as.data.table(model_object$data) para <- model_object$REG scaling.factor <- model_object$scaling_factor if(is.null(dist)) {dist <- attr(model_object, 'sim.call')$dist} # dta <- data.table(attributes(n)$data) res.gp <- suppressWarnings(melt(dta)) res.gp <- data.table(variable = names(dta), sf = scaling.factor)[res.gp, on = c('variable')] res.gp <- res.gp[!is.na(value), p := (rank(value) - .3) / (length(value) + .4), by = variable] res.gp <- res.gp[, gumbel.variate := -log(-log(as.numeric(p)))] res.gp <- res.gp[, scaled.value := value/sf] p <- seq(min(res.gp$p, na.rm = T), max(res.gp$p, na.rm = T), .001) regional <- data.table(x = -log(-log(p)), y = do.call(paste0('q', dist), list(p, para))) # graphics if(method == 'base') { sres.gp <- split(res.gp[!is.na(res.gp$scaled.value),], res.gp$variable[!is.na(res.gp$scaled.value)]) plot(NULL, xlim = c(min(regional$x), max(regional$x)*1.15), ylim = c(min(res.gp$scaled.value, na.rm = T), max(res.gp$scaled.value, na.rm = T)), bty = 'l', xlab = expression(-log(-log(p))), ylab = 'Value', main = 'Gumbel plot') grid() lapply(sres.gp, function(x) { points(sort(x$gumbel.variate), sort(x$scaled.value), pch = 21, col = 'grey15', bg = '#36648b50', cex = .75) lines(sort(x$gumbel.variate), sort(x$scaled.value), col = '#36648b50') }) lines(regional, type = 'l', col = 'red4', lwd = .75) } if(method %in% c('ggplot', 'plotly')) { gp <- ggplot2::ggplot(res.gp) + ggplot2::geom_line(ggplot2::aes(x = gumbel.variate, y = scaled.value, group = variable), colour = 'steelblue4', alpha = .5, na.rm = T) + ggplot2::geom_point(ggplot2::aes(x = gumbel.variate, y = scaled.value, group = variable), colour = 'grey15', fill = 'steelblue4', alpha = .5, shape = 21, na.rm = T) + ggplot2::geom_line(data = regional, ggplot2::aes(x = x, y = y), col = 'red4', lwd = .75) + ggplot2::theme_bw() + ggplot2::labs(x = '-log(-log(p))', y = 'Value', title = 'Gumbel plot') + ggplot2::theme(plot.title = ggplot2::element_text(hjust = .5), panel.border = element_blank(), axis.line = element_line(colour = 'black')) if(method == 'plotly') { gp <- plotly::ggplotly(gp) } return(gp) } } growthcurve <- function (model_object, fitted_bootstrap, dist = NULL, outer_ribbon = c(0.05, 0.95), inner_ribbon = c(0.25, 0.75), rp = T, return.period = c(5, 10, 20, 50, 100), method = if ('ggplot2' %in% installed.packages()[,'Package']) {'ggplot'} else {'base'}) { # res (init res will need to be rewritten for nim) prbs <- sort(c(outer_ribbon, inner_ribbon)) para <- model_object$REG if(is.null(dist)) {dist <- attr(model_object, 'sim.call')$dist} qs <- seq(.01, 1 - 1/max(return.period)*.5, 1/max(return.period)) qaux <- data.table(rbindlist(lapply(fitted_bootstrap, function(x) {data.frame(q = do.call(paste0('q',dist), list(qs, x$REG)))}), idcol = 'sample'), probs = seq_along(qs)) q <- qaux[, .(val = quantile(q, prbs), q = c('rib_1_min', 'rib_2_min', 'rib_2_max', 'rib_1_max')), by = probs] res.gc <- cbind(dcast(q, probs ~ q, value.var = 'val'), data.table(gumbel.variate = -log(-log(qs)), scaled.value = qgpa(qs, para))) # graphics if(method == 'base') { plot(NULL, xlim = c(min(res.gc$gumbel.variate), max(res.gc$gumbel.variate)), ylim = c(min(res.gc[,c('rib_1_min', 'rib_2_min', 'rib_2_max', 'rib_1_max')]), max(res.gc[,c('rib_1_min', 'rib_2_min', 'rib_2_max', 'rib_1_max')])), bty = 'l', xlab = expression(-log(-log(p))), ylab = 'Value', main = 'Growth curve') grid() polygon(c(res.gc$gumbel.variate, rev(res.gc$gumbel.variate)), c(res.gc$rib_1_max, rev(res.gc$rib_1_min)), col = '#36648b40', border = NA) polygon(c(res.gc$gumbel.variate, rev(res.gc$gumbel.variate)), c(res.gc$rib_2_max, rev(res.gc$rib_2_min)), col = '#36648b80', border = NA) lines(res.gc$gumbel.variate, res.gc$scaled.value, type = 'l', col = 'red4', lwd = .75) axis.lim <- par('usr') if(rp) { rp.lab <- return.period rp.x <- -log(-log(1 - 1/rp.lab)) rp.y <- axis.lim[3] + (axis.lim[4] - axis.lim[3])*.05 axis(side = 3, at = rp.x, pos = rp.y, labels = rp.lab) text(mean(rp.x[rev(rank(rp.lab))[1:2]]), rp.y + par('cxy')[2], 'Return period', adj = c(.75, -2.75)) } } if(method %in% c('ggplot', 'plotly')) { gc <- ggplot2::ggplot(res.gc) + ggplot2::geom_ribbon(ggplot2::aes(x = gumbel.variate, ymin = rib_1_min, ymax = rib_1_max), fill = 'steelblue4', alpha = .4) + ggplot2::geom_ribbon(ggplot2::aes(x = gumbel.variate, ymin = rib_2_min, ymax = rib_2_max), fill = 'steelblue4', alpha = .8) + ggplot2::geom_line(ggplot2::aes(x = gumbel.variate, y = scaled.value), col = 'red4', lwd = .75) + ggplot2::theme_bw() + ggplot2::labs(x = '-log(-log(p))', y = 'Value', title = 'Growth curve') + ggplot2::theme(plot.title = ggplot2::element_text(hjust = .5), panel.border = element_blank(), axis.line = element_line(colour = 'black')) if(rp) { axis.lim <- c(-log(-log(range(qs))), range(qaux$q)) rp.lab <- return.period rp.x <- -log(-log(1 - 1/rp.lab)) rp.y <- axis.lim[3] + (axis.lim[4] - axis.lim[3])*.05 rp.dta <- data.table(rp.x, rp.y, rp.lab) gc <- gc + ggplot2::geom_point(data = rp.dta, ggplot2::aes(x = rp.x, y = rp.y), shape = '|', size = 3) + ggplot2::geom_line(data = rp.dta, ggplot2::aes(x = rp.x, y = rp.y)) + ggplot2::geom_text(data = rp.dta, ggplot2::aes(x = rp.x, y = rp.y*2, label = rp.lab)) + ggplot2::geom_text(data = rp.dta, ggplot2::aes(x = mean(rp.x[rev(rank(rp.lab))[1:2]]), y = rp.y[1]*3.5), label = 'Return period', fontface = 1) } if(method == 'plotly') { gc <- plotly::ggplotly(gc) } return(gc) } } qq <- function(...) {UseMethod('qq')} qq.sim <- function(model_object, dist = NULL, method = if ('ggplot2' %in% installed.packages()[,'Package']) {'ggplot'} else {'base'}) { dta <- as.data.table(model_object$data) para <- model_object$REG scaling.factor <- model_object$scaling_factor if(is.null(dist)) {dist <- attr(dta.fit, 'sim.call')$dist} res.qq <- suppressWarnings(melt(dta)) res.qq <- data.table(variable = names(dta), sf = scaling.factor)[res.qq, on = c('variable')] res.qq <- res.qq[, scaled.value := value/sf] if(method == 'base') { inipar <- par() par(pty = 's') sres.qq <- split(res.qq[!is.na(res.qq$scaled.value),], res.qq$variable[!is.na(res.qq$scaled.value)]) plot(NULL, xlim = c(0, max(res.qq$scaled.value, na.rm = T)*1.15), ylim = c(0, max(res.qq$scaled.value, na.rm = T)*1.15), pch = 21, col = 'grey15', bg = '#36648b90', bty = 'l', xlab = 'theoretical', ylab = 'sample', main = 'qqplot') grid() lapply(sres.qq, function(x) { points(sort(x$scaled.value), sort(rgpa(length(x$scaled.value), dta.fit$REG)), pch = 21, col = 'grey15', bg = '#36648b90') }) abline(0,1, col = 'red4') suppressWarnings(par(inipar)) } if(method %in% c('ggplot', 'plotly')) { qq <- ggplot2::ggplot(res.qq) + ggplot2::geom_qq(ggplot2::aes(sample = scaled.value, group = variable), geom = 'point', distribution = noquote(paste0('q', dist)), dparams = list(para), colour = 'grey15', fill = 'steelblue4', shape = 21, na.rm = T) + ggplot2::geom_abline(colour = ('red4')) + ggplot2::coord_fixed() + ggplot2::lims(x = c(0, max(res.qq$value/res.qq$sf, na.rm = T)), y = c(0, max(res.qq$value/res.qq$sf, na.rm = T))) + ggplot2::theme_bw() + ggplot2::theme(plot.title = ggplot2::element_text(hjust = .5), panel.border = element_blank(), axis.line = element_line(colour = 'black')) if(method == 'plotly') { qq <- plotly::ggplotly(qq) } return(qq) } } # qq.simsample <- function(model_object, fitted_bootstrap, dist = NULL, ribbon.1 = c(0.05, 0.95), ribbon.2 = c(0.25, 0.75), method = if ('ggplot2' %in% installed.packages()[,'Package']) {'ggplot'} else {'base'}) { # # dta <- as.data.table(model_object$data) # para <- model_object$REG # scaling.factor <- model_object$scaling_factor # # if(is.null(dist)) {dist <- attr(dta.fit, 'sim.call')$dist} # # prbs <- sort(c(ribbon.1, ribbon.2)) # # xxx <- do.call(cbind, lapply(fitted_bootstrap, function(x) x$data)) # # ######################################################## # # qaux <- data.table(rbindlist(lapply(fitted_bootstrap, function(x) {data.frame(q = do.call(paste0('q',dist), list(qs, x$REG)))}), # idcol = 'sample'), # probs = seq_along(qs)) # q <- qaux[, .(val = quantile(q, prbs), # q = c('rib_1_min', 'rib_2_min', 'rib_2_max', 'rib_1_max')), # by = probs] # res.gc <- cbind(dcast(q, probs ~ q, value.var = 'val'), # data.table(gumbel.variate = -log(-log(qs)), # scaled.value = qgpa(qs, para))) # } ratiodiagram <- function(taus) { num <- seq(min(taus[,1])*.5, max(taus[,1])*1.2, .01) mr <- data.table(t3 = num, t4 = num*(1 + 5*num)/(5 + num)) names(taus) <- names(mr) lmrd <- ggplot(data = NULL, aes(x = t3, y = t4)) + geom_line(data = mr, colour = 'red4') + geom_point(data = taus, colour = 'grey15', fill = 'steelblue4', shape = 21) + theme_classic() + labs(x = 'L-skewness', y = 'L-kurtosis', title = 'GPA L-moment ratio diagram') return(lmrd) }
/R/auxiliary_functions/aux_graphics.R
no_license
hanel/LmomGPA
R
false
false
10,605
r
gumbelplot <- function(model_object, dist = NULL, method = if ('ggplot2' %in% installed.packages()[,'Package']) {'ggplot'} else {'base'}) { # res (init res will need to be rewritten for nim) dta <- as.data.table(model_object$data) para <- model_object$REG scaling.factor <- model_object$scaling_factor if(is.null(dist)) {dist <- attr(model_object, 'sim.call')$dist} # dta <- data.table(attributes(n)$data) res.gp <- suppressWarnings(melt(dta)) res.gp <- data.table(variable = names(dta), sf = scaling.factor)[res.gp, on = c('variable')] res.gp <- res.gp[!is.na(value), p := (rank(value) - .3) / (length(value) + .4), by = variable] res.gp <- res.gp[, gumbel.variate := -log(-log(as.numeric(p)))] res.gp <- res.gp[, scaled.value := value/sf] p <- seq(min(res.gp$p, na.rm = T), max(res.gp$p, na.rm = T), .001) regional <- data.table(x = -log(-log(p)), y = do.call(paste0('q', dist), list(p, para))) # graphics if(method == 'base') { sres.gp <- split(res.gp[!is.na(res.gp$scaled.value),], res.gp$variable[!is.na(res.gp$scaled.value)]) plot(NULL, xlim = c(min(regional$x), max(regional$x)*1.15), ylim = c(min(res.gp$scaled.value, na.rm = T), max(res.gp$scaled.value, na.rm = T)), bty = 'l', xlab = expression(-log(-log(p))), ylab = 'Value', main = 'Gumbel plot') grid() lapply(sres.gp, function(x) { points(sort(x$gumbel.variate), sort(x$scaled.value), pch = 21, col = 'grey15', bg = '#36648b50', cex = .75) lines(sort(x$gumbel.variate), sort(x$scaled.value), col = '#36648b50') }) lines(regional, type = 'l', col = 'red4', lwd = .75) } if(method %in% c('ggplot', 'plotly')) { gp <- ggplot2::ggplot(res.gp) + ggplot2::geom_line(ggplot2::aes(x = gumbel.variate, y = scaled.value, group = variable), colour = 'steelblue4', alpha = .5, na.rm = T) + ggplot2::geom_point(ggplot2::aes(x = gumbel.variate, y = scaled.value, group = variable), colour = 'grey15', fill = 'steelblue4', alpha = .5, shape = 21, na.rm = T) + ggplot2::geom_line(data = regional, ggplot2::aes(x = x, y = y), col = 'red4', lwd = .75) + ggplot2::theme_bw() + ggplot2::labs(x = '-log(-log(p))', y = 'Value', title = 'Gumbel plot') + ggplot2::theme(plot.title = ggplot2::element_text(hjust = .5), panel.border = element_blank(), axis.line = element_line(colour = 'black')) if(method == 'plotly') { gp <- plotly::ggplotly(gp) } return(gp) } } growthcurve <- function (model_object, fitted_bootstrap, dist = NULL, outer_ribbon = c(0.05, 0.95), inner_ribbon = c(0.25, 0.75), rp = T, return.period = c(5, 10, 20, 50, 100), method = if ('ggplot2' %in% installed.packages()[,'Package']) {'ggplot'} else {'base'}) { # res (init res will need to be rewritten for nim) prbs <- sort(c(outer_ribbon, inner_ribbon)) para <- model_object$REG if(is.null(dist)) {dist <- attr(model_object, 'sim.call')$dist} qs <- seq(.01, 1 - 1/max(return.period)*.5, 1/max(return.period)) qaux <- data.table(rbindlist(lapply(fitted_bootstrap, function(x) {data.frame(q = do.call(paste0('q',dist), list(qs, x$REG)))}), idcol = 'sample'), probs = seq_along(qs)) q <- qaux[, .(val = quantile(q, prbs), q = c('rib_1_min', 'rib_2_min', 'rib_2_max', 'rib_1_max')), by = probs] res.gc <- cbind(dcast(q, probs ~ q, value.var = 'val'), data.table(gumbel.variate = -log(-log(qs)), scaled.value = qgpa(qs, para))) # graphics if(method == 'base') { plot(NULL, xlim = c(min(res.gc$gumbel.variate), max(res.gc$gumbel.variate)), ylim = c(min(res.gc[,c('rib_1_min', 'rib_2_min', 'rib_2_max', 'rib_1_max')]), max(res.gc[,c('rib_1_min', 'rib_2_min', 'rib_2_max', 'rib_1_max')])), bty = 'l', xlab = expression(-log(-log(p))), ylab = 'Value', main = 'Growth curve') grid() polygon(c(res.gc$gumbel.variate, rev(res.gc$gumbel.variate)), c(res.gc$rib_1_max, rev(res.gc$rib_1_min)), col = '#36648b40', border = NA) polygon(c(res.gc$gumbel.variate, rev(res.gc$gumbel.variate)), c(res.gc$rib_2_max, rev(res.gc$rib_2_min)), col = '#36648b80', border = NA) lines(res.gc$gumbel.variate, res.gc$scaled.value, type = 'l', col = 'red4', lwd = .75) axis.lim <- par('usr') if(rp) { rp.lab <- return.period rp.x <- -log(-log(1 - 1/rp.lab)) rp.y <- axis.lim[3] + (axis.lim[4] - axis.lim[3])*.05 axis(side = 3, at = rp.x, pos = rp.y, labels = rp.lab) text(mean(rp.x[rev(rank(rp.lab))[1:2]]), rp.y + par('cxy')[2], 'Return period', adj = c(.75, -2.75)) } } if(method %in% c('ggplot', 'plotly')) { gc <- ggplot2::ggplot(res.gc) + ggplot2::geom_ribbon(ggplot2::aes(x = gumbel.variate, ymin = rib_1_min, ymax = rib_1_max), fill = 'steelblue4', alpha = .4) + ggplot2::geom_ribbon(ggplot2::aes(x = gumbel.variate, ymin = rib_2_min, ymax = rib_2_max), fill = 'steelblue4', alpha = .8) + ggplot2::geom_line(ggplot2::aes(x = gumbel.variate, y = scaled.value), col = 'red4', lwd = .75) + ggplot2::theme_bw() + ggplot2::labs(x = '-log(-log(p))', y = 'Value', title = 'Growth curve') + ggplot2::theme(plot.title = ggplot2::element_text(hjust = .5), panel.border = element_blank(), axis.line = element_line(colour = 'black')) if(rp) { axis.lim <- c(-log(-log(range(qs))), range(qaux$q)) rp.lab <- return.period rp.x <- -log(-log(1 - 1/rp.lab)) rp.y <- axis.lim[3] + (axis.lim[4] - axis.lim[3])*.05 rp.dta <- data.table(rp.x, rp.y, rp.lab) gc <- gc + ggplot2::geom_point(data = rp.dta, ggplot2::aes(x = rp.x, y = rp.y), shape = '|', size = 3) + ggplot2::geom_line(data = rp.dta, ggplot2::aes(x = rp.x, y = rp.y)) + ggplot2::geom_text(data = rp.dta, ggplot2::aes(x = rp.x, y = rp.y*2, label = rp.lab)) + ggplot2::geom_text(data = rp.dta, ggplot2::aes(x = mean(rp.x[rev(rank(rp.lab))[1:2]]), y = rp.y[1]*3.5), label = 'Return period', fontface = 1) } if(method == 'plotly') { gc <- plotly::ggplotly(gc) } return(gc) } } qq <- function(...) {UseMethod('qq')} qq.sim <- function(model_object, dist = NULL, method = if ('ggplot2' %in% installed.packages()[,'Package']) {'ggplot'} else {'base'}) { dta <- as.data.table(model_object$data) para <- model_object$REG scaling.factor <- model_object$scaling_factor if(is.null(dist)) {dist <- attr(dta.fit, 'sim.call')$dist} res.qq <- suppressWarnings(melt(dta)) res.qq <- data.table(variable = names(dta), sf = scaling.factor)[res.qq, on = c('variable')] res.qq <- res.qq[, scaled.value := value/sf] if(method == 'base') { inipar <- par() par(pty = 's') sres.qq <- split(res.qq[!is.na(res.qq$scaled.value),], res.qq$variable[!is.na(res.qq$scaled.value)]) plot(NULL, xlim = c(0, max(res.qq$scaled.value, na.rm = T)*1.15), ylim = c(0, max(res.qq$scaled.value, na.rm = T)*1.15), pch = 21, col = 'grey15', bg = '#36648b90', bty = 'l', xlab = 'theoretical', ylab = 'sample', main = 'qqplot') grid() lapply(sres.qq, function(x) { points(sort(x$scaled.value), sort(rgpa(length(x$scaled.value), dta.fit$REG)), pch = 21, col = 'grey15', bg = '#36648b90') }) abline(0,1, col = 'red4') suppressWarnings(par(inipar)) } if(method %in% c('ggplot', 'plotly')) { qq <- ggplot2::ggplot(res.qq) + ggplot2::geom_qq(ggplot2::aes(sample = scaled.value, group = variable), geom = 'point', distribution = noquote(paste0('q', dist)), dparams = list(para), colour = 'grey15', fill = 'steelblue4', shape = 21, na.rm = T) + ggplot2::geom_abline(colour = ('red4')) + ggplot2::coord_fixed() + ggplot2::lims(x = c(0, max(res.qq$value/res.qq$sf, na.rm = T)), y = c(0, max(res.qq$value/res.qq$sf, na.rm = T))) + ggplot2::theme_bw() + ggplot2::theme(plot.title = ggplot2::element_text(hjust = .5), panel.border = element_blank(), axis.line = element_line(colour = 'black')) if(method == 'plotly') { qq <- plotly::ggplotly(qq) } return(qq) } } # qq.simsample <- function(model_object, fitted_bootstrap, dist = NULL, ribbon.1 = c(0.05, 0.95), ribbon.2 = c(0.25, 0.75), method = if ('ggplot2' %in% installed.packages()[,'Package']) {'ggplot'} else {'base'}) { # # dta <- as.data.table(model_object$data) # para <- model_object$REG # scaling.factor <- model_object$scaling_factor # # if(is.null(dist)) {dist <- attr(dta.fit, 'sim.call')$dist} # # prbs <- sort(c(ribbon.1, ribbon.2)) # # xxx <- do.call(cbind, lapply(fitted_bootstrap, function(x) x$data)) # # ######################################################## # # qaux <- data.table(rbindlist(lapply(fitted_bootstrap, function(x) {data.frame(q = do.call(paste0('q',dist), list(qs, x$REG)))}), # idcol = 'sample'), # probs = seq_along(qs)) # q <- qaux[, .(val = quantile(q, prbs), # q = c('rib_1_min', 'rib_2_min', 'rib_2_max', 'rib_1_max')), # by = probs] # res.gc <- cbind(dcast(q, probs ~ q, value.var = 'val'), # data.table(gumbel.variate = -log(-log(qs)), # scaled.value = qgpa(qs, para))) # } ratiodiagram <- function(taus) { num <- seq(min(taus[,1])*.5, max(taus[,1])*1.2, .01) mr <- data.table(t3 = num, t4 = num*(1 + 5*num)/(5 + num)) names(taus) <- names(mr) lmrd <- ggplot(data = NULL, aes(x = t3, y = t4)) + geom_line(data = mr, colour = 'red4') + geom_point(data = taus, colour = 'grey15', fill = 'steelblue4', shape = 21) + theme_classic() + labs(x = 'L-skewness', y = 'L-kurtosis', title = 'GPA L-moment ratio diagram') return(lmrd) }
#' BarOrPub #' #' A bar or pub. #' #' #' @param id identifier for the object (URI) #' @param starRating (Rating or Rating type.) An official rating for a lodging business or food establishment, e.g. from national associations or standards bodies. Use the author property to indicate the rating organization, e.g. as an Organization with name such as (e.g. HOTREC, DEHOGA, WHR, or Hotelstars). #' @param servesCuisine (Text type.) The cuisine of the restaurant. #' @param menu (URL or Text or Menu type.) Either the actual menu as a structured representation, as text, or a URL of the menu. #' @param hasMenu (URL or Text or Menu type.) Either the actual menu as a structured representation, as text, or a URL of the menu. #' @param acceptsReservations (URL or Text or Boolean type.) Indicates whether a FoodEstablishment accepts reservations. Values can be Boolean, an URL at which reservations can be made or (for backwards compatibility) the strings ```Yes``` or ```No```. #' @param priceRange (Text type.) The price range of the business, for example ```$$$```. #' @param paymentAccepted (Text type.) Cash, Credit Card, Cryptocurrency, Local Exchange Tradings System, etc. #' @param openingHours (Text or Text type.) The general opening hours for a business. Opening hours can be specified as a weekly time range, starting with days, then times per day. Multiple days can be listed with commas ',' separating each day. Day or time ranges are specified using a hyphen '-'.* Days are specified using the following two-letter combinations: ```Mo```, ```Tu```, ```We```, ```Th```, ```Fr```, ```Sa```, ```Su```.* Times are specified using 24:00 time. For example, 3pm is specified as ```15:00```. * Here is an example: <code>&lt;time itemprop="openingHours" datetime=&quot;Tu,Th 16:00-20:00&quot;&gt;Tuesdays and Thursdays 4-8pm&lt;/time&gt;</code>.* If a business is open 7 days a week, then it can be specified as <code>&lt;time itemprop=&quot;openingHours&quot; datetime=&quot;Mo-Su&quot;&gt;Monday through Sunday, all day&lt;/time&gt;</code>. #' @param currenciesAccepted (Text type.) The currency accepted.Use standard formats: [ISO 4217 currency format](http://en.wikipedia.org/wiki/ISO_4217) e.g. "USD"; [Ticker symbol](https://en.wikipedia.org/wiki/List_of_cryptocurrencies) for cryptocurrencies e.g. "BTC"; well known names for [Local Exchange Tradings Systems](https://en.wikipedia.org/wiki/Local_exchange_trading_system) (LETS) and other currency types e.g. "Ithaca HOUR". #' @param branchOf (Organization type.) The larger organization that this local business is a branch of, if any. Not to be confused with (anatomical)[[branch]]. #' @param telephone (Text or Text or Text or Text type.) The telephone number. #' @param specialOpeningHoursSpecification (OpeningHoursSpecification type.) The special opening hours of a certain place.Use this to explicitly override general opening hours brought in scope by [[openingHoursSpecification]] or [[openingHours]]. #' @param smokingAllowed (Boolean type.) Indicates whether it is allowed to smoke in the place, e.g. in the restaurant, hotel or hotel room. #' @param reviews (Review or Review or Review or Review or Review type.) Review of the item. #' @param review (Review or Review or Review or Review or Review or Review or Review or Review type.) A review of the item. #' @param publicAccess (Boolean type.) A flag to signal that the [[Place]] is open to public visitors. If this property is omitted there is no assumed default boolean value #' @param photos (Photograph or ImageObject type.) Photographs of this place. #' @param photo (Photograph or ImageObject type.) A photograph of this place. #' @param openingHoursSpecification (OpeningHoursSpecification type.) The opening hours of a certain place. #' @param maximumAttendeeCapacity (Integer or Integer type.) The total number of individuals that may attend an event or venue. #' @param maps (URL type.) A URL to a map of the place. #' @param map (URL type.) A URL to a map of the place. #' @param logo (URL or ImageObject or URL or ImageObject or URL or ImageObject or URL or ImageObject or URL or ImageObject type.) An associated logo. #' @param isicV4 (Text or Text or Text type.) The International Standard of Industrial Classification of All Economic Activities (ISIC), Revision 4 code for a particular organization, business person, or place. #' @param isAccessibleForFree (Boolean or Boolean or Boolean or Boolean type.) A flag to signal that the item, event, or place is accessible for free. #' @param hasMap (URL or Map type.) A URL to a map of the place. #' @param globalLocationNumber (Text or Text or Text type.) The [Global Location Number](http://www.gs1.org/gln) (GLN, sometimes also referred to as International Location Number or ILN) of the respective organization, person, or place. The GLN is a 13-digit number used to identify parties and physical locations. #' @param geo (GeoShape or GeoCoordinates type.) The geo coordinates of the place. #' @param faxNumber (Text or Text or Text or Text type.) The fax number. #' @param events (Event or Event type.) Upcoming or past events associated with this place or organization. #' @param event (Event or Event or Event or Event or Event or Event or Event type.) Upcoming or past event associated with this place, organization, or action. #' @param containsPlace (Place type.) The basic containment relation between a place and another that it contains. #' @param containedInPlace (Place type.) The basic containment relation between a place and one that contains it. #' @param containedIn (Place type.) The basic containment relation between a place and one that contains it. #' @param branchCode (Text type.) A short textual code (also called "store code") that uniquely identifies a place of business. The code is typically assigned by the parentOrganization and used in structured URLs.For example, in the URL http://www.starbucks.co.uk/store-locator/etc/detail/3047 the code "3047" is a branchCode for a particular branch. #' @param amenityFeature (LocationFeatureSpecification or LocationFeatureSpecification or LocationFeatureSpecification type.) An amenity feature (e.g. a characteristic or service) of the Accommodation. This generic property does not make a statement about whether the feature is included in an offer for the main accommodation or available at extra costs. #' @param aggregateRating (AggregateRating or AggregateRating or AggregateRating or AggregateRating or AggregateRating or AggregateRating or AggregateRating or AggregateRating type.) The overall rating, based on a collection of reviews or ratings, of the item. #' @param address (Text or PostalAddress or Text or PostalAddress or Text or PostalAddress or Text or PostalAddress or Text or PostalAddress type.) Physical address of the item. #' @param additionalProperty (PropertyValue or PropertyValue or PropertyValue or PropertyValue type.) A property-value pair representing an additional characteristics of the entitity, e.g. a product feature or another characteristic for which there is no matching property in schema.org.Note: Publishers should be aware that applications designed to use specific schema.org properties (e.g. http://schema.org/width, http://schema.org/color, http://schema.org/gtin13, ...) will typically expect such data to be provided using those properties, rather than using the generic property/value mechanism. #' @param url (URL type.) URL of the item. #' @param sameAs (URL type.) URL of a reference Web page that unambiguously indicates the item's identity. E.g. the URL of the item's Wikipedia page, Wikidata entry, or official website. #' @param potentialAction (Action type.) Indicates a potential Action, which describes an idealized action in which this thing would play an 'object' role. #' @param name (Text type.) The name of the item. #' @param mainEntityOfPage (URL or CreativeWork type.) Indicates a page (or other CreativeWork) for which this thing is the main entity being described. See [background notes](/docs/datamodel.html#mainEntityBackground) for details. #' @param image (URL or ImageObject type.) An image of the item. This can be a [[URL]] or a fully described [[ImageObject]]. #' @param identifier (URL or Text or PropertyValue type.) The identifier property represents any kind of identifier for any kind of [[Thing]], such as ISBNs, GTIN codes, UUIDs etc. Schema.org provides dedicated properties for representing many of these, either as textual strings or as URL (URI) links. See [background notes](/docs/datamodel.html#identifierBg) for more details. #' @param disambiguatingDescription (Text type.) A sub property of description. A short description of the item used to disambiguate from other, similar items. Information from other properties (in particular, name) may be necessary for the description to be useful for disambiguation. #' @param description (Text type.) A description of the item. #' @param alternateName (Text type.) An alias for the item. #' @param additionalType (URL type.) An additional type for the item, typically used for adding more specific types from external vocabularies in microdata syntax. This is a relationship between something and a class that the thing is in. In RDFa syntax, it is better to use the native RDFa syntax - the 'typeof' attribute - for multiple types. Schema.org tools may have only weaker understanding of extra types, in particular those defined externally. #' #' @return a list object corresponding to a schema:BarOrPub #' #' @export BarOrPub <- function(id = NULL, starRating = NULL, servesCuisine = NULL, menu = NULL, hasMenu = NULL, acceptsReservations = NULL, priceRange = NULL, paymentAccepted = NULL, openingHours = NULL, currenciesAccepted = NULL, branchOf = NULL, telephone = NULL, specialOpeningHoursSpecification = NULL, smokingAllowed = NULL, reviews = NULL, review = NULL, publicAccess = NULL, photos = NULL, photo = NULL, openingHoursSpecification = NULL, maximumAttendeeCapacity = NULL, maps = NULL, map = NULL, logo = NULL, isicV4 = NULL, isAccessibleForFree = NULL, hasMap = NULL, globalLocationNumber = NULL, geo = NULL, faxNumber = NULL, events = NULL, event = NULL, containsPlace = NULL, containedInPlace = NULL, containedIn = NULL, branchCode = NULL, amenityFeature = NULL, aggregateRating = NULL, address = NULL, additionalProperty = NULL, url = NULL, sameAs = NULL, potentialAction = NULL, name = NULL, mainEntityOfPage = NULL, image = NULL, identifier = NULL, disambiguatingDescription = NULL, description = NULL, alternateName = NULL, additionalType = NULL){ Filter(Negate(is.null), list( type = "BarOrPub", id = id, starRating = starRating, servesCuisine = servesCuisine, menu = menu, hasMenu = hasMenu, acceptsReservations = acceptsReservations, priceRange = priceRange, paymentAccepted = paymentAccepted, openingHours = openingHours, currenciesAccepted = currenciesAccepted, branchOf = branchOf, telephone = telephone, specialOpeningHoursSpecification = specialOpeningHoursSpecification, smokingAllowed = smokingAllowed, reviews = reviews, review = review, publicAccess = publicAccess, photos = photos, photo = photo, openingHoursSpecification = openingHoursSpecification, maximumAttendeeCapacity = maximumAttendeeCapacity, maps = maps, map = map, logo = logo, isicV4 = isicV4, isAccessibleForFree = isAccessibleForFree, hasMap = hasMap, globalLocationNumber = globalLocationNumber, geo = geo, faxNumber = faxNumber, events = events, event = event, containsPlace = containsPlace, containedInPlace = containedInPlace, containedIn = containedIn, branchCode = branchCode, amenityFeature = amenityFeature, aggregateRating = aggregateRating, address = address, additionalProperty = additionalProperty, url = url, sameAs = sameAs, potentialAction = potentialAction, name = name, mainEntityOfPage = mainEntityOfPage, image = image, identifier = identifier, disambiguatingDescription = disambiguatingDescription, description = description, alternateName = alternateName, additionalType = additionalType))}
/R/BarOrPub.R
no_license
cboettig/schemar
R
false
false
12,059
r
#' BarOrPub #' #' A bar or pub. #' #' #' @param id identifier for the object (URI) #' @param starRating (Rating or Rating type.) An official rating for a lodging business or food establishment, e.g. from national associations or standards bodies. Use the author property to indicate the rating organization, e.g. as an Organization with name such as (e.g. HOTREC, DEHOGA, WHR, or Hotelstars). #' @param servesCuisine (Text type.) The cuisine of the restaurant. #' @param menu (URL or Text or Menu type.) Either the actual menu as a structured representation, as text, or a URL of the menu. #' @param hasMenu (URL or Text or Menu type.) Either the actual menu as a structured representation, as text, or a URL of the menu. #' @param acceptsReservations (URL or Text or Boolean type.) Indicates whether a FoodEstablishment accepts reservations. Values can be Boolean, an URL at which reservations can be made or (for backwards compatibility) the strings ```Yes``` or ```No```. #' @param priceRange (Text type.) The price range of the business, for example ```$$$```. #' @param paymentAccepted (Text type.) Cash, Credit Card, Cryptocurrency, Local Exchange Tradings System, etc. #' @param openingHours (Text or Text type.) The general opening hours for a business. Opening hours can be specified as a weekly time range, starting with days, then times per day. Multiple days can be listed with commas ',' separating each day. Day or time ranges are specified using a hyphen '-'.* Days are specified using the following two-letter combinations: ```Mo```, ```Tu```, ```We```, ```Th```, ```Fr```, ```Sa```, ```Su```.* Times are specified using 24:00 time. For example, 3pm is specified as ```15:00```. * Here is an example: <code>&lt;time itemprop="openingHours" datetime=&quot;Tu,Th 16:00-20:00&quot;&gt;Tuesdays and Thursdays 4-8pm&lt;/time&gt;</code>.* If a business is open 7 days a week, then it can be specified as <code>&lt;time itemprop=&quot;openingHours&quot; datetime=&quot;Mo-Su&quot;&gt;Monday through Sunday, all day&lt;/time&gt;</code>. #' @param currenciesAccepted (Text type.) The currency accepted.Use standard formats: [ISO 4217 currency format](http://en.wikipedia.org/wiki/ISO_4217) e.g. "USD"; [Ticker symbol](https://en.wikipedia.org/wiki/List_of_cryptocurrencies) for cryptocurrencies e.g. "BTC"; well known names for [Local Exchange Tradings Systems](https://en.wikipedia.org/wiki/Local_exchange_trading_system) (LETS) and other currency types e.g. "Ithaca HOUR". #' @param branchOf (Organization type.) The larger organization that this local business is a branch of, if any. Not to be confused with (anatomical)[[branch]]. #' @param telephone (Text or Text or Text or Text type.) The telephone number. #' @param specialOpeningHoursSpecification (OpeningHoursSpecification type.) The special opening hours of a certain place.Use this to explicitly override general opening hours brought in scope by [[openingHoursSpecification]] or [[openingHours]]. #' @param smokingAllowed (Boolean type.) Indicates whether it is allowed to smoke in the place, e.g. in the restaurant, hotel or hotel room. #' @param reviews (Review or Review or Review or Review or Review type.) Review of the item. #' @param review (Review or Review or Review or Review or Review or Review or Review or Review type.) A review of the item. #' @param publicAccess (Boolean type.) A flag to signal that the [[Place]] is open to public visitors. If this property is omitted there is no assumed default boolean value #' @param photos (Photograph or ImageObject type.) Photographs of this place. #' @param photo (Photograph or ImageObject type.) A photograph of this place. #' @param openingHoursSpecification (OpeningHoursSpecification type.) The opening hours of a certain place. #' @param maximumAttendeeCapacity (Integer or Integer type.) The total number of individuals that may attend an event or venue. #' @param maps (URL type.) A URL to a map of the place. #' @param map (URL type.) A URL to a map of the place. #' @param logo (URL or ImageObject or URL or ImageObject or URL or ImageObject or URL or ImageObject or URL or ImageObject type.) An associated logo. #' @param isicV4 (Text or Text or Text type.) The International Standard of Industrial Classification of All Economic Activities (ISIC), Revision 4 code for a particular organization, business person, or place. #' @param isAccessibleForFree (Boolean or Boolean or Boolean or Boolean type.) A flag to signal that the item, event, or place is accessible for free. #' @param hasMap (URL or Map type.) A URL to a map of the place. #' @param globalLocationNumber (Text or Text or Text type.) The [Global Location Number](http://www.gs1.org/gln) (GLN, sometimes also referred to as International Location Number or ILN) of the respective organization, person, or place. The GLN is a 13-digit number used to identify parties and physical locations. #' @param geo (GeoShape or GeoCoordinates type.) The geo coordinates of the place. #' @param faxNumber (Text or Text or Text or Text type.) The fax number. #' @param events (Event or Event type.) Upcoming or past events associated with this place or organization. #' @param event (Event or Event or Event or Event or Event or Event or Event type.) Upcoming or past event associated with this place, organization, or action. #' @param containsPlace (Place type.) The basic containment relation between a place and another that it contains. #' @param containedInPlace (Place type.) The basic containment relation between a place and one that contains it. #' @param containedIn (Place type.) The basic containment relation between a place and one that contains it. #' @param branchCode (Text type.) A short textual code (also called "store code") that uniquely identifies a place of business. The code is typically assigned by the parentOrganization and used in structured URLs.For example, in the URL http://www.starbucks.co.uk/store-locator/etc/detail/3047 the code "3047" is a branchCode for a particular branch. #' @param amenityFeature (LocationFeatureSpecification or LocationFeatureSpecification or LocationFeatureSpecification type.) An amenity feature (e.g. a characteristic or service) of the Accommodation. This generic property does not make a statement about whether the feature is included in an offer for the main accommodation or available at extra costs. #' @param aggregateRating (AggregateRating or AggregateRating or AggregateRating or AggregateRating or AggregateRating or AggregateRating or AggregateRating or AggregateRating type.) The overall rating, based on a collection of reviews or ratings, of the item. #' @param address (Text or PostalAddress or Text or PostalAddress or Text or PostalAddress or Text or PostalAddress or Text or PostalAddress type.) Physical address of the item. #' @param additionalProperty (PropertyValue or PropertyValue or PropertyValue or PropertyValue type.) A property-value pair representing an additional characteristics of the entitity, e.g. a product feature or another characteristic for which there is no matching property in schema.org.Note: Publishers should be aware that applications designed to use specific schema.org properties (e.g. http://schema.org/width, http://schema.org/color, http://schema.org/gtin13, ...) will typically expect such data to be provided using those properties, rather than using the generic property/value mechanism. #' @param url (URL type.) URL of the item. #' @param sameAs (URL type.) URL of a reference Web page that unambiguously indicates the item's identity. E.g. the URL of the item's Wikipedia page, Wikidata entry, or official website. #' @param potentialAction (Action type.) Indicates a potential Action, which describes an idealized action in which this thing would play an 'object' role. #' @param name (Text type.) The name of the item. #' @param mainEntityOfPage (URL or CreativeWork type.) Indicates a page (or other CreativeWork) for which this thing is the main entity being described. See [background notes](/docs/datamodel.html#mainEntityBackground) for details. #' @param image (URL or ImageObject type.) An image of the item. This can be a [[URL]] or a fully described [[ImageObject]]. #' @param identifier (URL or Text or PropertyValue type.) The identifier property represents any kind of identifier for any kind of [[Thing]], such as ISBNs, GTIN codes, UUIDs etc. Schema.org provides dedicated properties for representing many of these, either as textual strings or as URL (URI) links. See [background notes](/docs/datamodel.html#identifierBg) for more details. #' @param disambiguatingDescription (Text type.) A sub property of description. A short description of the item used to disambiguate from other, similar items. Information from other properties (in particular, name) may be necessary for the description to be useful for disambiguation. #' @param description (Text type.) A description of the item. #' @param alternateName (Text type.) An alias for the item. #' @param additionalType (URL type.) An additional type for the item, typically used for adding more specific types from external vocabularies in microdata syntax. This is a relationship between something and a class that the thing is in. In RDFa syntax, it is better to use the native RDFa syntax - the 'typeof' attribute - for multiple types. Schema.org tools may have only weaker understanding of extra types, in particular those defined externally. #' #' @return a list object corresponding to a schema:BarOrPub #' #' @export BarOrPub <- function(id = NULL, starRating = NULL, servesCuisine = NULL, menu = NULL, hasMenu = NULL, acceptsReservations = NULL, priceRange = NULL, paymentAccepted = NULL, openingHours = NULL, currenciesAccepted = NULL, branchOf = NULL, telephone = NULL, specialOpeningHoursSpecification = NULL, smokingAllowed = NULL, reviews = NULL, review = NULL, publicAccess = NULL, photos = NULL, photo = NULL, openingHoursSpecification = NULL, maximumAttendeeCapacity = NULL, maps = NULL, map = NULL, logo = NULL, isicV4 = NULL, isAccessibleForFree = NULL, hasMap = NULL, globalLocationNumber = NULL, geo = NULL, faxNumber = NULL, events = NULL, event = NULL, containsPlace = NULL, containedInPlace = NULL, containedIn = NULL, branchCode = NULL, amenityFeature = NULL, aggregateRating = NULL, address = NULL, additionalProperty = NULL, url = NULL, sameAs = NULL, potentialAction = NULL, name = NULL, mainEntityOfPage = NULL, image = NULL, identifier = NULL, disambiguatingDescription = NULL, description = NULL, alternateName = NULL, additionalType = NULL){ Filter(Negate(is.null), list( type = "BarOrPub", id = id, starRating = starRating, servesCuisine = servesCuisine, menu = menu, hasMenu = hasMenu, acceptsReservations = acceptsReservations, priceRange = priceRange, paymentAccepted = paymentAccepted, openingHours = openingHours, currenciesAccepted = currenciesAccepted, branchOf = branchOf, telephone = telephone, specialOpeningHoursSpecification = specialOpeningHoursSpecification, smokingAllowed = smokingAllowed, reviews = reviews, review = review, publicAccess = publicAccess, photos = photos, photo = photo, openingHoursSpecification = openingHoursSpecification, maximumAttendeeCapacity = maximumAttendeeCapacity, maps = maps, map = map, logo = logo, isicV4 = isicV4, isAccessibleForFree = isAccessibleForFree, hasMap = hasMap, globalLocationNumber = globalLocationNumber, geo = geo, faxNumber = faxNumber, events = events, event = event, containsPlace = containsPlace, containedInPlace = containedInPlace, containedIn = containedIn, branchCode = branchCode, amenityFeature = amenityFeature, aggregateRating = aggregateRating, address = address, additionalProperty = additionalProperty, url = url, sameAs = sameAs, potentialAction = potentialAction, name = name, mainEntityOfPage = mainEntityOfPage, image = image, identifier = identifier, disambiguatingDescription = disambiguatingDescription, description = description, alternateName = alternateName, additionalType = additionalType))}
\name{ruars} \alias{ruars} \title{UARS random deviates} \usage{ ruars(n, rangle, S = NULL, kappa = 1, space = "SO3", ...) } \arguments{ \item{n}{number of observations. If \code{length(n)>1}, the length is taken to be n} \item{rangle}{The function from which to simulate angles: e.g. rcayley, rvmises, rhaar, rfisher} \item{S}{principal direction of the distribution} \item{kappa}{concentration of the distribution} \item{space}{Indicates the desired representation: matrix (SO3), quaternion (Q4) or Euler angles (EA)} \item{...}{additional arguments passed to the angular function} } \value{ random deviates from the specified UARS distribution } \description{ Produce random deviates from a chosen UARS distribution. }
/man/ruars.Rd
no_license
heike/rotations
R
false
false
783
rd
\name{ruars} \alias{ruars} \title{UARS random deviates} \usage{ ruars(n, rangle, S = NULL, kappa = 1, space = "SO3", ...) } \arguments{ \item{n}{number of observations. If \code{length(n)>1}, the length is taken to be n} \item{rangle}{The function from which to simulate angles: e.g. rcayley, rvmises, rhaar, rfisher} \item{S}{principal direction of the distribution} \item{kappa}{concentration of the distribution} \item{space}{Indicates the desired representation: matrix (SO3), quaternion (Q4) or Euler angles (EA)} \item{...}{additional arguments passed to the angular function} } \value{ random deviates from the specified UARS distribution } \description{ Produce random deviates from a chosen UARS distribution. }
######################### ## Estudando os pontos ## Authos: Tainá Rocha ## Date : May 2021 ######################## ## Library library (raster) library(ggplot2) library(ggmap) library(MASS) library(maps) library(mapdata) library(ggrepel) library(ggsn) library(rgdal) ## Read data points_all <- read.csv("./Ferns-and-lycophytes_old/data/PCA/PCA_INPUT.csv", sep = ",", dec = ".") #matri <- as.matrix(points_all) escalonado <- scale(points_all[,1:23],center=TRUE,scale=TRUE) write.csv(escalonado, "./escalonado_envs_values.csv") # verificar o conjunto de pontos somados summary(points_all) #################################################### Pontos sem stand. boxplot(c(points_all[1:9,1]), points_all[10:25,1], points_all[26:57,1]) #alt boxplot(c(points_all[1:9,2]), points_all[10:25,2], points_all[26:57,2]) #bio1 boxplot(c(points_all[1:9,5]), points_all[10:25,5], points_all[26:57,5]) #bio12 boxplot(c(points_all[1:9,6]), points_all[10:25,6], points_all[26:57,6]) #bio13 boxplot(c(points_all[1:9,8]), points_all[10:25,8], points_all[26:57,8]) #bio15 boxplot(c(points_all[1:9,14]), points_all[10:25,14], points_all[26:57,14]) #bio3 boxplot(c(points_all[1:9,21]), points_all[10:25,21], points_all[26:57,21]) #dec boxplot(c(points_all[1:9,22]), points_all[10:25,22], points_all[26:57,22]) #densi_dren boxplot(c(points_all[1:9,23]), points_all[10:25,23], points_all[26:57,23]) #expo ################################################################################################ boxplot(c(escalonado[1:9,1]), (escalonado[10:25,1]), (escalonado[26:57,1])) #alt boxplot(c(escalonado[1:9,2]), (escalonado[10:25,2]), (escalonado[26:57,2])) #bio1 boxplot(c(escalonado[1:9,3]), (escalonado[10:25,3]), (escalonado[26:57,3])) #bio10 boxplot(c(escalonado[1:9,4]), (escalonado[10:25,4]), (escalonado[26:57,4])) #bio11 boxplot(c(escalonado[1:9,5]), (escalonado[10:25,5]), (escalonado[26:57,5])) #bio12 boxplot(c(escalonado[1:9,6]), (escalonado[10:25,6]), (escalonado[26:57,6])) # bio13 boxplot(c(escalonado[1:9,7]), (escalonado[10:25,7]), (escalonado[26:57,7])) #bio14 boxplot(c(escalonado[1:9,8]), (escalonado[10:25,8]), (escalonado[26:57,8])) #bio15 boxplot(c(escalonado[1:9,9]), (escalonado[10:25,9]), (escalonado[26:57,9])) #bio16 boxplot(c(escalonado[1:9,10]), (escalonado[10:25,10]), (escalonado[26:57,10])) #bio17 boxplot(c(escalonado[1:9,11]), (escalonado[10:25,11]), (escalonado[26:57,11])) #bio18 boxplot(c(escalonado[1:9,12]), (escalonado[10:25,12]), (escalonado[26:57,12])) #bio19 boxplot(c(escalonado[1:9,13]), (escalonado[10:25,13]), (escalonado[26:57,13])) # bio2 boxplot(c(escalonado[1:9,14]), (escalonado[10:25,14]), (escalonado[26:57,14])) #bio3 boxplot(c(escalonado[1:9,15]), (escalonado[10:25,15]), (escalonado[26:57,15])) #bio4 boxplot(c(escalonado[1:9,16]), (escalonado[10:25,16]), (escalonado[26:57,16])) #bio5 boxplot(c(escalonado[1:9,17]), (escalonado[10:25,17]), (escalonado[26:57,17])) #bio6 boxplot(c(escalonado[1:9,18]), (escalonado[10:25,18]), (escalonado[26:57,18])) #bio7 boxplot(c(escalonado[1:9,19]), (escalonado[10:25,19]), (escalonado[26:57,19])) #bio8 boxplot(c(escalonado[1:9,20]), (escalonado[10:25,20]), (escalonado[26:57,20])) #bio9 boxplot(c(escalonado[1:9,21]), (escalonado[10:25,21]), (escalonado[26:57,21])) #dec boxplot(c(escalonado[1:9,22]), (escalonado[10:25,22]), (escalonado[26:57,22])) #desni_dre boxplot(c(escalonado[1:9,23]), (escalonado[10:25,23]), (escalonado[26:57,23])) #expo ################################################ boxplot(c(escalonado[1:9,1]), (escalonado[10:25,1]), (escalonado[26:57,1]),(escalonado[1:9,2]), (escalonado[10:25,2]), (escalonado[26:57,2]), (escalonado[1:9,3]), (escalonado[10:25,3]), (escalonado[26:57,3]), (escalonado[1:9,4]), (escalonado[10:25,4]), (escalonado[26:57,4]), (escalonado[1:9,5]), (escalonado[10:25,5]), (escalonado[26:57,5]),(escalonado[1:9,6]), (escalonado[10:25,6]), (escalonado[26:57,6]),(escalonado[1:9,7]), (escalonado[10:25,7]), (escalonado[26:57,7]), (escalonado[1:9,8]), (escalonado[10:25,8]), (escalonado[26:57,8]),(escalonado[1:9,9]), (escalonado[10:25,9]), (escalonado[26:57,9]),(escalonado[1:9,10]), (escalonado[10:25,10]), (escalonado[26:57,10]), (escalonado[1:9,11]), (escalonado[10:25,11]), (escalonado[26:57,11]), (escalonado[1:9,12]), (escalonado[10:25,12]), (escalonado[26:57,12]), (escalonado[1:9,13]), (escalonado[10:25,13]), (escalonado[26:57,13]),(escalonado[1:9,14]), (escalonado[10:25,14]), (escalonado[26:57,14]),(escalonado[1:9,15]), (escalonado[10:25,15]), (escalonado[26:57,15]),(escalonado[1:9,16]), (escalonado[10:25,16]), (escalonado[26:57,16]),(escalonado[1:9,17]), (escalonado[10:25,17]), (escalonado[26:57,17]), (escalonado[1:9,18]), (escalonado[10:25,18]), (escalonado[26:57,18]),(escalonado[1:9,19]), (escalonado[10:25,19]), (escalonado[26:57,19]),(escalonado[1:9,20]), (escalonado[10:25,20]), (escalonado[26:57,20]),(escalonado[1:9,21]), (escalonado[10:25,21]), (escalonado[26:57,21]),(escalonado[1:9,22]), (escalonado[10:25,22]), (escalonado[26:57,22]),(escalonado[1:9,23]), (escalonado[10:25,23]), (escalonado[26:57,23])) ######################### boxplot(c(escalonado[1:9,1]), (escalonado[10:25,1]), (escalonado[26:57,1]),(escalonado[1:9,2]), (escalonado[10:25,2]), (escalonado[26:57,2]), (escalonado[1:9,5]), (escalonado[10:25,5]), (escalonado[26:57,5]),(escalonado[1:9,6]), (escalonado[10:25,6]), (escalonado[26:57,6]),(escalonado[1:9,14]), (escalonado[10:25,14]), (escalonado[26:57,14]),(escalonado[1:9,22]), (escalonado[10:25,22]), (escalonado[26:57,22]),(escalonado[1:9,23]), (escalonado[10:25,23]), (escalonado[26:57,23])) boxplot(c(points_all[1:9,21]), points_all[10:25,21], points_all[26:57,21]) #dec boxplot(c(points_all[1:9,22]), points_all[10:25,22], points_all[26:57,22]) #densi_dren boxplot(c(points_all[1:9,23]), points_all[10:25,23], points_all[26:57,23]) #expo ################ df <- subset(points_for_models, select=c(lon, lat, Variables, bio12, bio13, bio15, bio20, bio5, bio6)) library(gridExtra) library(ggplot2) p <- list() for (j in colnames(df)[4:9]) { p[[j]] <- ggplot(data=df, aes_string(x="Variables",y=j)) + # Specify dataset, input or grouping col name and Y geom_boxplot(aes(fill=factor(Variables))) + guides(fill=FALSE) + # Boxplot by which factor + color guide theme(axis.title.y = element_text(face="bold", size=14)) # Make the Y-axis labels bigger/bolder } do.call(grid.arrange, c(p, ncol=6))
/R/exploratory_descriptive/boxplot_envs.R
no_license
Tai-Rocha/Ferns-and-lycophytes
R
false
false
6,438
r
######################### ## Estudando os pontos ## Authos: Tainá Rocha ## Date : May 2021 ######################## ## Library library (raster) library(ggplot2) library(ggmap) library(MASS) library(maps) library(mapdata) library(ggrepel) library(ggsn) library(rgdal) ## Read data points_all <- read.csv("./Ferns-and-lycophytes_old/data/PCA/PCA_INPUT.csv", sep = ",", dec = ".") #matri <- as.matrix(points_all) escalonado <- scale(points_all[,1:23],center=TRUE,scale=TRUE) write.csv(escalonado, "./escalonado_envs_values.csv") # verificar o conjunto de pontos somados summary(points_all) #################################################### Pontos sem stand. boxplot(c(points_all[1:9,1]), points_all[10:25,1], points_all[26:57,1]) #alt boxplot(c(points_all[1:9,2]), points_all[10:25,2], points_all[26:57,2]) #bio1 boxplot(c(points_all[1:9,5]), points_all[10:25,5], points_all[26:57,5]) #bio12 boxplot(c(points_all[1:9,6]), points_all[10:25,6], points_all[26:57,6]) #bio13 boxplot(c(points_all[1:9,8]), points_all[10:25,8], points_all[26:57,8]) #bio15 boxplot(c(points_all[1:9,14]), points_all[10:25,14], points_all[26:57,14]) #bio3 boxplot(c(points_all[1:9,21]), points_all[10:25,21], points_all[26:57,21]) #dec boxplot(c(points_all[1:9,22]), points_all[10:25,22], points_all[26:57,22]) #densi_dren boxplot(c(points_all[1:9,23]), points_all[10:25,23], points_all[26:57,23]) #expo ################################################################################################ boxplot(c(escalonado[1:9,1]), (escalonado[10:25,1]), (escalonado[26:57,1])) #alt boxplot(c(escalonado[1:9,2]), (escalonado[10:25,2]), (escalonado[26:57,2])) #bio1 boxplot(c(escalonado[1:9,3]), (escalonado[10:25,3]), (escalonado[26:57,3])) #bio10 boxplot(c(escalonado[1:9,4]), (escalonado[10:25,4]), (escalonado[26:57,4])) #bio11 boxplot(c(escalonado[1:9,5]), (escalonado[10:25,5]), (escalonado[26:57,5])) #bio12 boxplot(c(escalonado[1:9,6]), (escalonado[10:25,6]), (escalonado[26:57,6])) # bio13 boxplot(c(escalonado[1:9,7]), (escalonado[10:25,7]), (escalonado[26:57,7])) #bio14 boxplot(c(escalonado[1:9,8]), (escalonado[10:25,8]), (escalonado[26:57,8])) #bio15 boxplot(c(escalonado[1:9,9]), (escalonado[10:25,9]), (escalonado[26:57,9])) #bio16 boxplot(c(escalonado[1:9,10]), (escalonado[10:25,10]), (escalonado[26:57,10])) #bio17 boxplot(c(escalonado[1:9,11]), (escalonado[10:25,11]), (escalonado[26:57,11])) #bio18 boxplot(c(escalonado[1:9,12]), (escalonado[10:25,12]), (escalonado[26:57,12])) #bio19 boxplot(c(escalonado[1:9,13]), (escalonado[10:25,13]), (escalonado[26:57,13])) # bio2 boxplot(c(escalonado[1:9,14]), (escalonado[10:25,14]), (escalonado[26:57,14])) #bio3 boxplot(c(escalonado[1:9,15]), (escalonado[10:25,15]), (escalonado[26:57,15])) #bio4 boxplot(c(escalonado[1:9,16]), (escalonado[10:25,16]), (escalonado[26:57,16])) #bio5 boxplot(c(escalonado[1:9,17]), (escalonado[10:25,17]), (escalonado[26:57,17])) #bio6 boxplot(c(escalonado[1:9,18]), (escalonado[10:25,18]), (escalonado[26:57,18])) #bio7 boxplot(c(escalonado[1:9,19]), (escalonado[10:25,19]), (escalonado[26:57,19])) #bio8 boxplot(c(escalonado[1:9,20]), (escalonado[10:25,20]), (escalonado[26:57,20])) #bio9 boxplot(c(escalonado[1:9,21]), (escalonado[10:25,21]), (escalonado[26:57,21])) #dec boxplot(c(escalonado[1:9,22]), (escalonado[10:25,22]), (escalonado[26:57,22])) #desni_dre boxplot(c(escalonado[1:9,23]), (escalonado[10:25,23]), (escalonado[26:57,23])) #expo ################################################ boxplot(c(escalonado[1:9,1]), (escalonado[10:25,1]), (escalonado[26:57,1]),(escalonado[1:9,2]), (escalonado[10:25,2]), (escalonado[26:57,2]), (escalonado[1:9,3]), (escalonado[10:25,3]), (escalonado[26:57,3]), (escalonado[1:9,4]), (escalonado[10:25,4]), (escalonado[26:57,4]), (escalonado[1:9,5]), (escalonado[10:25,5]), (escalonado[26:57,5]),(escalonado[1:9,6]), (escalonado[10:25,6]), (escalonado[26:57,6]),(escalonado[1:9,7]), (escalonado[10:25,7]), (escalonado[26:57,7]), (escalonado[1:9,8]), (escalonado[10:25,8]), (escalonado[26:57,8]),(escalonado[1:9,9]), (escalonado[10:25,9]), (escalonado[26:57,9]),(escalonado[1:9,10]), (escalonado[10:25,10]), (escalonado[26:57,10]), (escalonado[1:9,11]), (escalonado[10:25,11]), (escalonado[26:57,11]), (escalonado[1:9,12]), (escalonado[10:25,12]), (escalonado[26:57,12]), (escalonado[1:9,13]), (escalonado[10:25,13]), (escalonado[26:57,13]),(escalonado[1:9,14]), (escalonado[10:25,14]), (escalonado[26:57,14]),(escalonado[1:9,15]), (escalonado[10:25,15]), (escalonado[26:57,15]),(escalonado[1:9,16]), (escalonado[10:25,16]), (escalonado[26:57,16]),(escalonado[1:9,17]), (escalonado[10:25,17]), (escalonado[26:57,17]), (escalonado[1:9,18]), (escalonado[10:25,18]), (escalonado[26:57,18]),(escalonado[1:9,19]), (escalonado[10:25,19]), (escalonado[26:57,19]),(escalonado[1:9,20]), (escalonado[10:25,20]), (escalonado[26:57,20]),(escalonado[1:9,21]), (escalonado[10:25,21]), (escalonado[26:57,21]),(escalonado[1:9,22]), (escalonado[10:25,22]), (escalonado[26:57,22]),(escalonado[1:9,23]), (escalonado[10:25,23]), (escalonado[26:57,23])) ######################### boxplot(c(escalonado[1:9,1]), (escalonado[10:25,1]), (escalonado[26:57,1]),(escalonado[1:9,2]), (escalonado[10:25,2]), (escalonado[26:57,2]), (escalonado[1:9,5]), (escalonado[10:25,5]), (escalonado[26:57,5]),(escalonado[1:9,6]), (escalonado[10:25,6]), (escalonado[26:57,6]),(escalonado[1:9,14]), (escalonado[10:25,14]), (escalonado[26:57,14]),(escalonado[1:9,22]), (escalonado[10:25,22]), (escalonado[26:57,22]),(escalonado[1:9,23]), (escalonado[10:25,23]), (escalonado[26:57,23])) boxplot(c(points_all[1:9,21]), points_all[10:25,21], points_all[26:57,21]) #dec boxplot(c(points_all[1:9,22]), points_all[10:25,22], points_all[26:57,22]) #densi_dren boxplot(c(points_all[1:9,23]), points_all[10:25,23], points_all[26:57,23]) #expo ################ df <- subset(points_for_models, select=c(lon, lat, Variables, bio12, bio13, bio15, bio20, bio5, bio6)) library(gridExtra) library(ggplot2) p <- list() for (j in colnames(df)[4:9]) { p[[j]] <- ggplot(data=df, aes_string(x="Variables",y=j)) + # Specify dataset, input or grouping col name and Y geom_boxplot(aes(fill=factor(Variables))) + guides(fill=FALSE) + # Boxplot by which factor + color guide theme(axis.title.y = element_text(face="bold", size=14)) # Make the Y-axis labels bigger/bolder } do.call(grid.arrange, c(p, ncol=6))
" This function takes tbl_df object from selectData() and arranges the columns first by outcome level and then by hospital names. " orderData <- function(outcomeData) { # Order outcome (low to high) then hospitals return(arrange(outcomeData, outcome, hospital)) }
/RCourse/assignments/assignment3/dplyrWay/orderData.R
no_license
statisticallyfit/R
R
false
false
276
r
" This function takes tbl_df object from selectData() and arranges the columns first by outcome level and then by hospital names. " orderData <- function(outcomeData) { # Order outcome (low to high) then hospitals return(arrange(outcomeData, outcome, hospital)) }
## Created 8/10/2015 by Daniel Beck ## Last modified 11/9/2016 ## This script automatically generates all relevant reports for selected comparisons and ## p-values. The number of analyses, p-values, and option flags should be the same. source("dataNames_AciJub.R") source("customFunctions.R") library("rmarkdown") report.analyses <- c("all") report.pvalues <- rep(1e-5, 2) report.filenames <- paste(resultsDirectory, report.analyses, "/report_", gsub(" ", "_", projectName), "_", report.analyses, "_", report.pvalues, ".pdf", sep="") cpgMaxV <- rep(NA, length(report.analyses)) # Y-axis maximum for CpG density histogram (NA for auto). lenMaxV <- rep(NA, length(report.analyses)) # Y-axis maximum for DMR length histogram (NA for auto). topNV <- rep(NA, length(report.analyses)) # Generate figures using top N DMR (NA for all DMR). ## For generating reports for (i in 1:length(report.analyses)){ analysisName <- report.analyses[i] reportPvalue <- report.pvalues[i] cpgMax <- cpgMaxV[i] lenMax <- lenMaxV[i] topN <- topNV[i] save(analysisName, reportPvalue, cpgMax, lenMax, topN, file = paste(codeDirectory, "/reportValues.Rdata", sep = "")) render(input = "medipReport.Rmd", output_file = reportFileName[i]) }
/generateReports.R
no_license
TaniaPGue/Methylation_cheetah
R
false
false
1,278
r
## Created 8/10/2015 by Daniel Beck ## Last modified 11/9/2016 ## This script automatically generates all relevant reports for selected comparisons and ## p-values. The number of analyses, p-values, and option flags should be the same. source("dataNames_AciJub.R") source("customFunctions.R") library("rmarkdown") report.analyses <- c("all") report.pvalues <- rep(1e-5, 2) report.filenames <- paste(resultsDirectory, report.analyses, "/report_", gsub(" ", "_", projectName), "_", report.analyses, "_", report.pvalues, ".pdf", sep="") cpgMaxV <- rep(NA, length(report.analyses)) # Y-axis maximum for CpG density histogram (NA for auto). lenMaxV <- rep(NA, length(report.analyses)) # Y-axis maximum for DMR length histogram (NA for auto). topNV <- rep(NA, length(report.analyses)) # Generate figures using top N DMR (NA for all DMR). ## For generating reports for (i in 1:length(report.analyses)){ analysisName <- report.analyses[i] reportPvalue <- report.pvalues[i] cpgMax <- cpgMaxV[i] lenMax <- lenMaxV[i] topN <- topNV[i] save(analysisName, reportPvalue, cpgMax, lenMax, topN, file = paste(codeDirectory, "/reportValues.Rdata", sep = "")) render(input = "medipReport.Rmd", output_file = reportFileName[i]) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/optionstrat.R \name{putrho} \alias{putrho} \title{Put Rho} \usage{ putrho(s, x, sigma, t, r, d = 0) } \arguments{ \item{s}{Spot price of the underlying asset} \item{x}{Strike price of the option} \item{sigma}{Implied volatility of the underlying asset price, defined as the annualized standard deviation of the asset returns} \item{t}{Time to maturity in years} \item{r}{Annual continuously-compounded risk-free rate, use the function r.cont} \item{d}{Annual continuously-compounded dividend yield, use the function r.cont} } \value{ Returns the put rho } \description{ Calculates the rho of the European- style put option } \details{ Rho measures the change in the option's value given a 1% change in the interest rate. } \examples{ putrho(100, 100, 0.20, (45/365), 0.02, 0.02) }
/man/putrho.Rd
no_license
Allisterh/optionstrat
R
false
true
897
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/optionstrat.R \name{putrho} \alias{putrho} \title{Put Rho} \usage{ putrho(s, x, sigma, t, r, d = 0) } \arguments{ \item{s}{Spot price of the underlying asset} \item{x}{Strike price of the option} \item{sigma}{Implied volatility of the underlying asset price, defined as the annualized standard deviation of the asset returns} \item{t}{Time to maturity in years} \item{r}{Annual continuously-compounded risk-free rate, use the function r.cont} \item{d}{Annual continuously-compounded dividend yield, use the function r.cont} } \value{ Returns the put rho } \description{ Calculates the rho of the European- style put option } \details{ Rho measures the change in the option's value given a 1% change in the interest rate. } \examples{ putrho(100, 100, 0.20, (45/365), 0.02, 0.02) }
# suppose we have a file basename, stored in chunks, say basename.001, # basename.002 etc.; this function determine the file name for the chunk # to be handled by node nodenum; the latter is the ID for the executing # node, partoolsenv$myid, set by setclsinfo() filechunkname <- function (basename, ndigs,nodenum=NULL) { tmp <- basename if (is.null(nodenum)) { pte <- getpte() nodenum <- pte$myid } n0s <- ndigs - nchar(as.character(nodenum)) zerostring <- paste(rep("0", n0s),sep="",collapse="") paste(basename, ".", zerostring, nodenum, sep = "") } # distributed file sort on cls, based on column number colnum of input; # file name from basename, ndigs; bucket sort, with categories # determined by first sampling nsamp from each chunk; each node's output # chunk written to file outname (plus suffix based on node number) in # the node's global space filesort <- function(cls,basename,ndigs,colnum, outname,nsamp=1000,header=FALSE,sep="") { clusterEvalQ(cls,library(partools)) setclsinfo(cls) samps <- clusterCall(cls,getsample,basename,ndigs,colnum, header=header,sep=sep,nsamp) samp <- Reduce(c,samps) bds <- getbounds(samp,length(cls)) clusterApply(cls,bds,mysortedchunk, basename,ndigs,colnum,outname,header,sep) 0 } getsample <- function(basename,ndigs,colnum, header=FALSE,sep="",nsamp) { fname <- filechunkname(basename,ndigs) read.table(fname,nrows=nsamp,header=header,sep=sep)[,colnum] } getbounds <- function(samp,numnodes) { bds <- list() q <- quantile(samp,((2:numnodes) - 1) / numnodes) samp <- sort(samp) for (i in 1:numnodes) { mylo <- if (i > 1) q[i-1] else NA myhi <- if (i < numnodes) q[i] else NA bds[[i]] <- c(mylo,myhi) } bds } mysortedchunk <- function(mybds,basename,ndigs,colnum,outname,header,sep) { pte <- getpte() me <- pte$myid ncls <- pte$ncls mylo <- mybds[1] myhi <- mybds[2] for (i in 1:ncls) { tmp <- read.table(filechunkname(basename,ndigs,i),header=header,sep) tmpcol <- tmp[,colnum] if (me == 1) { tmp <- tmp[tmpcol <= myhi,] } else if (me == ncls) { tmp <- tmp[tmpcol > mylo,] } else { tmp <- tmp[tmpcol > mylo & tmpcol <= myhi,] } mychunk <- if (i == 1) tmp else rbind(mychunk,tmp) } sortedmchunk <- mychunk[order(mychunk[,colnum]),] assign(outname,sortedmchunk,envir=.GlobalEnv) } # split a file into chunks, one per cluster node filesplit <- function(cls,basename,header=FALSE) { cmdout <- system(paste("wc -l",basename),intern=TRUE) tmp <- strsplit(cmdout[[1]][1], " ")[[1]] nlines <- as.integer(tmp[length(tmp) - 1]) con <- file(basename,open="r") if (header) { hdr <- readLines(con,1) nlines <- nlines - 1 } lcls <- length(cls) ndigs <- ceiling(log10(lcls)) chunks <- clusterSplit(cls,1:nlines) chunksizes <- sapply(chunks,length) for (i in 1:lcls) { chunk <- readLines(con,chunksizes[i]) fn <- filechunkname(basename,ndigs,i) conout <- file(fn,open="w") if (header) writeLines(hdr,conout) writeLines(chunk,conout) close(conout) } }
/R/Snowdoop.R
no_license
edwardt/partools
R
false
false
3,211
r
# suppose we have a file basename, stored in chunks, say basename.001, # basename.002 etc.; this function determine the file name for the chunk # to be handled by node nodenum; the latter is the ID for the executing # node, partoolsenv$myid, set by setclsinfo() filechunkname <- function (basename, ndigs,nodenum=NULL) { tmp <- basename if (is.null(nodenum)) { pte <- getpte() nodenum <- pte$myid } n0s <- ndigs - nchar(as.character(nodenum)) zerostring <- paste(rep("0", n0s),sep="",collapse="") paste(basename, ".", zerostring, nodenum, sep = "") } # distributed file sort on cls, based on column number colnum of input; # file name from basename, ndigs; bucket sort, with categories # determined by first sampling nsamp from each chunk; each node's output # chunk written to file outname (plus suffix based on node number) in # the node's global space filesort <- function(cls,basename,ndigs,colnum, outname,nsamp=1000,header=FALSE,sep="") { clusterEvalQ(cls,library(partools)) setclsinfo(cls) samps <- clusterCall(cls,getsample,basename,ndigs,colnum, header=header,sep=sep,nsamp) samp <- Reduce(c,samps) bds <- getbounds(samp,length(cls)) clusterApply(cls,bds,mysortedchunk, basename,ndigs,colnum,outname,header,sep) 0 } getsample <- function(basename,ndigs,colnum, header=FALSE,sep="",nsamp) { fname <- filechunkname(basename,ndigs) read.table(fname,nrows=nsamp,header=header,sep=sep)[,colnum] } getbounds <- function(samp,numnodes) { bds <- list() q <- quantile(samp,((2:numnodes) - 1) / numnodes) samp <- sort(samp) for (i in 1:numnodes) { mylo <- if (i > 1) q[i-1] else NA myhi <- if (i < numnodes) q[i] else NA bds[[i]] <- c(mylo,myhi) } bds } mysortedchunk <- function(mybds,basename,ndigs,colnum,outname,header,sep) { pte <- getpte() me <- pte$myid ncls <- pte$ncls mylo <- mybds[1] myhi <- mybds[2] for (i in 1:ncls) { tmp <- read.table(filechunkname(basename,ndigs,i),header=header,sep) tmpcol <- tmp[,colnum] if (me == 1) { tmp <- tmp[tmpcol <= myhi,] } else if (me == ncls) { tmp <- tmp[tmpcol > mylo,] } else { tmp <- tmp[tmpcol > mylo & tmpcol <= myhi,] } mychunk <- if (i == 1) tmp else rbind(mychunk,tmp) } sortedmchunk <- mychunk[order(mychunk[,colnum]),] assign(outname,sortedmchunk,envir=.GlobalEnv) } # split a file into chunks, one per cluster node filesplit <- function(cls,basename,header=FALSE) { cmdout <- system(paste("wc -l",basename),intern=TRUE) tmp <- strsplit(cmdout[[1]][1], " ")[[1]] nlines <- as.integer(tmp[length(tmp) - 1]) con <- file(basename,open="r") if (header) { hdr <- readLines(con,1) nlines <- nlines - 1 } lcls <- length(cls) ndigs <- ceiling(log10(lcls)) chunks <- clusterSplit(cls,1:nlines) chunksizes <- sapply(chunks,length) for (i in 1:lcls) { chunk <- readLines(con,chunksizes[i]) fn <- filechunkname(basename,ndigs,i) conout <- file(fn,open="w") if (header) writeLines(hdr,conout) writeLines(chunk,conout) close(conout) } }
library(ReIns) ### Name: cProbGPD ### Title: Estimator of small exceedance probabilities and large return ### periods using censored GPD-MLE ### Aliases: cProbGPD cReturnGPD ### ** Examples # Set seed set.seed(29072016) # Pareto random sample X <- rpareto(500, shape=2) # Censoring variable Y <- rpareto(500, shape=1) # Observed sample Z <- pmin(X, Y) # Censoring indicator censored <- (X>Y) # GPD-MLE estimator adapted for right censoring cpot <- cGPDmle(Z, censored=censored, plot=TRUE) # Exceedance probability q <- 10 cProbGPD(Z, gamma1=cpot$gamma1, sigma1=cpot$sigma1, censored=censored, q=q, plot=TRUE) # Return period cReturnGPD(Z, gamma1=cpot$gamma1, sigma1=cpot$sigma1, censored=censored, q=q, plot=TRUE)
/data/genthat_extracted_code/ReIns/examples/cProbGPD.Rd.R
no_license
surayaaramli/typeRrh
R
false
false
766
r
library(ReIns) ### Name: cProbGPD ### Title: Estimator of small exceedance probabilities and large return ### periods using censored GPD-MLE ### Aliases: cProbGPD cReturnGPD ### ** Examples # Set seed set.seed(29072016) # Pareto random sample X <- rpareto(500, shape=2) # Censoring variable Y <- rpareto(500, shape=1) # Observed sample Z <- pmin(X, Y) # Censoring indicator censored <- (X>Y) # GPD-MLE estimator adapted for right censoring cpot <- cGPDmle(Z, censored=censored, plot=TRUE) # Exceedance probability q <- 10 cProbGPD(Z, gamma1=cpot$gamma1, sigma1=cpot$sigma1, censored=censored, q=q, plot=TRUE) # Return period cReturnGPD(Z, gamma1=cpot$gamma1, sigma1=cpot$sigma1, censored=censored, q=q, plot=TRUE)
#Coursera course Getting and Cleaning data #week 2 #quiz #QUESTION 1 install.packages("jsonlite") library(jsonlite) install.packages("httpuv") library(httpuv) install.packages("httr") library(httr) # 1. Find OAuth settings for github: oauth_endpoints("github") #endpoints are URLs that we call to request the authorization codes. # 2. Make my own application on github API #Go to git hub, settings, developer settings, new github app: # https://github.com/settings/developers. Use any URL for the homepage URL # (http://github.com is fine) and http://localhost:1410 as the callback url # Replace key and secret below according to my app myapp <- oauth_app("github", key = "743036b8a7142eb6f70f", secret = "617d60d44c2bb4af30a16bdf26b0d5d42d012ab0" ) # 3. Get OAuth credentials github_token <- oauth2.0_token(oauth_endpoints("github"), myapp) # 4. Use API gtoken <- config(token = github_token) req <- GET("https://api.github.com/users/jtleek/repos", gtoken) #request to extract data from the link #extract content from link json1 = content(req) #structure info from json file into a more readable version json2 = jsonlite::fromJSON(jsonlite::toJSON(json1)) #Now from this data frame called json2 which is in jsonlite format, we want to extract #on the time that the datasharing repo was created. json2[1, 1:10] #we can see there is a column called fullname which describes the different pushes to the repo json2[json2$full_name == "jtleek/datasharing", "created_at"] #we subset to find the row of the push that #shows us the data and time of the event when jtleek pused a commit to datasharing that said created at. #QUESTION 2 #They have given us a link to an online doc, we can automatically download it install.packages("RMySQL", type="source") library(RMySQL) install.packages("sqldf") library(sqldf) #Download data into R url <- "https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06pid.csv" #save url link download.file(url, destfile="./doc.csv") #download doc from link and save it inside the wd acs<- read.table("./doc.csv", sep=",", header=TRUE) #read data View(acs) #we can use the sqldf to send queries #if we want to obtain a subset of the acs dataframe where we only get column pwgtp1 for ages less than 50 acs2 <- sqldf("select pwgtp1 from acs where AGEP < 50") #QUESTION 3 # the equivalent of the function unique in the sql package is distinct sqldf("select distinct AGEP from acs2") #will get us a list of the pwgtp1 rows with unique AGE values #QUESTION 4 #Reading from html link con=url ("http://biostat.jhsph.edu/~jleek/contact.html") #open connection with link htmlCode=readLines(con) #read the info close(con) #important to close the connection #number of characters in the 10th, 20th, 30th, 100th lines of the imported data nchar(htmlCode[c(10,20,30,100)]) #QUESTION 5 #read in the data set into R, data comes from a random link url <- "https://d396qusza40orc.cloudfront.net/getdata%2Fwksst8110.for" #save url link download.file(url, destfile="./doc5") #download doc from link and save it inside the wd dataq5<- read.table("./doc5", sep=",") #read data, but this is a fixed width file format, so we need diff extraction method dataq5 <- read.fwf("./doc5",widths=c(-1,9,-5,4,4,-5,4,4,-5,4,4,-5,4,4), skip=4) #we need to specify the widths #because they have not been specified ## skip =4 is for skipping the first 4 lines #-1 -> leaves one blank(if you open the .for file in n++, you will see the space before 03JAN1990) # 9 -> length of the date, # -5 -> leaves 5 blank, #4 ->takes the first Nino1+2 SST input #4 -> takes the second Nino1+2 SST input and so on. sum(dataq5[, 4])
/quizweek2.R
no_license
juliavigu/datasciencecoursera
R
false
false
3,778
r
#Coursera course Getting and Cleaning data #week 2 #quiz #QUESTION 1 install.packages("jsonlite") library(jsonlite) install.packages("httpuv") library(httpuv) install.packages("httr") library(httr) # 1. Find OAuth settings for github: oauth_endpoints("github") #endpoints are URLs that we call to request the authorization codes. # 2. Make my own application on github API #Go to git hub, settings, developer settings, new github app: # https://github.com/settings/developers. Use any URL for the homepage URL # (http://github.com is fine) and http://localhost:1410 as the callback url # Replace key and secret below according to my app myapp <- oauth_app("github", key = "743036b8a7142eb6f70f", secret = "617d60d44c2bb4af30a16bdf26b0d5d42d012ab0" ) # 3. Get OAuth credentials github_token <- oauth2.0_token(oauth_endpoints("github"), myapp) # 4. Use API gtoken <- config(token = github_token) req <- GET("https://api.github.com/users/jtleek/repos", gtoken) #request to extract data from the link #extract content from link json1 = content(req) #structure info from json file into a more readable version json2 = jsonlite::fromJSON(jsonlite::toJSON(json1)) #Now from this data frame called json2 which is in jsonlite format, we want to extract #on the time that the datasharing repo was created. json2[1, 1:10] #we can see there is a column called fullname which describes the different pushes to the repo json2[json2$full_name == "jtleek/datasharing", "created_at"] #we subset to find the row of the push that #shows us the data and time of the event when jtleek pused a commit to datasharing that said created at. #QUESTION 2 #They have given us a link to an online doc, we can automatically download it install.packages("RMySQL", type="source") library(RMySQL) install.packages("sqldf") library(sqldf) #Download data into R url <- "https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06pid.csv" #save url link download.file(url, destfile="./doc.csv") #download doc from link and save it inside the wd acs<- read.table("./doc.csv", sep=",", header=TRUE) #read data View(acs) #we can use the sqldf to send queries #if we want to obtain a subset of the acs dataframe where we only get column pwgtp1 for ages less than 50 acs2 <- sqldf("select pwgtp1 from acs where AGEP < 50") #QUESTION 3 # the equivalent of the function unique in the sql package is distinct sqldf("select distinct AGEP from acs2") #will get us a list of the pwgtp1 rows with unique AGE values #QUESTION 4 #Reading from html link con=url ("http://biostat.jhsph.edu/~jleek/contact.html") #open connection with link htmlCode=readLines(con) #read the info close(con) #important to close the connection #number of characters in the 10th, 20th, 30th, 100th lines of the imported data nchar(htmlCode[c(10,20,30,100)]) #QUESTION 5 #read in the data set into R, data comes from a random link url <- "https://d396qusza40orc.cloudfront.net/getdata%2Fwksst8110.for" #save url link download.file(url, destfile="./doc5") #download doc from link and save it inside the wd dataq5<- read.table("./doc5", sep=",") #read data, but this is a fixed width file format, so we need diff extraction method dataq5 <- read.fwf("./doc5",widths=c(-1,9,-5,4,4,-5,4,4,-5,4,4,-5,4,4), skip=4) #we need to specify the widths #because they have not been specified ## skip =4 is for skipping the first 4 lines #-1 -> leaves one blank(if you open the .for file in n++, you will see the space before 03JAN1990) # 9 -> length of the date, # -5 -> leaves 5 blank, #4 ->takes the first Nino1+2 SST input #4 -> takes the second Nino1+2 SST input and so on. sum(dataq5[, 4])
testlist <- list(x = structure(c(2.31584307392677e+77, 9.5381825201569e+295, 1.22810536108214e+146, 4.12396251261199e-221, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Dim = c(5L, 7L))) result <- do.call(multivariance::fastdist,testlist) str(result)
/multivariance/inst/testfiles/fastdist/AFL_fastdist/fastdist_valgrind_files/1613098275-test.R
no_license
akhikolla/updatedatatype-list3
R
false
false
302
r
testlist <- list(x = structure(c(2.31584307392677e+77, 9.5381825201569e+295, 1.22810536108214e+146, 4.12396251261199e-221, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Dim = c(5L, 7L))) result <- do.call(multivariance::fastdist,testlist) str(result)
library(magrittr) my_f <- "C:/Users/kxmna01/Desktop/CP023688_protein_FIXED.fasta" my_fasta <- seqinr::read.fasta(file = my_f, seqtype = "AA", as.string = TRUE, whole.header = TRUE) find_stop <- lapply(my_fasta, function(x) { grepl("\\*.", x) }) %>% unlist(.) my_fasta_filt <- my_fasta[!find_stop] seqinr::write.fasta( sequences = my_fasta_filt, names = names(my_fasta_filt), file.out = sub(".fasta", "_FILT.fasta", my_f), open = "w", nbchar = 60, as.string = TRUE)
/tools/Rscripts/tmp_filter_stop_from_fasta.R
no_license
nnalpas/Proteogenomics_reannotation
R
false
false
494
r
library(magrittr) my_f <- "C:/Users/kxmna01/Desktop/CP023688_protein_FIXED.fasta" my_fasta <- seqinr::read.fasta(file = my_f, seqtype = "AA", as.string = TRUE, whole.header = TRUE) find_stop <- lapply(my_fasta, function(x) { grepl("\\*.", x) }) %>% unlist(.) my_fasta_filt <- my_fasta[!find_stop] seqinr::write.fasta( sequences = my_fasta_filt, names = names(my_fasta_filt), file.out = sub(".fasta", "_FILT.fasta", my_f), open = "w", nbchar = 60, as.string = TRUE)
library(tools) library(tm) source(file_path_as_absolute("ipm/experimenters.R")) source(file_path_as_absolute("utils/getDados.R")) source(file_path_as_absolute("baseline/dados.R")) source(file_path_as_absolute("utils/tokenizer.R")) #Geração dos dados lines <- readLines(file.path("/var/www/html/drunktweets", "adhoc/exportembedding/new_skipgrams_10_epocas_5l_q1.txt")) embeddings_index <- new.env(hash = TRUE, parent = emptyenv()) for (i in 1:length(lines)) { line <- lines[[i]] values <- strsplit(line, " ")[[1]] word <- values[[1]] embeddings_index[[word]] <- as.double(values[-1]) } cat("Found", length(embeddings_index), "word vectors.\n") dados <- getDadosBaselineByQ("q1") # dados$textEmbedding <- removePunctuation(dados$textEmbedding) maxlen <- 38 max_words <- 7860 tokenizer <- text_tokenizer(num_words = max_words) %>% fit_text_tokenizer(dados$textEmbedding) sequences <- texts_to_sequences(tokenizer, dados$textEmbedding) word_index = tokenizer$word_index vocab_size <- length(word_index) vocab_size <- vocab_size + 1 vocab_size cat("Found", length(word_index), "unique tokens.\n") data <- pad_sequences(sequences, maxlen = maxlen) library(caret) trainIndex <- createDataPartition(dados$resposta, p=0.8, list=FALSE) dados_train <- dados[ trainIndex,] dados_test <- dados[-trainIndex,] dados_train_sequence <- data[ trainIndex,] dados_test_sequence <- data[-trainIndex,] max_words <- vocab_size word_index <- tokenizer$word_index callbacks_list <- list( callback_early_stopping( monitor = "val_loss", patience = 1 ), callback_model_checkpoint( filepath = paste0("adhoc/exportembedding/adicionais/test_models.h5"), monitor = "val_loss", save_best_only = TRUE ) ) # Data Preparation -------------------------------------------------------- # Parameters -------------------------------------------------------------- embedding_dims <- 100 # Parameters -------------------------------------------------------------- # filters <- 200 filters <- 164 main_input <- layer_input(shape = c(maxlen), dtype = "int32") embedding_input <- main_input %>% layer_embedding(input_dim = vocab_size, output_dim = embedding_dims, input_length = maxlen, name = "embedding") ccn_out_3 <- embedding_input %>% layer_conv_1d( filters, 3, padding = "valid", activation = "relu", strides = 1 ) %>% layer_global_max_pooling_1d() ccn_out_4 <- embedding_input %>% layer_conv_1d( filters, 4, padding = "valid", activation = "relu", strides = 1 ) %>% layer_global_max_pooling_1d() ccn_out_5 <- embedding_input %>% layer_conv_1d( filters, 5, padding = "valid", activation = "relu", strides = 1 ) %>% layer_global_max_pooling_1d() main_output <- layer_concatenate(c(ccn_out_3, ccn_out_4, ccn_out_5)) %>% layer_dropout(0.2) %>% layer_dense(units = 8, activation = "relu") %>% layer_dense(units = 1, activation = 'sigmoid') model <- keras_model( inputs = c(main_input), outputs = main_output ) embedding_dim <- 100 embedding_matrix <- array(0, c(max_words, embedding_dim)) for (word in names(word_index)) { index <- word_index[[word]] if (index < max_words) { embedding_vector <- embeddings_index[[word]] if (!is.null(embedding_vector)) embedding_matrix[index+1,] <- embedding_vector } } get_layer(model, index = 1) %>% set_weights(list(embedding_matrix)) model %>% compile( loss = "binary_crossentropy", optimizer = "adam", metrics = "accuracy" ) library(keras) # Training ---------------------------------------------------------------- history <- model %>% fit( x = list(dados_train_sequence), y = array(dados_train$resposta), batch_size = 64, epochs = 10, #callbacks = callbacks_list, validation_split = 0.2 ) # predictions <- model %>% predict(list(dados_test_sequence)) # predictions2 <- round(predictions, 0 # matriz <- confusionMatrix(data = as.factor(predictions2), as.factor(dados_test$resposta), positive="1") # resultados <- addRowAdpater(resultados, DESC, matriz) ## library(dplyr) embedding_matrixTwo <- get_weights(model)[[1]] words <- data_frame( word = names(tokenizer$word_index), id = as.integer(unlist(tokenizer$word_index)) ) words <- words %>% filter(id <= tokenizer$num_words) %>% arrange(id) row.names(embedding_matrixTwo) <- c("UNK", words$word) embedding_file <- "adhoc/exportembedding/ds1/q1/cnn_10_epocas_8_filters164_skipgram.txt" write.table(embedding_matrixTwo, embedding_file, sep=" ",row.names=TRUE) system(paste0("sed -i 's/\"//g' ", embedding_file))
/adhoc/exportembedding/ds1/cnn_q1_skigram_nonstatic.R
no_license
MarcosGrzeca/drunktweets
R
false
false
4,617
r
library(tools) library(tm) source(file_path_as_absolute("ipm/experimenters.R")) source(file_path_as_absolute("utils/getDados.R")) source(file_path_as_absolute("baseline/dados.R")) source(file_path_as_absolute("utils/tokenizer.R")) #Geração dos dados lines <- readLines(file.path("/var/www/html/drunktweets", "adhoc/exportembedding/new_skipgrams_10_epocas_5l_q1.txt")) embeddings_index <- new.env(hash = TRUE, parent = emptyenv()) for (i in 1:length(lines)) { line <- lines[[i]] values <- strsplit(line, " ")[[1]] word <- values[[1]] embeddings_index[[word]] <- as.double(values[-1]) } cat("Found", length(embeddings_index), "word vectors.\n") dados <- getDadosBaselineByQ("q1") # dados$textEmbedding <- removePunctuation(dados$textEmbedding) maxlen <- 38 max_words <- 7860 tokenizer <- text_tokenizer(num_words = max_words) %>% fit_text_tokenizer(dados$textEmbedding) sequences <- texts_to_sequences(tokenizer, dados$textEmbedding) word_index = tokenizer$word_index vocab_size <- length(word_index) vocab_size <- vocab_size + 1 vocab_size cat("Found", length(word_index), "unique tokens.\n") data <- pad_sequences(sequences, maxlen = maxlen) library(caret) trainIndex <- createDataPartition(dados$resposta, p=0.8, list=FALSE) dados_train <- dados[ trainIndex,] dados_test <- dados[-trainIndex,] dados_train_sequence <- data[ trainIndex,] dados_test_sequence <- data[-trainIndex,] max_words <- vocab_size word_index <- tokenizer$word_index callbacks_list <- list( callback_early_stopping( monitor = "val_loss", patience = 1 ), callback_model_checkpoint( filepath = paste0("adhoc/exportembedding/adicionais/test_models.h5"), monitor = "val_loss", save_best_only = TRUE ) ) # Data Preparation -------------------------------------------------------- # Parameters -------------------------------------------------------------- embedding_dims <- 100 # Parameters -------------------------------------------------------------- # filters <- 200 filters <- 164 main_input <- layer_input(shape = c(maxlen), dtype = "int32") embedding_input <- main_input %>% layer_embedding(input_dim = vocab_size, output_dim = embedding_dims, input_length = maxlen, name = "embedding") ccn_out_3 <- embedding_input %>% layer_conv_1d( filters, 3, padding = "valid", activation = "relu", strides = 1 ) %>% layer_global_max_pooling_1d() ccn_out_4 <- embedding_input %>% layer_conv_1d( filters, 4, padding = "valid", activation = "relu", strides = 1 ) %>% layer_global_max_pooling_1d() ccn_out_5 <- embedding_input %>% layer_conv_1d( filters, 5, padding = "valid", activation = "relu", strides = 1 ) %>% layer_global_max_pooling_1d() main_output <- layer_concatenate(c(ccn_out_3, ccn_out_4, ccn_out_5)) %>% layer_dropout(0.2) %>% layer_dense(units = 8, activation = "relu") %>% layer_dense(units = 1, activation = 'sigmoid') model <- keras_model( inputs = c(main_input), outputs = main_output ) embedding_dim <- 100 embedding_matrix <- array(0, c(max_words, embedding_dim)) for (word in names(word_index)) { index <- word_index[[word]] if (index < max_words) { embedding_vector <- embeddings_index[[word]] if (!is.null(embedding_vector)) embedding_matrix[index+1,] <- embedding_vector } } get_layer(model, index = 1) %>% set_weights(list(embedding_matrix)) model %>% compile( loss = "binary_crossentropy", optimizer = "adam", metrics = "accuracy" ) library(keras) # Training ---------------------------------------------------------------- history <- model %>% fit( x = list(dados_train_sequence), y = array(dados_train$resposta), batch_size = 64, epochs = 10, #callbacks = callbacks_list, validation_split = 0.2 ) # predictions <- model %>% predict(list(dados_test_sequence)) # predictions2 <- round(predictions, 0 # matriz <- confusionMatrix(data = as.factor(predictions2), as.factor(dados_test$resposta), positive="1") # resultados <- addRowAdpater(resultados, DESC, matriz) ## library(dplyr) embedding_matrixTwo <- get_weights(model)[[1]] words <- data_frame( word = names(tokenizer$word_index), id = as.integer(unlist(tokenizer$word_index)) ) words <- words %>% filter(id <= tokenizer$num_words) %>% arrange(id) row.names(embedding_matrixTwo) <- c("UNK", words$word) embedding_file <- "adhoc/exportembedding/ds1/q1/cnn_10_epocas_8_filters164_skipgram.txt" write.table(embedding_matrixTwo, embedding_file, sep=" ",row.names=TRUE) system(paste0("sed -i 's/\"//g' ", embedding_file))
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/bycounty.R \name{aqs_annualsummary_by_county} \alias{aqs_annualsummary_by_county} \title{aqs_annualsummary_by_county} \usage{ aqs_annualsummary_by_county( parameter, bdate, edate, stateFIPS, countycode, cbdate = NA_Date_, cedate = NA_Date_, return_header = FALSE ) } \arguments{ \item{parameter}{a character list or a single character string which represents the parameter code of the air pollutant related to the data being requested.} \item{bdate}{a R date object which represents that begin date of the data selection. Only data on or after this date will be returned.} \item{edate}{a R date object which represents that end date of the data selection. Only data on or before this date will be returned.} \item{stateFIPS}{a R character object which represents the 2 digit state FIPS code (with leading zero) for the state being requested. @seealso \code{\link[=aqs_states]{aqs_states()}} for the list of available FIPS codes.} \item{countycode}{a R character object which represents the 3 digit state FIPS code for the county being requested (with leading zero(s)). @seealso \code{\link[=aqs_counties_by_state]{aqs_counties_by_state()}} for the list of available county codes for each state.} \item{cbdate}{a R date object which represents a "beginning date of last change" that indicates when the data was last updated. cbdate is used to filter data based on the change date. Only data that changed on or after this date will be returned. This is an optional variable which defaults to NA_Date_.} \item{cedate}{a R date object which represents an "end date of last change" that indicates when the data was last updated. cedate is used to filter data based on the change date. Only data that changed on or before this date will be returned. This is an optional variable which defaults to NA_Date_.} \item{return_header}{If FALSE (default) only returns data requested. If TRUE returns a AQSAPI_v2 object which is a two item list that contains header information returned from the API server mostly used for debugging purposes in addition to the data requested.} } \value{ a tibble or an AQS_Data Mart_APIv2 S3 object that containing annual summary data for the countycode and stateFIPS requested. A AQS_Data Mart_APIv2 is a 2 item named list in which the first item (\$Header) is a tibble of header information from the AQS API and the second item (\$Data) is a tibble of the data returned. } \description{ \lifecycle{stable} Returns multiple years of data where annual data is aggregated at the county level. Returned is an annual summary matching the input parameter, stateFIPS, and county_code provided for bdate - edate time frame. The data returned is summarized at the annual level. Variables returned include mean value, maxima, percentiles, and etc. If return_header is FALSE (default) the object returned is a tibble, if TRUE an AQS_API_v2 object. } \note{ The AQS API only allows for a single year of annualsummary to be retrieved at a time. This function conveniently extracts date information from the bdate and edate parameters then makes repeated calls to the AQSAPI retrieving a maximum of one calendar year of data at a time. Each calendar year of data requires a separate API call so multiple years of data will require multiple API calls. As the number of years of data being requested increases so does the length of time that it will take to retrieve results. There is also a 5 second wait time inserted between successive API calls to prevent overloading the API server. This operation has a linear run time of /(Big O notation: O/(n + 5 seconds/)/). } \examples{ # returns an aqs S3 object with annual summary FRM/FEM # PM2.5 data for Wake County, NC between January # and February 2016 \dontrun{aqs_annualsummary_by_county(parameter = "88101", bdate = as.Date("20160101", format = "\%Y\%m\%d"), edate = as.Date("20180228", format = "\%Y\%m\%d"), stateFIPS = "37", countycode = "183" ) } } \seealso{ Other Aggregate _by_county functions: \code{\link{aqs_dailysummary_by_county}()}, \code{\link{aqs_monitors_by_county}()}, \code{\link{aqs_qa_blanks_by_county}()}, \code{\link{aqs_qa_collocated_assessments_by_county}()}, \code{\link{aqs_qa_flowrateaudit_by_county}()}, \code{\link{aqs_qa_flowrateverification_by_county}()}, \code{\link{aqs_qa_one_point_qc_by_county}()}, \code{\link{aqs_qa_pep_audit_by_county}()}, \code{\link{aqs_sampledata_by_county}()}, \code{\link{aqs_transactionsample_by_county}()} } \concept{Aggregate _by_county functions}
/man/aqs_annualsummary_by_county.Rd
permissive
cjmc00/RAQSAPI
R
false
true
4,907
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/bycounty.R \name{aqs_annualsummary_by_county} \alias{aqs_annualsummary_by_county} \title{aqs_annualsummary_by_county} \usage{ aqs_annualsummary_by_county( parameter, bdate, edate, stateFIPS, countycode, cbdate = NA_Date_, cedate = NA_Date_, return_header = FALSE ) } \arguments{ \item{parameter}{a character list or a single character string which represents the parameter code of the air pollutant related to the data being requested.} \item{bdate}{a R date object which represents that begin date of the data selection. Only data on or after this date will be returned.} \item{edate}{a R date object which represents that end date of the data selection. Only data on or before this date will be returned.} \item{stateFIPS}{a R character object which represents the 2 digit state FIPS code (with leading zero) for the state being requested. @seealso \code{\link[=aqs_states]{aqs_states()}} for the list of available FIPS codes.} \item{countycode}{a R character object which represents the 3 digit state FIPS code for the county being requested (with leading zero(s)). @seealso \code{\link[=aqs_counties_by_state]{aqs_counties_by_state()}} for the list of available county codes for each state.} \item{cbdate}{a R date object which represents a "beginning date of last change" that indicates when the data was last updated. cbdate is used to filter data based on the change date. Only data that changed on or after this date will be returned. This is an optional variable which defaults to NA_Date_.} \item{cedate}{a R date object which represents an "end date of last change" that indicates when the data was last updated. cedate is used to filter data based on the change date. Only data that changed on or before this date will be returned. This is an optional variable which defaults to NA_Date_.} \item{return_header}{If FALSE (default) only returns data requested. If TRUE returns a AQSAPI_v2 object which is a two item list that contains header information returned from the API server mostly used for debugging purposes in addition to the data requested.} } \value{ a tibble or an AQS_Data Mart_APIv2 S3 object that containing annual summary data for the countycode and stateFIPS requested. A AQS_Data Mart_APIv2 is a 2 item named list in which the first item (\$Header) is a tibble of header information from the AQS API and the second item (\$Data) is a tibble of the data returned. } \description{ \lifecycle{stable} Returns multiple years of data where annual data is aggregated at the county level. Returned is an annual summary matching the input parameter, stateFIPS, and county_code provided for bdate - edate time frame. The data returned is summarized at the annual level. Variables returned include mean value, maxima, percentiles, and etc. If return_header is FALSE (default) the object returned is a tibble, if TRUE an AQS_API_v2 object. } \note{ The AQS API only allows for a single year of annualsummary to be retrieved at a time. This function conveniently extracts date information from the bdate and edate parameters then makes repeated calls to the AQSAPI retrieving a maximum of one calendar year of data at a time. Each calendar year of data requires a separate API call so multiple years of data will require multiple API calls. As the number of years of data being requested increases so does the length of time that it will take to retrieve results. There is also a 5 second wait time inserted between successive API calls to prevent overloading the API server. This operation has a linear run time of /(Big O notation: O/(n + 5 seconds/)/). } \examples{ # returns an aqs S3 object with annual summary FRM/FEM # PM2.5 data for Wake County, NC between January # and February 2016 \dontrun{aqs_annualsummary_by_county(parameter = "88101", bdate = as.Date("20160101", format = "\%Y\%m\%d"), edate = as.Date("20180228", format = "\%Y\%m\%d"), stateFIPS = "37", countycode = "183" ) } } \seealso{ Other Aggregate _by_county functions: \code{\link{aqs_dailysummary_by_county}()}, \code{\link{aqs_monitors_by_county}()}, \code{\link{aqs_qa_blanks_by_county}()}, \code{\link{aqs_qa_collocated_assessments_by_county}()}, \code{\link{aqs_qa_flowrateaudit_by_county}()}, \code{\link{aqs_qa_flowrateverification_by_county}()}, \code{\link{aqs_qa_one_point_qc_by_county}()}, \code{\link{aqs_qa_pep_audit_by_county}()}, \code{\link{aqs_sampledata_by_county}()}, \code{\link{aqs_transactionsample_by_county}()} } \concept{Aggregate _by_county functions}
#' Add rows to a data frame #' #' @description #' This is a convenient way to add one or more rows of data to an existing data #' frame. See [tribble()] for an easy way to create an complete #' data frame row-by-row. Use [tibble_row()] to ensure that the new data #' has only one row. #' #' `add_case()` is an alias of `add_row()`. #' #' @param .data Data frame to append to. #' @param ... <[`dynamic-dots`][rlang::dyn-dots]> #' Name-value pairs, passed on to [tibble()]. Values can be defined #' only for columns that already exist in `.data` and unset columns will get an #' `NA` value. #' @param .before,.after One-based row index where to add the new rows, #' default: after last row. #' @family addition #' @examples #' # add_row --------------------------------- #' df <- tibble(x = 1:3, y = 3:1) #' #' df %>% add_row(x = 4, y = 0) #' #' # You can specify where to add the new rows #' df %>% add_row(x = 4, y = 0, .before = 2) #' #' # You can supply vectors, to add multiple rows (this isn't #' # recommended because it's a bit hard to read) #' df %>% add_row(x = 4:5, y = 0:-1) #' #' # Use tibble_row() to add one row only #' df %>% add_row(tibble_row(x = 4, y = 0)) #' try(df %>% add_row(tibble_row(x = 4:5, y = 0:-1))) #' #' # Absent variables get missing values #' df %>% add_row(x = 4) #' #' # You can't create new variables #' try(df %>% add_row(z = 10)) #' @export add_row <- function(.data, ..., .before = NULL, .after = NULL) { if (inherits(.data, "grouped_df")) { cnd_signal(error_add_rows_to_grouped_df()) } if (!is.data.frame(.data)) { deprecate_warn("2.1.1", "add_row(.data = 'must be a data frame')") } df <- tibble(...) attr(df, "row.names") <- .set_row_names(max(1L, nrow(df))) extra_vars <- setdiff(names(df), names(.data)) if (has_length(extra_vars)) { cnd_signal(error_incompatible_new_rows(extra_vars)) } pos <- pos_from_before_after(.before, .after, nrow(.data)) out <- rbind_at(.data, df, pos) vectbl_restore(out, .data) } #' @export #' @rdname add_row #' @usage NULL add_case <- add_row na_value <- function(boilerplate) { if (is.list(boilerplate)) { list(NULL) } else { NA } } rbind_at <- function(old, new, pos) { out <- vec_rbind(old, new) # Append at end: Nothing more to do. if (pos >= nrow(old)) { return(out) } # Splice: Construct index vector pos <- max(pos, 0L) idx <- c( seq2(1L, pos), seq2(nrow(old) + 1L, nrow(old) + nrow(new)), seq2(pos + 1L, nrow(old)) ) vec_slice(out, idx) } #' Add columns to a data frame #' #' This is a convenient way to add one or more columns to an existing data #' frame. #' #' @param .data Data frame to append to. #' @param ... <[`dynamic-dots`][rlang::dyn-dots]> #' Name-value pairs, passed on to [tibble()]. All values must have #' the same size of `.data` or size 1. #' @param .before,.after One-based column index or column name where to add the #' new columns, default: after last column. #' @inheritParams tibble #' @family addition #' @examples #' # add_column --------------------------------- #' df <- tibble(x = 1:3, y = 3:1) #' #' df %>% add_column(z = -1:1, w = 0) #' df %>% add_column(z = -1:1, .before = "y") #' #' # You can't overwrite existing columns #' try(df %>% add_column(x = 4:6)) #' #' # You can't create new observations #' try(df %>% add_column(z = 1:5)) #' #' @export add_column <- function(.data, ..., .before = NULL, .after = NULL, .name_repair = c("check_unique", "unique", "universal", "minimal")) { if (!is.data.frame(.data)) { deprecate_warn("2.1.1", "add_column(.data = 'must be a data frame')") } if ((!is_named(.data) || anyDuplicated(names2(.data))) && missing(.name_repair)) { deprecate_warn("3.0.0", "add_column(.data = 'must have unique names')", details = 'Use `.name_repair = "minimal"`.') .name_repair <- "minimal" } df <- tibble(..., .name_repair = .name_repair) if (ncol(df) == 0L) { return(.data) } if (nrow(df) != nrow(.data)) { if (nrow(df) == 1) { df <- df[rep(1L, nrow(.data)), ] } else { cnd_signal(error_incompatible_new_cols(nrow(.data), df)) } } pos <- pos_from_before_after_names(.before, .after, colnames(.data)) end_pos <- ncol(.data) + seq_len(ncol(df)) indexes_before <- rlang::seq2(1L, pos) indexes_after <- rlang::seq2(pos + 1L, ncol(.data)) indexes <- c(indexes_before, end_pos, indexes_after) new_data <- .data new_data[end_pos] <- df out <- new_data[indexes] out <- set_repaired_names(out, .name_repair) vectbl_restore(out, .data) } # helpers ----------------------------------------------------------------- pos_from_before_after_names <- function(before, after, names) { before <- check_names_before_after(before, names) after <- check_names_before_after(after, names) pos_from_before_after(before, after, length(names)) } pos_from_before_after <- function(before, after, len) { if (is_null(before)) { if (is_null(after)) { len } else { limit_pos_range(after, len) } } else { if (is_null(after)) { limit_pos_range(before - 1L, len) } else { cnd_signal(error_both_before_after()) } } } limit_pos_range <- function(pos, len) { max(0L, min(len, pos)) } # check_names_before_after ------------------------------------------------ check_names_before_after <- function(j, x) { if (!is_bare_character(j)) { return(j) } check_needs_no_dim(j) check_names_before_after_character(j, x) } check_needs_no_dim <- function(j) { if (needs_dim(j)) { cnd_signal(error_dim_column_index(j)) } } check_names_before_after_character <- function(j, names) { pos <- safe_match(j, names) if (anyNA(pos)) { unknown_names <- j[is.na(pos)] cnd_signal(error_unknown_column_names(unknown_names)) } pos } # Errors ------------------------------------------------------------------ error_add_rows_to_grouped_df <- function() { tibble_error("Can't add rows to grouped data frames.") } error_incompatible_new_rows <- function(names) { tibble_error( bullets( "New rows can't add columns:", cnd_message(error_unknown_column_names(names)) ), names = names ) } error_both_before_after <- function() { tibble_error("Can't specify both `.before` and `.after`.") } error_unknown_column_names <- function(j, parent = NULL) { tibble_error(pluralise_commas("Can't find column(s) ", tick(j), " in `.data`."), j = j, parent = parent) } error_incompatible_new_cols <- function(n, df) { tibble_error( bullets( "New columns must be compatible with `.data`:", x = paste0( pluralise_n("New column(s) ha[s](ve)", ncol(df)), " ", nrow(df), " rows" ), i = pluralise_count("`.data` has ", n, " row(s)") ), expected = n, actual = nrow(df) ) }
/R/add.R
permissive
datacamp/tibble
R
false
false
6,857
r
#' Add rows to a data frame #' #' @description #' This is a convenient way to add one or more rows of data to an existing data #' frame. See [tribble()] for an easy way to create an complete #' data frame row-by-row. Use [tibble_row()] to ensure that the new data #' has only one row. #' #' `add_case()` is an alias of `add_row()`. #' #' @param .data Data frame to append to. #' @param ... <[`dynamic-dots`][rlang::dyn-dots]> #' Name-value pairs, passed on to [tibble()]. Values can be defined #' only for columns that already exist in `.data` and unset columns will get an #' `NA` value. #' @param .before,.after One-based row index where to add the new rows, #' default: after last row. #' @family addition #' @examples #' # add_row --------------------------------- #' df <- tibble(x = 1:3, y = 3:1) #' #' df %>% add_row(x = 4, y = 0) #' #' # You can specify where to add the new rows #' df %>% add_row(x = 4, y = 0, .before = 2) #' #' # You can supply vectors, to add multiple rows (this isn't #' # recommended because it's a bit hard to read) #' df %>% add_row(x = 4:5, y = 0:-1) #' #' # Use tibble_row() to add one row only #' df %>% add_row(tibble_row(x = 4, y = 0)) #' try(df %>% add_row(tibble_row(x = 4:5, y = 0:-1))) #' #' # Absent variables get missing values #' df %>% add_row(x = 4) #' #' # You can't create new variables #' try(df %>% add_row(z = 10)) #' @export add_row <- function(.data, ..., .before = NULL, .after = NULL) { if (inherits(.data, "grouped_df")) { cnd_signal(error_add_rows_to_grouped_df()) } if (!is.data.frame(.data)) { deprecate_warn("2.1.1", "add_row(.data = 'must be a data frame')") } df <- tibble(...) attr(df, "row.names") <- .set_row_names(max(1L, nrow(df))) extra_vars <- setdiff(names(df), names(.data)) if (has_length(extra_vars)) { cnd_signal(error_incompatible_new_rows(extra_vars)) } pos <- pos_from_before_after(.before, .after, nrow(.data)) out <- rbind_at(.data, df, pos) vectbl_restore(out, .data) } #' @export #' @rdname add_row #' @usage NULL add_case <- add_row na_value <- function(boilerplate) { if (is.list(boilerplate)) { list(NULL) } else { NA } } rbind_at <- function(old, new, pos) { out <- vec_rbind(old, new) # Append at end: Nothing more to do. if (pos >= nrow(old)) { return(out) } # Splice: Construct index vector pos <- max(pos, 0L) idx <- c( seq2(1L, pos), seq2(nrow(old) + 1L, nrow(old) + nrow(new)), seq2(pos + 1L, nrow(old)) ) vec_slice(out, idx) } #' Add columns to a data frame #' #' This is a convenient way to add one or more columns to an existing data #' frame. #' #' @param .data Data frame to append to. #' @param ... <[`dynamic-dots`][rlang::dyn-dots]> #' Name-value pairs, passed on to [tibble()]. All values must have #' the same size of `.data` or size 1. #' @param .before,.after One-based column index or column name where to add the #' new columns, default: after last column. #' @inheritParams tibble #' @family addition #' @examples #' # add_column --------------------------------- #' df <- tibble(x = 1:3, y = 3:1) #' #' df %>% add_column(z = -1:1, w = 0) #' df %>% add_column(z = -1:1, .before = "y") #' #' # You can't overwrite existing columns #' try(df %>% add_column(x = 4:6)) #' #' # You can't create new observations #' try(df %>% add_column(z = 1:5)) #' #' @export add_column <- function(.data, ..., .before = NULL, .after = NULL, .name_repair = c("check_unique", "unique", "universal", "minimal")) { if (!is.data.frame(.data)) { deprecate_warn("2.1.1", "add_column(.data = 'must be a data frame')") } if ((!is_named(.data) || anyDuplicated(names2(.data))) && missing(.name_repair)) { deprecate_warn("3.0.0", "add_column(.data = 'must have unique names')", details = 'Use `.name_repair = "minimal"`.') .name_repair <- "minimal" } df <- tibble(..., .name_repair = .name_repair) if (ncol(df) == 0L) { return(.data) } if (nrow(df) != nrow(.data)) { if (nrow(df) == 1) { df <- df[rep(1L, nrow(.data)), ] } else { cnd_signal(error_incompatible_new_cols(nrow(.data), df)) } } pos <- pos_from_before_after_names(.before, .after, colnames(.data)) end_pos <- ncol(.data) + seq_len(ncol(df)) indexes_before <- rlang::seq2(1L, pos) indexes_after <- rlang::seq2(pos + 1L, ncol(.data)) indexes <- c(indexes_before, end_pos, indexes_after) new_data <- .data new_data[end_pos] <- df out <- new_data[indexes] out <- set_repaired_names(out, .name_repair) vectbl_restore(out, .data) } # helpers ----------------------------------------------------------------- pos_from_before_after_names <- function(before, after, names) { before <- check_names_before_after(before, names) after <- check_names_before_after(after, names) pos_from_before_after(before, after, length(names)) } pos_from_before_after <- function(before, after, len) { if (is_null(before)) { if (is_null(after)) { len } else { limit_pos_range(after, len) } } else { if (is_null(after)) { limit_pos_range(before - 1L, len) } else { cnd_signal(error_both_before_after()) } } } limit_pos_range <- function(pos, len) { max(0L, min(len, pos)) } # check_names_before_after ------------------------------------------------ check_names_before_after <- function(j, x) { if (!is_bare_character(j)) { return(j) } check_needs_no_dim(j) check_names_before_after_character(j, x) } check_needs_no_dim <- function(j) { if (needs_dim(j)) { cnd_signal(error_dim_column_index(j)) } } check_names_before_after_character <- function(j, names) { pos <- safe_match(j, names) if (anyNA(pos)) { unknown_names <- j[is.na(pos)] cnd_signal(error_unknown_column_names(unknown_names)) } pos } # Errors ------------------------------------------------------------------ error_add_rows_to_grouped_df <- function() { tibble_error("Can't add rows to grouped data frames.") } error_incompatible_new_rows <- function(names) { tibble_error( bullets( "New rows can't add columns:", cnd_message(error_unknown_column_names(names)) ), names = names ) } error_both_before_after <- function() { tibble_error("Can't specify both `.before` and `.after`.") } error_unknown_column_names <- function(j, parent = NULL) { tibble_error(pluralise_commas("Can't find column(s) ", tick(j), " in `.data`."), j = j, parent = parent) } error_incompatible_new_cols <- function(n, df) { tibble_error( bullets( "New columns must be compatible with `.data`:", x = paste0( pluralise_n("New column(s) ha[s](ve)", ncol(df)), " ", nrow(df), " rows" ), i = pluralise_count("`.data` has ", n, " row(s)") ), expected = n, actual = nrow(df) ) }
Rothmana <- function(X, Y, lambda_beta, lambda_kappa, convergence = 1e-4, gamma = 0.5, maxit.in = 100, maxit.out = 100, penalize.diagonal, # if FALSE, penalizes the first diagonal (assumed to be auto regressions), even when ncol(X) != ncol(Y) ! interceptColumn = 1, # Set to NULL or NA to omit mimic = "current", likelihood = c("unpenalized","penalized") ){ # Algorithm 2 of Rothmana, Levinaa & Ji Zhua likelihood <- match.arg(likelihood) nY <- ncol(Y) nX <- ncol(X) if (missing(penalize.diagonal)){ if (mimic == "0.1.2"){ penalize.diagonal <- nY != nX } else { penalize.diagonal <- (nY != nX-1) & (nY != nX ) } } lambda_mat <- matrix(lambda_beta,nX, nY) if (!penalize.diagonal){ if (nY == nX){ add <- 0 } else if (nY == nX - 1){ add <- 1 } else { stop("Beta is not P x P or P x P+1, cannot detect diagonal.") } for (i in 1:min(c(nY,nX))){ lambda_mat[i+add,i] <- 0 } } if (!is.null(interceptColumn) && !is.na(interceptColumn)){ lambda_mat[interceptColumn,] <- 0 } n <- nrow(X) beta_ridge <- beta_ridge_C(X, Y, lambda_beta) # Starting values: beta <- matrix(0, nX, nY) # Algorithm: it <- 0 repeat{ it <- it + 1 kappa <- Kappa(beta, X, Y, lambda_kappa) beta_old <- beta beta <- Beta_C(kappa, beta, X, Y, lambda_beta, lambda_mat, convergence, maxit.in) if (sum(abs(beta - beta_old)) < (convergence * sum(abs(beta_ridge)))){ break } if (it > maxit.out){ warning("Model did NOT converge in outer loop") break } } ## Compute unconstrained kappa (codes from SparseTSCGM): ZeroIndex <- which(kappa==0, arr.ind=TRUE) ## Select the path of zeros WS <- (t(Y)%*%Y - t(Y) %*% X %*% beta - t(beta) %*% t(X)%*%Y + t(beta) %*% t(X)%*%X %*% beta)/(nrow(X)) if (any(eigen(WS,only.values = TRUE)$values < -sqrt(.Machine$double.eps))){ stop("Residual covariance matrix is not non-negative definite") } if (likelihood == "unpenalized"){ if (nrow(ZeroIndex)==0){ out4 <- suppressWarnings(glasso(WS, rho = 0, trace = FALSE)) } else { out4 <- suppressWarnings(glasso(WS, rho = 0, zero = ZeroIndex, trace = FALSE)) } lik1 <- determinant( out4$wi)$modulus[1] lik2 <- sum(diag( out4$wi%*%WS)) } else { lik1 <- determinant( kappa )$modulus[1] lik2 <- sum(diag( kappa%*%WS)) } pdO = sum(sum(kappa[upper.tri(kappa,diag=FALSE)] !=0)) if (mimic == "0.1.2"){ pdB = sum(sum(beta !=0)) } else { pdB = sum(sum(beta[lambda_mat!=0] !=0)) } LLk <- (n/2)*(lik1-lik2) LLk0 <- (n/2)*(-lik2) EBIC <- -2*LLk + (log(n))*(pdO +pdB) + (pdO + pdB)*4*gamma*log(2*nY) ### TRANSPOSE BETA!!! return(list(beta=t(beta), kappa=kappa, EBIC = EBIC)) }
/graphicalVAR/R/Rothmana.R
no_license
akhikolla/InformationHouse
R
false
false
2,892
r
Rothmana <- function(X, Y, lambda_beta, lambda_kappa, convergence = 1e-4, gamma = 0.5, maxit.in = 100, maxit.out = 100, penalize.diagonal, # if FALSE, penalizes the first diagonal (assumed to be auto regressions), even when ncol(X) != ncol(Y) ! interceptColumn = 1, # Set to NULL or NA to omit mimic = "current", likelihood = c("unpenalized","penalized") ){ # Algorithm 2 of Rothmana, Levinaa & Ji Zhua likelihood <- match.arg(likelihood) nY <- ncol(Y) nX <- ncol(X) if (missing(penalize.diagonal)){ if (mimic == "0.1.2"){ penalize.diagonal <- nY != nX } else { penalize.diagonal <- (nY != nX-1) & (nY != nX ) } } lambda_mat <- matrix(lambda_beta,nX, nY) if (!penalize.diagonal){ if (nY == nX){ add <- 0 } else if (nY == nX - 1){ add <- 1 } else { stop("Beta is not P x P or P x P+1, cannot detect diagonal.") } for (i in 1:min(c(nY,nX))){ lambda_mat[i+add,i] <- 0 } } if (!is.null(interceptColumn) && !is.na(interceptColumn)){ lambda_mat[interceptColumn,] <- 0 } n <- nrow(X) beta_ridge <- beta_ridge_C(X, Y, lambda_beta) # Starting values: beta <- matrix(0, nX, nY) # Algorithm: it <- 0 repeat{ it <- it + 1 kappa <- Kappa(beta, X, Y, lambda_kappa) beta_old <- beta beta <- Beta_C(kappa, beta, X, Y, lambda_beta, lambda_mat, convergence, maxit.in) if (sum(abs(beta - beta_old)) < (convergence * sum(abs(beta_ridge)))){ break } if (it > maxit.out){ warning("Model did NOT converge in outer loop") break } } ## Compute unconstrained kappa (codes from SparseTSCGM): ZeroIndex <- which(kappa==0, arr.ind=TRUE) ## Select the path of zeros WS <- (t(Y)%*%Y - t(Y) %*% X %*% beta - t(beta) %*% t(X)%*%Y + t(beta) %*% t(X)%*%X %*% beta)/(nrow(X)) if (any(eigen(WS,only.values = TRUE)$values < -sqrt(.Machine$double.eps))){ stop("Residual covariance matrix is not non-negative definite") } if (likelihood == "unpenalized"){ if (nrow(ZeroIndex)==0){ out4 <- suppressWarnings(glasso(WS, rho = 0, trace = FALSE)) } else { out4 <- suppressWarnings(glasso(WS, rho = 0, zero = ZeroIndex, trace = FALSE)) } lik1 <- determinant( out4$wi)$modulus[1] lik2 <- sum(diag( out4$wi%*%WS)) } else { lik1 <- determinant( kappa )$modulus[1] lik2 <- sum(diag( kappa%*%WS)) } pdO = sum(sum(kappa[upper.tri(kappa,diag=FALSE)] !=0)) if (mimic == "0.1.2"){ pdB = sum(sum(beta !=0)) } else { pdB = sum(sum(beta[lambda_mat!=0] !=0)) } LLk <- (n/2)*(lik1-lik2) LLk0 <- (n/2)*(-lik2) EBIC <- -2*LLk + (log(n))*(pdO +pdB) + (pdO + pdB)*4*gamma*log(2*nY) ### TRANSPOSE BETA!!! return(list(beta=t(beta), kappa=kappa, EBIC = EBIC)) }
library(shiny) library(dygraphs) shinyUI(fluidPage( tags$head( tags$style(HTML(" @import url(http://fonts.googleapis.com/css?family=Poiret+One); h1 { font-family: 'Poiret One', cursive; font-weight: 500; line-height: 1.1; } ")) ), titlePanel(h1("Saudi Hollandi Bank's Facebook Data Analysis")), tabsetPanel( tabPanel("Overall View", fluidRow( column(width = 6, dygraphOutput("totalOverview")), column(width = 6, dygraphOutput("likedOverview")) ), br(), br(), fluidRow( column(width = 6, dygraphOutput("commentedOverview")), column(width = 6, dygraphOutput("sharedOverview")) ) ), tabPanel("Monthly View", fluidRow( column(width = 6, dygraphOutput("totalMonthly")), column(width = 6, dygraphOutput("likedMonthly")) ), br(), br(), fluidRow( column(width = 6, dygraphOutput("commentedMonthly")), column(width = 6, dygraphOutput("sharedMonthly")) ) ), tabPanel("Week Day View", fluidRow( column(width = 6, plotOutput("totalWeekday")), column(width = 6, plotOutput("likedWeekday")) ), br(), br(), fluidRow( column(width = 6, plotOutput("commentedWeekday")), column(width = 6, plotOutput("sharedWeekday")) ) ), tabPanel("Correlation", fluidRow( column(width = 4, plotOutput("corrPlot1")), column(width = 4, plotOutput("corrPlot2")), column(width = 4, plotOutput("corrPlot3")) ) ), tabPanel("Word Clouds", fluidRow( column(h3("Words Appearing in Most Liked Posts"), width = 12, plotOutput("likedWords")) ), br(), br(), fluidRow( column(h3("Words Appearing in Most Commented on Posts"), width = 12, plotOutput("commentedWords")) ), br(), br(), fluidRow( column(h3("Words Appearing in Most Shared Posts"), width = 12, plotOutput("sharedWords")) ) ), tabPanel("About") ) ) )
/SHB/Social-Media-App/ui.R
no_license
aliarsalankazmi/Aimia-Projects
R
false
false
2,062
r
library(shiny) library(dygraphs) shinyUI(fluidPage( tags$head( tags$style(HTML(" @import url(http://fonts.googleapis.com/css?family=Poiret+One); h1 { font-family: 'Poiret One', cursive; font-weight: 500; line-height: 1.1; } ")) ), titlePanel(h1("Saudi Hollandi Bank's Facebook Data Analysis")), tabsetPanel( tabPanel("Overall View", fluidRow( column(width = 6, dygraphOutput("totalOverview")), column(width = 6, dygraphOutput("likedOverview")) ), br(), br(), fluidRow( column(width = 6, dygraphOutput("commentedOverview")), column(width = 6, dygraphOutput("sharedOverview")) ) ), tabPanel("Monthly View", fluidRow( column(width = 6, dygraphOutput("totalMonthly")), column(width = 6, dygraphOutput("likedMonthly")) ), br(), br(), fluidRow( column(width = 6, dygraphOutput("commentedMonthly")), column(width = 6, dygraphOutput("sharedMonthly")) ) ), tabPanel("Week Day View", fluidRow( column(width = 6, plotOutput("totalWeekday")), column(width = 6, plotOutput("likedWeekday")) ), br(), br(), fluidRow( column(width = 6, plotOutput("commentedWeekday")), column(width = 6, plotOutput("sharedWeekday")) ) ), tabPanel("Correlation", fluidRow( column(width = 4, plotOutput("corrPlot1")), column(width = 4, plotOutput("corrPlot2")), column(width = 4, plotOutput("corrPlot3")) ) ), tabPanel("Word Clouds", fluidRow( column(h3("Words Appearing in Most Liked Posts"), width = 12, plotOutput("likedWords")) ), br(), br(), fluidRow( column(h3("Words Appearing in Most Commented on Posts"), width = 12, plotOutput("commentedWords")) ), br(), br(), fluidRow( column(h3("Words Appearing in Most Shared Posts"), width = 12, plotOutput("sharedWords")) ) ), tabPanel("About") ) ) )
LLNintegral <- function(ss=4) { dump("LLNintegral","c:\\StatBook\\LLNintegral.r") par(mfrow=c(1,1),mar=c(4,4,.2,.5)) set.seed(ss) n=seq(from=100,to=10000,by=100) ln=length(n) int=rep(NA,ln) a=-10;b=5 for(i in 1:ln) { X=runif(n[i],min=a,max=b) int[i]=(b-a)*mean(exp(-0.123*X^6)*log(1+X^8)) } plot(n,int,type="b",xlab="Number of simulated values, n",ylab="LLN integral") exact.int=integrate(function(x) exp(-0.123*x^6)*log(1+x^8),lower=-10,upper=5)$value segments(-1000,exact.int,10000,exact.int,lwd=3) text(4000,1.2,paste("Exact integral =",round(exact.int,5)),adj=0) }
/RcodeData/LLNintegral.r
no_license
PepSalehi/advancedstatistics
R
false
false
609
r
LLNintegral <- function(ss=4) { dump("LLNintegral","c:\\StatBook\\LLNintegral.r") par(mfrow=c(1,1),mar=c(4,4,.2,.5)) set.seed(ss) n=seq(from=100,to=10000,by=100) ln=length(n) int=rep(NA,ln) a=-10;b=5 for(i in 1:ln) { X=runif(n[i],min=a,max=b) int[i]=(b-a)*mean(exp(-0.123*X^6)*log(1+X^8)) } plot(n,int,type="b",xlab="Number of simulated values, n",ylab="LLN integral") exact.int=integrate(function(x) exp(-0.123*x^6)*log(1+x^8),lower=-10,upper=5)$value segments(-1000,exact.int,10000,exact.int,lwd=3) text(4000,1.2,paste("Exact integral =",round(exact.int,5)),adj=0) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/image_analysis.R \name{wbt_sigmoidal_contrast_stretch} \alias{wbt_sigmoidal_contrast_stretch} \title{Sigmoidal contrast stretch} \usage{ wbt_sigmoidal_contrast_stretch(input, output, cutoff = 0, gain = 1, num_tones = 256, verbose_mode = FALSE) } \arguments{ \item{input}{Input raster file.} \item{output}{Output raster file.} \item{cutoff}{Cutoff value between 0.0 and 0.95.} \item{gain}{Gain value.} \item{num_tones}{Number of tones in the output image.} \item{verbose_mode}{Sets verbose mode. If verbose mode is False, tools will not print output messages.} } \value{ Returns the tool text outputs. } \description{ Performs a sigmoidal contrast stretch on input images. }
/man/wbt_sigmoidal_contrast_stretch.Rd
permissive
Remote-Sensing-Forks/whiteboxR
R
false
true
759
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/image_analysis.R \name{wbt_sigmoidal_contrast_stretch} \alias{wbt_sigmoidal_contrast_stretch} \title{Sigmoidal contrast stretch} \usage{ wbt_sigmoidal_contrast_stretch(input, output, cutoff = 0, gain = 1, num_tones = 256, verbose_mode = FALSE) } \arguments{ \item{input}{Input raster file.} \item{output}{Output raster file.} \item{cutoff}{Cutoff value between 0.0 and 0.95.} \item{gain}{Gain value.} \item{num_tones}{Number of tones in the output image.} \item{verbose_mode}{Sets verbose mode. If verbose mode is False, tools will not print output messages.} } \value{ Returns the tool text outputs. } \description{ Performs a sigmoidal contrast stretch on input images. }
library(shiny) library(listviewer) safe_list <- function(.list) { tryCatch({ obj <- as.list(.list) obj <- lapply(obj, function(x){ if (is.character(x) && nchar(x) > 300) { return( paste0( substr(x, 1, pmin(nchar(x), 300)), "... [[ truncated for space ]]" ) ) } else { return(x) } }) }, error = function(e) { message(e) obj <- list( "ERROR", e, "Please refresh the page to see if the error persists", "If so, submit an issue here:", "https://github.com/colearendt/shiny-session-info" ) }) return(obj) } ui <- function(req) {fluidPage( titlePanel("System and Shiny info"), sidebarLayout( sidebarPanel( h3("An Example App for Exploring Shiny"), p("If you encounter any issues with this application, please submit bugs to ", a("GitHub", href = "https://github.com/colearendt/shiny-session-info")), p("Use the listviewers to the right for exploring Shiny session state"), br(), h4("Important Notes"), p("This app has shown fragility with a large number of groups. If you see errors and have a large number of groups, please refresh") ), mainPanel( h2("Sys.info()"), tableOutput("sys_info"), h2("Sys.getenv(names = TRUE)"), tableOutput("system_env"), h2("Shiny: session$clientData"), jsoneditOutput("clientdataText"), h2("Shiny: session"), jsoneditOutput("sessionInfo"), h2("Shiny: UI req object"), jsonedit( safe_list(req) , mode = 'view' , modes = list('view') ) ) ) )} server <- function(input, output, session) { output$sys_info <- renderTable({ dat <- as.data.frame(as.list(Sys.info())) dat <- as.data.frame(cbind(Name = names(dat), t(dat))) dat$Value <- dat$V2 dat$V2 <- NULL dat }) output$system_env <- renderTable({ s <- Sys.getenv(names = TRUE) data.frame(name = names(s), value = as.character(s)) }) clean_environ <- function(environ){ if (is.environment(environ)) { lenv <- as.list(environ) lenv <- lenv[which(!lapply(lenv, typeof) %in% c("environment"))] return(lenv) } else { return(environ) } } # Store in a convenience variable cdata <- session$clientData output$sessionInfo <- renderJsonedit({ tryCatch({ calt <- as.list(session) calt_type <- lapply(calt, typeof) calt_clean <- calt[which(!calt_type %in% c("closure"))] calt_clean <- lapply(calt_clean, clean_environ) calt_class <- lapply(calt_clean, class) calt_clean_2 <- calt_clean[which(!calt_class %in% c("reactivevalues", "shinyoutput"))] calt_final <- calt_clean_2 calt_names <- names(calt_final) # print(lapply(calt_final, typeof)) }, error = function(e) { message(e) calt_final <- list("ERROR occurred", e, "Please refresh the page") }) jsonedit(calt_final , mode = 'view' , modes = list('view')) }) # Values from cdata returned as text output$clientdataText <- renderJsonedit({ jsonedit(as.list(cdata), mode = 'view', modes = list('view')) }) } # Run the application shinyApp(ui = ui, server = server)
/app.R
no_license
colearendt/shiny-session-info
R
false
false
3,639
r
library(shiny) library(listviewer) safe_list <- function(.list) { tryCatch({ obj <- as.list(.list) obj <- lapply(obj, function(x){ if (is.character(x) && nchar(x) > 300) { return( paste0( substr(x, 1, pmin(nchar(x), 300)), "... [[ truncated for space ]]" ) ) } else { return(x) } }) }, error = function(e) { message(e) obj <- list( "ERROR", e, "Please refresh the page to see if the error persists", "If so, submit an issue here:", "https://github.com/colearendt/shiny-session-info" ) }) return(obj) } ui <- function(req) {fluidPage( titlePanel("System and Shiny info"), sidebarLayout( sidebarPanel( h3("An Example App for Exploring Shiny"), p("If you encounter any issues with this application, please submit bugs to ", a("GitHub", href = "https://github.com/colearendt/shiny-session-info")), p("Use the listviewers to the right for exploring Shiny session state"), br(), h4("Important Notes"), p("This app has shown fragility with a large number of groups. If you see errors and have a large number of groups, please refresh") ), mainPanel( h2("Sys.info()"), tableOutput("sys_info"), h2("Sys.getenv(names = TRUE)"), tableOutput("system_env"), h2("Shiny: session$clientData"), jsoneditOutput("clientdataText"), h2("Shiny: session"), jsoneditOutput("sessionInfo"), h2("Shiny: UI req object"), jsonedit( safe_list(req) , mode = 'view' , modes = list('view') ) ) ) )} server <- function(input, output, session) { output$sys_info <- renderTable({ dat <- as.data.frame(as.list(Sys.info())) dat <- as.data.frame(cbind(Name = names(dat), t(dat))) dat$Value <- dat$V2 dat$V2 <- NULL dat }) output$system_env <- renderTable({ s <- Sys.getenv(names = TRUE) data.frame(name = names(s), value = as.character(s)) }) clean_environ <- function(environ){ if (is.environment(environ)) { lenv <- as.list(environ) lenv <- lenv[which(!lapply(lenv, typeof) %in% c("environment"))] return(lenv) } else { return(environ) } } # Store in a convenience variable cdata <- session$clientData output$sessionInfo <- renderJsonedit({ tryCatch({ calt <- as.list(session) calt_type <- lapply(calt, typeof) calt_clean <- calt[which(!calt_type %in% c("closure"))] calt_clean <- lapply(calt_clean, clean_environ) calt_class <- lapply(calt_clean, class) calt_clean_2 <- calt_clean[which(!calt_class %in% c("reactivevalues", "shinyoutput"))] calt_final <- calt_clean_2 calt_names <- names(calt_final) # print(lapply(calt_final, typeof)) }, error = function(e) { message(e) calt_final <- list("ERROR occurred", e, "Please refresh the page") }) jsonedit(calt_final , mode = 'view' , modes = list('view')) }) # Values from cdata returned as text output$clientdataText <- renderJsonedit({ jsonedit(as.list(cdata), mode = 'view', modes = list('view')) }) } # Run the application shinyApp(ui = ui, server = server)
if (Sys.info()["sysname"] == "Darwin" & Sys.info()["user"] == "xavier") { chopit.routines.directory = "~/Documents/Travail/Boulot Fac/Doctorat/1_ Productions personnelles/24_Range-Frequency/2_programmes/" share.data.directory = "~/Documents/Travail/Boulot Fac/Doctorat/Data bases/SHARE/0_merged_data/" } if (Sys.info()["sysname"] == "Linux" & Sys.info()["user"] == "x.fontaine") { chopit.routines.directory = "~/U/Travail/Range_frequency/routines/" share.data.directory = "~/U/Travail/Range_frequency/data/" } source(paste(chopit.routines.directory,"likelihood.R", sep = ""), chdir = TRUE) source(paste(chopit.routines.directory,"ChopitStartingValues.R", sep = ""), chdir = TRUE) source(paste(chopit.routines.directory,"summary.Chopit.R", sep = ""), chdir = TRUE) Chopit <- function(formula, data, heterosk = FALSE, naive = FALSE, par.init = NULL, optim.method = "BFGS", varcov.method = "OPG") { # CHOPIT() # Args: # formula: list containing 3 formulae arguments ; the first one must be names self, the second one vign, the last one tau. Remark that a # a constant is expected to be specified in all the equations, even though the program will perform the necessary normalization # beta["cste"] = 0. If heterosk == TRUE, a 4th argument (sigma) is required. # data: dataset associated to the formulae # heterosk: Should the model account for potential heteroskedasticity ? If so, sd(Y*_s / x_s, x_sigma) = sigma_s(x_sigma) = exp(x_sigma %*% kappa) # par.init: initial parameters to be passed to optim # naive: TRUE if initial values for parameters should be set the "naive" way (i.e. all parameters are 0, except intercept of each threshold # equation which is set to 0.1. Else, a more sophisticated way is used, through ChopitStartingValues # varcov.method: method to be used to estimate the variance-covariane matrix for the parameters: none, hessian or OPG # # Returns (as a list) # optim.results: result from optimization (object of classes maxLik and maxim) ; for sake of sparsity, gradientObs is delete # coef: list of coefficients. beta0 is the beta vector, with a 0 as a first argument by normalization since there is an intercept in x.s. Same holds # for kappa0 # var.cov: variance covariance matrix (if varcov.method != "none") # constants: list of important constants (defined throughout the code) # contrib.number: number of contribution to partial likelihood # call.arg: argument used when the function has been called. 'data.name' and parent.frame replaces the original dataset, by giving both the name of # this dataframe and its location. By doing so, the object returned remains quite small in size. # col.to.drop: if Chopit() finds any colinearity problem, it drops the incriminated collumns. The arguments in col.to.drop contain the number of the # columns to be dropped # Libraries library(MASS) # used for finding proper starting values, using polr library(maxLik) # Start the clock ptm <- proc.time() # GLOBAL SANITY CHECKS # data should be a data.frame if (!is.data.frame(data)) stop("Chopit: the argument data is not a data.frame") # varcov.method should be either "none", "hessian" or OPG if (!varcov.method %in% c("none", "hessian", "OPG")) stop("Chopit: varcov.method should be either 'none', 'hessian' or 'OPG'") # PARSING THE FORMULAE # Sanity checks: checking the "formula" list is properly defined # Is "formula" a list ? if (!is.list(formula)) stop("Chopit: formula is not a list") # Is each element a formula ? IsFormula <- function(x) { is.formula <- (class(x) == "formula") return(is.formula) } if (any(!sapply(X = formula, FUN = IsFormula))) stop("Chopit: at least one element in the list formula is not a formula") # Are the names apropriately chosen ? if (any(!c("self", "tau", "vign") %in% names(formula))) stop("Chopit: names in formula badly specified (one of self, tau, vign is missing)") if (heterosk & !("sigma" %in% names(formula))) stop("Chopit: 'heterosk == TRUE' but no 'sigma' in the formula") if (!heterosk & ("sigma" %in% names(formula))) stop("Chopit: heterosk = FALSE while there is 'sigma' in the formula") # Parsing process f.self <- formula$self f.tau <- formula$tau f.vign <- formula$vign if (heterosk) f.sigma <- formula$sigma # PRODUCING THE DATA MATRICES # Sanity checks: # A constant is expected to be included in the self-assessment equation (no + 0 or - 1 should take place in this equation). If no constant # specified, we should force a constant to exist (cf. terms.object so see what to modify), and indicate we do so. if (attr(terms(f.self), "intercept") == 0) stop("No constant in the self-assessment equation formula (one is expected, event though we normalize the associated coef to 0)") # Getting the name of the provided argument 'data' before data is evaluated data.name <- deparse(substitute(data)) # Dropping unused levels in data if any remaining data <- droplevels(data) # # # Self-assessment. cbind() is used to make sure each object is at least a column-vector (else a matrix). original.objects are created to # # keep the objects as they were with NA, so that it can be returned by Chopit() and eventually passed to other functions (GroupAnalysis). # # Indeed, whenever some values in x.tau is missing, then observation in x.s is deleted here ; but these observations can be used in # # GroupAnalysis(). Remark that variables dropped due to multi-co here are also going to be dropped in the "original" objects. # mf.self <- model.frame(formula = f.self, data = data, na.action = NULL) # y.s <- model.response(data = mf.self) ; y.s <- cbind(y.s) # # Vignettes # mf.vign <- model.frame(formula = f.vign, data = data, na.action = NULL) # y.v <- model.response(data = mf.vign) ; y.v <- cbind(y.v) # # Checking again for missing levels, but now when all y.s and y.v are NA. Otherwise, some levels may not be missing for the whole dataset, but # # missing when considering only the observations where we have at least one assessment avaible. # # Then getting back y.s and y.v again for this smaller dataset # data <- data[!is.na(y.s) | rowSums(!is.na(y.v)), ] # data <- droplevels(data) # mf.self <- model.frame(formula = f.self, data = data, na.action = NULL) # y.s <- model.response(data = mf.self) ; y.s <- cbind(y.s) # mf.vign <- model.frame(formula = f.vign, data = data, na.action = NULL) # y.v <- model.response(data = mf.vign) ; y.v <- cbind(y.v) # # Self-assessment: X # mf.self <- model.frame(formula = f.self, data = data, na.action = NULL) # x.s <- model.matrix(object = f.self, data = mf.self) ; x.s <- cbind(x.s) # # Tau # mf.tau <- model.frame(formula = f.tau, data = data, na.action = NULL) ; # x.tau <- model.matrix(object = f.tau, data = mf.tau) ; x.tau <- cbind(x.tau) # Self-assessment. cbind() is used to make sure each object is at least a column-vector (else a matrix). original.objects are created to # keep the objects as they were with NA, so that it can be returned by Chopit() and eventually passed to other functions (GroupAnalysis). # Indeed, whenever some values in x.tau is missing, then observation in x.s is deleted here ; but these observations can be used in # GroupAnalysis(). Remark that variables dropped due to multi-co here are also going to be dropped in the "original" objects. mf.self <- model.frame(formula = f.self, data = data, na.action = NULL) y.s <- model.response(data = mf.self) ; y.s <- cbind(y.s) x.s <- model.matrix(object = f.self, data = mf.self) ; x.s <- cbind(x.s) # Tau mf.tau <- model.frame(formula = f.tau, data = data, na.action = NULL) ; x.tau <- model.matrix(object = f.tau, data = mf.tau) ; x.tau <- cbind(x.tau) # Vignettes mf.vign <- model.frame(formula = f.vign, data = data, na.action = NULL) y.v <- model.response(data = mf.vign) ; y.v <- cbind(y.v) # Heteroskedasticity if (heterosk) { mf.sigma <- model.frame(formula = f.sigma, data = data, na.action = NULL) x.sigma <- model.matrix(object = f.sigma, data = mf.sigma) ; x.sigma <- cbind(x.sigma) } else { x.sigma <- NULL original.x.sigma <- NULL } # DEALING WITH NA # Observations that cannot be used at all: # - Rows for which there is no self-assessment AND vignette information # - Rows for which one of the x.tau is missing (impossible to calculate the thresholds) # Observations that cannot be used to calculate individual contribution to the self-assessment question likelihood (could be used for vignettes) # - Row for which one of the x.s is missing # - Rows for which y.s is missing # Observations that cannot be used to calculate indiv contrib to ONE vignette v question likelihood # - Rows for which the vignette statement is missing # Here, I drop all the data for which one or both of the first two conditions are not met. This avoids calculating likelihood contributions for # observations that are going to be NA. The reste of the NA are handled through the use of na.rm = TRUE in the sum functions of the ll function. # Alternatives could have been used, but this way of handling NA offers a good trade-off between speed and generality. # # Deleting rows corresponding to the first two cases # First, detecting the incomplete cases any.non.na <- function(x) { # Function that takes a vector, and says whether there is any non-missing value any(!is.na(x)) } incomplete <- ((is.na(y.s)) & !(apply(y.v, 1, any.non.na))) | (!complete.cases(x.tau)) # Then, deleting the incriminated rows y.s <- y.s[!incomplete, , drop = FALSE] x.s <- x.s[!incomplete, , drop = FALSE] x.tau <- x.tau[!incomplete, , drop = FALSE] y.v <- y.v[!incomplete, , drop = FALSE] if (heterosk) x.sigma <- x.sigma[!incomplete, , drop = FALSE] # DEALING WITH PERFECT COLINEARITY # Detecting perfect colinearity through polr, displaying the name of the incriminating variables, and dropping the corresponding variables # We focus on observations for which we observe at the same time the self-assessment variable and any vignette assessment. This allows us to check # that we observe each variable when, and especially that none of these variables is a constant (e.g. dummies not-used) s.e.and.v.e <- !is.na(y.s) & rowSums(1 * !is.na(y.v)) # Obervations for which we observe both a self-eval and a vignette eval # x.s if (ncol(x.s) > 2) { # Dealing with multico matters only if there is more than the constant in x.s temp.polr <- polr(as.factor(y.s[s.e.and.v.e]) ~ x.s[s.e.and.v.e, -1] , method = "probit") proper.names <- gsub("x.s\\[s.e.and.v.e, -1\\]", "", names(temp.polr$coefficients)) col.to.drop.x.s <- !(colnames(x.s) %in% proper.names) ; col.to.drop.x.s[1] <- FALSE # Index of the columns in x.s to be dropped if (any(col.to.drop.x.s)) { cat("Chopit: x.s is not full-rank. Dropping the following columns:", colnames(x.s)[col.to.drop.x.s], "\n") x.s <- x.s[, !col.to.drop.x.s, drop = FALSE] } rm(temp.polr) } # x.tau col.to.drop.x.tau <- NULL if (ncol(x.tau) > 2) { # Dealing with multico matters only if there is more than the constant in x.tau temp.polr <- polr(as.factor(y.s[s.e.and.v.e]) ~ x.tau[s.e.and.v.e, -1] , method = "probit") proper.names <- gsub("x.tau\\[s.e.and.v.e, -1\\]", "", names(temp.polr$coefficients)) col.to.drop.x.tau <- !(colnames(x.tau) %in% proper.names) ; col.to.drop.x.tau[1] <- FALSE # Index of the columns in x.tau to be dropped if (any(col.to.drop.x.tau)) { cat("Chopit: x.tau is not full-rank. Dropping the following columns:", colnames(x.tau)[col.to.drop.x.tau], "\n") x.tau <- x.tau[, !col.to.drop.x.tau, drop = FALSE] } rm(temp.polr) } # x.sigma col.to.drop.x.sigma <- NULL if (heterosk) if (ncol(x.sigma) > 2) { # Dealing with multico matters only if there is more than the constant in x.sigma temp.polr <- polr(as.factor(y.s[s.e.and.v.e]) ~ x.sigma[s.e.and.v.e, -1] , method = "probit") proper.names <- gsub("x.sigma\\[s.e.and.v.e, -1\\]", "", names(temp.polr$coefficients)) col.to.drop.x.sigma <- !(colnames(x.sigma) %in% proper.names) ; col.to.drop.x.sigma[1] <- FALSE # Index of the columns in x.sigma to be dropped if (any(col.to.drop.x.sigma)) { cat("Chopit: x.sigma is not full-rank. Dropping the following columns:", colnames(x.sigma)[col.to.drop.x.sigma], "\n") x.sigma <- x.sigma[, ! col.to.drop.x.sigma, drop = FALSE] } rm(temp.polr) } # CONSTANTS # Calculating the number of statement categories, by taking the maximum among the self-assessements and the vignettes length.levels.as.factor <- function(x) { # Function that calculate the length of the levels of an objet passed to as.factor length(levels(as.factor(x))) } kK <- max(sapply(X = data.frame(cbind(y.s, y.v)), FUN = length.levels.as.factor)) # Number of statement categories kBeta0Nrow <- ncol(x.s) - 1 # Number of parameters in beta0 kGammaNrow <- ncol(x.tau) # Number of gamma parameters for each threshold equation kV <- ncol(y.v) # Number of vignettes if (heterosk) { kKappa0Nrow <- ncol(x.sigma) - 1 # Number of row in kappa (except the 0 for the intercept) } else { kKappa0Nrow <- NULL } # GENERATING STARTING VALUES if (naive == TRUE & is.null(par.init)) { beta0.init <- numeric(kBeta0Nrow) gamma.init <- matrix(0, nrow = kGammaNrow, ncol = kK - 1) ; gamma.init[1, ] <- 0.1 theta.init = numeric(kV) sigma.tilde.v.init <- numeric(kV) # equivalent to setting sigma. v = (1, ..., 1) if (heterosk) { kappa0.init <- numeric(kKappa0Nrow) # parameters kappa, except the first 0 } if (heterosk) par.init <- c(beta0.init, gamma.init, theta.init, sigma.tilde.v.init, kappa0.init) else par.init <- c(beta0.init, gamma.init, theta.init, sigma.tilde.v.init) } if (naive == FALSE & is.null(par.init)) { par.init <- ChopitStartingValues(y.s = y.s, x.s = x.s, kK = kK, kBeta0Nrow = kBeta0Nrow, kGammaNrow, kV) if (heterosk) { par.init <- c(par.init, numeric(kKappa0Nrow)) cat("Chopit: The non-naive parameter initilalization is not optimized for being used when heteroskedasticticy is allowed. Naive could be prefered. \n") } } # LIKELIHOOD MAXIMIZATION chopit.envir <- environment() # optim.results <- optim(par = par.init, fn = ChopitLlCompound, y.s = y.s, y.v = y.v, x.s = x.s, x.tau = x.tau, kK = kK, kBeta0Nrow = kBeta0Nrow, # kGammaNrow = kGammaNrow, kV = kV, method = optim.method, control = list(trace = 2), hessian = varcov.calculus) optim.results <- maxLik(logLik = ChopitLlCompound, grad = NULL, hess = NULL, start = par.init, finalHessian = (varcov.method == "hessian"), iterlim = 2e+3, method = optim.method, print.level = 2, y.s = y.s, y.v = y.v, x.s = x.s, x.tau = x.tau, kK = kK, kBeta0Nrow = kBeta0Nrow, kGammaNrow = kGammaNrow, kV = kV, chopit.envir = chopit.envir, heterosk = heterosk, x.sigma = x.sigma, kKappa0Nrow = kKappa0Nrow) # VAR-COV MATRIX if (varcov.method == "none") { var.cov <- matrix(NA, nrow = length(par.init), ncol = length(par.init)) } if (varcov.method == "hessian") { var.cov <- - solve(optim.results$hessian) } if (varcov.method == "OPG") { var.cov <- solve(t(optim.results$gradientObs) %*% optim.results$gradientObs) } # NAMING # Naming the rows (and cols) of the estimated parameters and of the varcov matrix # Creating a vector of names beta0.names <- colnames(x.s[, -1]) gamma.names <- vector("numeric") for (i in 1:(kK - 1)) { gamma.names <- cbind(gamma.names, paste(paste("gamma", i, sep = ""), colnames(x.tau))) } theta.names <- paste("theta", 1:kV, sep = "") sigma.tilde.v.names <- paste("sigma.tilde.v", 1:kV, sep = "") if (heterosk) kappa.names <- paste("kappa", colnames(x.sigma[, -1])) else kappa.names <- NULL names <- c(beta0.names, gamma.names, theta.names, sigma.tilde.v.names, kappa.names) # Renaming the appropriate objects names(optim.results$estimate) <- names rownames(var.cov) <- colnames(var.cov) <- names # DEPARSING COEF # Deparsing the coefficients in sub-categories to facilitate further uses beta0 <- optim.results$estimate[1:kBeta0Nrow] gamma <- matrix(optim.results$estimate[(length(beta0) + 1) : (length(beta0) + kGammaNrow * (kK - 1))], ncol = kK - 1) theta <- optim.results$estimate[(length(beta0) + length(gamma) + 1) : (length(beta0) + length(gamma) + kV)] sigma.tilde.v <- optim.results$estimate[(length(beta0) + length(gamma) + length(theta) + 1) : (length(beta0) + length(gamma) + length(theta) + kV)] if (heterosk) kappa0 <- optim.results$estimate[(length(beta0) + length(gamma) + length(theta) + length(sigma.tilde.v) + 1) : (length(beta0) + length(gamma) + length(theta) + length(sigma.tilde.v) + kKappa0Nrow)] else kappa0 <- NULL # Switching the clock off elapsed.time <- proc.time() - ptm # RETURN optim.results$gradientObs <- NULL # Dropping gradientObs for the sake of sparsity results <- list(optim.results = optim.results, coef = list(beta0 = beta0, gamma = gamma, theta = theta, sigma.tilde.v =sigma.tilde.v, kappa0 = kappa0), var.cov = var.cov, constants = list(kK = kK, kBeta0Nrow = kBeta0Nrow, kGammaNrow = kGammaNrow, kV = kV, kKappa0Nrow = kKappa0Nrow, heterosk = heterosk), contrib.number = contrib.number, call.arg = list(formula = formula, data.name = data.name, heterosk = heterosk, naive = naive, par.init = par.init, optim.method = optim.method, varcov.method = varcov.method, parent.frame = parent.frame()), col.to.drop = list(x.s = col.to.drop.x.s, x.tau = col.to.drop.x.tau, x.sigma = col.to.drop.x.sigma), elapsed.time = elapsed.time) class(results) <- "Chopit" return(results) } # "Compiling" the code to make it faster library(compiler) ChopitTau <- cmpfun(ChopitTau) ChopitLlSelfEval <- cmpfun(ChopitLlSelfEval) ChopitLlVignEval <- cmpfun(ChopitLlVignEval) ChopitLl <- cmpfun(ChopitLl) ChopitLlCompound <- cmpfun(ChopitLlCompound) Chopit <- cmpfun(Chopit)
/heterogeneity/Chopit.R
no_license
applXcation/udacity
R
false
false
18,628
r
if (Sys.info()["sysname"] == "Darwin" & Sys.info()["user"] == "xavier") { chopit.routines.directory = "~/Documents/Travail/Boulot Fac/Doctorat/1_ Productions personnelles/24_Range-Frequency/2_programmes/" share.data.directory = "~/Documents/Travail/Boulot Fac/Doctorat/Data bases/SHARE/0_merged_data/" } if (Sys.info()["sysname"] == "Linux" & Sys.info()["user"] == "x.fontaine") { chopit.routines.directory = "~/U/Travail/Range_frequency/routines/" share.data.directory = "~/U/Travail/Range_frequency/data/" } source(paste(chopit.routines.directory,"likelihood.R", sep = ""), chdir = TRUE) source(paste(chopit.routines.directory,"ChopitStartingValues.R", sep = ""), chdir = TRUE) source(paste(chopit.routines.directory,"summary.Chopit.R", sep = ""), chdir = TRUE) Chopit <- function(formula, data, heterosk = FALSE, naive = FALSE, par.init = NULL, optim.method = "BFGS", varcov.method = "OPG") { # CHOPIT() # Args: # formula: list containing 3 formulae arguments ; the first one must be names self, the second one vign, the last one tau. Remark that a # a constant is expected to be specified in all the equations, even though the program will perform the necessary normalization # beta["cste"] = 0. If heterosk == TRUE, a 4th argument (sigma) is required. # data: dataset associated to the formulae # heterosk: Should the model account for potential heteroskedasticity ? If so, sd(Y*_s / x_s, x_sigma) = sigma_s(x_sigma) = exp(x_sigma %*% kappa) # par.init: initial parameters to be passed to optim # naive: TRUE if initial values for parameters should be set the "naive" way (i.e. all parameters are 0, except intercept of each threshold # equation which is set to 0.1. Else, a more sophisticated way is used, through ChopitStartingValues # varcov.method: method to be used to estimate the variance-covariane matrix for the parameters: none, hessian or OPG # # Returns (as a list) # optim.results: result from optimization (object of classes maxLik and maxim) ; for sake of sparsity, gradientObs is delete # coef: list of coefficients. beta0 is the beta vector, with a 0 as a first argument by normalization since there is an intercept in x.s. Same holds # for kappa0 # var.cov: variance covariance matrix (if varcov.method != "none") # constants: list of important constants (defined throughout the code) # contrib.number: number of contribution to partial likelihood # call.arg: argument used when the function has been called. 'data.name' and parent.frame replaces the original dataset, by giving both the name of # this dataframe and its location. By doing so, the object returned remains quite small in size. # col.to.drop: if Chopit() finds any colinearity problem, it drops the incriminated collumns. The arguments in col.to.drop contain the number of the # columns to be dropped # Libraries library(MASS) # used for finding proper starting values, using polr library(maxLik) # Start the clock ptm <- proc.time() # GLOBAL SANITY CHECKS # data should be a data.frame if (!is.data.frame(data)) stop("Chopit: the argument data is not a data.frame") # varcov.method should be either "none", "hessian" or OPG if (!varcov.method %in% c("none", "hessian", "OPG")) stop("Chopit: varcov.method should be either 'none', 'hessian' or 'OPG'") # PARSING THE FORMULAE # Sanity checks: checking the "formula" list is properly defined # Is "formula" a list ? if (!is.list(formula)) stop("Chopit: formula is not a list") # Is each element a formula ? IsFormula <- function(x) { is.formula <- (class(x) == "formula") return(is.formula) } if (any(!sapply(X = formula, FUN = IsFormula))) stop("Chopit: at least one element in the list formula is not a formula") # Are the names apropriately chosen ? if (any(!c("self", "tau", "vign") %in% names(formula))) stop("Chopit: names in formula badly specified (one of self, tau, vign is missing)") if (heterosk & !("sigma" %in% names(formula))) stop("Chopit: 'heterosk == TRUE' but no 'sigma' in the formula") if (!heterosk & ("sigma" %in% names(formula))) stop("Chopit: heterosk = FALSE while there is 'sigma' in the formula") # Parsing process f.self <- formula$self f.tau <- formula$tau f.vign <- formula$vign if (heterosk) f.sigma <- formula$sigma # PRODUCING THE DATA MATRICES # Sanity checks: # A constant is expected to be included in the self-assessment equation (no + 0 or - 1 should take place in this equation). If no constant # specified, we should force a constant to exist (cf. terms.object so see what to modify), and indicate we do so. if (attr(terms(f.self), "intercept") == 0) stop("No constant in the self-assessment equation formula (one is expected, event though we normalize the associated coef to 0)") # Getting the name of the provided argument 'data' before data is evaluated data.name <- deparse(substitute(data)) # Dropping unused levels in data if any remaining data <- droplevels(data) # # # Self-assessment. cbind() is used to make sure each object is at least a column-vector (else a matrix). original.objects are created to # # keep the objects as they were with NA, so that it can be returned by Chopit() and eventually passed to other functions (GroupAnalysis). # # Indeed, whenever some values in x.tau is missing, then observation in x.s is deleted here ; but these observations can be used in # # GroupAnalysis(). Remark that variables dropped due to multi-co here are also going to be dropped in the "original" objects. # mf.self <- model.frame(formula = f.self, data = data, na.action = NULL) # y.s <- model.response(data = mf.self) ; y.s <- cbind(y.s) # # Vignettes # mf.vign <- model.frame(formula = f.vign, data = data, na.action = NULL) # y.v <- model.response(data = mf.vign) ; y.v <- cbind(y.v) # # Checking again for missing levels, but now when all y.s and y.v are NA. Otherwise, some levels may not be missing for the whole dataset, but # # missing when considering only the observations where we have at least one assessment avaible. # # Then getting back y.s and y.v again for this smaller dataset # data <- data[!is.na(y.s) | rowSums(!is.na(y.v)), ] # data <- droplevels(data) # mf.self <- model.frame(formula = f.self, data = data, na.action = NULL) # y.s <- model.response(data = mf.self) ; y.s <- cbind(y.s) # mf.vign <- model.frame(formula = f.vign, data = data, na.action = NULL) # y.v <- model.response(data = mf.vign) ; y.v <- cbind(y.v) # # Self-assessment: X # mf.self <- model.frame(formula = f.self, data = data, na.action = NULL) # x.s <- model.matrix(object = f.self, data = mf.self) ; x.s <- cbind(x.s) # # Tau # mf.tau <- model.frame(formula = f.tau, data = data, na.action = NULL) ; # x.tau <- model.matrix(object = f.tau, data = mf.tau) ; x.tau <- cbind(x.tau) # Self-assessment. cbind() is used to make sure each object is at least a column-vector (else a matrix). original.objects are created to # keep the objects as they were with NA, so that it can be returned by Chopit() and eventually passed to other functions (GroupAnalysis). # Indeed, whenever some values in x.tau is missing, then observation in x.s is deleted here ; but these observations can be used in # GroupAnalysis(). Remark that variables dropped due to multi-co here are also going to be dropped in the "original" objects. mf.self <- model.frame(formula = f.self, data = data, na.action = NULL) y.s <- model.response(data = mf.self) ; y.s <- cbind(y.s) x.s <- model.matrix(object = f.self, data = mf.self) ; x.s <- cbind(x.s) # Tau mf.tau <- model.frame(formula = f.tau, data = data, na.action = NULL) ; x.tau <- model.matrix(object = f.tau, data = mf.tau) ; x.tau <- cbind(x.tau) # Vignettes mf.vign <- model.frame(formula = f.vign, data = data, na.action = NULL) y.v <- model.response(data = mf.vign) ; y.v <- cbind(y.v) # Heteroskedasticity if (heterosk) { mf.sigma <- model.frame(formula = f.sigma, data = data, na.action = NULL) x.sigma <- model.matrix(object = f.sigma, data = mf.sigma) ; x.sigma <- cbind(x.sigma) } else { x.sigma <- NULL original.x.sigma <- NULL } # DEALING WITH NA # Observations that cannot be used at all: # - Rows for which there is no self-assessment AND vignette information # - Rows for which one of the x.tau is missing (impossible to calculate the thresholds) # Observations that cannot be used to calculate individual contribution to the self-assessment question likelihood (could be used for vignettes) # - Row for which one of the x.s is missing # - Rows for which y.s is missing # Observations that cannot be used to calculate indiv contrib to ONE vignette v question likelihood # - Rows for which the vignette statement is missing # Here, I drop all the data for which one or both of the first two conditions are not met. This avoids calculating likelihood contributions for # observations that are going to be NA. The reste of the NA are handled through the use of na.rm = TRUE in the sum functions of the ll function. # Alternatives could have been used, but this way of handling NA offers a good trade-off between speed and generality. # # Deleting rows corresponding to the first two cases # First, detecting the incomplete cases any.non.na <- function(x) { # Function that takes a vector, and says whether there is any non-missing value any(!is.na(x)) } incomplete <- ((is.na(y.s)) & !(apply(y.v, 1, any.non.na))) | (!complete.cases(x.tau)) # Then, deleting the incriminated rows y.s <- y.s[!incomplete, , drop = FALSE] x.s <- x.s[!incomplete, , drop = FALSE] x.tau <- x.tau[!incomplete, , drop = FALSE] y.v <- y.v[!incomplete, , drop = FALSE] if (heterosk) x.sigma <- x.sigma[!incomplete, , drop = FALSE] # DEALING WITH PERFECT COLINEARITY # Detecting perfect colinearity through polr, displaying the name of the incriminating variables, and dropping the corresponding variables # We focus on observations for which we observe at the same time the self-assessment variable and any vignette assessment. This allows us to check # that we observe each variable when, and especially that none of these variables is a constant (e.g. dummies not-used) s.e.and.v.e <- !is.na(y.s) & rowSums(1 * !is.na(y.v)) # Obervations for which we observe both a self-eval and a vignette eval # x.s if (ncol(x.s) > 2) { # Dealing with multico matters only if there is more than the constant in x.s temp.polr <- polr(as.factor(y.s[s.e.and.v.e]) ~ x.s[s.e.and.v.e, -1] , method = "probit") proper.names <- gsub("x.s\\[s.e.and.v.e, -1\\]", "", names(temp.polr$coefficients)) col.to.drop.x.s <- !(colnames(x.s) %in% proper.names) ; col.to.drop.x.s[1] <- FALSE # Index of the columns in x.s to be dropped if (any(col.to.drop.x.s)) { cat("Chopit: x.s is not full-rank. Dropping the following columns:", colnames(x.s)[col.to.drop.x.s], "\n") x.s <- x.s[, !col.to.drop.x.s, drop = FALSE] } rm(temp.polr) } # x.tau col.to.drop.x.tau <- NULL if (ncol(x.tau) > 2) { # Dealing with multico matters only if there is more than the constant in x.tau temp.polr <- polr(as.factor(y.s[s.e.and.v.e]) ~ x.tau[s.e.and.v.e, -1] , method = "probit") proper.names <- gsub("x.tau\\[s.e.and.v.e, -1\\]", "", names(temp.polr$coefficients)) col.to.drop.x.tau <- !(colnames(x.tau) %in% proper.names) ; col.to.drop.x.tau[1] <- FALSE # Index of the columns in x.tau to be dropped if (any(col.to.drop.x.tau)) { cat("Chopit: x.tau is not full-rank. Dropping the following columns:", colnames(x.tau)[col.to.drop.x.tau], "\n") x.tau <- x.tau[, !col.to.drop.x.tau, drop = FALSE] } rm(temp.polr) } # x.sigma col.to.drop.x.sigma <- NULL if (heterosk) if (ncol(x.sigma) > 2) { # Dealing with multico matters only if there is more than the constant in x.sigma temp.polr <- polr(as.factor(y.s[s.e.and.v.e]) ~ x.sigma[s.e.and.v.e, -1] , method = "probit") proper.names <- gsub("x.sigma\\[s.e.and.v.e, -1\\]", "", names(temp.polr$coefficients)) col.to.drop.x.sigma <- !(colnames(x.sigma) %in% proper.names) ; col.to.drop.x.sigma[1] <- FALSE # Index of the columns in x.sigma to be dropped if (any(col.to.drop.x.sigma)) { cat("Chopit: x.sigma is not full-rank. Dropping the following columns:", colnames(x.sigma)[col.to.drop.x.sigma], "\n") x.sigma <- x.sigma[, ! col.to.drop.x.sigma, drop = FALSE] } rm(temp.polr) } # CONSTANTS # Calculating the number of statement categories, by taking the maximum among the self-assessements and the vignettes length.levels.as.factor <- function(x) { # Function that calculate the length of the levels of an objet passed to as.factor length(levels(as.factor(x))) } kK <- max(sapply(X = data.frame(cbind(y.s, y.v)), FUN = length.levels.as.factor)) # Number of statement categories kBeta0Nrow <- ncol(x.s) - 1 # Number of parameters in beta0 kGammaNrow <- ncol(x.tau) # Number of gamma parameters for each threshold equation kV <- ncol(y.v) # Number of vignettes if (heterosk) { kKappa0Nrow <- ncol(x.sigma) - 1 # Number of row in kappa (except the 0 for the intercept) } else { kKappa0Nrow <- NULL } # GENERATING STARTING VALUES if (naive == TRUE & is.null(par.init)) { beta0.init <- numeric(kBeta0Nrow) gamma.init <- matrix(0, nrow = kGammaNrow, ncol = kK - 1) ; gamma.init[1, ] <- 0.1 theta.init = numeric(kV) sigma.tilde.v.init <- numeric(kV) # equivalent to setting sigma. v = (1, ..., 1) if (heterosk) { kappa0.init <- numeric(kKappa0Nrow) # parameters kappa, except the first 0 } if (heterosk) par.init <- c(beta0.init, gamma.init, theta.init, sigma.tilde.v.init, kappa0.init) else par.init <- c(beta0.init, gamma.init, theta.init, sigma.tilde.v.init) } if (naive == FALSE & is.null(par.init)) { par.init <- ChopitStartingValues(y.s = y.s, x.s = x.s, kK = kK, kBeta0Nrow = kBeta0Nrow, kGammaNrow, kV) if (heterosk) { par.init <- c(par.init, numeric(kKappa0Nrow)) cat("Chopit: The non-naive parameter initilalization is not optimized for being used when heteroskedasticticy is allowed. Naive could be prefered. \n") } } # LIKELIHOOD MAXIMIZATION chopit.envir <- environment() # optim.results <- optim(par = par.init, fn = ChopitLlCompound, y.s = y.s, y.v = y.v, x.s = x.s, x.tau = x.tau, kK = kK, kBeta0Nrow = kBeta0Nrow, # kGammaNrow = kGammaNrow, kV = kV, method = optim.method, control = list(trace = 2), hessian = varcov.calculus) optim.results <- maxLik(logLik = ChopitLlCompound, grad = NULL, hess = NULL, start = par.init, finalHessian = (varcov.method == "hessian"), iterlim = 2e+3, method = optim.method, print.level = 2, y.s = y.s, y.v = y.v, x.s = x.s, x.tau = x.tau, kK = kK, kBeta0Nrow = kBeta0Nrow, kGammaNrow = kGammaNrow, kV = kV, chopit.envir = chopit.envir, heterosk = heterosk, x.sigma = x.sigma, kKappa0Nrow = kKappa0Nrow) # VAR-COV MATRIX if (varcov.method == "none") { var.cov <- matrix(NA, nrow = length(par.init), ncol = length(par.init)) } if (varcov.method == "hessian") { var.cov <- - solve(optim.results$hessian) } if (varcov.method == "OPG") { var.cov <- solve(t(optim.results$gradientObs) %*% optim.results$gradientObs) } # NAMING # Naming the rows (and cols) of the estimated parameters and of the varcov matrix # Creating a vector of names beta0.names <- colnames(x.s[, -1]) gamma.names <- vector("numeric") for (i in 1:(kK - 1)) { gamma.names <- cbind(gamma.names, paste(paste("gamma", i, sep = ""), colnames(x.tau))) } theta.names <- paste("theta", 1:kV, sep = "") sigma.tilde.v.names <- paste("sigma.tilde.v", 1:kV, sep = "") if (heterosk) kappa.names <- paste("kappa", colnames(x.sigma[, -1])) else kappa.names <- NULL names <- c(beta0.names, gamma.names, theta.names, sigma.tilde.v.names, kappa.names) # Renaming the appropriate objects names(optim.results$estimate) <- names rownames(var.cov) <- colnames(var.cov) <- names # DEPARSING COEF # Deparsing the coefficients in sub-categories to facilitate further uses beta0 <- optim.results$estimate[1:kBeta0Nrow] gamma <- matrix(optim.results$estimate[(length(beta0) + 1) : (length(beta0) + kGammaNrow * (kK - 1))], ncol = kK - 1) theta <- optim.results$estimate[(length(beta0) + length(gamma) + 1) : (length(beta0) + length(gamma) + kV)] sigma.tilde.v <- optim.results$estimate[(length(beta0) + length(gamma) + length(theta) + 1) : (length(beta0) + length(gamma) + length(theta) + kV)] if (heterosk) kappa0 <- optim.results$estimate[(length(beta0) + length(gamma) + length(theta) + length(sigma.tilde.v) + 1) : (length(beta0) + length(gamma) + length(theta) + length(sigma.tilde.v) + kKappa0Nrow)] else kappa0 <- NULL # Switching the clock off elapsed.time <- proc.time() - ptm # RETURN optim.results$gradientObs <- NULL # Dropping gradientObs for the sake of sparsity results <- list(optim.results = optim.results, coef = list(beta0 = beta0, gamma = gamma, theta = theta, sigma.tilde.v =sigma.tilde.v, kappa0 = kappa0), var.cov = var.cov, constants = list(kK = kK, kBeta0Nrow = kBeta0Nrow, kGammaNrow = kGammaNrow, kV = kV, kKappa0Nrow = kKappa0Nrow, heterosk = heterosk), contrib.number = contrib.number, call.arg = list(formula = formula, data.name = data.name, heterosk = heterosk, naive = naive, par.init = par.init, optim.method = optim.method, varcov.method = varcov.method, parent.frame = parent.frame()), col.to.drop = list(x.s = col.to.drop.x.s, x.tau = col.to.drop.x.tau, x.sigma = col.to.drop.x.sigma), elapsed.time = elapsed.time) class(results) <- "Chopit" return(results) } # "Compiling" the code to make it faster library(compiler) ChopitTau <- cmpfun(ChopitTau) ChopitLlSelfEval <- cmpfun(ChopitLlSelfEval) ChopitLlVignEval <- cmpfun(ChopitLlVignEval) ChopitLl <- cmpfun(ChopitLl) ChopitLlCompound <- cmpfun(ChopitLlCompound) Chopit <- cmpfun(Chopit)
% Generated by roxygen2 (4.1.1): do not edit by hand % Please edit documentation in R/gapStats.R \name{gapStats} \alias{gapStats} \title{Unbiased estimate of the number of cell or gene clusters using the gap statistic.} \usage{ gapStats(cellData, gene_clust = FALSE, fun = "kmeans", max_clust = 25, boot = 100, plot = TRUE, save = FALSE, print = TRUE) } \arguments{ \item{cellData}{ExpressionSet object created with readCells (and preferably transformed with prepCells). It is also helpful to first run reduceGenes_var and reduceGenes_pca.} \item{gene_clust}{Boolean specifying whether the gap statistic should be calculated for the samples or genes. TRUE calculates for the cells, FALSE for the genes.} \item{fun}{Character string specifying whether the gap statistic should be calculated for kmeans, pam, or hierarchical clustering. Possible values are kmeans, pam, or hclust. clustering methods to perform. All three can be specified, or a subset of the three.} \item{max_clust}{Integer specifying the maximum possible number of clusters in the dataset. Set higher than the expected value. matrix for 'hierarchical.' Equivalent to the 'method' parameter within the dist function.} \item{boot}{Integer specifying the number of bootstrap iterations to perform when calculating the gap statistic. 'hierarchical.' Equivalent to the 'method' parameter within the hclust function.} \item{plot}{Boolean specifying whether a plot of the gap values vs the number of clusters should be produced.} \item{save}{Boolean specifying whether the plot should be saved.} \item{print}{Boolean specifying whether the optimal number of clusters should be printed in the terminal window.} } \value{ The optimal number of clusters calculated from the gap statistic with the given parameters. A new column is added to pData indicating the optimal number of cell or gene clusters for the chosen clustering method. } \description{ Takes ExpressionSet object and calculates the optimal number of kmeans, pam, or hierarchical clusters for the samples or genes using the gap statistic. }
/man/gapStats.Rd
no_license
joeburns06/hocuspocus
R
false
false
2,084
rd
% Generated by roxygen2 (4.1.1): do not edit by hand % Please edit documentation in R/gapStats.R \name{gapStats} \alias{gapStats} \title{Unbiased estimate of the number of cell or gene clusters using the gap statistic.} \usage{ gapStats(cellData, gene_clust = FALSE, fun = "kmeans", max_clust = 25, boot = 100, plot = TRUE, save = FALSE, print = TRUE) } \arguments{ \item{cellData}{ExpressionSet object created with readCells (and preferably transformed with prepCells). It is also helpful to first run reduceGenes_var and reduceGenes_pca.} \item{gene_clust}{Boolean specifying whether the gap statistic should be calculated for the samples or genes. TRUE calculates for the cells, FALSE for the genes.} \item{fun}{Character string specifying whether the gap statistic should be calculated for kmeans, pam, or hierarchical clustering. Possible values are kmeans, pam, or hclust. clustering methods to perform. All three can be specified, or a subset of the three.} \item{max_clust}{Integer specifying the maximum possible number of clusters in the dataset. Set higher than the expected value. matrix for 'hierarchical.' Equivalent to the 'method' parameter within the dist function.} \item{boot}{Integer specifying the number of bootstrap iterations to perform when calculating the gap statistic. 'hierarchical.' Equivalent to the 'method' parameter within the hclust function.} \item{plot}{Boolean specifying whether a plot of the gap values vs the number of clusters should be produced.} \item{save}{Boolean specifying whether the plot should be saved.} \item{print}{Boolean specifying whether the optimal number of clusters should be printed in the terminal window.} } \value{ The optimal number of clusters calculated from the gap statistic with the given parameters. A new column is added to pData indicating the optimal number of cell or gene clusters for the chosen clustering method. } \description{ Takes ExpressionSet object and calculates the optimal number of kmeans, pam, or hierarchical clusters for the samples or genes using the gap statistic. }
print.bal.tab <- function(x, imbalanced.only = "as.is", un = "as.is", disp.bal.tab = "as.is", stats = "as.is", disp.thresholds = "as.is", disp = "as.is", digits = max(3, getOption("digits") - 3), ...) { A <- list(...) call <- x$call p.ops <- attr(x, "print.options") balance <- x$Balance baltal <- maximbal <- list() for (s in p.ops$compute) { baltal[[s]] <- x[[paste.("Balanced", s)]] maximbal[[s]] <- x[[paste.("Max.Imbalance", s)]] } nn <- x$Observations #Prevent exponential notation printing op <- options(scipen=getOption("scipen")) options(scipen = 999) on.exit(options(op)) #Adjustments to print options if (!identical(un, "as.is") && p.ops$disp.adj) { if (!rlang::is_bool(un)) stop("'un' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if (p.ops$quick && p.ops$un == FALSE && un == TRUE) { warning("'un' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$un <- un } if (!identical(disp, "as.is")) { if (!is.character(disp)) stop("'disp' must be a character vector.") allowable.disp <- c("means", "sds", all_STATS(p.ops$type)) if (any(disp %nin% allowable.disp)) { stop(paste(word_list(disp[disp %nin% allowable.disp], and.or = "and", quotes = 2, is.are = TRUE), "not allowed in 'disp'."), call. = FALSE) } if (any(disp %nin% p.ops$compute)) { warning(paste("'disp' cannot include", word_list(disp[disp %nin% p.ops$compute], and.or = "or", quotes = 2), "if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- disp } if (is_not_null(A[["disp.means"]]) && !identical(A[["disp.means"]], "as.is")) { if (!rlang::is_bool(A[["disp.means"]])) stop("'disp.means' must be TRUE, FALSE, or \"as.is\".") if ("means" %nin% p.ops$compute && A[["disp.means"]] == TRUE) { warning("'disp.means' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "means"[A[["disp.means"]]])) } if (is_not_null(A[["disp.sds"]]) && !identical(A[["disp.sds"]], "as.is")) { if (!rlang::is_bool(A[["disp.sds"]])) stop("'disp.sds' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if ("sds" %nin% p.ops$compute && A[["disp.sds"]] == TRUE) { warning("'disp.sds' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "sds"[A[["disp.sds"]]])) } if (!identical(stats, "as.is")) { if (!is_(stats, "character")) stop("'stats' must be a string.") stats <- match_arg(stats, all_STATS(p.ops$type), several.ok = TRUE) stats_in_p.ops <- stats %in% p.ops$compute if (any(!stats_in_p.ops)) { stop(paste0("'stats' cannot contain ", word_list(stats[!stats_in_p.ops], and.or = "or", quotes = 2), " when ", if (sum(!stats_in_p.ops) > 1) "they were " else "it was ", "not requested in the original call to bal.tab()."), call. = TRUE) } else p.ops$disp <- unique(c(p.ops$disp[p.ops$disp %nin% all_STATS()], stats)) } for (s in all_STATS(p.ops$type)) { if (is_not_null(A[[STATS[[s]]$disp_stat]]) && !identical(A[[STATS[[s]]$disp_stat]], "as.is")) { if (!rlang::is_bool(A[[STATS[[s]]$disp_stat]])) { stop(paste0("'", STATS[[s]]$disp_stat, "' must be TRUE, FALSE, or \"as.is\"."), call. = FALSE) } if (s %nin% p.ops$compute && isTRUE(A[[STATS[[s]]$disp_stat]])) { warning(paste0("'", STATS[[s]]$disp_stat, "' cannot be set to TRUE if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, s)) } } for (s in p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)]) { if (STATS[[s]]$threshold %in% names(A) && !identical(temp.thresh <- A[[STATS[[s]]$threshold]], "as.is")) { if (is_not_null(temp.thresh) && (!is.numeric(temp.thresh) || length(temp.thresh) != 1 || is_null(p.ops[["thresholds"]][[s]]) || p.ops[["thresholds"]][[s]] != temp.thresh)) stop(paste0("'", STATS[[s]]$threshold, "' must be NULL or \"as.is\".")) if (is_null(temp.thresh)) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (s %nin% p.ops$disp) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (!identical(disp.thresholds, "as.is")) { if (!is.logical(disp.thresholds) || anyNA(disp.thresholds)) stop("'disp.thresholds' must only contain TRUE or FALSE.", call. = FALSE) if (is_null(names(disp.thresholds))) { if (length(disp.thresholds) <= length(p.ops[["thresholds"]])) { names(disp.thresholds) <- names(p.ops[["thresholds"]])[seq_along(disp.thresholds)] } else { stop("More entries were given to 'disp.thresholds' than there are thresholds in the bal.tab object.", call. = FALSE) } } if (!all(names(disp.thresholds) %pin% names(p.ops[["thresholds"]]))) { warning(paste0(word_list(names(disp.thresholds)[!names(disp.thresholds) %pin% names(p.ops[["thresholds"]])], quotes = 2, is.are = TRUE), " not available in thresholds and will be ignored."), call. = FALSE) disp.thresholds <- disp.thresholds[names(disp.thresholds) %pin% names(p.ops[["thresholds"]])] } names(disp.thresholds) <- match_arg(names(disp.thresholds), names(p.ops[["thresholds"]]), several.ok = TRUE) for (x in names(disp.thresholds)) { if (!disp.thresholds[x]) { p.ops[["thresholds"]][[x]] <- NULL baltal[[x]] <- NULL maximbal[[x]] <- NULL } } } if (!identical(disp.bal.tab, "as.is")) { if (!rlang::is_bool(disp.bal.tab)) stop("'disp.bal.tab' must be TRUE, FALSE, or \"as.is\".") p.ops$disp.bal.tab <- disp.bal.tab } if (p.ops$disp.bal.tab) { if (!identical(imbalanced.only, "as.is")) { if (!rlang::is_bool(imbalanced.only)) stop("'imbalanced.only' must be TRUE, FALSE, or \"as.is\".") p.ops$imbalanced.only <- imbalanced.only } if (p.ops$imbalanced.only) { if (is_null(p.ops$thresholds)) { warning("A threshold must be specified if imbalanced.only = TRUE. Displaying all covariates.", call. = FALSE) p.ops$imbalanced.only <- FALSE } } } else p.ops$imbalanced.only <- FALSE if (is_not_null(call)) { cat(underline("Call") %+% "\n " %+% paste(deparse(call), collapse = "\n") %+% "\n\n") } if (p.ops$disp.bal.tab) { if (p.ops$imbalanced.only) { keep.row <- rowSums(apply(balance[grepl(".Threshold", names(balance), fixed = TRUE)], 2, function(x) !is.na(x) & startsWith(x, "Not Balanced"))) > 0 } else keep.row <- rep(TRUE, nrow(balance)) keep.col <- setNames(as.logical(c(TRUE, rep(unlist(lapply(p.ops$compute[p.ops$compute %nin% all_STATS()], function(s) { p.ops$un && s %in% p.ops$disp })), switch(p.ops$type, bin = 2, cont = 1)), unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS()], function(s) { c(p.ops$un && s %in% p.ops$disp, p.ops$un && !p.ops$disp.adj && is_not_null(p.ops$thresholds[[s]])) })), rep(c(rep(unlist(lapply(p.ops$compute[p.ops$compute %nin% all_STATS()], function(s) { p.ops$disp.adj && s %in% p.ops$disp })), switch(p.ops$type, bin = 2, cont = 1)), unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS()], function(s) { c(p.ops$disp.adj && s %in% p.ops$disp, p.ops$disp.adj && is_not_null(p.ops$thresholds[[s]])) })) ), p.ops$nweights + !p.ops$disp.adj))), names(balance)) cat(underline("Balance Measures") %+% "\n") if (all(!keep.row)) cat(italic("All covariates are balanced.") %+% "\n") else print.data.frame_(round_df_char(balance[keep.row, keep.col, drop = FALSE], digits)) cat("\n") } for (s in p.ops$compute) { if (is_not_null(baltal[[s]])) { cat(underline(paste("Balance tally for", STATS[[s]]$balance_tally_for)) %+% "\n") print.data.frame_(baltal[[s]]) cat("\n") } if (is_not_null(maximbal[[s]])) { cat(underline(paste("Variable with the greatest", STATS[[s]]$variable_with_the_greatest)) %+% "\n") print.data.frame_(round_df_char(maximbal[[s]], digits), row.names = FALSE) cat("\n") } } if (is_not_null(nn)) { for (i in seq_len(NROW(nn))) { if (all(nn[i,] == 0)) { nn <- nn[-i, , drop = FALSE] attr(nn, "ss.type") <- attr(nn, "ss.type")[-i] } } if (all(c("Matched (ESS)", "Matched (Unweighted)") %in% rownames(nn)) && all(check_if_zero(nn["Matched (ESS)",] - nn["Matched (Unweighted)",]))) { nn <- nn[rownames(nn)!="Matched (Unweighted)", , drop = FALSE] rownames(nn)[rownames(nn) == "Matched (ESS)"] <- "Matched" } cat(underline(attr(nn, "tag")) %+% "\n") print.warning <- FALSE if (length(attr(nn, "ss.type")) > 1 && nunique.gt(attr(nn, "ss.type")[-1], 1)) { ess <- ifelse(attr(nn, "ss.type") == "ess", "*", "") nn <- setNames(cbind(nn, ess), c(names(nn), "")) print.warning <- TRUE } print.data.frame_(round_df_char(nn, digits = min(2, digits), pad = " ")) if (print.warning) cat(italic("* indicates effective sample size")) } invisible(x) } print.bal.tab.cluster <- function(x, imbalanced.only = "as.is", un = "as.is", disp.bal.tab = "as.is", stats = "as.is", disp.thresholds = "as.is", disp = "as.is", which.cluster, cluster.summary = "as.is", cluster.fun = "as.is", digits = max(3, getOption("digits") - 3), ...) { #Replace .all and .none with NULL and NA respectively .call <- match.call(expand.dots = TRUE) if (any(sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".all") || identical(as.character(.call[[x]]), ".none")))) { .call[sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".all"))] <- expression(NULL) .call[sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".none"))] <- expression(NA) return(eval.parent(.call)) } A <- list(...) call <- x$call c.balance <- x$Cluster.Balance c.balance.summary <- x$Balance.Across.Clusters nn <- x$Observations p.ops <- attr(x, "print.options") baltal <- maximbal <- list() for (s in p.ops$stats) { baltal[[s]] <- x[[paste.("Balanced", s)]] maximbal[[s]] <- x[[paste.("Max.Imbalance", s)]] } #Prevent exponential notation printing op <- options(scipen=getOption("scipen")) options(scipen = 999) on.exit(options(op)) #Adjustments to print options if (!identical(un, "as.is") && p.ops$disp.adj) { if (!rlang::is_bool(un)) stop("'un' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if (p.ops$quick && p.ops$un == FALSE && un == TRUE) { warning("'un' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$un <- un } if (!identical(disp, "as.is")) { if (!is.character(disp)) stop("'disp.means' must be a character vector.") allowable.disp <- c("means", "sds", all_STATS(p.ops$type)) if (any(disp %nin% allowable.disp)) { stop(paste(word_list(disp[disp %nin% allowable.disp], and.or = "and", quotes = 2, is.are = TRUE), "not allowed in 'disp'."), call. = FALSE) } if (any(disp %nin% p.ops$compute)) { warning(paste("'disp' cannot include", word_list(disp[disp %nin% p.ops$compute], and.or = "or", quotes = 2), "if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- disp } if (is_not_null(A[["disp.means"]]) && !identical(A[["disp.means"]], "as.is")) { if (!rlang::is_bool(A[["disp.means"]])) stop("'disp.means' must be TRUE, FALSE, or \"as.is\".") if ("means" %nin% p.ops$compute && A[["disp.means"]] == TRUE) { warning("'disp.means' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "means"[A[["disp.means"]]])) A[["disp.means"]] <- NULL } if (is_not_null(A[["disp.sds"]]) && !identical(A[["disp.sds"]], "as.is")) { if (!rlang::is_bool(A[["disp.sds"]])) stop("'disp.sds' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if ("sds" %nin% p.ops$compute && A[["disp.sds"]] == TRUE) { warning("'disp.sds' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "sds"[A[["disp.sds"]]])) A[["disp.sds"]] <- NULL } if (!identical(stats, "as.is")) { if (!is_(stats, "character")) stop("'stats' must be a string.") stats <- match_arg(stats, all_STATS(p.ops$type), several.ok = TRUE) stats_in_p.ops <- stats %in% p.ops$compute if (any(!stats_in_p.ops)) { stop(paste0("'stats' cannot contain ", word_list(stats[!stats_in_p.ops], and.or = "or", quotes = 2), " if quick = TRUE in the original call to bal.tab()."), call. = TRUE) } else p.ops$disp <- unique(c(p.ops$disp[p.ops$disp %nin% all_STATS()], stats)) } for (s in all_STATS(p.ops$type)) { if (is_not_null(A[[STATS[[s]]$disp_stat]]) && !identical(A[[STATS[[s]]$disp_stat]], "as.is")) { if (!rlang::is_bool(A[[STATS[[s]]$disp_stat]])) { stop(paste0("'", STATS[[s]]$disp_stat, "' must be TRUE, FALSE, or \"as.is\"."), call. = FALSE) } if (s %nin% p.ops$compute && isTRUE(A[[STATS[[s]]$disp_stat]])) { warning(paste0("'", STATS[[s]]$disp_stat, "' cannot be set to TRUE if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, s)) A[[STATS[[s]]$disp_stat]] <- NULL } } for (s in p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)]) { if (STATS[[s]]$threshold %in% names(A) && !identical(temp.thresh <- A[[STATS[[s]]$threshold]], "as.is")) { if (is_not_null(temp.thresh) && (!is.numeric(temp.thresh) || length(temp.thresh) != 1 || is_null(p.ops[["thresholds"]][[s]]) || p.ops[["thresholds"]][[s]] != temp.thresh)) stop(paste0("'", STATS[[s]]$threshold, "' must be NULL or \"as.is\".")) if (is_null(temp.thresh)) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } A[[STATS[[s]]$threshold]] <- NULL } if (s %nin% p.ops$disp) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (!identical(disp.thresholds, "as.is")) { if (!is.logical(disp.thresholds) || anyNA(disp.thresholds)) stop("'disp.thresholds' must only contain TRUE or FALSE.", call. = FALSE) if (is_null(names(disp.thresholds))) { if (length(disp.thresholds) <= length(p.ops[["thresholds"]])) { names(disp.thresholds) <- names(p.ops[["thresholds"]])[seq_along(disp.thresholds)] } else { stop("More entries were given to 'disp.thresholds' than there are thresholds in the bal.tab object.", call. = FALSE) } } if (!all(names(disp.thresholds) %pin% names(p.ops[["thresholds"]]))) { warning(paste0(word_list(names(disp.thresholds)[!names(disp.thresholds) %pin% names(p.ops[["thresholds"]])], quotes = 2, is.are = TRUE), " not available in thresholds and will be ignored."), call. = FALSE) disp.thresholds <- disp.thresholds[names(disp.thresholds) %pin% names(p.ops[["thresholds"]])] } names(disp.thresholds) <- match_arg(names(disp.thresholds), names(p.ops[["thresholds"]]), several.ok = TRUE) for (x in names(disp.thresholds)) { if (!disp.thresholds[x]) { p.ops[["thresholds"]][[x]] <- NULL baltal[[x]] <- NULL maximbal[[x]] <- NULL } } } if (!identical(cluster.summary, "as.is")) { if (!rlang::is_bool(cluster.summary)) stop("'cluster.summary' must be TRUE, FALSE, or \"as.is\".") if (p.ops$quick && p.ops$cluster.summary == FALSE && cluster.summary == TRUE) { warning("'cluster.summary' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$cluster.summary <- cluster.summary } if (p.ops$disp.bal.tab) { if (!identical(imbalanced.only, "as.is")) { if (!rlang::is_bool(imbalanced.only)) stop("'imbalanced.only' must be TRUE, FALSE, or \"as.is\".") p.ops$imbalanced.only <- imbalanced.only } if (p.ops$imbalanced.only) { if (is_null(p.ops$thresholds)) { warning("A threshold must be specified if imbalanced.only = TRUE. Displaying all covariates.", call. = FALSE) p.ops$imbalanced.only <- FALSE } } } else p.ops$imbalanced.only <- FALSE if (!missing(which.cluster)) { if (paste(deparse1(substitute(which.cluster)), collapse = "") == ".none") which.cluster <- NA else if (paste(deparse1(substitute(which.cluster)), collapse = "") == ".all") which.cluster <- NULL if (!identical(which.cluster, "as.is")) { p.ops$which.cluster <- which.cluster } } if (!p.ops$quick || is_null(p.ops$cluster.fun)) computed.cluster.funs <- c("min", "mean", "max") else computed.cluster.funs <- p.ops$cluster.fun if (is_not_null(cluster.fun) && !identical(cluster.fun, "as.is")) { if (!is.character(cluster.fun) || !all(cluster.fun %pin% computed.cluster.funs)) stop(paste0("'cluster.fun' must be ", word_list(c(computed.cluster.funs, "as.is"), and.or = "or", quotes = 2)), call. = FALSE) } else { if (p.ops$abs) cluster.fun <- c("mean", "max") else cluster.fun <- c("min", "mean", "max") } cluster.fun <- match_arg(tolower(cluster.fun), computed.cluster.funs, several.ok = TRUE) #Checks and Adjustments if (is_null(p.ops$which.cluster)) which.cluster <- seq_along(c.balance) else if (anyNA(p.ops$which.cluster)) { which.cluster <- integer(0) } else if (is.numeric(p.ops$which.cluster)) { which.cluster <- intersect(seq_along(c.balance), p.ops$which.cluster) if (is_null(which.cluster)) { warning("No indices in 'which.cluster' are cluster indices. Displaying all clusters instead.", call. = FALSE) which.cluster <- seq_along(c.balance) } } else if (is.character(p.ops$which.cluster)) { which.cluster <- intersect(names(c.balance), p.ops$which.cluster) if (is_null(which.cluster)) { warning("No names in 'which.cluster' are cluster names. Displaying all clusters instead.", call. = FALSE) which.cluster <- seq_along(c.balance) } } else { warning("The argument to 'which.cluster' must be .all, .none, or a vector of cluster indices or cluster names. Displaying all clusters instead.", call. = FALSE) which.cluster <- seq_along(c.balance) } #Printing if (is_not_null(call)) { cat(underline("Call") %+% "\n " %+% paste(deparse(call), collapse = "\n") %+% "\n\n") } if (is_not_null(which.cluster)) { cat(underline("Balance by cluster") %+% "\n") for (i in which.cluster) { cat("\n - - - " %+% italic("Cluster: " %+% names(c.balance)[i]) %+% " - - - \n") do.call(print, c(list(c.balance[[i]]), p.ops[names(p.ops) %nin% names(A)], A), quote = TRUE) } cat(paste0(paste(rep(" -", round(nchar(paste0("\n - - - Cluster: ", names(c.balance)[i], " - - - "))/2)), collapse = ""), " \n")) cat("\n") } if (isTRUE(as.logical(p.ops$cluster.summary)) && is_not_null(c.balance.summary)) { s.keep.col <- as.logical(c(TRUE, unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)], function(s) { c(unlist(lapply(computed.cluster.funs, function(af) { p.ops$un && s %in% p.ops$disp && af %in% cluster.fun })), p.ops$un && !p.ops$disp.adj && length(cluster.fun) == 1 && is_not_null(p.ops$thresholds[[s]])) })), rep( unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)], function(s) { c(unlist(lapply(computed.cluster.funs, function(af) { p.ops$disp.adj && s %in% p.ops$disp && af %in% cluster.fun })), p.ops$disp.adj && length(cluster.fun) == 1 && is_not_null(p.ops$thresholds[[s]])) })), p.ops$nweights + !p.ops$disp.adj) )) if (p.ops$disp.bal.tab) { cat(underline("Balance summary across all clusters") %+% "\n") print.data.frame_(round_df_char(c.balance.summary[, s.keep.col, drop = FALSE], digits)) cat("\n") } if (is_not_null(nn)) { for (i in rownames(nn)) { if (all(nn[i,] == 0)) nn <- nn[rownames(nn)!=i,] } if (all(c("Matched (ESS)", "Matched (Unweighted)") %in% rownames(nn)) && all(check_if_zero(nn["Matched (ESS)",] - nn["Matched (Unweighted)",]))) { nn <- nn[rownames(nn)!="Matched (Unweighted)", , drop = FALSE] rownames(nn)[rownames(nn) == "Matched (ESS)"] <- "Matched" } cat(underline(attr(nn, "tag")) %+% "\n") print.warning <- FALSE if (length(attr(nn, "ss.type")) > 1 && nunique.gt(attr(nn, "ss.type")[-1], 1)) { ess <- ifelse(attr(nn, "ss.type") == "ess", "*", "") nn <- setNames(cbind(nn, ess), c(names(nn), "")) print.warning <- TRUE } print.data.frame_(round_df_char(nn, digits = min(2, digits), pad = " ")) if (print.warning) cat(italic("* indicates effective sample size")) } } invisible(x) } print.bal.tab.imp <- function(x, imbalanced.only = "as.is", un = "as.is", disp.bal.tab = "as.is", stats = "as.is", disp.thresholds = "as.is", disp = "as.is", which.imp, imp.summary = "as.is", imp.fun = "as.is", digits = max(3, getOption("digits") - 3), ...) { #Replace .all and .none with NULL and NA respectively .call <- match.call(expand.dots = TRUE) if (any(sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".all") || identical(as.character(.call[[x]]), ".none")))) { .call[sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".all"))] <- expression(NULL) .call[sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".none"))] <- expression(NA) return(eval.parent(.call)) } A <- list(...) call <- x$call i.balance <- x[["Imputation.Balance"]] i.balance.summary <- x[["Balance.Across.Imputations"]] nn <- x$Observations p.ops <- attr(x, "print.options") baltal <- maximbal <- list() for (s in p.ops$stats) { baltal[[s]] <- x[[paste.("Balanced", s)]] maximbal[[s]] <- x[[paste.("Max.Imbalance", s)]] } #Prevent exponential notation printing op <- options(scipen=getOption("scipen")) options(scipen = 999) on.exit(options(op)) #Adjustments to print options if (!identical(un, "as.is") && p.ops$disp.adj) { if (!rlang::is_bool(un)) stop("'un' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if (p.ops$quick && p.ops$un == FALSE && un == TRUE) { warning("'un' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$un <- un } if (!identical(disp, "as.is")) { if (!is.character(disp)) stop("'disp.means' must be a character vector.") allowable.disp <- c("means", "sds", all_STATS(p.ops$type)) if (any(disp %nin% allowable.disp)) { stop(paste(word_list(disp[disp %nin% allowable.disp], and.or = "and", quotes = 2, is.are = TRUE), "not allowed in 'disp'."), call. = FALSE) } if (any(disp %nin% p.ops$compute)) { warning(paste("'disp' cannot include", word_list(disp[disp %nin% p.ops$compute], and.or = "or", quotes = 2), "if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- disp } if (is_not_null(A[["disp.means"]]) && !identical(A[["disp.means"]], "as.is")) { if (!rlang::is_bool(A[["disp.means"]])) stop("'disp.means' must be TRUE, FALSE, or \"as.is\".") if ("means" %nin% p.ops$compute && A[["disp.means"]] == TRUE) { warning("'disp.means' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "means"[A[["disp.means"]]])) A[["disp.means"]] <- NULL } if (is_not_null(A[["disp.sds"]]) && !identical(A[["disp.sds"]], "as.is")) { if (!rlang::is_bool(A[["disp.sds"]])) stop("'disp.sds' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if ("sds" %nin% p.ops$compute && A[["disp.sds"]] == TRUE) { warning("'disp.sds' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "sds"[A[["disp.sds"]]])) A[["disp.sds"]] <- NULL } if (!identical(stats, "as.is")) { if (!is_(stats, "character")) stop("'stats' must be a string.") stats <- match_arg(stats, all_STATS(p.ops$type), several.ok = TRUE) stats_in_p.ops <- stats %in% p.ops$compute if (any(!stats_in_p.ops)) { stop(paste0("'stats' cannot contain ", word_list(stats[!stats_in_p.ops], and.or = "or", quotes = 2), " if quick = TRUE in the original call to bal.tab()."), call. = TRUE) } else p.ops$disp <- unique(c(p.ops$disp[p.ops$disp %nin% all_STATS()], stats)) } for (s in all_STATS(p.ops$type)) { if (is_not_null(A[[STATS[[s]]$disp_stat]]) && !identical(A[[STATS[[s]]$disp_stat]], "as.is")) { if (!rlang::is_bool(A[[STATS[[s]]$disp_stat]])) { stop(paste0("'", STATS[[s]]$disp_stat, "' must be TRUE, FALSE, or \"as.is\"."), call. = FALSE) } if (s %nin% p.ops$compute && isTRUE(A[[STATS[[s]]$disp_stat]])) { warning(paste0("'", STATS[[s]]$disp_stat, "' cannot be set to TRUE if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, s)) A[[STATS[[s]]$disp_stat]] <- NULL } } for (s in p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)]) { if (STATS[[s]]$threshold %in% names(A) && !identical(temp.thresh <- A[[STATS[[s]]$threshold]], "as.is")) { if (is_not_null(temp.thresh) && (!is.numeric(temp.thresh) || length(temp.thresh) != 1 || is_null(p.ops[["thresholds"]][[s]]) || p.ops[["thresholds"]][[s]] != temp.thresh)) stop(paste0("'", STATS[[s]]$threshold, "' must be NULL or \"as.is\".")) if (is_null(temp.thresh)) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } A[[STATS[[s]]$threshold]] <- NULL } if (s %nin% p.ops$disp) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (!identical(disp.thresholds, "as.is")) { if (!is.logical(disp.thresholds) || anyNA(disp.thresholds)) stop("'disp.thresholds' must only contain TRUE or FALSE.", call. = FALSE) if (is_null(names(disp.thresholds))) { if (length(disp.thresholds) <= length(p.ops[["thresholds"]])) { names(disp.thresholds) <- names(p.ops[["thresholds"]])[seq_along(disp.thresholds)] } else { stop("More entries were given to 'disp.thresholds' than there are thresholds in the bal.tab object.", call. = FALSE) } } if (!all(names(disp.thresholds) %pin% names(p.ops[["thresholds"]]))) { warning(paste0(word_list(names(disp.thresholds)[!names(disp.thresholds) %pin% names(p.ops[["thresholds"]])], quotes = 2, is.are = TRUE), " not available in thresholds and will be ignored."), call. = FALSE) disp.thresholds <- disp.thresholds[names(disp.thresholds) %pin% names(p.ops[["thresholds"]])] } names(disp.thresholds) <- match_arg(names(disp.thresholds), names(p.ops[["thresholds"]]), several.ok = TRUE) for (x in names(disp.thresholds)) { if (!disp.thresholds[x]) { p.ops[["thresholds"]][[x]] <- NULL baltal[[x]] <- NULL maximbal[[x]] <- NULL } } } if (!identical(imp.summary, "as.is")) { if (!rlang::is_bool(imp.summary)) stop("'imp.summary' must be TRUE, FALSE, or \"as.is\".") if (p.ops$quick && p.ops$imp.summary == FALSE && imp.summary == TRUE) { warning("'imp.summary' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$imp.summary <- imp.summary } if (!identical(disp.bal.tab, "as.is")) { if (!rlang::is_bool(disp.bal.tab)) stop("'disp.bal.tab' must be TRUE, FALSE, or \"as.is\".") p.ops$disp.bal.tab <- disp.bal.tab } if (p.ops$disp.bal.tab) { if (!identical(imbalanced.only, "as.is")) { if (!rlang::is_bool(imbalanced.only)) stop("'imbalanced.only' must be TRUE, FALSE, or \"as.is\".") p.ops$imbalanced.only <- imbalanced.only } if (p.ops$imbalanced.only) { if (is_null(p.ops$thresholds)) { warning("A threshold must be specified if imbalanced.only = TRUE. Displaying all covariates.", call. = FALSE) p.ops$imbalanced.only <- FALSE } } } else p.ops$imbalanced.only <- FALSE if (!missing(which.imp)) { if (paste(deparse1(substitute(which.imp)), collapse = "") == ".none") which.imp <- NA else if (paste(deparse1(substitute(which.imp)), collapse = "") == ".all") which.imp <- NULL if (!identical(which.imp, "as.is")) { p.ops$which.imp <- which.imp } } if (!p.ops$quick || is_null(p.ops$imp.fun)) computed.imp.funs <- c("min", "mean", "max") else computed.imp.funs <- p.ops$imp.fun if (is_not_null(imp.fun) && !identical(imp.fun, "as.is")) { if (!is.character(imp.fun) || !all(imp.fun %pin% computed.imp.funs)) stop(paste0("'imp.fun' must be ", word_list(c(computed.imp.funs, "as.is"), and.or = "or", quotes = 2)), call. = FALSE) } else { if (p.ops$abs) imp.fun <- c("mean", "max") else imp.fun <- c("min", "mean", "max") } imp.fun <- match_arg(tolower(imp.fun), computed.imp.funs, several.ok = TRUE) #Checks and Adjustments if (is_null(p.ops$which.imp)) which.imp <- seq_along(i.balance) else if (anyNA(p.ops$which.imp)) { which.imp <- integer(0) } else if (is.numeric(p.ops$which.imp)) { which.imp <- intersect(seq_along(i.balance), p.ops$which.imp) if (is_null(which.imp)) { warning("No numbers in 'which.imp' are imputation numbers. No imputations will be displayed.", call. = FALSE) which.imp <- integer(0) } } else { warning("The argument to 'which.imp' must be .all, .none, or a vector of imputation numbers.", call. = FALSE) which.imp <- integer(0) } #Printing output if (is_not_null(call)) { cat(underline("Call") %+% "\n " %+% paste(deparse(call), collapse = "\n") %+% "\n\n") } if (is_not_null(which.imp)) { cat(underline("Balance by imputation") %+% "\n") for (i in which.imp) { cat("\n - - - " %+% italic("Imputation " %+% names(i.balance)[i]) %+% " - - - \n") do.call(print, c(list(i.balance[[i]]), p.ops, A), quote = TRUE) } cat(paste0(paste(rep(" -", round(nchar(paste0("\n - - - Imputation: ", names(i.balance)[i], " - - - "))/2)), collapse = ""), " \n")) cat("\n") } if (isTRUE(as.logical(p.ops$imp.summary)) && is_not_null(i.balance.summary)) { s.keep.col <- as.logical(c(TRUE, unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)], function(s) { c(unlist(lapply(computed.imp.funs, function(af) { p.ops$un && s %in% p.ops$disp && af %in% imp.fun })), p.ops$un && !p.ops$disp.adj && length(imp.fun) == 1 && is_not_null(p.ops$thresholds[[s]])) })), rep( unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)], function(s) { c(unlist(lapply(computed.imp.funs, function(af) { p.ops$disp.adj && s %in% p.ops$disp && af %in% imp.fun })), p.ops$disp.adj && length(imp.fun) == 1 && is_not_null(p.ops$thresholds[[s]])) })), p.ops$nweights + !p.ops$disp.adj) )) if (p.ops$disp.bal.tab) { cat(underline("Balance summary across all imputations") %+% "\n") print.data.frame_(round_df_char(i.balance.summary[, s.keep.col, drop = FALSE], digits)) cat("\n") } if (is_not_null(nn)) { for (i in rownames(nn)) { if (all(nn[i,] == 0)) nn <- nn[rownames(nn)!=i,] } if (all(c("Matched (ESS)", "Matched (Unweighted)") %in% rownames(nn)) && all(check_if_zero(nn["Matched (ESS)",] - nn["Matched (Unweighted)",]))) { nn <- nn[rownames(nn)!="Matched (Unweighted)", , drop = FALSE] rownames(nn)[rownames(nn) == "Matched (ESS)"] <- "Matched" } cat(underline(attr(nn, "tag")) %+% "\n") print.warning <- FALSE if (length(attr(nn, "ss.type")) > 1 && nunique.gt(attr(nn, "ss.type")[-1], 1)) { ess <- ifelse(attr(nn, "ss.type") == "ess", "*", "") nn <- setNames(cbind(nn, ess), c(names(nn), "")) print.warning <- TRUE } print.data.frame_(round_df_char(nn, digits = min(2, digits), pad = " ")) if (print.warning) cat(italic("* indicates effective sample size")) } } invisible(x) } print.bal.tab.multi <- function(x, imbalanced.only = "as.is", un = "as.is", disp.bal.tab = "as.is", stats = "as.is", disp.thresholds = "as.is", disp = "as.is", which.treat, multi.summary = "as.is", digits = max(3, getOption("digits") - 3), ...) { #Replace .all and .none with NULL and NA respectively .call <- match.call(expand.dots = TRUE) if (any(sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".all") || identical(as.character(.call[[x]]), ".none")))) { .call[sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".all"))] <- expression(NULL) .call[sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".none"))] <- expression(NA) return(eval.parent(.call)) } A <- list(...) call <- x$call m.balance <- x[["Pair.Balance"]] m.balance.summary <- x[["Balance.Across.Pairs"]] nn <- x$Observations p.ops <- attr(x, "print.options") baltal <- maximbal <- list() for (s in p.ops$stats) { baltal[[s]] <- x[[paste.("Balanced", s)]] maximbal[[s]] <- x[[paste.("Max.Imbalance", s)]] } #Prevent exponential notation printing op <- options(scipen=getOption("scipen")) options(scipen = 999) on.exit(options(op)) #Adjustments to print options if (!identical(un, "as.is") && p.ops$disp.adj) { if (!rlang::is_bool(un)) stop("'un' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if (p.ops$quick && p.ops$un == FALSE && un == TRUE) { warning("'un' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$un <- un } if (!identical(disp, "as.is")) { if (!is.character(disp)) stop("'disp.means' must be a character vector.") allowable.disp <- c("means", "sds", all_STATS(p.ops$type)) if (any(disp %nin% allowable.disp)) { stop(paste(word_list(disp[disp %nin% allowable.disp], and.or = "and", quotes = 2, is.are = TRUE), "not allowed in 'disp'."), call. = FALSE) } if (any(disp %nin% p.ops$compute)) { warning(paste("'disp' cannot include", word_list(disp[disp %nin% p.ops$compute], and.or = "or", quotes = 2), "if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- disp } if (is_not_null(A[["disp.means"]]) && !identical(A[["disp.means"]], "as.is")) { if (!rlang::is_bool(A[["disp.means"]])) stop("'disp.means' must be TRUE, FALSE, or \"as.is\".") if ("means" %nin% p.ops$compute && A[["disp.means"]] == TRUE) { warning("'disp.means' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "means"[A[["disp.means"]]])) } if (is_not_null(A[["disp.sds"]]) && !identical(A[["disp.sds"]], "as.is")) { if (!rlang::is_bool(A[["disp.sds"]])) stop("'disp.sds' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if ("sds" %nin% p.ops$compute && A[["disp.sds"]] == TRUE) { warning("'disp.sds' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "sds"[A[["disp.sds"]]])) } if (!identical(stats, "as.is")) { if (!is_(stats, "character")) stop("'stats' must be a string.") stats <- match_arg(stats, all_STATS(p.ops$type), several.ok = TRUE) stats_in_p.ops <- stats %in% p.ops$compute if (any(!stats_in_p.ops)) { stop(paste0("'stats' cannot contain ", word_list(stats[!stats_in_p.ops], and.or = "or", quotes = 2), " if quick = TRUE in the original call to bal.tab()."), call. = TRUE) } else p.ops$disp <- unique(c(p.ops$disp[p.ops$disp %nin% all_STATS()], stats)) } for (s in all_STATS(p.ops$type)) { if (is_not_null(A[[STATS[[s]]$disp_stat]]) && !identical(A[[STATS[[s]]$disp_stat]], "as.is")) { if (!rlang::is_bool(A[[STATS[[s]]$disp_stat]])) { stop(paste0("'", STATS[[s]]$disp_stat, "' must be TRUE, FALSE, or \"as.is\"."), call. = FALSE) } if (s %nin% p.ops$compute && isTRUE(A[[STATS[[s]]$disp_stat]])) { warning(paste0("'", STATS[[s]]$disp_stat, "' cannot be set to TRUE if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, s)) } } for (s in p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)]) { if (STATS[[s]]$threshold %in% names(A) && !identical(temp.thresh <- A[[STATS[[s]]$threshold]], "as.is")) { if (is_not_null(temp.thresh) && (!is.numeric(temp.thresh) || length(temp.thresh) != 1 || is_null(p.ops[["thresholds"]][[s]]) || p.ops[["thresholds"]][[s]] != temp.thresh)) stop(paste0("'", STATS[[s]]$threshold, "' must be NULL or \"as.is\".")) if (is_null(temp.thresh)) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (s %nin% p.ops$disp) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (!identical(disp.thresholds, "as.is")) { if (!is.logical(disp.thresholds) || anyNA(disp.thresholds)) stop("'disp.thresholds' must only contain TRUE or FALSE.", call. = FALSE) if (is_null(names(disp.thresholds))) { if (length(disp.thresholds) <= length(p.ops[["thresholds"]])) { names(disp.thresholds) <- names(p.ops[["thresholds"]])[seq_along(disp.thresholds)] } else { stop("More entries were given to 'disp.thresholds' than there are thresholds in the bal.tab object.", call. = FALSE) } } if (!all(names(disp.thresholds) %pin% names(p.ops[["thresholds"]]))) { warning(paste0(word_list(names(disp.thresholds)[!names(disp.thresholds) %pin% names(p.ops[["thresholds"]])], quotes = 2, is.are = TRUE), " not available in thresholds and will be ignored."), call. = FALSE) disp.thresholds <- disp.thresholds[names(disp.thresholds) %pin% names(p.ops[["thresholds"]])] } names(disp.thresholds) <- match_arg(names(disp.thresholds), names(p.ops[["thresholds"]]), several.ok = TRUE) for (x in names(disp.thresholds)) { if (!disp.thresholds[x]) { p.ops[["thresholds"]][[x]] <- NULL baltal[[x]] <- NULL maximbal[[x]] <- NULL } } } if (!identical(multi.summary, "as.is")) { if (!rlang::is_bool(multi.summary)) stop("'multi.summary' must be TRUE, FALSE, or \"as.is\".") if (p.ops$quick && p.ops$multi.summary == FALSE && multi.summary == TRUE) { warning("'multi.summary' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$multi.summary <- multi.summary } if (!identical(disp.bal.tab, "as.is")) { if (!rlang::is_bool(disp.bal.tab)) stop("'disp.bal.tab' must be TRUE, FALSE, or \"as.is\".") p.ops$disp.bal.tab <- disp.bal.tab } if (is_not_null(m.balance.summary)) { if (p.ops$disp.bal.tab) { if (!identical(imbalanced.only, "as.is")) { if (!rlang::is_bool(imbalanced.only)) stop("'imbalanced.only' must be TRUE, FALSE, or \"as.is\".") p.ops$imbalanced.only <- imbalanced.only } if (p.ops$imbalanced.only) { if (is_null(p.ops$thresholds)) { warning("A threshold must be specified if imbalanced.only = TRUE. Displaying all covariates.", call. = FALSE) p.ops$imbalanced.only <- FALSE } } } else p.ops$imbalanced.only <- FALSE if (p.ops$imbalanced.only) { keep.row <- rowSums(apply(m.balance.summary[grepl(".Threshold", names(m.balance.summary), fixed = TRUE)], 2, function(x) !is.na(x) & startsWith(x, "Not Balanced"))) > 0 } else keep.row <- rep(TRUE, nrow(m.balance.summary)) } if (!missing(which.treat)) { if (paste(deparse1(substitute(which.treat)), collapse = "") == ".none") which.treat <- NA else if (paste(deparse1(substitute(which.treat)), collapse = "") == ".all") which.treat <- NULL if (!identical(which.treat, "as.is")) { p.ops$which.treat <- which.treat } } #Checks and Adjustments if (is_null(p.ops$which.treat)) which.treat <- p.ops$treat_names_multi else if (anyNA(p.ops$which.treat)) { which.treat <- character(0) } else if (is.numeric(p.ops$which.treat)) { which.treat <- p.ops$treat_names_multi[seq_along(p.ops$treat_names_multi) %in% p.ops$which.treat] if (is_null(which.treat)) { warning("No numbers in 'which.treat' correspond to treatment values. No treatment pairs will be displayed.", call. = FALSE) which.treat <- character(0) } } else if (is.character(p.ops$which.treat)) { which.treat <- p.ops$treat_names_multi[p.ops$treat_names_multi %in% p.ops$which.treat] if (is_null(which.treat)) { warning("No names in 'which.treat' correspond to treatment values. No treatment pairs will be displayed.", call. = FALSE) which.treat <- character(0) } } else { warning("The argument to 'which.treat' must be .all, .none, or a vector of treatment names or indices. No treatment pairs will be displayed.", call. = FALSE) which.treat <- character(0) } if (is_null(which.treat)) { disp.treat.pairs <- character(0) } else { if (p.ops$pairwise) { if (length(which.treat) == 1) { disp.treat.pairs <- names(m.balance)[sapply(names(m.balance), function(x) any(attr(m.balance[[x]], "print.options")$treat_names == which.treat))] } else { disp.treat.pairs <- names(m.balance)[sapply(names(m.balance), function(x) all(attr(m.balance[[x]], "print.options")$treat_names %in% which.treat))] } } else { if (length(which.treat) == 1) { disp.treat.pairs <- names(m.balance)[sapply(names(m.balance), function(x) { treat_names <- attr(m.balance[[x]], "print.options")$treat_names any(treat_names[treat_names != "All"] == which.treat)})] } else { disp.treat.pairs <- names(m.balance)[sapply(names(m.balance), function(x) { treat_names <- attr(m.balance[[x]], "print.options")$treat_names all(treat_names[treat_names != "All"] %in% which.treat)})] } } } #Printing output if (is_not_null(call)) { cat(underline("Call") %+% "\n " %+% paste(deparse(call), collapse = "\n") %+% "\n\n") } if (is_not_null(disp.treat.pairs)) { headings <- setNames(character(length(disp.treat.pairs)), disp.treat.pairs) if (p.ops$pairwise) cat(underline("Balance by treatment pair") %+% "\n") else cat(underline("Balance by treatment group") %+% "\n") for (i in disp.treat.pairs) { headings[i] <- "\n - - - " %+% italic(attr(m.balance[[i]], "print.options")$treat_names[1] %+% " (0) vs. " %+% attr(m.balance[[i]], "print.options")$treat_names[2] %+% " (1)") %+% " - - - \n" cat(headings[i]) do.call(print, c(list(m.balance[[i]]), p.ops[names(p.ops) %nin% names(A)], A), quote = TRUE) } cat(paste0(paste(rep(" -", round(max(nchar(headings))/2)), collapse = ""), " \n")) cat("\n") } if (isTRUE(as.logical(p.ops$multi.summary)) && is_not_null(m.balance.summary)) { computed.agg.funs <- "max" s.keep.col <- as.logical(c(TRUE, unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS("bin")], function(s) { c(unlist(lapply(computed.agg.funs, function(af) { p.ops$un && s %in% p.ops$disp && af %in% "max" })), p.ops$un && !p.ops$disp.adj && is_not_null(p.ops$thresholds[[s]])) })), rep( unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS("bin")], function(s) { c(unlist(lapply(computed.agg.funs, function(af) { p.ops$disp.adj && s %in% p.ops$disp && af %in% "max" })), p.ops$disp.adj && is_not_null(p.ops$thresholds[[s]])) })), p.ops$nweights + !p.ops$disp.adj) )) if (p.ops$disp.bal.tab) { cat(underline("Balance summary across all treatment pairs") %+% "\n") if (all(!keep.row)) cat(italic("All covariates are balanced.") %+% "\n") else print.data.frame_(round_df_char(m.balance.summary[keep.row, s.keep.col, drop = FALSE], digits)) cat("\n") } if (is_not_null(nn)) { tag <- attr(nn, "tag") ss.type <- attr(nn, "ss.type") for (i in rownames(nn)) { if (all(nn[i,] == 0)) nn <- nn[rownames(nn)!=i,] } if (all(c("Matched (ESS)", "Matched (Unweighted)") %in% rownames(nn)) && all(check_if_zero(nn["Matched (ESS)",] - nn["Matched (Unweighted)",]))) { nn <- nn[rownames(nn)!="Matched (Unweighted)", , drop = FALSE] rownames(nn)[rownames(nn) == "Matched (ESS)"] <- "Matched" } cat(underline(tag) %+% "\n") print.warning <- FALSE if (length(ss.type) > 1 && nunique.gt(ss.type[-1], 1)) { ess <- ifelse(ss.type == "ess", "*", "") nn <- setNames(cbind(nn, ess), c(names(nn), "")) print.warning <- TRUE } print.data.frame_(round_df_char(nn, digits = min(2, digits), pad = " ")) if (print.warning) cat(italic("* indicates effective sample size")) } } invisible(x) } print.bal.tab.msm <- function(x, imbalanced.only = "as.is", un = "as.is", disp.bal.tab = "as.is", stats = "as.is", disp.thresholds = "as.is", disp = "as.is", which.time, msm.summary = "as.is", digits = max(3, getOption("digits") - 3), ...) { #Replace .all and .none with NULL and NA respectively .call <- match.call(expand.dots = TRUE) if (any(sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".all") || identical(as.character(.call[[x]]), ".none")))) { .call[sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".all"))] <- expression(NULL) .call[sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".none"))] <- expression(NA) return(eval.parent(.call)) } A <- list(...) A <- clear_null(A[!vapply(A, function(x) identical(x, quote(expr =)), logical(1L))]) call <- x$call msm.balance <- x[["Time.Balance"]] msm.balance.summary <- x[["Balance.Across.Times"]] nn <- x$Observations p.ops <- attr(x, "print.options") baltal <- maximbal <- list() for (s in p.ops$stats) { baltal[[s]] <- x[[paste.("Balanced", s)]] maximbal[[s]] <- x[[paste.("Max.Imbalance", s)]] } #Prevent exponential notation printing op <- options(scipen=getOption("scipen")) options(scipen = 999) on.exit(options(op)) #Adjustments to print options if (!identical(un, "as.is") && p.ops$disp.adj) { if (!rlang::is_bool(un)) stop("'un' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if (p.ops$quick && p.ops$un == FALSE && un == TRUE) { warning("'un' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$un <- un } if (!identical(disp, "as.is")) { if (!is.character(disp)) stop("'disp.means' must be a character vector.") allowable.disp <- c("means", "sds", all_STATS(p.ops$type)) if (any(disp %nin% allowable.disp)) { stop(paste(word_list(disp[disp %nin% allowable.disp], and.or = "and", quotes = 2, is.are = TRUE), "not allowed in 'disp'."), call. = FALSE) } if (any(disp %nin% p.ops$compute)) { warning(paste("'disp' cannot include", word_list(disp[disp %nin% p.ops$compute], and.or = "or", quotes = 2), "if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- disp } if (is_not_null(A[["disp.means"]]) && !identical(A[["disp.means"]], "as.is")) { if (!rlang::is_bool(A[["disp.means"]])) stop("'disp.means' must be TRUE, FALSE, or \"as.is\".") if ("means" %nin% p.ops$compute && A[["disp.means"]] == TRUE) { warning("'disp.means' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "means"[A[["disp.means"]]])) } if (is_not_null(A[["disp.sds"]]) && !identical(A[["disp.sds"]], "as.is")) { if (!rlang::is_bool(A[["disp.sds"]])) stop("'disp.sds' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if ("sds" %nin% p.ops$compute && A[["disp.sds"]] == TRUE) { warning("'disp.sds' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "sds"[A[["disp.sds"]]])) } if (!identical(stats, "as.is")) { if (!is_(stats, "character")) stop("'stats' must be a string.") stats <- match_arg(stats, all_STATS(p.ops$type), several.ok = TRUE) stats_in_p.ops <- stats %in% p.ops$compute if (any(!stats_in_p.ops)) { stop(paste0("'stats' cannot contain ", word_list(stats[!stats_in_p.ops], and.or = "or", quotes = 2), " if quick = TRUE in the original call to bal.tab()."), call. = TRUE) } else p.ops$disp <- unique(c(p.ops$disp[p.ops$disp %nin% all_STATS()], stats)) } for (s in all_STATS(p.ops$type)) { if (is_not_null(A[[STATS[[s]]$disp_stat]]) && !identical(A[[STATS[[s]]$disp_stat]], "as.is")) { if (!rlang::is_bool(A[[STATS[[s]]$disp_stat]])) { stop(paste0("'", STATS[[s]]$disp_stat, "' must be TRUE, FALSE, or \"as.is\"."), call. = FALSE) } if (s %nin% p.ops$compute && isTRUE(A[[STATS[[s]]$disp_stat]])) { warning(paste0("'", STATS[[s]]$disp_stat, "' cannot be set to TRUE if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, s)) } } for (s in p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)]) { if (STATS[[s]]$threshold %in% names(A) && !identical(temp.thresh <- A[[STATS[[s]]$threshold]], "as.is")) { if (is_not_null(temp.thresh) && (!is.numeric(temp.thresh) || length(temp.thresh) != 1 || is_null(p.ops[["thresholds"]][[s]]) || p.ops[["thresholds"]][[s]] != temp.thresh)) stop(paste0("'", STATS[[s]]$threshold, "' must be NULL or \"as.is\".")) if (is_null(temp.thresh)) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (s %nin% p.ops$disp) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (!identical(disp.thresholds, "as.is")) { if (!is.logical(disp.thresholds) || anyNA(disp.thresholds)) stop("'disp.thresholds' must only contain TRUE or FALSE.", call. = FALSE) if (is_null(names(disp.thresholds))) { if (length(disp.thresholds) <= length(p.ops[["thresholds"]])) { names(disp.thresholds) <- names(p.ops[["thresholds"]])[seq_along(disp.thresholds)] } else { stop("More entries were given to 'disp.thresholds' than there are thresholds in the bal.tab object.", call. = FALSE) } } if (!all(names(disp.thresholds) %pin% names(p.ops[["thresholds"]]))) { warning(paste0(word_list(names(disp.thresholds)[!names(disp.thresholds) %pin% names(p.ops[["thresholds"]])], quotes = 2, is.are = TRUE), " not available in thresholds and will be ignored."), call. = FALSE) disp.thresholds <- disp.thresholds[names(disp.thresholds) %pin% names(p.ops[["thresholds"]])] } names(disp.thresholds) <- match_arg(names(disp.thresholds), names(p.ops[["thresholds"]]), several.ok = TRUE) for (x in names(disp.thresholds)) { if (!disp.thresholds[x]) { p.ops[["thresholds"]][[x]] <- NULL baltal[[x]] <- NULL maximbal[[x]] <- NULL } } } if (!identical(msm.summary, "as.is")) { if (!rlang::is_bool(msm.summary)) stop("'msm.summary' must be TRUE, FALSE, or \"as.is\".") if (p.ops$quick && p.ops$msm.summary == FALSE && msm.summary == TRUE) { warning("'msm.summary' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$msm.summary <- msm.summary } if (!identical(disp.bal.tab, "as.is")) { if (!rlang::is_bool(disp.bal.tab)) stop("'disp.bal.tab' must be TRUE, FALSE, or \"as.is\".") p.ops$disp.bal.tab <- disp.bal.tab } if (p.ops$disp.bal.tab) { if (!identical(imbalanced.only, "as.is")) { if (!rlang::is_bool(imbalanced.only)) stop("'imbalanced.only' must be TRUE, FALSE, or \"as.is\".") p.ops$imbalanced.only <- imbalanced.only } if (p.ops$imbalanced.only) { if (is_null(p.ops$thresholds)) { warning("A threshold must be specified if imbalanced.only = TRUE. Displaying all covariates.", call. = FALSE) p.ops$imbalanced.only <- FALSE } } } else p.ops$imbalanced.only <- FALSE if (is_not_null(msm.balance.summary)) { if (p.ops$imbalanced.only) { keep.row <- rowSums(apply(msm.balance.summary[grepl(".Threshold", names(msm.balance.summary), fixed = TRUE)], 2, function(x) !is.na(x) & startsWith(x, "Not Balanced"))) > 0 } else keep.row <- rep(TRUE, nrow(msm.balance.summary)) } if (!missing(which.time)) { if (paste(deparse1(substitute(which.time)), collapse = "") == ".none") which.time <- NA else if (paste(deparse1(substitute(which.time)), collapse = "") == ".all") which.time <- NULL if (!identical(which.time, "as.is")) { p.ops$which.time <- which.time } } #Checks and Adjustments if (is_null(p.ops$which.time)) which.time <- seq_along(msm.balance) else if (anyNA(p.ops$which.time)) { which.time <- integer(0) } else if (is.numeric(p.ops$which.time)) { which.time <- seq_along(msm.balance)[seq_along(msm.balance) %in% p.ops$which.time] if (is_null(which.time)) { warning("No numbers in 'which.time' are treatment time points. No time points will be displayed.", call. = FALSE) which.time <- integer(0) } } else if (is.character(p.ops$which.time)) { which.time <- seq_along(msm.balance)[names(msm.balance) %in% p.ops$which.time] if (is_null(which.time)) { warning("No names in 'which.time' are treatment names. No time points will be displayed.", call. = FALSE) which.time <- integer(0) } } else { warning("The argument to 'which.time' must be .all, .none, or a vector of time point numbers. No time points will be displayed.", call. = FALSE) which.time <- integer(0) } #Printing output if (is_not_null(call)) { cat(underline("Call") %+% "\n " %+% paste(deparse(call), collapse = "\n") %+% "\n\n") } if (is_not_null(which.time)) { cat(underline("Balance by Time Point") %+% "\n") for (i in which.time) { cat("\n - - - " %+% italic("Time: " %+% as.character(i)) %+% " - - - \n") do.call(print, c(list(x = msm.balance[[i]]), p.ops[names(p.ops) %nin% names(A)], A), quote = TRUE) } cat(paste0(paste(rep(" -", round(nchar(paste0("\n - - - Time: ", i, " - - - "))/2)), collapse = ""), " \n")) cat("\n") } if (isTRUE(as.logical(p.ops$msm.summary)) && is_not_null(msm.balance.summary)) { computed.agg.funs <- "max" s.keep.col <- as.logical(c(TRUE, TRUE, unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)], function(s) { c(unlist(lapply(computed.agg.funs, function(af) { p.ops$un && s %in% p.ops$disp && af %in% "max" })), p.ops$un && !p.ops$disp.adj && is_not_null(p.ops$thresholds[[s]])) })), rep( unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)], function(s) { c(unlist(lapply(computed.agg.funs, function(af) { p.ops$disp.adj && s %in% p.ops$disp && af %in% "max" })), p.ops$disp.adj && is_not_null(p.ops$thresholds[[s]])) })), p.ops$nweights + !p.ops$disp.adj) )) if (p.ops$disp.bal.tab) { cat(underline("Balance summary across all time points") %+% "\n") if (all(!keep.row)) cat(italic("All covariates are balanced.") %+% "\n") else print.data.frame_(round_df_char(msm.balance.summary[keep.row, s.keep.col, drop = FALSE], digits)) cat("\n") } if (is_not_null(nn)) { print.warning <- FALSE cat(underline(attr(nn[[1]], "tag")) %+% "\n") for (ti in seq_along(nn)) { cat(" - " %+% italic("Time " %+% as.character(ti)) %+% "\n") for (i in rownames(nn[[ti]])) { if (all(nn[[ti]][i,] == 0)) nn[[ti]] <- nn[[ti]][rownames(nn[[ti]])!=i,] } if (all(c("Matched (ESS)", "Matched (Unweighted)") %in% rownames(nn[[ti]])) && all(check_if_zero(nn[[ti]]["Matched (ESS)",] - nn[[ti]]["Matched (Unweighted)",]))) { nn[[ti]] <- nn[[ti]][rownames(nn[[ti]])!="Matched (Unweighted)", , drop = FALSE] rownames(nn[[ti]])[rownames(nn[[ti]]) == "Matched (ESS)"] <- "Matched" } if (length(attr(nn[[ti]], "ss.type")) > 1 && nunique.gt(attr(nn[[ti]], "ss.type")[-1], 1)) { ess <- ifelse(attr(nn[[ti]], "ss.type") == "ess", "*", "") nn[[ti]] <- setNames(cbind(nn[[ti]], ess), c(names(nn[[ti]]), "")) print.warning <- TRUE } print.data.frame_(round_df_char(nn[[ti]], digits = min(2, digits), pad = " ")) } if (print.warning) cat(italic("* indicates effective sample size")) } } invisible(x) } print.bal.tab.subclass <- function(x, imbalanced.only = "as.is", un = "as.is", disp.bal.tab = "as.is", stats = "as.is", disp.thresholds = "as.is", disp = "as.is", disp.subclass = "as.is", digits = max(3, getOption("digits") - 3), ...) { A <- list(...) call <- x$call s.balance <- x$Subclass.Balance b.a.subclass <- x$Balance.Across.Subclass s.nn <- x$Observations p.ops <- attr(x, "print.options") baltal <- maximbal <- list() for (s in p.ops$compute) { baltal[[s]] <- x[[paste.("Balanced", s, "Subclass")]] maximbal[[s]] <- x[[paste.("Max.Imbalance", s, "Subclass")]] } #Prevent exponential notation printing op <- options(scipen=getOption("scipen")) options(scipen = 999) on.exit(options(op)) #Adjustments to print options if (!identical(un, "as.is") && p.ops$disp.adj) { if (!rlang::is_bool(un)) stop("'un' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if (p.ops$quick && p.ops$un == FALSE && un == TRUE) { warning("'un' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$un <- un } if (!identical(disp, "as.is")) { if (!is.character(disp)) stop("'disp.means' must be a character vector.") allowable.disp <- c("means", "sds", all_STATS(p.ops$type)) if (any(disp %nin% allowable.disp)) { stop(paste(word_list(disp[disp %nin% allowable.disp], and.or = "and", quotes = 2, is.are = TRUE), "not allowed in 'disp'."), call. = FALSE) } if (any(disp %nin% p.ops$compute)) { warning(paste("'disp' cannot include", word_list(disp[disp %nin% p.ops$compute], and.or = "or", quotes = 2), "if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- disp } if (is_not_null(A[["disp.means"]]) && !identical(A[["disp.means"]], "as.is")) { if (!rlang::is_bool(A[["disp.means"]])) stop("'disp.means' must be TRUE, FALSE, or \"as.is\".") if ("means" %nin% p.ops$compute && A[["disp.means"]] == TRUE) { warning("'disp.means' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "means"[A[["disp.means"]]])) } if (is_not_null(A[["disp.sds"]]) && !identical(A[["disp.sds"]], "as.is")) { if (!rlang::is_bool(A[["disp.sds"]])) stop("'disp.sds' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if ("sds" %nin% p.ops$compute && A[["disp.sds"]] == TRUE) { warning("'disp.sds' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "sds"[A[["disp.sds"]]])) } if (!identical(stats, "as.is")) { if (!is_(stats, "character")) stop("'stats' must be a string.") stats <- match_arg(stats, all_STATS(p.ops$type), several.ok = TRUE) stats_in_p.ops <- stats %in% p.ops$compute if (any(!stats_in_p.ops)) { stop(paste0("'stats' cannot contain ", word_list(stats[!stats_in_p.ops], and.or = "or", quotes = 2), " if quick = TRUE in the original call to bal.tab()."), call. = TRUE) } else p.ops$disp <- unique(c(p.ops$disp[p.ops$disp %nin% all_STATS()], stats)) } for (s in all_STATS(p.ops$type)) { if (is_not_null(A[[STATS[[s]]$disp_stat]]) && !identical(A[[STATS[[s]]$disp_stat]], "as.is")) { if (!rlang::is_bool(A[[STATS[[s]]$disp_stat]])) { stop(paste0("'", STATS[[s]]$disp_stat, "' must be TRUE, FALSE, or \"as.is\"."), call. = FALSE) } if (s %nin% p.ops$compute && isTRUE(A[[STATS[[s]]$disp_stat]])) { warning(paste0("'", STATS[[s]]$disp_stat, "' cannot be set to TRUE if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, s)) } } for (s in p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)]) { if (STATS[[s]]$threshold %in% names(A) && !identical(temp.thresh <- A[[STATS[[s]]$threshold]], "as.is")) { if (is_not_null(temp.thresh) && (!is.numeric(temp.thresh) || length(temp.thresh) != 1 || is_null(p.ops[["thresholds"]][[s]]) || p.ops[["thresholds"]][[s]] != temp.thresh)) stop(paste0("'", STATS[[s]]$threshold, "' must be NULL or \"as.is\".")) if (is_null(temp.thresh)) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (s %nin% p.ops$disp) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (!identical(disp.thresholds, "as.is")) { if (!is.logical(disp.thresholds) || anyNA(disp.thresholds)) stop("'disp.thresholds' must only contain TRUE or FALSE.", call. = FALSE) if (is_null(names(disp.thresholds))) { if (length(disp.thresholds) <= length(p.ops[["thresholds"]])) { names(disp.thresholds) <- names(p.ops[["thresholds"]])[seq_along(disp.thresholds)] } else { stop("More entries were given to 'disp.thresholds' than there are thresholds in the bal.tab object.", call. = FALSE) } } if (!all(names(disp.thresholds) %pin% names(p.ops[["thresholds"]]))) { warning(paste0(word_list(names(disp.thresholds)[!names(disp.thresholds) %pin% names(p.ops[["thresholds"]])], quotes = 2, is.are = TRUE), " not available in thresholds and will be ignored."), call. = FALSE) disp.thresholds <- disp.thresholds[names(disp.thresholds) %pin% names(p.ops[["thresholds"]])] } names(disp.thresholds) <- match_arg(names(disp.thresholds), names(p.ops[["thresholds"]]), several.ok = TRUE) for (x in names(disp.thresholds)) { if (!disp.thresholds[x]) { p.ops[["thresholds"]][[x]] <- NULL baltal[[x]] <- NULL maximbal[[x]] <- NULL } } } if (!identical(disp.bal.tab, "as.is")) { if (!rlang::is_bool(disp.bal.tab)) stop("'disp.bal.tab' must be TRUE, FALSE, or \"as.is\".") p.ops$disp.bal.tab <- disp.bal.tab } if (p.ops$disp.bal.tab) { if (!identical(imbalanced.only, "as.is")) { if (!rlang::is_bool(imbalanced.only)) stop("'imbalanced.only' must be TRUE, FALSE, or \"as.is\".") p.ops$imbalanced.only <- imbalanced.only } if (p.ops$imbalanced.only) { if (is_null(p.ops$thresholds)) { warning("A threshold must be specified if imbalanced.only = TRUE. Displaying all covariates.", call. = FALSE) p.ops$imbalanced.only <- FALSE } } } else p.ops$imbalanced.only <- FALSE if (!identical(disp.subclass, "as.is")) { if (!rlang::is_bool(disp.subclass)) stop("'disp.subclass' must be TRUE, FALSE, or \"as.is\".") p.ops$disp.subclass <- disp.subclass } if (is_not_null(call)) { cat(underline("Call") %+% "\n " %+% paste(deparse(call), collapse = "\n") %+% "\n\n") } if (p.ops$disp.bal.tab) { if (p.ops$disp.subclass) { s.keep.col <- setNames(c(TRUE, rep(unlist(lapply(p.ops$compute[p.ops$compute %nin% all_STATS()], function(s) { s %in% p.ops$disp })), switch(p.ops$type, bin = 2, cont = 1)), unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS()], function(s) { c(s %in% p.ops$disp, is_not_null(p.ops$thresholds[[s]])) }))), names(s.balance[[1]])) cat(underline("Balance by subclass")) for (i in names(s.balance)) { if (p.ops$imbalanced.only) { s.keep.row <- rowSums(apply(s.balance[[i]][grepl(".Threshold", names(s.balance), fixed = TRUE)], 2, function(x) !is.na(x) & startsWith(x, "Not Balanced"))) > 0 } else s.keep.row <- rep(TRUE, nrow(s.balance[[i]])) cat("\n - - - " %+% italic("Subclass " %+% as.character(i)) %+% " - - - \n") if (all(!s.keep.row)) cat(italic("All covariates are balanced.") %+% "\n") else print.data.frame_(round_df_char(s.balance[[i]][s.keep.row, s.keep.col, drop = FALSE], digits)) } cat("\n") } if (is_not_null(b.a.subclass)) { if (p.ops$imbalanced.only) { a.s.keep.row <- rowSums(apply(b.a.subclass[grepl(".Threshold", names(b.a.subclass), fixed = TRUE)], 2, function(x) !is.na(x) & startsWith(x, "Not Balanced"))) > 0 } else a.s.keep.row <- rep(TRUE, nrow(b.a.subclass)) a.s.keep.col <- setNames(as.logical(c(TRUE, rep(unlist(lapply(p.ops$compute[p.ops$compute %nin% all_STATS()], function(s) { p.ops$un && s %in% p.ops$disp })), switch(p.ops$type, bin = 2, cont = 1)), unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS()], function(s) { c(p.ops$un && s %in% p.ops$disp, p.ops$un && !p.ops$disp.adj && is_not_null(p.ops$thresholds[[s]])) })), rep(c(rep(unlist(lapply(p.ops$compute[p.ops$compute %nin% all_STATS()], function(s) { p.ops$disp.adj && s %in% p.ops$disp })), 2), unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS()], function(s) { c(p.ops$disp.adj && s %in% p.ops$disp, p.ops$disp.adj && !p.ops$disp.adj && is_not_null(p.ops$thresholds[[s]])) })) ), p.ops$disp.adj))), names(b.a.subclass)) cat(underline("Balance measures across subclasses") %+% "\n") if (all(!a.s.keep.row)) cat(italic("All covariates are balanced.") %+% "\n") else print.data.frame_(round_df_char(b.a.subclass[a.s.keep.row, a.s.keep.col, drop = FALSE], digits)) cat("\n") } } for (s in p.ops$stats) { if (is_not_null(baltal[[s]])) { cat(underline(paste("Balance tally for", STATS[[s]]$balance_tally_for, "across subclasses")) %+% "\n") print.data.frame_(baltal[[s]]) cat("\n") } if (is_not_null(maximbal[[s]])) { cat(underline(paste("Variable with the greatest", STATS[[s]]$variable_with_the_greatest, "across subclasses")) %+% "\n") print.data.frame_(round_df_char(maximbal[[s]], digits), row.names = FALSE) cat("\n") } } if (is_not_null(s.nn)) { cat(underline(attr(s.nn, "tag")) %+% "\n") print.data.frame_(round_df_char(s.nn, digits = min(2, digits), pad = " ")) } invisible(x) }
/R/print.bal.tab.R
no_license
Zoe187419/cobalt
R
false
false
78,114
r
print.bal.tab <- function(x, imbalanced.only = "as.is", un = "as.is", disp.bal.tab = "as.is", stats = "as.is", disp.thresholds = "as.is", disp = "as.is", digits = max(3, getOption("digits") - 3), ...) { A <- list(...) call <- x$call p.ops <- attr(x, "print.options") balance <- x$Balance baltal <- maximbal <- list() for (s in p.ops$compute) { baltal[[s]] <- x[[paste.("Balanced", s)]] maximbal[[s]] <- x[[paste.("Max.Imbalance", s)]] } nn <- x$Observations #Prevent exponential notation printing op <- options(scipen=getOption("scipen")) options(scipen = 999) on.exit(options(op)) #Adjustments to print options if (!identical(un, "as.is") && p.ops$disp.adj) { if (!rlang::is_bool(un)) stop("'un' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if (p.ops$quick && p.ops$un == FALSE && un == TRUE) { warning("'un' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$un <- un } if (!identical(disp, "as.is")) { if (!is.character(disp)) stop("'disp' must be a character vector.") allowable.disp <- c("means", "sds", all_STATS(p.ops$type)) if (any(disp %nin% allowable.disp)) { stop(paste(word_list(disp[disp %nin% allowable.disp], and.or = "and", quotes = 2, is.are = TRUE), "not allowed in 'disp'."), call. = FALSE) } if (any(disp %nin% p.ops$compute)) { warning(paste("'disp' cannot include", word_list(disp[disp %nin% p.ops$compute], and.or = "or", quotes = 2), "if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- disp } if (is_not_null(A[["disp.means"]]) && !identical(A[["disp.means"]], "as.is")) { if (!rlang::is_bool(A[["disp.means"]])) stop("'disp.means' must be TRUE, FALSE, or \"as.is\".") if ("means" %nin% p.ops$compute && A[["disp.means"]] == TRUE) { warning("'disp.means' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "means"[A[["disp.means"]]])) } if (is_not_null(A[["disp.sds"]]) && !identical(A[["disp.sds"]], "as.is")) { if (!rlang::is_bool(A[["disp.sds"]])) stop("'disp.sds' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if ("sds" %nin% p.ops$compute && A[["disp.sds"]] == TRUE) { warning("'disp.sds' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "sds"[A[["disp.sds"]]])) } if (!identical(stats, "as.is")) { if (!is_(stats, "character")) stop("'stats' must be a string.") stats <- match_arg(stats, all_STATS(p.ops$type), several.ok = TRUE) stats_in_p.ops <- stats %in% p.ops$compute if (any(!stats_in_p.ops)) { stop(paste0("'stats' cannot contain ", word_list(stats[!stats_in_p.ops], and.or = "or", quotes = 2), " when ", if (sum(!stats_in_p.ops) > 1) "they were " else "it was ", "not requested in the original call to bal.tab()."), call. = TRUE) } else p.ops$disp <- unique(c(p.ops$disp[p.ops$disp %nin% all_STATS()], stats)) } for (s in all_STATS(p.ops$type)) { if (is_not_null(A[[STATS[[s]]$disp_stat]]) && !identical(A[[STATS[[s]]$disp_stat]], "as.is")) { if (!rlang::is_bool(A[[STATS[[s]]$disp_stat]])) { stop(paste0("'", STATS[[s]]$disp_stat, "' must be TRUE, FALSE, or \"as.is\"."), call. = FALSE) } if (s %nin% p.ops$compute && isTRUE(A[[STATS[[s]]$disp_stat]])) { warning(paste0("'", STATS[[s]]$disp_stat, "' cannot be set to TRUE if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, s)) } } for (s in p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)]) { if (STATS[[s]]$threshold %in% names(A) && !identical(temp.thresh <- A[[STATS[[s]]$threshold]], "as.is")) { if (is_not_null(temp.thresh) && (!is.numeric(temp.thresh) || length(temp.thresh) != 1 || is_null(p.ops[["thresholds"]][[s]]) || p.ops[["thresholds"]][[s]] != temp.thresh)) stop(paste0("'", STATS[[s]]$threshold, "' must be NULL or \"as.is\".")) if (is_null(temp.thresh)) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (s %nin% p.ops$disp) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (!identical(disp.thresholds, "as.is")) { if (!is.logical(disp.thresholds) || anyNA(disp.thresholds)) stop("'disp.thresholds' must only contain TRUE or FALSE.", call. = FALSE) if (is_null(names(disp.thresholds))) { if (length(disp.thresholds) <= length(p.ops[["thresholds"]])) { names(disp.thresholds) <- names(p.ops[["thresholds"]])[seq_along(disp.thresholds)] } else { stop("More entries were given to 'disp.thresholds' than there are thresholds in the bal.tab object.", call. = FALSE) } } if (!all(names(disp.thresholds) %pin% names(p.ops[["thresholds"]]))) { warning(paste0(word_list(names(disp.thresholds)[!names(disp.thresholds) %pin% names(p.ops[["thresholds"]])], quotes = 2, is.are = TRUE), " not available in thresholds and will be ignored."), call. = FALSE) disp.thresholds <- disp.thresholds[names(disp.thresholds) %pin% names(p.ops[["thresholds"]])] } names(disp.thresholds) <- match_arg(names(disp.thresholds), names(p.ops[["thresholds"]]), several.ok = TRUE) for (x in names(disp.thresholds)) { if (!disp.thresholds[x]) { p.ops[["thresholds"]][[x]] <- NULL baltal[[x]] <- NULL maximbal[[x]] <- NULL } } } if (!identical(disp.bal.tab, "as.is")) { if (!rlang::is_bool(disp.bal.tab)) stop("'disp.bal.tab' must be TRUE, FALSE, or \"as.is\".") p.ops$disp.bal.tab <- disp.bal.tab } if (p.ops$disp.bal.tab) { if (!identical(imbalanced.only, "as.is")) { if (!rlang::is_bool(imbalanced.only)) stop("'imbalanced.only' must be TRUE, FALSE, or \"as.is\".") p.ops$imbalanced.only <- imbalanced.only } if (p.ops$imbalanced.only) { if (is_null(p.ops$thresholds)) { warning("A threshold must be specified if imbalanced.only = TRUE. Displaying all covariates.", call. = FALSE) p.ops$imbalanced.only <- FALSE } } } else p.ops$imbalanced.only <- FALSE if (is_not_null(call)) { cat(underline("Call") %+% "\n " %+% paste(deparse(call), collapse = "\n") %+% "\n\n") } if (p.ops$disp.bal.tab) { if (p.ops$imbalanced.only) { keep.row <- rowSums(apply(balance[grepl(".Threshold", names(balance), fixed = TRUE)], 2, function(x) !is.na(x) & startsWith(x, "Not Balanced"))) > 0 } else keep.row <- rep(TRUE, nrow(balance)) keep.col <- setNames(as.logical(c(TRUE, rep(unlist(lapply(p.ops$compute[p.ops$compute %nin% all_STATS()], function(s) { p.ops$un && s %in% p.ops$disp })), switch(p.ops$type, bin = 2, cont = 1)), unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS()], function(s) { c(p.ops$un && s %in% p.ops$disp, p.ops$un && !p.ops$disp.adj && is_not_null(p.ops$thresholds[[s]])) })), rep(c(rep(unlist(lapply(p.ops$compute[p.ops$compute %nin% all_STATS()], function(s) { p.ops$disp.adj && s %in% p.ops$disp })), switch(p.ops$type, bin = 2, cont = 1)), unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS()], function(s) { c(p.ops$disp.adj && s %in% p.ops$disp, p.ops$disp.adj && is_not_null(p.ops$thresholds[[s]])) })) ), p.ops$nweights + !p.ops$disp.adj))), names(balance)) cat(underline("Balance Measures") %+% "\n") if (all(!keep.row)) cat(italic("All covariates are balanced.") %+% "\n") else print.data.frame_(round_df_char(balance[keep.row, keep.col, drop = FALSE], digits)) cat("\n") } for (s in p.ops$compute) { if (is_not_null(baltal[[s]])) { cat(underline(paste("Balance tally for", STATS[[s]]$balance_tally_for)) %+% "\n") print.data.frame_(baltal[[s]]) cat("\n") } if (is_not_null(maximbal[[s]])) { cat(underline(paste("Variable with the greatest", STATS[[s]]$variable_with_the_greatest)) %+% "\n") print.data.frame_(round_df_char(maximbal[[s]], digits), row.names = FALSE) cat("\n") } } if (is_not_null(nn)) { for (i in seq_len(NROW(nn))) { if (all(nn[i,] == 0)) { nn <- nn[-i, , drop = FALSE] attr(nn, "ss.type") <- attr(nn, "ss.type")[-i] } } if (all(c("Matched (ESS)", "Matched (Unweighted)") %in% rownames(nn)) && all(check_if_zero(nn["Matched (ESS)",] - nn["Matched (Unweighted)",]))) { nn <- nn[rownames(nn)!="Matched (Unweighted)", , drop = FALSE] rownames(nn)[rownames(nn) == "Matched (ESS)"] <- "Matched" } cat(underline(attr(nn, "tag")) %+% "\n") print.warning <- FALSE if (length(attr(nn, "ss.type")) > 1 && nunique.gt(attr(nn, "ss.type")[-1], 1)) { ess <- ifelse(attr(nn, "ss.type") == "ess", "*", "") nn <- setNames(cbind(nn, ess), c(names(nn), "")) print.warning <- TRUE } print.data.frame_(round_df_char(nn, digits = min(2, digits), pad = " ")) if (print.warning) cat(italic("* indicates effective sample size")) } invisible(x) } print.bal.tab.cluster <- function(x, imbalanced.only = "as.is", un = "as.is", disp.bal.tab = "as.is", stats = "as.is", disp.thresholds = "as.is", disp = "as.is", which.cluster, cluster.summary = "as.is", cluster.fun = "as.is", digits = max(3, getOption("digits") - 3), ...) { #Replace .all and .none with NULL and NA respectively .call <- match.call(expand.dots = TRUE) if (any(sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".all") || identical(as.character(.call[[x]]), ".none")))) { .call[sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".all"))] <- expression(NULL) .call[sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".none"))] <- expression(NA) return(eval.parent(.call)) } A <- list(...) call <- x$call c.balance <- x$Cluster.Balance c.balance.summary <- x$Balance.Across.Clusters nn <- x$Observations p.ops <- attr(x, "print.options") baltal <- maximbal <- list() for (s in p.ops$stats) { baltal[[s]] <- x[[paste.("Balanced", s)]] maximbal[[s]] <- x[[paste.("Max.Imbalance", s)]] } #Prevent exponential notation printing op <- options(scipen=getOption("scipen")) options(scipen = 999) on.exit(options(op)) #Adjustments to print options if (!identical(un, "as.is") && p.ops$disp.adj) { if (!rlang::is_bool(un)) stop("'un' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if (p.ops$quick && p.ops$un == FALSE && un == TRUE) { warning("'un' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$un <- un } if (!identical(disp, "as.is")) { if (!is.character(disp)) stop("'disp.means' must be a character vector.") allowable.disp <- c("means", "sds", all_STATS(p.ops$type)) if (any(disp %nin% allowable.disp)) { stop(paste(word_list(disp[disp %nin% allowable.disp], and.or = "and", quotes = 2, is.are = TRUE), "not allowed in 'disp'."), call. = FALSE) } if (any(disp %nin% p.ops$compute)) { warning(paste("'disp' cannot include", word_list(disp[disp %nin% p.ops$compute], and.or = "or", quotes = 2), "if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- disp } if (is_not_null(A[["disp.means"]]) && !identical(A[["disp.means"]], "as.is")) { if (!rlang::is_bool(A[["disp.means"]])) stop("'disp.means' must be TRUE, FALSE, or \"as.is\".") if ("means" %nin% p.ops$compute && A[["disp.means"]] == TRUE) { warning("'disp.means' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "means"[A[["disp.means"]]])) A[["disp.means"]] <- NULL } if (is_not_null(A[["disp.sds"]]) && !identical(A[["disp.sds"]], "as.is")) { if (!rlang::is_bool(A[["disp.sds"]])) stop("'disp.sds' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if ("sds" %nin% p.ops$compute && A[["disp.sds"]] == TRUE) { warning("'disp.sds' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "sds"[A[["disp.sds"]]])) A[["disp.sds"]] <- NULL } if (!identical(stats, "as.is")) { if (!is_(stats, "character")) stop("'stats' must be a string.") stats <- match_arg(stats, all_STATS(p.ops$type), several.ok = TRUE) stats_in_p.ops <- stats %in% p.ops$compute if (any(!stats_in_p.ops)) { stop(paste0("'stats' cannot contain ", word_list(stats[!stats_in_p.ops], and.or = "or", quotes = 2), " if quick = TRUE in the original call to bal.tab()."), call. = TRUE) } else p.ops$disp <- unique(c(p.ops$disp[p.ops$disp %nin% all_STATS()], stats)) } for (s in all_STATS(p.ops$type)) { if (is_not_null(A[[STATS[[s]]$disp_stat]]) && !identical(A[[STATS[[s]]$disp_stat]], "as.is")) { if (!rlang::is_bool(A[[STATS[[s]]$disp_stat]])) { stop(paste0("'", STATS[[s]]$disp_stat, "' must be TRUE, FALSE, or \"as.is\"."), call. = FALSE) } if (s %nin% p.ops$compute && isTRUE(A[[STATS[[s]]$disp_stat]])) { warning(paste0("'", STATS[[s]]$disp_stat, "' cannot be set to TRUE if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, s)) A[[STATS[[s]]$disp_stat]] <- NULL } } for (s in p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)]) { if (STATS[[s]]$threshold %in% names(A) && !identical(temp.thresh <- A[[STATS[[s]]$threshold]], "as.is")) { if (is_not_null(temp.thresh) && (!is.numeric(temp.thresh) || length(temp.thresh) != 1 || is_null(p.ops[["thresholds"]][[s]]) || p.ops[["thresholds"]][[s]] != temp.thresh)) stop(paste0("'", STATS[[s]]$threshold, "' must be NULL or \"as.is\".")) if (is_null(temp.thresh)) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } A[[STATS[[s]]$threshold]] <- NULL } if (s %nin% p.ops$disp) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (!identical(disp.thresholds, "as.is")) { if (!is.logical(disp.thresholds) || anyNA(disp.thresholds)) stop("'disp.thresholds' must only contain TRUE or FALSE.", call. = FALSE) if (is_null(names(disp.thresholds))) { if (length(disp.thresholds) <= length(p.ops[["thresholds"]])) { names(disp.thresholds) <- names(p.ops[["thresholds"]])[seq_along(disp.thresholds)] } else { stop("More entries were given to 'disp.thresholds' than there are thresholds in the bal.tab object.", call. = FALSE) } } if (!all(names(disp.thresholds) %pin% names(p.ops[["thresholds"]]))) { warning(paste0(word_list(names(disp.thresholds)[!names(disp.thresholds) %pin% names(p.ops[["thresholds"]])], quotes = 2, is.are = TRUE), " not available in thresholds and will be ignored."), call. = FALSE) disp.thresholds <- disp.thresholds[names(disp.thresholds) %pin% names(p.ops[["thresholds"]])] } names(disp.thresholds) <- match_arg(names(disp.thresholds), names(p.ops[["thresholds"]]), several.ok = TRUE) for (x in names(disp.thresholds)) { if (!disp.thresholds[x]) { p.ops[["thresholds"]][[x]] <- NULL baltal[[x]] <- NULL maximbal[[x]] <- NULL } } } if (!identical(cluster.summary, "as.is")) { if (!rlang::is_bool(cluster.summary)) stop("'cluster.summary' must be TRUE, FALSE, or \"as.is\".") if (p.ops$quick && p.ops$cluster.summary == FALSE && cluster.summary == TRUE) { warning("'cluster.summary' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$cluster.summary <- cluster.summary } if (p.ops$disp.bal.tab) { if (!identical(imbalanced.only, "as.is")) { if (!rlang::is_bool(imbalanced.only)) stop("'imbalanced.only' must be TRUE, FALSE, or \"as.is\".") p.ops$imbalanced.only <- imbalanced.only } if (p.ops$imbalanced.only) { if (is_null(p.ops$thresholds)) { warning("A threshold must be specified if imbalanced.only = TRUE. Displaying all covariates.", call. = FALSE) p.ops$imbalanced.only <- FALSE } } } else p.ops$imbalanced.only <- FALSE if (!missing(which.cluster)) { if (paste(deparse1(substitute(which.cluster)), collapse = "") == ".none") which.cluster <- NA else if (paste(deparse1(substitute(which.cluster)), collapse = "") == ".all") which.cluster <- NULL if (!identical(which.cluster, "as.is")) { p.ops$which.cluster <- which.cluster } } if (!p.ops$quick || is_null(p.ops$cluster.fun)) computed.cluster.funs <- c("min", "mean", "max") else computed.cluster.funs <- p.ops$cluster.fun if (is_not_null(cluster.fun) && !identical(cluster.fun, "as.is")) { if (!is.character(cluster.fun) || !all(cluster.fun %pin% computed.cluster.funs)) stop(paste0("'cluster.fun' must be ", word_list(c(computed.cluster.funs, "as.is"), and.or = "or", quotes = 2)), call. = FALSE) } else { if (p.ops$abs) cluster.fun <- c("mean", "max") else cluster.fun <- c("min", "mean", "max") } cluster.fun <- match_arg(tolower(cluster.fun), computed.cluster.funs, several.ok = TRUE) #Checks and Adjustments if (is_null(p.ops$which.cluster)) which.cluster <- seq_along(c.balance) else if (anyNA(p.ops$which.cluster)) { which.cluster <- integer(0) } else if (is.numeric(p.ops$which.cluster)) { which.cluster <- intersect(seq_along(c.balance), p.ops$which.cluster) if (is_null(which.cluster)) { warning("No indices in 'which.cluster' are cluster indices. Displaying all clusters instead.", call. = FALSE) which.cluster <- seq_along(c.balance) } } else if (is.character(p.ops$which.cluster)) { which.cluster <- intersect(names(c.balance), p.ops$which.cluster) if (is_null(which.cluster)) { warning("No names in 'which.cluster' are cluster names. Displaying all clusters instead.", call. = FALSE) which.cluster <- seq_along(c.balance) } } else { warning("The argument to 'which.cluster' must be .all, .none, or a vector of cluster indices or cluster names. Displaying all clusters instead.", call. = FALSE) which.cluster <- seq_along(c.balance) } #Printing if (is_not_null(call)) { cat(underline("Call") %+% "\n " %+% paste(deparse(call), collapse = "\n") %+% "\n\n") } if (is_not_null(which.cluster)) { cat(underline("Balance by cluster") %+% "\n") for (i in which.cluster) { cat("\n - - - " %+% italic("Cluster: " %+% names(c.balance)[i]) %+% " - - - \n") do.call(print, c(list(c.balance[[i]]), p.ops[names(p.ops) %nin% names(A)], A), quote = TRUE) } cat(paste0(paste(rep(" -", round(nchar(paste0("\n - - - Cluster: ", names(c.balance)[i], " - - - "))/2)), collapse = ""), " \n")) cat("\n") } if (isTRUE(as.logical(p.ops$cluster.summary)) && is_not_null(c.balance.summary)) { s.keep.col <- as.logical(c(TRUE, unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)], function(s) { c(unlist(lapply(computed.cluster.funs, function(af) { p.ops$un && s %in% p.ops$disp && af %in% cluster.fun })), p.ops$un && !p.ops$disp.adj && length(cluster.fun) == 1 && is_not_null(p.ops$thresholds[[s]])) })), rep( unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)], function(s) { c(unlist(lapply(computed.cluster.funs, function(af) { p.ops$disp.adj && s %in% p.ops$disp && af %in% cluster.fun })), p.ops$disp.adj && length(cluster.fun) == 1 && is_not_null(p.ops$thresholds[[s]])) })), p.ops$nweights + !p.ops$disp.adj) )) if (p.ops$disp.bal.tab) { cat(underline("Balance summary across all clusters") %+% "\n") print.data.frame_(round_df_char(c.balance.summary[, s.keep.col, drop = FALSE], digits)) cat("\n") } if (is_not_null(nn)) { for (i in rownames(nn)) { if (all(nn[i,] == 0)) nn <- nn[rownames(nn)!=i,] } if (all(c("Matched (ESS)", "Matched (Unweighted)") %in% rownames(nn)) && all(check_if_zero(nn["Matched (ESS)",] - nn["Matched (Unweighted)",]))) { nn <- nn[rownames(nn)!="Matched (Unweighted)", , drop = FALSE] rownames(nn)[rownames(nn) == "Matched (ESS)"] <- "Matched" } cat(underline(attr(nn, "tag")) %+% "\n") print.warning <- FALSE if (length(attr(nn, "ss.type")) > 1 && nunique.gt(attr(nn, "ss.type")[-1], 1)) { ess <- ifelse(attr(nn, "ss.type") == "ess", "*", "") nn <- setNames(cbind(nn, ess), c(names(nn), "")) print.warning <- TRUE } print.data.frame_(round_df_char(nn, digits = min(2, digits), pad = " ")) if (print.warning) cat(italic("* indicates effective sample size")) } } invisible(x) } print.bal.tab.imp <- function(x, imbalanced.only = "as.is", un = "as.is", disp.bal.tab = "as.is", stats = "as.is", disp.thresholds = "as.is", disp = "as.is", which.imp, imp.summary = "as.is", imp.fun = "as.is", digits = max(3, getOption("digits") - 3), ...) { #Replace .all and .none with NULL and NA respectively .call <- match.call(expand.dots = TRUE) if (any(sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".all") || identical(as.character(.call[[x]]), ".none")))) { .call[sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".all"))] <- expression(NULL) .call[sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".none"))] <- expression(NA) return(eval.parent(.call)) } A <- list(...) call <- x$call i.balance <- x[["Imputation.Balance"]] i.balance.summary <- x[["Balance.Across.Imputations"]] nn <- x$Observations p.ops <- attr(x, "print.options") baltal <- maximbal <- list() for (s in p.ops$stats) { baltal[[s]] <- x[[paste.("Balanced", s)]] maximbal[[s]] <- x[[paste.("Max.Imbalance", s)]] } #Prevent exponential notation printing op <- options(scipen=getOption("scipen")) options(scipen = 999) on.exit(options(op)) #Adjustments to print options if (!identical(un, "as.is") && p.ops$disp.adj) { if (!rlang::is_bool(un)) stop("'un' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if (p.ops$quick && p.ops$un == FALSE && un == TRUE) { warning("'un' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$un <- un } if (!identical(disp, "as.is")) { if (!is.character(disp)) stop("'disp.means' must be a character vector.") allowable.disp <- c("means", "sds", all_STATS(p.ops$type)) if (any(disp %nin% allowable.disp)) { stop(paste(word_list(disp[disp %nin% allowable.disp], and.or = "and", quotes = 2, is.are = TRUE), "not allowed in 'disp'."), call. = FALSE) } if (any(disp %nin% p.ops$compute)) { warning(paste("'disp' cannot include", word_list(disp[disp %nin% p.ops$compute], and.or = "or", quotes = 2), "if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- disp } if (is_not_null(A[["disp.means"]]) && !identical(A[["disp.means"]], "as.is")) { if (!rlang::is_bool(A[["disp.means"]])) stop("'disp.means' must be TRUE, FALSE, or \"as.is\".") if ("means" %nin% p.ops$compute && A[["disp.means"]] == TRUE) { warning("'disp.means' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "means"[A[["disp.means"]]])) A[["disp.means"]] <- NULL } if (is_not_null(A[["disp.sds"]]) && !identical(A[["disp.sds"]], "as.is")) { if (!rlang::is_bool(A[["disp.sds"]])) stop("'disp.sds' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if ("sds" %nin% p.ops$compute && A[["disp.sds"]] == TRUE) { warning("'disp.sds' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "sds"[A[["disp.sds"]]])) A[["disp.sds"]] <- NULL } if (!identical(stats, "as.is")) { if (!is_(stats, "character")) stop("'stats' must be a string.") stats <- match_arg(stats, all_STATS(p.ops$type), several.ok = TRUE) stats_in_p.ops <- stats %in% p.ops$compute if (any(!stats_in_p.ops)) { stop(paste0("'stats' cannot contain ", word_list(stats[!stats_in_p.ops], and.or = "or", quotes = 2), " if quick = TRUE in the original call to bal.tab()."), call. = TRUE) } else p.ops$disp <- unique(c(p.ops$disp[p.ops$disp %nin% all_STATS()], stats)) } for (s in all_STATS(p.ops$type)) { if (is_not_null(A[[STATS[[s]]$disp_stat]]) && !identical(A[[STATS[[s]]$disp_stat]], "as.is")) { if (!rlang::is_bool(A[[STATS[[s]]$disp_stat]])) { stop(paste0("'", STATS[[s]]$disp_stat, "' must be TRUE, FALSE, or \"as.is\"."), call. = FALSE) } if (s %nin% p.ops$compute && isTRUE(A[[STATS[[s]]$disp_stat]])) { warning(paste0("'", STATS[[s]]$disp_stat, "' cannot be set to TRUE if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, s)) A[[STATS[[s]]$disp_stat]] <- NULL } } for (s in p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)]) { if (STATS[[s]]$threshold %in% names(A) && !identical(temp.thresh <- A[[STATS[[s]]$threshold]], "as.is")) { if (is_not_null(temp.thresh) && (!is.numeric(temp.thresh) || length(temp.thresh) != 1 || is_null(p.ops[["thresholds"]][[s]]) || p.ops[["thresholds"]][[s]] != temp.thresh)) stop(paste0("'", STATS[[s]]$threshold, "' must be NULL or \"as.is\".")) if (is_null(temp.thresh)) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } A[[STATS[[s]]$threshold]] <- NULL } if (s %nin% p.ops$disp) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (!identical(disp.thresholds, "as.is")) { if (!is.logical(disp.thresholds) || anyNA(disp.thresholds)) stop("'disp.thresholds' must only contain TRUE or FALSE.", call. = FALSE) if (is_null(names(disp.thresholds))) { if (length(disp.thresholds) <= length(p.ops[["thresholds"]])) { names(disp.thresholds) <- names(p.ops[["thresholds"]])[seq_along(disp.thresholds)] } else { stop("More entries were given to 'disp.thresholds' than there are thresholds in the bal.tab object.", call. = FALSE) } } if (!all(names(disp.thresholds) %pin% names(p.ops[["thresholds"]]))) { warning(paste0(word_list(names(disp.thresholds)[!names(disp.thresholds) %pin% names(p.ops[["thresholds"]])], quotes = 2, is.are = TRUE), " not available in thresholds and will be ignored."), call. = FALSE) disp.thresholds <- disp.thresholds[names(disp.thresholds) %pin% names(p.ops[["thresholds"]])] } names(disp.thresholds) <- match_arg(names(disp.thresholds), names(p.ops[["thresholds"]]), several.ok = TRUE) for (x in names(disp.thresholds)) { if (!disp.thresholds[x]) { p.ops[["thresholds"]][[x]] <- NULL baltal[[x]] <- NULL maximbal[[x]] <- NULL } } } if (!identical(imp.summary, "as.is")) { if (!rlang::is_bool(imp.summary)) stop("'imp.summary' must be TRUE, FALSE, or \"as.is\".") if (p.ops$quick && p.ops$imp.summary == FALSE && imp.summary == TRUE) { warning("'imp.summary' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$imp.summary <- imp.summary } if (!identical(disp.bal.tab, "as.is")) { if (!rlang::is_bool(disp.bal.tab)) stop("'disp.bal.tab' must be TRUE, FALSE, or \"as.is\".") p.ops$disp.bal.tab <- disp.bal.tab } if (p.ops$disp.bal.tab) { if (!identical(imbalanced.only, "as.is")) { if (!rlang::is_bool(imbalanced.only)) stop("'imbalanced.only' must be TRUE, FALSE, or \"as.is\".") p.ops$imbalanced.only <- imbalanced.only } if (p.ops$imbalanced.only) { if (is_null(p.ops$thresholds)) { warning("A threshold must be specified if imbalanced.only = TRUE. Displaying all covariates.", call. = FALSE) p.ops$imbalanced.only <- FALSE } } } else p.ops$imbalanced.only <- FALSE if (!missing(which.imp)) { if (paste(deparse1(substitute(which.imp)), collapse = "") == ".none") which.imp <- NA else if (paste(deparse1(substitute(which.imp)), collapse = "") == ".all") which.imp <- NULL if (!identical(which.imp, "as.is")) { p.ops$which.imp <- which.imp } } if (!p.ops$quick || is_null(p.ops$imp.fun)) computed.imp.funs <- c("min", "mean", "max") else computed.imp.funs <- p.ops$imp.fun if (is_not_null(imp.fun) && !identical(imp.fun, "as.is")) { if (!is.character(imp.fun) || !all(imp.fun %pin% computed.imp.funs)) stop(paste0("'imp.fun' must be ", word_list(c(computed.imp.funs, "as.is"), and.or = "or", quotes = 2)), call. = FALSE) } else { if (p.ops$abs) imp.fun <- c("mean", "max") else imp.fun <- c("min", "mean", "max") } imp.fun <- match_arg(tolower(imp.fun), computed.imp.funs, several.ok = TRUE) #Checks and Adjustments if (is_null(p.ops$which.imp)) which.imp <- seq_along(i.balance) else if (anyNA(p.ops$which.imp)) { which.imp <- integer(0) } else if (is.numeric(p.ops$which.imp)) { which.imp <- intersect(seq_along(i.balance), p.ops$which.imp) if (is_null(which.imp)) { warning("No numbers in 'which.imp' are imputation numbers. No imputations will be displayed.", call. = FALSE) which.imp <- integer(0) } } else { warning("The argument to 'which.imp' must be .all, .none, or a vector of imputation numbers.", call. = FALSE) which.imp <- integer(0) } #Printing output if (is_not_null(call)) { cat(underline("Call") %+% "\n " %+% paste(deparse(call), collapse = "\n") %+% "\n\n") } if (is_not_null(which.imp)) { cat(underline("Balance by imputation") %+% "\n") for (i in which.imp) { cat("\n - - - " %+% italic("Imputation " %+% names(i.balance)[i]) %+% " - - - \n") do.call(print, c(list(i.balance[[i]]), p.ops, A), quote = TRUE) } cat(paste0(paste(rep(" -", round(nchar(paste0("\n - - - Imputation: ", names(i.balance)[i], " - - - "))/2)), collapse = ""), " \n")) cat("\n") } if (isTRUE(as.logical(p.ops$imp.summary)) && is_not_null(i.balance.summary)) { s.keep.col <- as.logical(c(TRUE, unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)], function(s) { c(unlist(lapply(computed.imp.funs, function(af) { p.ops$un && s %in% p.ops$disp && af %in% imp.fun })), p.ops$un && !p.ops$disp.adj && length(imp.fun) == 1 && is_not_null(p.ops$thresholds[[s]])) })), rep( unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)], function(s) { c(unlist(lapply(computed.imp.funs, function(af) { p.ops$disp.adj && s %in% p.ops$disp && af %in% imp.fun })), p.ops$disp.adj && length(imp.fun) == 1 && is_not_null(p.ops$thresholds[[s]])) })), p.ops$nweights + !p.ops$disp.adj) )) if (p.ops$disp.bal.tab) { cat(underline("Balance summary across all imputations") %+% "\n") print.data.frame_(round_df_char(i.balance.summary[, s.keep.col, drop = FALSE], digits)) cat("\n") } if (is_not_null(nn)) { for (i in rownames(nn)) { if (all(nn[i,] == 0)) nn <- nn[rownames(nn)!=i,] } if (all(c("Matched (ESS)", "Matched (Unweighted)") %in% rownames(nn)) && all(check_if_zero(nn["Matched (ESS)",] - nn["Matched (Unweighted)",]))) { nn <- nn[rownames(nn)!="Matched (Unweighted)", , drop = FALSE] rownames(nn)[rownames(nn) == "Matched (ESS)"] <- "Matched" } cat(underline(attr(nn, "tag")) %+% "\n") print.warning <- FALSE if (length(attr(nn, "ss.type")) > 1 && nunique.gt(attr(nn, "ss.type")[-1], 1)) { ess <- ifelse(attr(nn, "ss.type") == "ess", "*", "") nn <- setNames(cbind(nn, ess), c(names(nn), "")) print.warning <- TRUE } print.data.frame_(round_df_char(nn, digits = min(2, digits), pad = " ")) if (print.warning) cat(italic("* indicates effective sample size")) } } invisible(x) } print.bal.tab.multi <- function(x, imbalanced.only = "as.is", un = "as.is", disp.bal.tab = "as.is", stats = "as.is", disp.thresholds = "as.is", disp = "as.is", which.treat, multi.summary = "as.is", digits = max(3, getOption("digits") - 3), ...) { #Replace .all and .none with NULL and NA respectively .call <- match.call(expand.dots = TRUE) if (any(sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".all") || identical(as.character(.call[[x]]), ".none")))) { .call[sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".all"))] <- expression(NULL) .call[sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".none"))] <- expression(NA) return(eval.parent(.call)) } A <- list(...) call <- x$call m.balance <- x[["Pair.Balance"]] m.balance.summary <- x[["Balance.Across.Pairs"]] nn <- x$Observations p.ops <- attr(x, "print.options") baltal <- maximbal <- list() for (s in p.ops$stats) { baltal[[s]] <- x[[paste.("Balanced", s)]] maximbal[[s]] <- x[[paste.("Max.Imbalance", s)]] } #Prevent exponential notation printing op <- options(scipen=getOption("scipen")) options(scipen = 999) on.exit(options(op)) #Adjustments to print options if (!identical(un, "as.is") && p.ops$disp.adj) { if (!rlang::is_bool(un)) stop("'un' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if (p.ops$quick && p.ops$un == FALSE && un == TRUE) { warning("'un' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$un <- un } if (!identical(disp, "as.is")) { if (!is.character(disp)) stop("'disp.means' must be a character vector.") allowable.disp <- c("means", "sds", all_STATS(p.ops$type)) if (any(disp %nin% allowable.disp)) { stop(paste(word_list(disp[disp %nin% allowable.disp], and.or = "and", quotes = 2, is.are = TRUE), "not allowed in 'disp'."), call. = FALSE) } if (any(disp %nin% p.ops$compute)) { warning(paste("'disp' cannot include", word_list(disp[disp %nin% p.ops$compute], and.or = "or", quotes = 2), "if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- disp } if (is_not_null(A[["disp.means"]]) && !identical(A[["disp.means"]], "as.is")) { if (!rlang::is_bool(A[["disp.means"]])) stop("'disp.means' must be TRUE, FALSE, or \"as.is\".") if ("means" %nin% p.ops$compute && A[["disp.means"]] == TRUE) { warning("'disp.means' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "means"[A[["disp.means"]]])) } if (is_not_null(A[["disp.sds"]]) && !identical(A[["disp.sds"]], "as.is")) { if (!rlang::is_bool(A[["disp.sds"]])) stop("'disp.sds' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if ("sds" %nin% p.ops$compute && A[["disp.sds"]] == TRUE) { warning("'disp.sds' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "sds"[A[["disp.sds"]]])) } if (!identical(stats, "as.is")) { if (!is_(stats, "character")) stop("'stats' must be a string.") stats <- match_arg(stats, all_STATS(p.ops$type), several.ok = TRUE) stats_in_p.ops <- stats %in% p.ops$compute if (any(!stats_in_p.ops)) { stop(paste0("'stats' cannot contain ", word_list(stats[!stats_in_p.ops], and.or = "or", quotes = 2), " if quick = TRUE in the original call to bal.tab()."), call. = TRUE) } else p.ops$disp <- unique(c(p.ops$disp[p.ops$disp %nin% all_STATS()], stats)) } for (s in all_STATS(p.ops$type)) { if (is_not_null(A[[STATS[[s]]$disp_stat]]) && !identical(A[[STATS[[s]]$disp_stat]], "as.is")) { if (!rlang::is_bool(A[[STATS[[s]]$disp_stat]])) { stop(paste0("'", STATS[[s]]$disp_stat, "' must be TRUE, FALSE, or \"as.is\"."), call. = FALSE) } if (s %nin% p.ops$compute && isTRUE(A[[STATS[[s]]$disp_stat]])) { warning(paste0("'", STATS[[s]]$disp_stat, "' cannot be set to TRUE if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, s)) } } for (s in p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)]) { if (STATS[[s]]$threshold %in% names(A) && !identical(temp.thresh <- A[[STATS[[s]]$threshold]], "as.is")) { if (is_not_null(temp.thresh) && (!is.numeric(temp.thresh) || length(temp.thresh) != 1 || is_null(p.ops[["thresholds"]][[s]]) || p.ops[["thresholds"]][[s]] != temp.thresh)) stop(paste0("'", STATS[[s]]$threshold, "' must be NULL or \"as.is\".")) if (is_null(temp.thresh)) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (s %nin% p.ops$disp) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (!identical(disp.thresholds, "as.is")) { if (!is.logical(disp.thresholds) || anyNA(disp.thresholds)) stop("'disp.thresholds' must only contain TRUE or FALSE.", call. = FALSE) if (is_null(names(disp.thresholds))) { if (length(disp.thresholds) <= length(p.ops[["thresholds"]])) { names(disp.thresholds) <- names(p.ops[["thresholds"]])[seq_along(disp.thresholds)] } else { stop("More entries were given to 'disp.thresholds' than there are thresholds in the bal.tab object.", call. = FALSE) } } if (!all(names(disp.thresholds) %pin% names(p.ops[["thresholds"]]))) { warning(paste0(word_list(names(disp.thresholds)[!names(disp.thresholds) %pin% names(p.ops[["thresholds"]])], quotes = 2, is.are = TRUE), " not available in thresholds and will be ignored."), call. = FALSE) disp.thresholds <- disp.thresholds[names(disp.thresholds) %pin% names(p.ops[["thresholds"]])] } names(disp.thresholds) <- match_arg(names(disp.thresholds), names(p.ops[["thresholds"]]), several.ok = TRUE) for (x in names(disp.thresholds)) { if (!disp.thresholds[x]) { p.ops[["thresholds"]][[x]] <- NULL baltal[[x]] <- NULL maximbal[[x]] <- NULL } } } if (!identical(multi.summary, "as.is")) { if (!rlang::is_bool(multi.summary)) stop("'multi.summary' must be TRUE, FALSE, or \"as.is\".") if (p.ops$quick && p.ops$multi.summary == FALSE && multi.summary == TRUE) { warning("'multi.summary' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$multi.summary <- multi.summary } if (!identical(disp.bal.tab, "as.is")) { if (!rlang::is_bool(disp.bal.tab)) stop("'disp.bal.tab' must be TRUE, FALSE, or \"as.is\".") p.ops$disp.bal.tab <- disp.bal.tab } if (is_not_null(m.balance.summary)) { if (p.ops$disp.bal.tab) { if (!identical(imbalanced.only, "as.is")) { if (!rlang::is_bool(imbalanced.only)) stop("'imbalanced.only' must be TRUE, FALSE, or \"as.is\".") p.ops$imbalanced.only <- imbalanced.only } if (p.ops$imbalanced.only) { if (is_null(p.ops$thresholds)) { warning("A threshold must be specified if imbalanced.only = TRUE. Displaying all covariates.", call. = FALSE) p.ops$imbalanced.only <- FALSE } } } else p.ops$imbalanced.only <- FALSE if (p.ops$imbalanced.only) { keep.row <- rowSums(apply(m.balance.summary[grepl(".Threshold", names(m.balance.summary), fixed = TRUE)], 2, function(x) !is.na(x) & startsWith(x, "Not Balanced"))) > 0 } else keep.row <- rep(TRUE, nrow(m.balance.summary)) } if (!missing(which.treat)) { if (paste(deparse1(substitute(which.treat)), collapse = "") == ".none") which.treat <- NA else if (paste(deparse1(substitute(which.treat)), collapse = "") == ".all") which.treat <- NULL if (!identical(which.treat, "as.is")) { p.ops$which.treat <- which.treat } } #Checks and Adjustments if (is_null(p.ops$which.treat)) which.treat <- p.ops$treat_names_multi else if (anyNA(p.ops$which.treat)) { which.treat <- character(0) } else if (is.numeric(p.ops$which.treat)) { which.treat <- p.ops$treat_names_multi[seq_along(p.ops$treat_names_multi) %in% p.ops$which.treat] if (is_null(which.treat)) { warning("No numbers in 'which.treat' correspond to treatment values. No treatment pairs will be displayed.", call. = FALSE) which.treat <- character(0) } } else if (is.character(p.ops$which.treat)) { which.treat <- p.ops$treat_names_multi[p.ops$treat_names_multi %in% p.ops$which.treat] if (is_null(which.treat)) { warning("No names in 'which.treat' correspond to treatment values. No treatment pairs will be displayed.", call. = FALSE) which.treat <- character(0) } } else { warning("The argument to 'which.treat' must be .all, .none, or a vector of treatment names or indices. No treatment pairs will be displayed.", call. = FALSE) which.treat <- character(0) } if (is_null(which.treat)) { disp.treat.pairs <- character(0) } else { if (p.ops$pairwise) { if (length(which.treat) == 1) { disp.treat.pairs <- names(m.balance)[sapply(names(m.balance), function(x) any(attr(m.balance[[x]], "print.options")$treat_names == which.treat))] } else { disp.treat.pairs <- names(m.balance)[sapply(names(m.balance), function(x) all(attr(m.balance[[x]], "print.options")$treat_names %in% which.treat))] } } else { if (length(which.treat) == 1) { disp.treat.pairs <- names(m.balance)[sapply(names(m.balance), function(x) { treat_names <- attr(m.balance[[x]], "print.options")$treat_names any(treat_names[treat_names != "All"] == which.treat)})] } else { disp.treat.pairs <- names(m.balance)[sapply(names(m.balance), function(x) { treat_names <- attr(m.balance[[x]], "print.options")$treat_names all(treat_names[treat_names != "All"] %in% which.treat)})] } } } #Printing output if (is_not_null(call)) { cat(underline("Call") %+% "\n " %+% paste(deparse(call), collapse = "\n") %+% "\n\n") } if (is_not_null(disp.treat.pairs)) { headings <- setNames(character(length(disp.treat.pairs)), disp.treat.pairs) if (p.ops$pairwise) cat(underline("Balance by treatment pair") %+% "\n") else cat(underline("Balance by treatment group") %+% "\n") for (i in disp.treat.pairs) { headings[i] <- "\n - - - " %+% italic(attr(m.balance[[i]], "print.options")$treat_names[1] %+% " (0) vs. " %+% attr(m.balance[[i]], "print.options")$treat_names[2] %+% " (1)") %+% " - - - \n" cat(headings[i]) do.call(print, c(list(m.balance[[i]]), p.ops[names(p.ops) %nin% names(A)], A), quote = TRUE) } cat(paste0(paste(rep(" -", round(max(nchar(headings))/2)), collapse = ""), " \n")) cat("\n") } if (isTRUE(as.logical(p.ops$multi.summary)) && is_not_null(m.balance.summary)) { computed.agg.funs <- "max" s.keep.col <- as.logical(c(TRUE, unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS("bin")], function(s) { c(unlist(lapply(computed.agg.funs, function(af) { p.ops$un && s %in% p.ops$disp && af %in% "max" })), p.ops$un && !p.ops$disp.adj && is_not_null(p.ops$thresholds[[s]])) })), rep( unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS("bin")], function(s) { c(unlist(lapply(computed.agg.funs, function(af) { p.ops$disp.adj && s %in% p.ops$disp && af %in% "max" })), p.ops$disp.adj && is_not_null(p.ops$thresholds[[s]])) })), p.ops$nweights + !p.ops$disp.adj) )) if (p.ops$disp.bal.tab) { cat(underline("Balance summary across all treatment pairs") %+% "\n") if (all(!keep.row)) cat(italic("All covariates are balanced.") %+% "\n") else print.data.frame_(round_df_char(m.balance.summary[keep.row, s.keep.col, drop = FALSE], digits)) cat("\n") } if (is_not_null(nn)) { tag <- attr(nn, "tag") ss.type <- attr(nn, "ss.type") for (i in rownames(nn)) { if (all(nn[i,] == 0)) nn <- nn[rownames(nn)!=i,] } if (all(c("Matched (ESS)", "Matched (Unweighted)") %in% rownames(nn)) && all(check_if_zero(nn["Matched (ESS)",] - nn["Matched (Unweighted)",]))) { nn <- nn[rownames(nn)!="Matched (Unweighted)", , drop = FALSE] rownames(nn)[rownames(nn) == "Matched (ESS)"] <- "Matched" } cat(underline(tag) %+% "\n") print.warning <- FALSE if (length(ss.type) > 1 && nunique.gt(ss.type[-1], 1)) { ess <- ifelse(ss.type == "ess", "*", "") nn <- setNames(cbind(nn, ess), c(names(nn), "")) print.warning <- TRUE } print.data.frame_(round_df_char(nn, digits = min(2, digits), pad = " ")) if (print.warning) cat(italic("* indicates effective sample size")) } } invisible(x) } print.bal.tab.msm <- function(x, imbalanced.only = "as.is", un = "as.is", disp.bal.tab = "as.is", stats = "as.is", disp.thresholds = "as.is", disp = "as.is", which.time, msm.summary = "as.is", digits = max(3, getOption("digits") - 3), ...) { #Replace .all and .none with NULL and NA respectively .call <- match.call(expand.dots = TRUE) if (any(sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".all") || identical(as.character(.call[[x]]), ".none")))) { .call[sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".all"))] <- expression(NULL) .call[sapply(seq_along(.call), function(x) identical(as.character(.call[[x]]), ".none"))] <- expression(NA) return(eval.parent(.call)) } A <- list(...) A <- clear_null(A[!vapply(A, function(x) identical(x, quote(expr =)), logical(1L))]) call <- x$call msm.balance <- x[["Time.Balance"]] msm.balance.summary <- x[["Balance.Across.Times"]] nn <- x$Observations p.ops <- attr(x, "print.options") baltal <- maximbal <- list() for (s in p.ops$stats) { baltal[[s]] <- x[[paste.("Balanced", s)]] maximbal[[s]] <- x[[paste.("Max.Imbalance", s)]] } #Prevent exponential notation printing op <- options(scipen=getOption("scipen")) options(scipen = 999) on.exit(options(op)) #Adjustments to print options if (!identical(un, "as.is") && p.ops$disp.adj) { if (!rlang::is_bool(un)) stop("'un' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if (p.ops$quick && p.ops$un == FALSE && un == TRUE) { warning("'un' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$un <- un } if (!identical(disp, "as.is")) { if (!is.character(disp)) stop("'disp.means' must be a character vector.") allowable.disp <- c("means", "sds", all_STATS(p.ops$type)) if (any(disp %nin% allowable.disp)) { stop(paste(word_list(disp[disp %nin% allowable.disp], and.or = "and", quotes = 2, is.are = TRUE), "not allowed in 'disp'."), call. = FALSE) } if (any(disp %nin% p.ops$compute)) { warning(paste("'disp' cannot include", word_list(disp[disp %nin% p.ops$compute], and.or = "or", quotes = 2), "if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- disp } if (is_not_null(A[["disp.means"]]) && !identical(A[["disp.means"]], "as.is")) { if (!rlang::is_bool(A[["disp.means"]])) stop("'disp.means' must be TRUE, FALSE, or \"as.is\".") if ("means" %nin% p.ops$compute && A[["disp.means"]] == TRUE) { warning("'disp.means' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "means"[A[["disp.means"]]])) } if (is_not_null(A[["disp.sds"]]) && !identical(A[["disp.sds"]], "as.is")) { if (!rlang::is_bool(A[["disp.sds"]])) stop("'disp.sds' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if ("sds" %nin% p.ops$compute && A[["disp.sds"]] == TRUE) { warning("'disp.sds' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "sds"[A[["disp.sds"]]])) } if (!identical(stats, "as.is")) { if (!is_(stats, "character")) stop("'stats' must be a string.") stats <- match_arg(stats, all_STATS(p.ops$type), several.ok = TRUE) stats_in_p.ops <- stats %in% p.ops$compute if (any(!stats_in_p.ops)) { stop(paste0("'stats' cannot contain ", word_list(stats[!stats_in_p.ops], and.or = "or", quotes = 2), " if quick = TRUE in the original call to bal.tab()."), call. = TRUE) } else p.ops$disp <- unique(c(p.ops$disp[p.ops$disp %nin% all_STATS()], stats)) } for (s in all_STATS(p.ops$type)) { if (is_not_null(A[[STATS[[s]]$disp_stat]]) && !identical(A[[STATS[[s]]$disp_stat]], "as.is")) { if (!rlang::is_bool(A[[STATS[[s]]$disp_stat]])) { stop(paste0("'", STATS[[s]]$disp_stat, "' must be TRUE, FALSE, or \"as.is\"."), call. = FALSE) } if (s %nin% p.ops$compute && isTRUE(A[[STATS[[s]]$disp_stat]])) { warning(paste0("'", STATS[[s]]$disp_stat, "' cannot be set to TRUE if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, s)) } } for (s in p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)]) { if (STATS[[s]]$threshold %in% names(A) && !identical(temp.thresh <- A[[STATS[[s]]$threshold]], "as.is")) { if (is_not_null(temp.thresh) && (!is.numeric(temp.thresh) || length(temp.thresh) != 1 || is_null(p.ops[["thresholds"]][[s]]) || p.ops[["thresholds"]][[s]] != temp.thresh)) stop(paste0("'", STATS[[s]]$threshold, "' must be NULL or \"as.is\".")) if (is_null(temp.thresh)) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (s %nin% p.ops$disp) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (!identical(disp.thresholds, "as.is")) { if (!is.logical(disp.thresholds) || anyNA(disp.thresholds)) stop("'disp.thresholds' must only contain TRUE or FALSE.", call. = FALSE) if (is_null(names(disp.thresholds))) { if (length(disp.thresholds) <= length(p.ops[["thresholds"]])) { names(disp.thresholds) <- names(p.ops[["thresholds"]])[seq_along(disp.thresholds)] } else { stop("More entries were given to 'disp.thresholds' than there are thresholds in the bal.tab object.", call. = FALSE) } } if (!all(names(disp.thresholds) %pin% names(p.ops[["thresholds"]]))) { warning(paste0(word_list(names(disp.thresholds)[!names(disp.thresholds) %pin% names(p.ops[["thresholds"]])], quotes = 2, is.are = TRUE), " not available in thresholds and will be ignored."), call. = FALSE) disp.thresholds <- disp.thresholds[names(disp.thresholds) %pin% names(p.ops[["thresholds"]])] } names(disp.thresholds) <- match_arg(names(disp.thresholds), names(p.ops[["thresholds"]]), several.ok = TRUE) for (x in names(disp.thresholds)) { if (!disp.thresholds[x]) { p.ops[["thresholds"]][[x]] <- NULL baltal[[x]] <- NULL maximbal[[x]] <- NULL } } } if (!identical(msm.summary, "as.is")) { if (!rlang::is_bool(msm.summary)) stop("'msm.summary' must be TRUE, FALSE, or \"as.is\".") if (p.ops$quick && p.ops$msm.summary == FALSE && msm.summary == TRUE) { warning("'msm.summary' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$msm.summary <- msm.summary } if (!identical(disp.bal.tab, "as.is")) { if (!rlang::is_bool(disp.bal.tab)) stop("'disp.bal.tab' must be TRUE, FALSE, or \"as.is\".") p.ops$disp.bal.tab <- disp.bal.tab } if (p.ops$disp.bal.tab) { if (!identical(imbalanced.only, "as.is")) { if (!rlang::is_bool(imbalanced.only)) stop("'imbalanced.only' must be TRUE, FALSE, or \"as.is\".") p.ops$imbalanced.only <- imbalanced.only } if (p.ops$imbalanced.only) { if (is_null(p.ops$thresholds)) { warning("A threshold must be specified if imbalanced.only = TRUE. Displaying all covariates.", call. = FALSE) p.ops$imbalanced.only <- FALSE } } } else p.ops$imbalanced.only <- FALSE if (is_not_null(msm.balance.summary)) { if (p.ops$imbalanced.only) { keep.row <- rowSums(apply(msm.balance.summary[grepl(".Threshold", names(msm.balance.summary), fixed = TRUE)], 2, function(x) !is.na(x) & startsWith(x, "Not Balanced"))) > 0 } else keep.row <- rep(TRUE, nrow(msm.balance.summary)) } if (!missing(which.time)) { if (paste(deparse1(substitute(which.time)), collapse = "") == ".none") which.time <- NA else if (paste(deparse1(substitute(which.time)), collapse = "") == ".all") which.time <- NULL if (!identical(which.time, "as.is")) { p.ops$which.time <- which.time } } #Checks and Adjustments if (is_null(p.ops$which.time)) which.time <- seq_along(msm.balance) else if (anyNA(p.ops$which.time)) { which.time <- integer(0) } else if (is.numeric(p.ops$which.time)) { which.time <- seq_along(msm.balance)[seq_along(msm.balance) %in% p.ops$which.time] if (is_null(which.time)) { warning("No numbers in 'which.time' are treatment time points. No time points will be displayed.", call. = FALSE) which.time <- integer(0) } } else if (is.character(p.ops$which.time)) { which.time <- seq_along(msm.balance)[names(msm.balance) %in% p.ops$which.time] if (is_null(which.time)) { warning("No names in 'which.time' are treatment names. No time points will be displayed.", call. = FALSE) which.time <- integer(0) } } else { warning("The argument to 'which.time' must be .all, .none, or a vector of time point numbers. No time points will be displayed.", call. = FALSE) which.time <- integer(0) } #Printing output if (is_not_null(call)) { cat(underline("Call") %+% "\n " %+% paste(deparse(call), collapse = "\n") %+% "\n\n") } if (is_not_null(which.time)) { cat(underline("Balance by Time Point") %+% "\n") for (i in which.time) { cat("\n - - - " %+% italic("Time: " %+% as.character(i)) %+% " - - - \n") do.call(print, c(list(x = msm.balance[[i]]), p.ops[names(p.ops) %nin% names(A)], A), quote = TRUE) } cat(paste0(paste(rep(" -", round(nchar(paste0("\n - - - Time: ", i, " - - - "))/2)), collapse = ""), " \n")) cat("\n") } if (isTRUE(as.logical(p.ops$msm.summary)) && is_not_null(msm.balance.summary)) { computed.agg.funs <- "max" s.keep.col <- as.logical(c(TRUE, TRUE, unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)], function(s) { c(unlist(lapply(computed.agg.funs, function(af) { p.ops$un && s %in% p.ops$disp && af %in% "max" })), p.ops$un && !p.ops$disp.adj && is_not_null(p.ops$thresholds[[s]])) })), rep( unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)], function(s) { c(unlist(lapply(computed.agg.funs, function(af) { p.ops$disp.adj && s %in% p.ops$disp && af %in% "max" })), p.ops$disp.adj && is_not_null(p.ops$thresholds[[s]])) })), p.ops$nweights + !p.ops$disp.adj) )) if (p.ops$disp.bal.tab) { cat(underline("Balance summary across all time points") %+% "\n") if (all(!keep.row)) cat(italic("All covariates are balanced.") %+% "\n") else print.data.frame_(round_df_char(msm.balance.summary[keep.row, s.keep.col, drop = FALSE], digits)) cat("\n") } if (is_not_null(nn)) { print.warning <- FALSE cat(underline(attr(nn[[1]], "tag")) %+% "\n") for (ti in seq_along(nn)) { cat(" - " %+% italic("Time " %+% as.character(ti)) %+% "\n") for (i in rownames(nn[[ti]])) { if (all(nn[[ti]][i,] == 0)) nn[[ti]] <- nn[[ti]][rownames(nn[[ti]])!=i,] } if (all(c("Matched (ESS)", "Matched (Unweighted)") %in% rownames(nn[[ti]])) && all(check_if_zero(nn[[ti]]["Matched (ESS)",] - nn[[ti]]["Matched (Unweighted)",]))) { nn[[ti]] <- nn[[ti]][rownames(nn[[ti]])!="Matched (Unweighted)", , drop = FALSE] rownames(nn[[ti]])[rownames(nn[[ti]]) == "Matched (ESS)"] <- "Matched" } if (length(attr(nn[[ti]], "ss.type")) > 1 && nunique.gt(attr(nn[[ti]], "ss.type")[-1], 1)) { ess <- ifelse(attr(nn[[ti]], "ss.type") == "ess", "*", "") nn[[ti]] <- setNames(cbind(nn[[ti]], ess), c(names(nn[[ti]]), "")) print.warning <- TRUE } print.data.frame_(round_df_char(nn[[ti]], digits = min(2, digits), pad = " ")) } if (print.warning) cat(italic("* indicates effective sample size")) } } invisible(x) } print.bal.tab.subclass <- function(x, imbalanced.only = "as.is", un = "as.is", disp.bal.tab = "as.is", stats = "as.is", disp.thresholds = "as.is", disp = "as.is", disp.subclass = "as.is", digits = max(3, getOption("digits") - 3), ...) { A <- list(...) call <- x$call s.balance <- x$Subclass.Balance b.a.subclass <- x$Balance.Across.Subclass s.nn <- x$Observations p.ops <- attr(x, "print.options") baltal <- maximbal <- list() for (s in p.ops$compute) { baltal[[s]] <- x[[paste.("Balanced", s, "Subclass")]] maximbal[[s]] <- x[[paste.("Max.Imbalance", s, "Subclass")]] } #Prevent exponential notation printing op <- options(scipen=getOption("scipen")) options(scipen = 999) on.exit(options(op)) #Adjustments to print options if (!identical(un, "as.is") && p.ops$disp.adj) { if (!rlang::is_bool(un)) stop("'un' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if (p.ops$quick && p.ops$un == FALSE && un == TRUE) { warning("'un' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$un <- un } if (!identical(disp, "as.is")) { if (!is.character(disp)) stop("'disp.means' must be a character vector.") allowable.disp <- c("means", "sds", all_STATS(p.ops$type)) if (any(disp %nin% allowable.disp)) { stop(paste(word_list(disp[disp %nin% allowable.disp], and.or = "and", quotes = 2, is.are = TRUE), "not allowed in 'disp'."), call. = FALSE) } if (any(disp %nin% p.ops$compute)) { warning(paste("'disp' cannot include", word_list(disp[disp %nin% p.ops$compute], and.or = "or", quotes = 2), "if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- disp } if (is_not_null(A[["disp.means"]]) && !identical(A[["disp.means"]], "as.is")) { if (!rlang::is_bool(A[["disp.means"]])) stop("'disp.means' must be TRUE, FALSE, or \"as.is\".") if ("means" %nin% p.ops$compute && A[["disp.means"]] == TRUE) { warning("'disp.means' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "means"[A[["disp.means"]]])) } if (is_not_null(A[["disp.sds"]]) && !identical(A[["disp.sds"]], "as.is")) { if (!rlang::is_bool(A[["disp.sds"]])) stop("'disp.sds' must be TRUE, FALSE, or \"as.is\".", call. = FALSE) if ("sds" %nin% p.ops$compute && A[["disp.sds"]] == TRUE) { warning("'disp.sds' cannot be set to TRUE if quick = TRUE in the original call to bal.tab().", call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, "sds"[A[["disp.sds"]]])) } if (!identical(stats, "as.is")) { if (!is_(stats, "character")) stop("'stats' must be a string.") stats <- match_arg(stats, all_STATS(p.ops$type), several.ok = TRUE) stats_in_p.ops <- stats %in% p.ops$compute if (any(!stats_in_p.ops)) { stop(paste0("'stats' cannot contain ", word_list(stats[!stats_in_p.ops], and.or = "or", quotes = 2), " if quick = TRUE in the original call to bal.tab()."), call. = TRUE) } else p.ops$disp <- unique(c(p.ops$disp[p.ops$disp %nin% all_STATS()], stats)) } for (s in all_STATS(p.ops$type)) { if (is_not_null(A[[STATS[[s]]$disp_stat]]) && !identical(A[[STATS[[s]]$disp_stat]], "as.is")) { if (!rlang::is_bool(A[[STATS[[s]]$disp_stat]])) { stop(paste0("'", STATS[[s]]$disp_stat, "' must be TRUE, FALSE, or \"as.is\"."), call. = FALSE) } if (s %nin% p.ops$compute && isTRUE(A[[STATS[[s]]$disp_stat]])) { warning(paste0("'", STATS[[s]]$disp_stat, "' cannot be set to TRUE if quick = TRUE in the original call to bal.tab()."), call. = FALSE) } else p.ops$disp <- unique(c(p.ops$disp, s)) } } for (s in p.ops$compute[p.ops$compute %in% all_STATS(p.ops$type)]) { if (STATS[[s]]$threshold %in% names(A) && !identical(temp.thresh <- A[[STATS[[s]]$threshold]], "as.is")) { if (is_not_null(temp.thresh) && (!is.numeric(temp.thresh) || length(temp.thresh) != 1 || is_null(p.ops[["thresholds"]][[s]]) || p.ops[["thresholds"]][[s]] != temp.thresh)) stop(paste0("'", STATS[[s]]$threshold, "' must be NULL or \"as.is\".")) if (is_null(temp.thresh)) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (s %nin% p.ops$disp) { p.ops[["thresholds"]][[s]] <- NULL baltal[[s]] <- NULL maximbal[[s]] <- NULL } } if (!identical(disp.thresholds, "as.is")) { if (!is.logical(disp.thresholds) || anyNA(disp.thresholds)) stop("'disp.thresholds' must only contain TRUE or FALSE.", call. = FALSE) if (is_null(names(disp.thresholds))) { if (length(disp.thresholds) <= length(p.ops[["thresholds"]])) { names(disp.thresholds) <- names(p.ops[["thresholds"]])[seq_along(disp.thresholds)] } else { stop("More entries were given to 'disp.thresholds' than there are thresholds in the bal.tab object.", call. = FALSE) } } if (!all(names(disp.thresholds) %pin% names(p.ops[["thresholds"]]))) { warning(paste0(word_list(names(disp.thresholds)[!names(disp.thresholds) %pin% names(p.ops[["thresholds"]])], quotes = 2, is.are = TRUE), " not available in thresholds and will be ignored."), call. = FALSE) disp.thresholds <- disp.thresholds[names(disp.thresholds) %pin% names(p.ops[["thresholds"]])] } names(disp.thresholds) <- match_arg(names(disp.thresholds), names(p.ops[["thresholds"]]), several.ok = TRUE) for (x in names(disp.thresholds)) { if (!disp.thresholds[x]) { p.ops[["thresholds"]][[x]] <- NULL baltal[[x]] <- NULL maximbal[[x]] <- NULL } } } if (!identical(disp.bal.tab, "as.is")) { if (!rlang::is_bool(disp.bal.tab)) stop("'disp.bal.tab' must be TRUE, FALSE, or \"as.is\".") p.ops$disp.bal.tab <- disp.bal.tab } if (p.ops$disp.bal.tab) { if (!identical(imbalanced.only, "as.is")) { if (!rlang::is_bool(imbalanced.only)) stop("'imbalanced.only' must be TRUE, FALSE, or \"as.is\".") p.ops$imbalanced.only <- imbalanced.only } if (p.ops$imbalanced.only) { if (is_null(p.ops$thresholds)) { warning("A threshold must be specified if imbalanced.only = TRUE. Displaying all covariates.", call. = FALSE) p.ops$imbalanced.only <- FALSE } } } else p.ops$imbalanced.only <- FALSE if (!identical(disp.subclass, "as.is")) { if (!rlang::is_bool(disp.subclass)) stop("'disp.subclass' must be TRUE, FALSE, or \"as.is\".") p.ops$disp.subclass <- disp.subclass } if (is_not_null(call)) { cat(underline("Call") %+% "\n " %+% paste(deparse(call), collapse = "\n") %+% "\n\n") } if (p.ops$disp.bal.tab) { if (p.ops$disp.subclass) { s.keep.col <- setNames(c(TRUE, rep(unlist(lapply(p.ops$compute[p.ops$compute %nin% all_STATS()], function(s) { s %in% p.ops$disp })), switch(p.ops$type, bin = 2, cont = 1)), unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS()], function(s) { c(s %in% p.ops$disp, is_not_null(p.ops$thresholds[[s]])) }))), names(s.balance[[1]])) cat(underline("Balance by subclass")) for (i in names(s.balance)) { if (p.ops$imbalanced.only) { s.keep.row <- rowSums(apply(s.balance[[i]][grepl(".Threshold", names(s.balance), fixed = TRUE)], 2, function(x) !is.na(x) & startsWith(x, "Not Balanced"))) > 0 } else s.keep.row <- rep(TRUE, nrow(s.balance[[i]])) cat("\n - - - " %+% italic("Subclass " %+% as.character(i)) %+% " - - - \n") if (all(!s.keep.row)) cat(italic("All covariates are balanced.") %+% "\n") else print.data.frame_(round_df_char(s.balance[[i]][s.keep.row, s.keep.col, drop = FALSE], digits)) } cat("\n") } if (is_not_null(b.a.subclass)) { if (p.ops$imbalanced.only) { a.s.keep.row <- rowSums(apply(b.a.subclass[grepl(".Threshold", names(b.a.subclass), fixed = TRUE)], 2, function(x) !is.na(x) & startsWith(x, "Not Balanced"))) > 0 } else a.s.keep.row <- rep(TRUE, nrow(b.a.subclass)) a.s.keep.col <- setNames(as.logical(c(TRUE, rep(unlist(lapply(p.ops$compute[p.ops$compute %nin% all_STATS()], function(s) { p.ops$un && s %in% p.ops$disp })), switch(p.ops$type, bin = 2, cont = 1)), unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS()], function(s) { c(p.ops$un && s %in% p.ops$disp, p.ops$un && !p.ops$disp.adj && is_not_null(p.ops$thresholds[[s]])) })), rep(c(rep(unlist(lapply(p.ops$compute[p.ops$compute %nin% all_STATS()], function(s) { p.ops$disp.adj && s %in% p.ops$disp })), 2), unlist(lapply(p.ops$compute[p.ops$compute %in% all_STATS()], function(s) { c(p.ops$disp.adj && s %in% p.ops$disp, p.ops$disp.adj && !p.ops$disp.adj && is_not_null(p.ops$thresholds[[s]])) })) ), p.ops$disp.adj))), names(b.a.subclass)) cat(underline("Balance measures across subclasses") %+% "\n") if (all(!a.s.keep.row)) cat(italic("All covariates are balanced.") %+% "\n") else print.data.frame_(round_df_char(b.a.subclass[a.s.keep.row, a.s.keep.col, drop = FALSE], digits)) cat("\n") } } for (s in p.ops$stats) { if (is_not_null(baltal[[s]])) { cat(underline(paste("Balance tally for", STATS[[s]]$balance_tally_for, "across subclasses")) %+% "\n") print.data.frame_(baltal[[s]]) cat("\n") } if (is_not_null(maximbal[[s]])) { cat(underline(paste("Variable with the greatest", STATS[[s]]$variable_with_the_greatest, "across subclasses")) %+% "\n") print.data.frame_(round_df_char(maximbal[[s]], digits), row.names = FALSE) cat("\n") } } if (is_not_null(s.nn)) { cat(underline(attr(s.nn, "tag")) %+% "\n") print.data.frame_(round_df_char(s.nn, digits = min(2, digits), pad = " ")) } invisible(x) }
#' dbR6Parent_set_data__ #'@keywords internal dbR6Parent_set_data <- function(...) { private$where$data <- x invisible(NULL) }
/R/dbR6Parent_set_data.R
no_license
leandroroser/dbR6
R
false
false
132
r
#' dbR6Parent_set_data__ #'@keywords internal dbR6Parent_set_data <- function(...) { private$where$data <- x invisible(NULL) }
library(httr) library(jsonlite) #install.packages("plotly") library(dplyr) library(plotly) #Cubo de datos repositorio = GET("https://api.datamexico.org/tesseract/cubes/imss/aggregate.jsonrecords?captions%5B%5D=Date+Month.Date.Quarter.Quarter+ES&drilldowns%5B%5D=Date+Month.Date.Quarter&measures%5B%5D=Insured+Employment&parents=false&sparse=false") rawToChar(repositorio$content) #convierte en string o serie de caracteries Datos = fromJSON(rawToChar(repositorio$content)) names(Datos) Datos<-Datos$data Datos <- Datos[,-c(1)] #elimina la primera columna #Convierte a un dataframe Datos <- data.frame(Datos) colnames(Datos)<- c("Trimestre", "Asegurados") p = plot_ly(Datos, x = ~Trimestre,y = ~Asegurados, name = 'Asegurados', type = 'scatter', mode = 'lines+markers') p %>% layout(title="Asegurados 2019Q1 al 2020Q4 de México") Crecimiento <- data.frame(diff(log(Datos$Asegurados), lag=1)*100) Fechas<-Datos$Trimestre[2:8] Crecimiento <- data.frame(cbind(Fechas,Crecimiento)) colnames(Crecimiento)<- c("Trimestre", "Crecimiento") p1 = plot_ly(Crecimiento, x = ~Trimestre,y = ~Crecimiento, name = 'Crecimiento', type = 'scatter', mode = 'lines+markers' ) p1 %>% layout(title="Variación (variación porcentual respecto al trimestre anterior) ")
/R-Salarios.R
no_license
jlrosasp/bedu-proyecto-r
R
false
false
1,342
r
library(httr) library(jsonlite) #install.packages("plotly") library(dplyr) library(plotly) #Cubo de datos repositorio = GET("https://api.datamexico.org/tesseract/cubes/imss/aggregate.jsonrecords?captions%5B%5D=Date+Month.Date.Quarter.Quarter+ES&drilldowns%5B%5D=Date+Month.Date.Quarter&measures%5B%5D=Insured+Employment&parents=false&sparse=false") rawToChar(repositorio$content) #convierte en string o serie de caracteries Datos = fromJSON(rawToChar(repositorio$content)) names(Datos) Datos<-Datos$data Datos <- Datos[,-c(1)] #elimina la primera columna #Convierte a un dataframe Datos <- data.frame(Datos) colnames(Datos)<- c("Trimestre", "Asegurados") p = plot_ly(Datos, x = ~Trimestre,y = ~Asegurados, name = 'Asegurados', type = 'scatter', mode = 'lines+markers') p %>% layout(title="Asegurados 2019Q1 al 2020Q4 de México") Crecimiento <- data.frame(diff(log(Datos$Asegurados), lag=1)*100) Fechas<-Datos$Trimestre[2:8] Crecimiento <- data.frame(cbind(Fechas,Crecimiento)) colnames(Crecimiento)<- c("Trimestre", "Crecimiento") p1 = plot_ly(Crecimiento, x = ~Trimestre,y = ~Crecimiento, name = 'Crecimiento', type = 'scatter', mode = 'lines+markers' ) p1 %>% layout(title="Variación (variación porcentual respecto al trimestre anterior) ")
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/find_matching_string.R \name{find_matching_string} \alias{find_matching_string} \title{Fuzzy string matching.} \usage{ find_matching_string(x, y, value = TRUE, step = 0.1, ignore.case = TRUE) } \arguments{ \item{x}{Strings.} \item{y}{List of strings to be matched.} \item{value}{Return value or the index of the closest string.} \item{step}{Step by which decrease the distance.} \item{ignore.case}{if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored during matching.} } \description{ Fuzzy string matching. } \examples{ library(psycho) find_matching_string("Hwo rea ouy", c("How are you", "Not this word", "Nice to meet you")) } \author{ \href{https://dominiquemakowski.github.io/}{Dominique Makowski} }
/man/find_matching_string.Rd
permissive
HugoNjb/psycho.R
R
false
true
813
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/find_matching_string.R \name{find_matching_string} \alias{find_matching_string} \title{Fuzzy string matching.} \usage{ find_matching_string(x, y, value = TRUE, step = 0.1, ignore.case = TRUE) } \arguments{ \item{x}{Strings.} \item{y}{List of strings to be matched.} \item{value}{Return value or the index of the closest string.} \item{step}{Step by which decrease the distance.} \item{ignore.case}{if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored during matching.} } \description{ Fuzzy string matching. } \examples{ library(psycho) find_matching_string("Hwo rea ouy", c("How are you", "Not this word", "Nice to meet you")) } \author{ \href{https://dominiquemakowski.github.io/}{Dominique Makowski} }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/DataPrep.R \name{make.cell.meta.from.df} \alias{make.cell.meta.from.df} \title{Creates a meta cell matrix from a supplied dataframe from required fields} \usage{ make.cell.meta.from.df(metad, rq.fields) } \arguments{ \item{metad}{A dataframe of per cell metadata} \item{rq.fields}{A vector of name specifiying which columns should me made into metadata} } \description{ Creates a meta cell matrix from a supplied dataframe from required fields } \keyword{cell} \keyword{metadata}
/man/make.cell.meta.from.df.Rd
no_license
shambam/cellexalvrR
R
false
true
559
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/DataPrep.R \name{make.cell.meta.from.df} \alias{make.cell.meta.from.df} \title{Creates a meta cell matrix from a supplied dataframe from required fields} \usage{ make.cell.meta.from.df(metad, rq.fields) } \arguments{ \item{metad}{A dataframe of per cell metadata} \item{rq.fields}{A vector of name specifiying which columns should me made into metadata} } \description{ Creates a meta cell matrix from a supplied dataframe from required fields } \keyword{cell} \keyword{metadata}
# # This is the server logic of a Shiny web application. You can run the # application by clicking 'Run App' above. # # Find out more about building applications with Shiny here: # # http://shiny.rstudio.com/ # server <- function(input, output, session) { # Function to format a number c_fn <- function(num, digits = 6) { return(format(round(num, digits = digits), nsmall = digits, big.mark = ",")) } formatNum <- cmpfun(c_fn) # Function to show parts of progress indicator c_spp <- function(numParts, detailMsg = "", stepNo = NULL, delaySec = 0.1) { # Increment the progress bar, and update the detail text. incProgress(1/numParts, detail = paste(detailMsg, stepNo)) # Pause for delaySec seconds to simulate a long computation. Sys.sleep(delaySec) } showProgressPart <- cmpfun(c_spp) # Display progress indicator while processing data ... withProgress(message = 'Initializing application', value = 0, { showProgressPart(2, "Reading spatial data ...") kmlFilePath <- "data/spatial/world_ISO2.kml" kmlLayers <- ogrListLayers(kmlFilePath) world <- readOGR(kmlFilePath, kmlLayers) showProgressPart(2, "Reading meteor data ...") meteors <- fread("data/nasa_meteors_scrubbed.csv", na.strings = c("NA", "#DIV/0!", ""), header = TRUE) meteors$latitude <- as.numeric(as.character(meteors$reclat)) meteors$longitude <- as.numeric(as.character(meteors$reclong)) meteors$recclass <- as.factor(meteors$recclass) meteors$wmk2006Class <- as.factor(meteors$wmk2006Class) classifications <- sort(unique(meteors$wmk2006Class)) meteors$countryName <- as.factor(meteors$countryName) meteors$iso2 <- as.factor(meteors$iso2) # Update Location (Include, City or so); Incude Geolocation meteors$popUp <- paste("<b>Name: </b>", meteors$name, "<b><br>Location: </b>", meteors$countryName , "<br><b>Coordinates: </b>", meteors$GeoLocation , "<br><b>Year: </b>", meteors$year, "<br><b>Class: </b>", meteors$recclass , "<br><b><a href='https://en.wikipedia.org/wiki/File:Meteorite_Classification_after_Weissberg_McCoy_Krot_2006_Stony_Iron.svg' target='_blank' style='color: rgb(255, 255, 255);font-style: italic;'>Weisberg (2006)</a> Class: </b>", meteors$wmk2006Class , "<br><b>Mass (in Kg): </b>", ifelse(is.na(meteors$`mass (g)`), meteors$`mass (g)`, formatNum(meteors$`mass (g)` / 10^3, 5)) , sep = "") showProgressPart(2, "Completed.") }) #---------------------------------------------------------------------------------------------------------------- # SECTION FOR RENDERING CONTROLS #---------------------------------------------------------------------------------------------------------------- # Display control panel ... output$controlPanel <- renderUI({ absolutePanel(top = 10, right = 10, draggable = TRUE, fixed = TRUE, width = "275px", class = "absolutePanel", h4(img(src = "images/220px-Leonid_Meteor.jpg", width = "25px", height = "25px"), " Meteorite Landings", align = "center"), hr(), uiOutput("yearRange"), uiOutput("meteorClass"), actionLink("meteorClassLink" , "* Weisberg et al (2006) Scheme" , onclick = "window.open('https://en.wikipedia.org/wiki/File:Meteorite_Classification_after_Weissberg_McCoy_Krot_2006_Stony_Iron.svg', '_blank')" ), hr(), checkboxInput("showGraph", "Stacked Area Graph by Year"), selectInput("mapLayer", label = "Maps" , choices = list("Basic" = "basic" , "Grayscale" = "grayscale" , "Dark" = "nightmode" , "Satellite" = "imagery" ) , selected = "grayscale" ), radioButtons("mapType", label = NULL , choices = list("Markers" = "marker" , "Heatmap" = "heatmap" , "Choropleth" = "choropleth") , selected = "marker"), hr(), div(h5(actionLink("howToLink" , "How to use this application?" , onclick = "window.open('docs/using_meteorite_landings_app.pdf', '_blank')" )), align = "center") ) }) # Display "year" slider input ... output$yearRange <- renderUI({ sliderInput("yearRange", "Year Recorded", min(meteors$year), max(meteors$year), value = c(max(meteors$year) - 25, max(meteors$year)), sep = "", ticks = FALSE ) }) # Display "meteor classification" checkbox group input ... output$meteorClass <- renderUI({ checkboxGroupInput('meteorClass', 'Classifications *', classifications, selected = classifications) }) # Display checkbox input to show "cummulative and actual no. of recorded meteorites by year" plot ... output$graphPane <- renderUI({ if (input$showGraph) { absolutePanel(top = 50, left = 50, draggable = TRUE, fixed = TRUE, width = "670px", height = "520px", class = "graphPanel" , plotlyOutput('plotly'), div(style = "height: 50px") , h5("Cumulative and Actual No. of Recorded Meteorites by Year", align = "center") ) } }) #---------------------------------------------------------------------------------------------------------------- # **** SECTION FOR DATA PROCESSING #---------------------------------------------------------------------------------------------------------------- # Reactive expression for the data subsetted to what the user selected filteredData <- reactive({ subset(meteors, (year >= input$yearRange[1] & year <= input$yearRange[2]) & (wmk2006Class %in% input$meteorClass)) }) # Data processing to create data table of counts per Country along with spatial data countByCountry <- reactive({ # Display progress indicator while processing data ... withProgress(message = 'Computing count by country', value = 0, { showProgressPart(4, "Filtering data ...") tmp <- filteredData() showProgressPart(4, "Getting counts ...") dat <- tmp[, .(count=.N), by = list(iso2, countryName)] showProgressPart(4, "Setting up additional data ...") dat$popUp <- paste("<b>Country: </b>", dat$countryName , "<br><b>No. of Records: </b>", formatNum(dat$count,0), sep = "") showProgressPart(4, "Merging with spatial data ...") dat <- merge(x = world, y = dat, by.x = "Name", by.y = "iso2", all = TRUE) showProgressPart(4, "Completed.") dat }) }) # Data processing to create data table of counts per year and classification countByYearClass <- reactive({ # Display progress indicator while processing data ... withProgress(message = 'Computing count by year, class', value = 0, { showProgressPart(4, "Filtering data ...") tmp <- filteredData() dat <- data.table() if (nrow(tmp) > 0) { showProgressPart(4, "Getting counts ...") dat <- tmp[, .(count=.N), by = list(year, wmk2006Class)] colnames(dat) <- c('id', 'class', 'count') showProgressPart(4, "Tidying data ...") dat <- dcast(dat, id ~ class) cols <- colnames(dat)[colSums(is.na(dat)) > 0] dat[ , (cols) := lapply(.SD, function(x) replace(x, which(is.na(x)), 0)), .SDcols = cols] showProgressPart(4, "Sorting data ...") # Reorder by sum of columns from highest to lowest dat <- setcolorder(dat, dat[ , c(1, order(colSums(dat[ ,2:ncol(dat)], na.rm = TRUE)) + 1)]) } showProgressPart(4, "Completed.") dat }) }) # This will decide which data for the map will be used mapData <- reactive({ mapType <- ifelse(is.null(input$mapType), 'marker', input$mapType) if (mapType == 'choropleth') countByCountry() else filteredData() }) #---------------------------------------------------------------------------------------------------------------- # SECTION FOR RENDERING PLOTS #---------------------------------------------------------------------------------------------------------------- # Build graaph of counts by classification thru Plotly # a) by Year: stacked fill charts (year in sequence) # b) by Country: stacked bar charts (sorted by total no. of counts) output$plotly <- renderPlotly({ # Data for plot will be built as matrix of count, with classes as succeeding columns dat <- countByYearClass() # Build color spectrum colors <- substr(plasma(length(classifications), direction = 1), start = 1, stop = 7) # Remove the alpha p <- plot_ly() if (nrow(dat) > 0) { oldCols <- colnames(dat) # For class display colnames(dat) <- make.names(colnames(dat)) # Make R-syntactically valid column names newCols <- colnames(dat) nCol <- length(newCols) cummDat <- dat # For cummulative table # Below will compute for cummulative counts for stacked chart applied only by Year if (ncol(dat) >= 3) { for (i in 3:nCol) { eval(parse(text = paste('cummDat$', newCols[i], ' <- cummDat$' , newCols[i], ' + cummDat$', newCols[i-1], sep = ''))) } } # Build a stacked filled scatter plot p <- plot_ly(dat, x = as.factor(dat$id), y = 0 ## , name = "id" , hoverinfo = 'text' , text = dat$id , fillcolor = "#000000" , mode = 'none' , type = 'scatter' , fill = 'tozeroy') %>% layout(title = "" , xaxis = list(title = "", showgrid = FALSE) , yaxis = list(title = "", showgrid = FALSE) , showlegend = FALSE, autosize = FALSE, height = "475", width = "650" , margin = list(l = 75, r = 50, b = 75, t = 50, pad = 10) , paper_bgcolor = 'rgba(248, 248, 255, 0)' , plot_bgcolor = 'rgba(248, 248, 255, 0)' ) # Add each stack of data for (i in nCol:2) { p <- p %>% add_trace(y = eval(parse(text = paste('cummDat$', newCols[i], sep = ''))) , name = oldCols[i] , hoverinfo = 'text+name' , text = paste("(Cum.: ", formatNum(eval(parse(text = paste('cummDat$', newCols[i], sep = ''))), 0), "; Act.: " , formatNum(eval(parse(text = paste('dat$', newCols[i], sep = ''))), 0), ")", sep = "") , fillcolor = colors[nCol + 1 - i] ) } } p # Display the plot }) #---------------------------------------------------------------------------------------------------------------- # **** SECTION FOR RENDERING MAPS #---------------------------------------------------------------------------------------------------------------- # Build params for Awesome icons for markers theIcon <- awesomeIcons( icon = 'fa-spinner', iconColor = 'lightgray', spin = TRUE, library = 'fa', markerColor = 'gray' ) # This reactive expression represents the palette function, # which changes as the user makes selections in UI. colorpal <- reactive({ colorNumeric("plasma", c(countByCountry()$count, 0)) # "viridis", "magma", "inferno", or "plasma". }) # This is the base leflet object output$map <- renderLeaflet({ # Use leaflet() here, and only include aspects of the map that # won't need to change dynamically (at least, not unless the # entire map is being torn down and recreated). leaflet(meteors, options = leafletOptions(worldCopyJump = TRUE)) %>% setView(65, 35, zoom = 2) }) # Changes to the map happens here depending on the set of user preferences and inputs observe({ # Display progress indicator while processing data ... withProgress(message = 'Updating the map', value = 0, { showProgressPart(3, "Fetching data ...") mapType <- ifelse(is.null(input$mapType), 'marker', input$mapType) legend <- ifelse(is.null(input$showLegend), FALSE, input$showLegend) showProgressPart(3, "Preparing the base map ...") proxy <- leafletProxy("map", data = mapData()) %>% clearMarkerClusters() %>% clearMarkers() %>% clearWebGLHeatmap() %>% clearShapes() showProgressPart(3, "Adding layers and other objects ...") if (mapType == 'heatmap') { proxy %>% clearControls() %>% addWebGLHeatmap(size = 150000, units = "m", opacity = 1, gradientTexture = "skyline") } else if (mapType == 'choropleth') { pal <- colorpal() proxy %>% addPolygons(fillOpacity = 0.5, fillColor = ~pal(count), color = "black", weight = 0.5, popup = ~popUp ) %>% clearControls() %>% addLegend(position = "bottomleft", pal = pal, values = ~count) } else { proxy %>% clearControls() %>% addAwesomeMarkers(popup = ~popUp, icon = theIcon , clusterOptions = markerClusterOptions(polygonOptions = list( color='#990000', weight = 3, stroke = FALSE, fillOpacity = 0.3 ) ) ) } showProgressPart(3, "Completed.") }) }) # Use a separate observer for map tiling observe({ # Display progress indicator while processing data ... withProgress(message = 'Updating the map layer', value = 0, { showProgressPart(2, "Rendering map tiles ...") if (!is.null(input$mapLayer)) { tileProvider <- switch(input$mapLayer , basic = providers$OpenStreetMap , grayscale = providers$CartoDB.Positron , nightmode = providers$CartoDB.DarkMatterNoLabels , imagery = providers$Esri.WorldImagery ) leafletProxy("map", data = mapData()) %>% clearTiles() %>% addProviderTiles(tileProvider, options = tileOptions(minZoom = 2, detectRetina = TRUE)) } showProgressPart(2, "Completed.") }) }) }
/server.R
no_license
aldredes/developing-data-products
R
false
false
16,560
r
# # This is the server logic of a Shiny web application. You can run the # application by clicking 'Run App' above. # # Find out more about building applications with Shiny here: # # http://shiny.rstudio.com/ # server <- function(input, output, session) { # Function to format a number c_fn <- function(num, digits = 6) { return(format(round(num, digits = digits), nsmall = digits, big.mark = ",")) } formatNum <- cmpfun(c_fn) # Function to show parts of progress indicator c_spp <- function(numParts, detailMsg = "", stepNo = NULL, delaySec = 0.1) { # Increment the progress bar, and update the detail text. incProgress(1/numParts, detail = paste(detailMsg, stepNo)) # Pause for delaySec seconds to simulate a long computation. Sys.sleep(delaySec) } showProgressPart <- cmpfun(c_spp) # Display progress indicator while processing data ... withProgress(message = 'Initializing application', value = 0, { showProgressPart(2, "Reading spatial data ...") kmlFilePath <- "data/spatial/world_ISO2.kml" kmlLayers <- ogrListLayers(kmlFilePath) world <- readOGR(kmlFilePath, kmlLayers) showProgressPart(2, "Reading meteor data ...") meteors <- fread("data/nasa_meteors_scrubbed.csv", na.strings = c("NA", "#DIV/0!", ""), header = TRUE) meteors$latitude <- as.numeric(as.character(meteors$reclat)) meteors$longitude <- as.numeric(as.character(meteors$reclong)) meteors$recclass <- as.factor(meteors$recclass) meteors$wmk2006Class <- as.factor(meteors$wmk2006Class) classifications <- sort(unique(meteors$wmk2006Class)) meteors$countryName <- as.factor(meteors$countryName) meteors$iso2 <- as.factor(meteors$iso2) # Update Location (Include, City or so); Incude Geolocation meteors$popUp <- paste("<b>Name: </b>", meteors$name, "<b><br>Location: </b>", meteors$countryName , "<br><b>Coordinates: </b>", meteors$GeoLocation , "<br><b>Year: </b>", meteors$year, "<br><b>Class: </b>", meteors$recclass , "<br><b><a href='https://en.wikipedia.org/wiki/File:Meteorite_Classification_after_Weissberg_McCoy_Krot_2006_Stony_Iron.svg' target='_blank' style='color: rgb(255, 255, 255);font-style: italic;'>Weisberg (2006)</a> Class: </b>", meteors$wmk2006Class , "<br><b>Mass (in Kg): </b>", ifelse(is.na(meteors$`mass (g)`), meteors$`mass (g)`, formatNum(meteors$`mass (g)` / 10^3, 5)) , sep = "") showProgressPart(2, "Completed.") }) #---------------------------------------------------------------------------------------------------------------- # SECTION FOR RENDERING CONTROLS #---------------------------------------------------------------------------------------------------------------- # Display control panel ... output$controlPanel <- renderUI({ absolutePanel(top = 10, right = 10, draggable = TRUE, fixed = TRUE, width = "275px", class = "absolutePanel", h4(img(src = "images/220px-Leonid_Meteor.jpg", width = "25px", height = "25px"), " Meteorite Landings", align = "center"), hr(), uiOutput("yearRange"), uiOutput("meteorClass"), actionLink("meteorClassLink" , "* Weisberg et al (2006) Scheme" , onclick = "window.open('https://en.wikipedia.org/wiki/File:Meteorite_Classification_after_Weissberg_McCoy_Krot_2006_Stony_Iron.svg', '_blank')" ), hr(), checkboxInput("showGraph", "Stacked Area Graph by Year"), selectInput("mapLayer", label = "Maps" , choices = list("Basic" = "basic" , "Grayscale" = "grayscale" , "Dark" = "nightmode" , "Satellite" = "imagery" ) , selected = "grayscale" ), radioButtons("mapType", label = NULL , choices = list("Markers" = "marker" , "Heatmap" = "heatmap" , "Choropleth" = "choropleth") , selected = "marker"), hr(), div(h5(actionLink("howToLink" , "How to use this application?" , onclick = "window.open('docs/using_meteorite_landings_app.pdf', '_blank')" )), align = "center") ) }) # Display "year" slider input ... output$yearRange <- renderUI({ sliderInput("yearRange", "Year Recorded", min(meteors$year), max(meteors$year), value = c(max(meteors$year) - 25, max(meteors$year)), sep = "", ticks = FALSE ) }) # Display "meteor classification" checkbox group input ... output$meteorClass <- renderUI({ checkboxGroupInput('meteorClass', 'Classifications *', classifications, selected = classifications) }) # Display checkbox input to show "cummulative and actual no. of recorded meteorites by year" plot ... output$graphPane <- renderUI({ if (input$showGraph) { absolutePanel(top = 50, left = 50, draggable = TRUE, fixed = TRUE, width = "670px", height = "520px", class = "graphPanel" , plotlyOutput('plotly'), div(style = "height: 50px") , h5("Cumulative and Actual No. of Recorded Meteorites by Year", align = "center") ) } }) #---------------------------------------------------------------------------------------------------------------- # **** SECTION FOR DATA PROCESSING #---------------------------------------------------------------------------------------------------------------- # Reactive expression for the data subsetted to what the user selected filteredData <- reactive({ subset(meteors, (year >= input$yearRange[1] & year <= input$yearRange[2]) & (wmk2006Class %in% input$meteorClass)) }) # Data processing to create data table of counts per Country along with spatial data countByCountry <- reactive({ # Display progress indicator while processing data ... withProgress(message = 'Computing count by country', value = 0, { showProgressPart(4, "Filtering data ...") tmp <- filteredData() showProgressPart(4, "Getting counts ...") dat <- tmp[, .(count=.N), by = list(iso2, countryName)] showProgressPart(4, "Setting up additional data ...") dat$popUp <- paste("<b>Country: </b>", dat$countryName , "<br><b>No. of Records: </b>", formatNum(dat$count,0), sep = "") showProgressPart(4, "Merging with spatial data ...") dat <- merge(x = world, y = dat, by.x = "Name", by.y = "iso2", all = TRUE) showProgressPart(4, "Completed.") dat }) }) # Data processing to create data table of counts per year and classification countByYearClass <- reactive({ # Display progress indicator while processing data ... withProgress(message = 'Computing count by year, class', value = 0, { showProgressPart(4, "Filtering data ...") tmp <- filteredData() dat <- data.table() if (nrow(tmp) > 0) { showProgressPart(4, "Getting counts ...") dat <- tmp[, .(count=.N), by = list(year, wmk2006Class)] colnames(dat) <- c('id', 'class', 'count') showProgressPart(4, "Tidying data ...") dat <- dcast(dat, id ~ class) cols <- colnames(dat)[colSums(is.na(dat)) > 0] dat[ , (cols) := lapply(.SD, function(x) replace(x, which(is.na(x)), 0)), .SDcols = cols] showProgressPart(4, "Sorting data ...") # Reorder by sum of columns from highest to lowest dat <- setcolorder(dat, dat[ , c(1, order(colSums(dat[ ,2:ncol(dat)], na.rm = TRUE)) + 1)]) } showProgressPart(4, "Completed.") dat }) }) # This will decide which data for the map will be used mapData <- reactive({ mapType <- ifelse(is.null(input$mapType), 'marker', input$mapType) if (mapType == 'choropleth') countByCountry() else filteredData() }) #---------------------------------------------------------------------------------------------------------------- # SECTION FOR RENDERING PLOTS #---------------------------------------------------------------------------------------------------------------- # Build graaph of counts by classification thru Plotly # a) by Year: stacked fill charts (year in sequence) # b) by Country: stacked bar charts (sorted by total no. of counts) output$plotly <- renderPlotly({ # Data for plot will be built as matrix of count, with classes as succeeding columns dat <- countByYearClass() # Build color spectrum colors <- substr(plasma(length(classifications), direction = 1), start = 1, stop = 7) # Remove the alpha p <- plot_ly() if (nrow(dat) > 0) { oldCols <- colnames(dat) # For class display colnames(dat) <- make.names(colnames(dat)) # Make R-syntactically valid column names newCols <- colnames(dat) nCol <- length(newCols) cummDat <- dat # For cummulative table # Below will compute for cummulative counts for stacked chart applied only by Year if (ncol(dat) >= 3) { for (i in 3:nCol) { eval(parse(text = paste('cummDat$', newCols[i], ' <- cummDat$' , newCols[i], ' + cummDat$', newCols[i-1], sep = ''))) } } # Build a stacked filled scatter plot p <- plot_ly(dat, x = as.factor(dat$id), y = 0 ## , name = "id" , hoverinfo = 'text' , text = dat$id , fillcolor = "#000000" , mode = 'none' , type = 'scatter' , fill = 'tozeroy') %>% layout(title = "" , xaxis = list(title = "", showgrid = FALSE) , yaxis = list(title = "", showgrid = FALSE) , showlegend = FALSE, autosize = FALSE, height = "475", width = "650" , margin = list(l = 75, r = 50, b = 75, t = 50, pad = 10) , paper_bgcolor = 'rgba(248, 248, 255, 0)' , plot_bgcolor = 'rgba(248, 248, 255, 0)' ) # Add each stack of data for (i in nCol:2) { p <- p %>% add_trace(y = eval(parse(text = paste('cummDat$', newCols[i], sep = ''))) , name = oldCols[i] , hoverinfo = 'text+name' , text = paste("(Cum.: ", formatNum(eval(parse(text = paste('cummDat$', newCols[i], sep = ''))), 0), "; Act.: " , formatNum(eval(parse(text = paste('dat$', newCols[i], sep = ''))), 0), ")", sep = "") , fillcolor = colors[nCol + 1 - i] ) } } p # Display the plot }) #---------------------------------------------------------------------------------------------------------------- # **** SECTION FOR RENDERING MAPS #---------------------------------------------------------------------------------------------------------------- # Build params for Awesome icons for markers theIcon <- awesomeIcons( icon = 'fa-spinner', iconColor = 'lightgray', spin = TRUE, library = 'fa', markerColor = 'gray' ) # This reactive expression represents the palette function, # which changes as the user makes selections in UI. colorpal <- reactive({ colorNumeric("plasma", c(countByCountry()$count, 0)) # "viridis", "magma", "inferno", or "plasma". }) # This is the base leflet object output$map <- renderLeaflet({ # Use leaflet() here, and only include aspects of the map that # won't need to change dynamically (at least, not unless the # entire map is being torn down and recreated). leaflet(meteors, options = leafletOptions(worldCopyJump = TRUE)) %>% setView(65, 35, zoom = 2) }) # Changes to the map happens here depending on the set of user preferences and inputs observe({ # Display progress indicator while processing data ... withProgress(message = 'Updating the map', value = 0, { showProgressPart(3, "Fetching data ...") mapType <- ifelse(is.null(input$mapType), 'marker', input$mapType) legend <- ifelse(is.null(input$showLegend), FALSE, input$showLegend) showProgressPart(3, "Preparing the base map ...") proxy <- leafletProxy("map", data = mapData()) %>% clearMarkerClusters() %>% clearMarkers() %>% clearWebGLHeatmap() %>% clearShapes() showProgressPart(3, "Adding layers and other objects ...") if (mapType == 'heatmap') { proxy %>% clearControls() %>% addWebGLHeatmap(size = 150000, units = "m", opacity = 1, gradientTexture = "skyline") } else if (mapType == 'choropleth') { pal <- colorpal() proxy %>% addPolygons(fillOpacity = 0.5, fillColor = ~pal(count), color = "black", weight = 0.5, popup = ~popUp ) %>% clearControls() %>% addLegend(position = "bottomleft", pal = pal, values = ~count) } else { proxy %>% clearControls() %>% addAwesomeMarkers(popup = ~popUp, icon = theIcon , clusterOptions = markerClusterOptions(polygonOptions = list( color='#990000', weight = 3, stroke = FALSE, fillOpacity = 0.3 ) ) ) } showProgressPart(3, "Completed.") }) }) # Use a separate observer for map tiling observe({ # Display progress indicator while processing data ... withProgress(message = 'Updating the map layer', value = 0, { showProgressPart(2, "Rendering map tiles ...") if (!is.null(input$mapLayer)) { tileProvider <- switch(input$mapLayer , basic = providers$OpenStreetMap , grayscale = providers$CartoDB.Positron , nightmode = providers$CartoDB.DarkMatterNoLabels , imagery = providers$Esri.WorldImagery ) leafletProxy("map", data = mapData()) %>% clearTiles() %>% addProviderTiles(tileProvider, options = tileOptions(minZoom = 2, detectRetina = TRUE)) } showProgressPart(2, "Completed.") }) }) }
\name{rcv} \alias{rcv} %- Also NEED an '\alias' for EACH other topic documented here. \title{ call library altogether } \description{ call library altogether } \usage{ rcv(x) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ library name } } \details{ } \value{ %% ~Describe the value returned %% If it is a LIST, use %% \item{comp1 }{Description of 'comp1'} %% \item{comp2 }{Description of 'comp2'} %% ... } \references{ %% ~put references to the literature/web site here ~ } \author{ Hyukjun Cho } \note{ %% ~~further notes~~ } %% ~Make other sections like Warning with \section{Warning }{....} ~ \seealso{ %% ~~objects to See Also as \code{\link{help}}, ~~~ } \examples{ ## The function is currently defined as function (x) { for (i in x) { if (!is.element(i, .packages(all.available = TRUE))) { install.packages(i) } library(i, character.only = TRUE) } } rcv(c("dplyr")) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ library }
/man/rcv.Rd
no_license
jotender/func
R
false
false
1,077
rd
\name{rcv} \alias{rcv} %- Also NEED an '\alias' for EACH other topic documented here. \title{ call library altogether } \description{ call library altogether } \usage{ rcv(x) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{ library name } } \details{ } \value{ %% ~Describe the value returned %% If it is a LIST, use %% \item{comp1 }{Description of 'comp1'} %% \item{comp2 }{Description of 'comp2'} %% ... } \references{ %% ~put references to the literature/web site here ~ } \author{ Hyukjun Cho } \note{ %% ~~further notes~~ } %% ~Make other sections like Warning with \section{Warning }{....} ~ \seealso{ %% ~~objects to See Also as \code{\link{help}}, ~~~ } \examples{ ## The function is currently defined as function (x) { for (i in x) { if (!is.element(i, .packages(all.available = TRUE))) { install.packages(i) } library(i, character.only = TRUE) } } rcv(c("dplyr")) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ library }
####################################### ###This does the spatial plotting### ####################################### observeEvent(input$getMap, { siteMap <<- get_map(location = c(lon = as.numeric(median(qw.data$PlotTable$DEC_LONG_VA[!duplicated(qw.data$PlotTable$DEC_LONG_VA)],na.rm=TRUE)), lat = as.numeric(median(qw.data$PlotTable$DEC_LAT_VA[!duplicated(qw.data$PlotTable$DEC_LAT_VA)],na.rm=TRUE))), zoom = "auto", maptype = "terrain", scale = "auto") }) output$qwmapPlot <- renderPlot({ qwmapPlot(qw.data = qw.data, map = siteMap, site.selection = as.character(input$siteSel_map), plotparm = as.character(input$parmSel_map), ) }) output$qwmapPlot_zoom <- renderPlot({ qwmapPlot(qw.data = qw.data, map=siteMap, site.selection = as.character(input$siteSel_map), plotparm = as.character(input$parmSel_map), ) + ###This resets the axes to zoomed area, must specify origin because brushedPoints returns time in seconds from origin, not hte posixCT "yyyy-mm-dd" format coord_cartesian(xlim = ranges$x, ylim = ranges$y) }) ######################################### ###This does the plotting interactions### ######################################### ###These are the values to subset the data by for dataTable ouput dataSelections <- reactiveValues(siteSel = NULL, parmSel = NULL) ################################################## ###CHANGE these to the respective sidebar element observe({ dataSelections$siteSel <- input$siteSel_map dataSelections$parmSel <- input$parmSel_map }) ################################################## ################################################## ###CHANGE these to the respective plot variables xvar_map <- "DEC_LONG_VA" yvar_map <- "DEC_LAT_VA" ################################################## ###This sets the ranges variables for brushin ranges <- reactiveValues(x = NULL, y = NULL) observe({ brush <- input$plot_brush if (!is.null(brush)) { ranges$x <- c(brush$xmin, brush$xmax) ranges$y <- c(brush$ymin, brush$ymax) } else { ranges$x <- NULL ranges$y <- NULL } }) ###This outputs the data tables for clicked and brushed points output$map_clickinfo <- DT::renderDataTable({ DT::datatable(nearPoints(df=subset(qw.data$PlotTable,SITE_NO %in% dataSelections$siteSel & PARM_CD %in% dataSelections$parmSel & MEDIUM_CD %in% c("OAQ","OA")), coordinfo = input$plot_click, xvar=xvar_map, yvar=yvar_map), options=list(scrollX=TRUE) ) }) output$map_brushinfo <- DT::renderDataTable({ DT::datatable(brushedPoints(df=subset(qw.data$PlotTable,SITE_NO %in% dataSelections$siteSel & PARM_CD %in% dataSelections$parmSel & MEDIUM_CD %in% c("OAQ","OA")), brush=input$plot_brush, xvar=xvar_map, yvar=yvar_map), options=list(scrollX=TRUE) ) })
/inst/shiny/WQReviewGUI/server_map.R
no_license
dcalhoun-usgs/WQ-Review
R
false
false
3,447
r
####################################### ###This does the spatial plotting### ####################################### observeEvent(input$getMap, { siteMap <<- get_map(location = c(lon = as.numeric(median(qw.data$PlotTable$DEC_LONG_VA[!duplicated(qw.data$PlotTable$DEC_LONG_VA)],na.rm=TRUE)), lat = as.numeric(median(qw.data$PlotTable$DEC_LAT_VA[!duplicated(qw.data$PlotTable$DEC_LAT_VA)],na.rm=TRUE))), zoom = "auto", maptype = "terrain", scale = "auto") }) output$qwmapPlot <- renderPlot({ qwmapPlot(qw.data = qw.data, map = siteMap, site.selection = as.character(input$siteSel_map), plotparm = as.character(input$parmSel_map), ) }) output$qwmapPlot_zoom <- renderPlot({ qwmapPlot(qw.data = qw.data, map=siteMap, site.selection = as.character(input$siteSel_map), plotparm = as.character(input$parmSel_map), ) + ###This resets the axes to zoomed area, must specify origin because brushedPoints returns time in seconds from origin, not hte posixCT "yyyy-mm-dd" format coord_cartesian(xlim = ranges$x, ylim = ranges$y) }) ######################################### ###This does the plotting interactions### ######################################### ###These are the values to subset the data by for dataTable ouput dataSelections <- reactiveValues(siteSel = NULL, parmSel = NULL) ################################################## ###CHANGE these to the respective sidebar element observe({ dataSelections$siteSel <- input$siteSel_map dataSelections$parmSel <- input$parmSel_map }) ################################################## ################################################## ###CHANGE these to the respective plot variables xvar_map <- "DEC_LONG_VA" yvar_map <- "DEC_LAT_VA" ################################################## ###This sets the ranges variables for brushin ranges <- reactiveValues(x = NULL, y = NULL) observe({ brush <- input$plot_brush if (!is.null(brush)) { ranges$x <- c(brush$xmin, brush$xmax) ranges$y <- c(brush$ymin, brush$ymax) } else { ranges$x <- NULL ranges$y <- NULL } }) ###This outputs the data tables for clicked and brushed points output$map_clickinfo <- DT::renderDataTable({ DT::datatable(nearPoints(df=subset(qw.data$PlotTable,SITE_NO %in% dataSelections$siteSel & PARM_CD %in% dataSelections$parmSel & MEDIUM_CD %in% c("OAQ","OA")), coordinfo = input$plot_click, xvar=xvar_map, yvar=yvar_map), options=list(scrollX=TRUE) ) }) output$map_brushinfo <- DT::renderDataTable({ DT::datatable(brushedPoints(df=subset(qw.data$PlotTable,SITE_NO %in% dataSelections$siteSel & PARM_CD %in% dataSelections$parmSel & MEDIUM_CD %in% c("OAQ","OA")), brush=input$plot_brush, xvar=xvar_map, yvar=yvar_map), options=list(scrollX=TRUE) ) })
# 4.3.2017 Mirva Turkia # mirva.turkia@helsinki.fi # Introduction to Open Data Science # This is the script file for the data wrangling part of my final assignment # Here is the information of the data I will use: # Konu, Anne (University of Tampere): SCHOOL WELL-BEING PROFILE 2015-2016: LOWER SECONDARY SCHOOL, GRADES 7-9 [electronic data]. Version 1.0 (2016-07-18). The Finnish Social Science Data Archive [distributor]. http://urn.fi/urn:nbn:fi:fsd:T-FSD3117 getwd() setwd("/Users/mirva/IODS-final/Data") # At first I installed package "memisc" and then I´ll read the SPSS data into R library(memisc); library(dplyr) data <- as.data.set(spss.portable.file('daF3117.por')) data <- as.data.frame(data) # As you can see the data is very large; it has 91 variables and 9820 observations data str(data) dim(data) # I will use only the following 27 variables: # [Q1] Gender # [Q6_7] Koulun säännöt ovat järkeviä (The rules of the school are reasonable) # [Q6_8] Koulun rangaistukset ovat oikeudenmukaisia (The punishments of the school are fair.) # [Q7_9] Opettajat kohtelevat meitä oppilaita oikeudenmukaisesti. (The teachers treat us with justice.) # [Q7_10] Opettajien kanssa on helppo tulla toimeen. (It is easy to get along with the teachers.) # [Q7_11] Useimmat opettajat ovat kiinnostuneita siitä, mitä minulle kuuluu. (Most of the teachers are interested in how I feel.) # [Q7_12] Useimmat opettajat ovat ystävällisiä. (Most of the teachers are friendly.) # [Q10_1] Vanhempani arvostavat koulutyötäni. (My parents appreciate my schoolwork.) # [Q10_2] Vanhempani kannustavat minua menestymään koulussa. (My parents encourage me to do well at school.) # [Q10_3] Tarvittaessa vanhempani auttavat koulutehtävissä. (My parents help me with my homework if necessary.) # [Q10_4] Tarvittaessa vanhempani auttavat kouluun liittyvissä ongelmissa. (My parents help me with problems related to school if necessary.) # [Q10_5] Vanhempani ovat tarvittaessa halukkaita tulemaan kouluun keskustelemaan opettajan kanssa. (My parents are willing to come to the school to talk with a teacher if necessary.) # [Q11_1] Minun työtäni arvostetaan koulussa. (My work is appreciated at school.) # [Q11_2] Minua pidetään koulussa henkilönä, jolla on merkitystä. (At school I´m regarded as a person who has a meaning.) # [Q11_3] Opettajat rohkaisevat minua ilmaisemaan mielipiteeni. (The teachers encourage me to tell my opinion.) # [Q11_15] Saan apua opettajalta, jos tarvitsen sitä. (A teacher helps me if I need it.) # [Q11_16] Saan tukiopetusta, jos tarvitsen sitä. (I receive remediation if I need it.) # [Q11_17] Saan erityisopetusta, jos tarvitsen sitä. (I receive special education if I need it.) # [Q11_18] Saan ohjausta opiskeluuni, jos tarvitsen sitä. (I receive quidance if I need it.) # [Q11_19] Opettajat kannustavat minua opiskelussa. (The teachers encourage me with studying.) # [Q11_20] Saan kiitosta, jos olen suoriutunut hyvin tehtävissäni. (I reserve acknowledgement if I do well with my tasks.) # Onko sinulla tämän lukukauden aikana ollut jotakin seuraavista oireista tai sairauksista? Kuinka usein?: (Have you had some of the following symptoms or illnesses during this semester? How often?) # [Q13_4] Jännittyneisyyttä tai hermostuneisuutta. (Tension or nervousness.) # [Q13_5] Ärtyneisyyttä tai kiukunpurkauksia. (Irritability or outbursts of anger.) # [Q13_6] Vaikeuksia päästä uneen tai heräilemistä öisin. (Problems with falling asleep or waking up at night time.) # [Q13_8] Väsymystä tai heikotusta. (Tiredness or weakness.) # [Q13_9] Alakuloisuutta. (Depression.) # [Q13_10] Pelkoa. (Fear.) # I will check how the variable names are coded variable.names(data) # Now that I know the exact names of the variables I will create a new dataset of the ones I'm interested in keep <- c("q1", "q6_7", "q6_8", "q7_9", "q7_10", "q7_11", "q7_12", "q10_1", "q10_2", "q10_3", "q10_4", "q10_5", "q11_1", "q11_2", "q11_3", "q11_15", "q11_16", "q11_17", "q11_18", "q11_19", "q11_20", "q13_4", "q13_5", "q13_6", "q13_8", "q13_9", "q13_10") data <- select(data, one_of(keep)) # Now there are 27 variables and 9820 observations dim(data) # I will remove all rows with missing values (since I don´t know enough of imputation yet) complete.cases(data) data.frame(data[-1], comp = complete.cases(data)) Data <- filter(data, complete.cases(data)) # Now there are 8928 observations of 27 variables dim(Data) str(Data) # Now I will change the level names of the Likert-scale questions levels(Data$q6_7) <- c('1', '2', '3', '4', '5') levels(Data$q6_8) <- c('1', '2', '3', '4', '5') levels(Data$q7_9) <- c('1', '2', '3', '4', '5') levels(Data$q7_10) <- c('1', '2', '3', '4', '5') levels(Data$q7_11) <- c('1', '2', '3', '4', '5') levels(Data$q7_12) <- c('1', '2', '3', '4', '5') levels(Data$q10_1) <- c('1', '2', '3', '4', '5') levels(Data$q10_2) <- c('1', '2', '3', '4', '5') levels(Data$q10_3) <- c('1', '2', '3', '4', '5') levels(Data$q10_4) <- c('1', '2', '3', '4', '5') levels(Data$q10_5) <- c('1', '2', '3', '4', '5') levels(Data$q11_1) <- c('1', '2', '3', '4', '5') levels(Data$q11_2) <- c('1', '2', '3', '4', '5') levels(Data$q11_3) <- c('1', '2', '3', '4', '5') levels(Data$q11_15) <- c('1', '2', '3', '4', '5') levels(Data$q11_16) <- c('1', '2', '3', '4', '5') levels(Data$q11_17) <- c('1', '2', '3', '4', '5') levels(Data$q11_18) <- c('1', '2', '3', '4', '5') levels(Data$q11_19) <- c('1', '2', '3', '4', '5') levels(Data$q11_20) <- c('1', '2', '3', '4', '5') # I will also change the level names of gender variable levels(Data$q1) <- c('F', 'M') # ..and level names of the last questions (1=daily, 2=weekly, 3=monthly, 4=rarely and 5=none) levels(Data$q13_4) <- c('1', '2', '3', '4', '5') levels(Data$q13_5) <- c('1', '2', '3', '4', '5') levels(Data$q13_6) <- c('1', '2', '3', '4', '5') levels(Data$q13_8) <- c('1', '2', '3', '4', '5') levels(Data$q13_9) <- c('1', '2', '3', '4', '5') levels(Data$q13_10) <- c('1', '2', '3', '4', '5') # And after that I will check everything is ok with level names summary(Data) # I choose to treat Likert scale as numeric Data$q6_7 <- as.numeric(Data$q6_7) Data$q6_8 <- as.numeric(Data$q6_8) Data$q7_9 <- as.numeric(Data$q7_9) Data$q7_10 <- as.numeric(Data$q7_10) Data$q7_11 <- as.numeric(Data$q7_11) Data$q7_12 <- as.numeric(Data$q7_12) Data$q10_1 <- as.numeric(Data$q10_1) Data$q10_2 <- as.numeric(Data$q10_2) Data$q10_3 <- as.numeric(Data$q10_3) Data$q10_4 <- as.numeric(Data$q10_4) Data$q10_5 <- as.numeric(Data$q10_5) Data$q11_1 <- as.numeric(Data$q11_1) Data$q11_2 <- as.numeric(Data$q11_2) Data$q11_3 <- as.numeric(Data$q11_3) Data$q11_15 <- as.numeric(Data$q11_15) Data$q11_16 <- as.numeric(Data$q11_16) Data$q11_17 <- as.numeric(Data$q11_17) Data$q11_18 <- as.numeric(Data$q11_18) Data$q11_19 <- as.numeric(Data$q11_19) Data$q11_20 <- as.numeric(Data$q11_20) # I will also change questions about symptoms to numeric for logical columns Data$q13_4 <- as.numeric(Data$q13_4) Data$q13_5 <- as.numeric(Data$q13_5) Data$q13_6 <- as.numeric(Data$q13_6) Data$q13_8 <- as.numeric(Data$q13_8) Data$q13_9 <- as.numeric(Data$q13_9) Data$q13_10 <- as.numeric(Data$q13_10) str(Data) # I will create new logical columns which are TRUE for symptoms which are daily or weekly Data <- mutate(Data, q13_4often = q13_4 <= 2) Data <- mutate(Data, q13_5often = q13_5 <= 2) Data <- mutate(Data, q13_6often = q13_6 <= 2) Data <- mutate(Data, q13_8often = q13_8 <= 2) Data <- mutate(Data, q13_9often = q13_9 <= 2) Data <- mutate(Data, q13_10often = q13_10 <= 2) str(Data) dim(Data) # After all these changes my data is ready and it has 8928 observations and 33 variables write.csv(Data, file = "school")
/Data/final_data_wrangling.R
no_license
miuva/IODS-final
R
false
false
7,689
r
# 4.3.2017 Mirva Turkia # mirva.turkia@helsinki.fi # Introduction to Open Data Science # This is the script file for the data wrangling part of my final assignment # Here is the information of the data I will use: # Konu, Anne (University of Tampere): SCHOOL WELL-BEING PROFILE 2015-2016: LOWER SECONDARY SCHOOL, GRADES 7-9 [electronic data]. Version 1.0 (2016-07-18). The Finnish Social Science Data Archive [distributor]. http://urn.fi/urn:nbn:fi:fsd:T-FSD3117 getwd() setwd("/Users/mirva/IODS-final/Data") # At first I installed package "memisc" and then I´ll read the SPSS data into R library(memisc); library(dplyr) data <- as.data.set(spss.portable.file('daF3117.por')) data <- as.data.frame(data) # As you can see the data is very large; it has 91 variables and 9820 observations data str(data) dim(data) # I will use only the following 27 variables: # [Q1] Gender # [Q6_7] Koulun säännöt ovat järkeviä (The rules of the school are reasonable) # [Q6_8] Koulun rangaistukset ovat oikeudenmukaisia (The punishments of the school are fair.) # [Q7_9] Opettajat kohtelevat meitä oppilaita oikeudenmukaisesti. (The teachers treat us with justice.) # [Q7_10] Opettajien kanssa on helppo tulla toimeen. (It is easy to get along with the teachers.) # [Q7_11] Useimmat opettajat ovat kiinnostuneita siitä, mitä minulle kuuluu. (Most of the teachers are interested in how I feel.) # [Q7_12] Useimmat opettajat ovat ystävällisiä. (Most of the teachers are friendly.) # [Q10_1] Vanhempani arvostavat koulutyötäni. (My parents appreciate my schoolwork.) # [Q10_2] Vanhempani kannustavat minua menestymään koulussa. (My parents encourage me to do well at school.) # [Q10_3] Tarvittaessa vanhempani auttavat koulutehtävissä. (My parents help me with my homework if necessary.) # [Q10_4] Tarvittaessa vanhempani auttavat kouluun liittyvissä ongelmissa. (My parents help me with problems related to school if necessary.) # [Q10_5] Vanhempani ovat tarvittaessa halukkaita tulemaan kouluun keskustelemaan opettajan kanssa. (My parents are willing to come to the school to talk with a teacher if necessary.) # [Q11_1] Minun työtäni arvostetaan koulussa. (My work is appreciated at school.) # [Q11_2] Minua pidetään koulussa henkilönä, jolla on merkitystä. (At school I´m regarded as a person who has a meaning.) # [Q11_3] Opettajat rohkaisevat minua ilmaisemaan mielipiteeni. (The teachers encourage me to tell my opinion.) # [Q11_15] Saan apua opettajalta, jos tarvitsen sitä. (A teacher helps me if I need it.) # [Q11_16] Saan tukiopetusta, jos tarvitsen sitä. (I receive remediation if I need it.) # [Q11_17] Saan erityisopetusta, jos tarvitsen sitä. (I receive special education if I need it.) # [Q11_18] Saan ohjausta opiskeluuni, jos tarvitsen sitä. (I receive quidance if I need it.) # [Q11_19] Opettajat kannustavat minua opiskelussa. (The teachers encourage me with studying.) # [Q11_20] Saan kiitosta, jos olen suoriutunut hyvin tehtävissäni. (I reserve acknowledgement if I do well with my tasks.) # Onko sinulla tämän lukukauden aikana ollut jotakin seuraavista oireista tai sairauksista? Kuinka usein?: (Have you had some of the following symptoms or illnesses during this semester? How often?) # [Q13_4] Jännittyneisyyttä tai hermostuneisuutta. (Tension or nervousness.) # [Q13_5] Ärtyneisyyttä tai kiukunpurkauksia. (Irritability or outbursts of anger.) # [Q13_6] Vaikeuksia päästä uneen tai heräilemistä öisin. (Problems with falling asleep or waking up at night time.) # [Q13_8] Väsymystä tai heikotusta. (Tiredness or weakness.) # [Q13_9] Alakuloisuutta. (Depression.) # [Q13_10] Pelkoa. (Fear.) # I will check how the variable names are coded variable.names(data) # Now that I know the exact names of the variables I will create a new dataset of the ones I'm interested in keep <- c("q1", "q6_7", "q6_8", "q7_9", "q7_10", "q7_11", "q7_12", "q10_1", "q10_2", "q10_3", "q10_4", "q10_5", "q11_1", "q11_2", "q11_3", "q11_15", "q11_16", "q11_17", "q11_18", "q11_19", "q11_20", "q13_4", "q13_5", "q13_6", "q13_8", "q13_9", "q13_10") data <- select(data, one_of(keep)) # Now there are 27 variables and 9820 observations dim(data) # I will remove all rows with missing values (since I don´t know enough of imputation yet) complete.cases(data) data.frame(data[-1], comp = complete.cases(data)) Data <- filter(data, complete.cases(data)) # Now there are 8928 observations of 27 variables dim(Data) str(Data) # Now I will change the level names of the Likert-scale questions levels(Data$q6_7) <- c('1', '2', '3', '4', '5') levels(Data$q6_8) <- c('1', '2', '3', '4', '5') levels(Data$q7_9) <- c('1', '2', '3', '4', '5') levels(Data$q7_10) <- c('1', '2', '3', '4', '5') levels(Data$q7_11) <- c('1', '2', '3', '4', '5') levels(Data$q7_12) <- c('1', '2', '3', '4', '5') levels(Data$q10_1) <- c('1', '2', '3', '4', '5') levels(Data$q10_2) <- c('1', '2', '3', '4', '5') levels(Data$q10_3) <- c('1', '2', '3', '4', '5') levels(Data$q10_4) <- c('1', '2', '3', '4', '5') levels(Data$q10_5) <- c('1', '2', '3', '4', '5') levels(Data$q11_1) <- c('1', '2', '3', '4', '5') levels(Data$q11_2) <- c('1', '2', '3', '4', '5') levels(Data$q11_3) <- c('1', '2', '3', '4', '5') levels(Data$q11_15) <- c('1', '2', '3', '4', '5') levels(Data$q11_16) <- c('1', '2', '3', '4', '5') levels(Data$q11_17) <- c('1', '2', '3', '4', '5') levels(Data$q11_18) <- c('1', '2', '3', '4', '5') levels(Data$q11_19) <- c('1', '2', '3', '4', '5') levels(Data$q11_20) <- c('1', '2', '3', '4', '5') # I will also change the level names of gender variable levels(Data$q1) <- c('F', 'M') # ..and level names of the last questions (1=daily, 2=weekly, 3=monthly, 4=rarely and 5=none) levels(Data$q13_4) <- c('1', '2', '3', '4', '5') levels(Data$q13_5) <- c('1', '2', '3', '4', '5') levels(Data$q13_6) <- c('1', '2', '3', '4', '5') levels(Data$q13_8) <- c('1', '2', '3', '4', '5') levels(Data$q13_9) <- c('1', '2', '3', '4', '5') levels(Data$q13_10) <- c('1', '2', '3', '4', '5') # And after that I will check everything is ok with level names summary(Data) # I choose to treat Likert scale as numeric Data$q6_7 <- as.numeric(Data$q6_7) Data$q6_8 <- as.numeric(Data$q6_8) Data$q7_9 <- as.numeric(Data$q7_9) Data$q7_10 <- as.numeric(Data$q7_10) Data$q7_11 <- as.numeric(Data$q7_11) Data$q7_12 <- as.numeric(Data$q7_12) Data$q10_1 <- as.numeric(Data$q10_1) Data$q10_2 <- as.numeric(Data$q10_2) Data$q10_3 <- as.numeric(Data$q10_3) Data$q10_4 <- as.numeric(Data$q10_4) Data$q10_5 <- as.numeric(Data$q10_5) Data$q11_1 <- as.numeric(Data$q11_1) Data$q11_2 <- as.numeric(Data$q11_2) Data$q11_3 <- as.numeric(Data$q11_3) Data$q11_15 <- as.numeric(Data$q11_15) Data$q11_16 <- as.numeric(Data$q11_16) Data$q11_17 <- as.numeric(Data$q11_17) Data$q11_18 <- as.numeric(Data$q11_18) Data$q11_19 <- as.numeric(Data$q11_19) Data$q11_20 <- as.numeric(Data$q11_20) # I will also change questions about symptoms to numeric for logical columns Data$q13_4 <- as.numeric(Data$q13_4) Data$q13_5 <- as.numeric(Data$q13_5) Data$q13_6 <- as.numeric(Data$q13_6) Data$q13_8 <- as.numeric(Data$q13_8) Data$q13_9 <- as.numeric(Data$q13_9) Data$q13_10 <- as.numeric(Data$q13_10) str(Data) # I will create new logical columns which are TRUE for symptoms which are daily or weekly Data <- mutate(Data, q13_4often = q13_4 <= 2) Data <- mutate(Data, q13_5often = q13_5 <= 2) Data <- mutate(Data, q13_6often = q13_6 <= 2) Data <- mutate(Data, q13_8often = q13_8 <= 2) Data <- mutate(Data, q13_9often = q13_9 <= 2) Data <- mutate(Data, q13_10often = q13_10 <= 2) str(Data) dim(Data) # After all these changes my data is ready and it has 8928 observations and 33 variables write.csv(Data, file = "school")
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/class_pipeline.R \name{as_pipeline} \alias{as_pipeline} \title{Convert to a pipeline object.} \usage{ as_pipeline(x) } \arguments{ \item{x}{A list of target objects or a pipeline object.} } \value{ An object of class \code{"tar_pipeline"}. } \description{ Not a user-side function. Do not invoke directly. } \keyword{internal}
/man/as_pipeline.Rd
permissive
krlmlr/targets
R
false
true
405
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/class_pipeline.R \name{as_pipeline} \alias{as_pipeline} \title{Convert to a pipeline object.} \usage{ as_pipeline(x) } \arguments{ \item{x}{A list of target objects or a pipeline object.} } \value{ An object of class \code{"tar_pipeline"}. } \description{ Not a user-side function. Do not invoke directly. } \keyword{internal}
##' arrange ggplot2, lattice, and grobs on a page ##' ##' @aliases grid.arrange arrangeGrob latticeGrob drawDetails.lattice print.arrange ##' @title arrangeGrob ##' @param ... plots of class ggplot2, trellis, or grobs, and valid arguments to grid.layout ##' @param main string, or grob (requires a well-defined height, see example) ##' @param sub string, or grob (requires a well-defined height, see example) ##' @param legend string, or grob (requires a well-defined width, see example) ##' @param left string, or grob (requires a well-defined width, see example) ##' @param as.table logical: bottom-left to top-right or top-left to bottom-right ##' @param clip logical: clip every object to its viewport ##' @return return a frame grob ##' @export ##' ##' @examples ##' \dontrun{ ##' require(ggplot2) ##' plots = lapply(1:5, function(.x) qplot(1:10,rnorm(10), main=paste("plot",.x))) ##' require(gridExtra) ##' do.call(grid.arrange, plots) ##' require(lattice) ##' grid.arrange(qplot(1:10), xyplot(1:10~1:10), ##' tableGrob(head(iris)), nrow=2, as.table=TRUE, main="test main", ##' left = rectGrob(width=unit(1,"line)), ##' sub=textGrob("test sub", gp=gpar(font=2))) ##' } arrangeGrob <- function(..., as.table=FALSE, clip=TRUE, main=NULL, sub=NULL, left=NULL, legend=NULL) { if(is.null(main)) main <- nullGrob() if(is.null(sub)) sub <- nullGrob() if(is.null(legend)) legend <- nullGrob() if(is.null(left)) left <- nullGrob() if(is.character(main)) main <- textGrob(main) if(is.character(sub)) sub <- textGrob(sub) if(is.character(legend)) legend <- textGrob(legend, rot=-90) if(is.character(left)) left <- textGrob(left, rot=90) arrange.class <- "arrange" # grob class dots <- list(...) params <- c("nrow", "ncol", "widths", "heights", "default.units", "respect", "just" ) ## names(formals(grid.layout)) layout.call <- intersect(names(dots), params) params.layout <- dots[layout.call] if(is.null(names(dots))) not.grobnames <- FALSE else not.grobnames <- names(dots) %in% layout.call grobs <- dots[! not.grobnames ] n <- length(grobs) nm <- n2mfrow(n) if(is.null(params.layout$nrow) & is.null(params.layout$ncol)) { params.layout$nrow = nm[1] params.layout$ncol = nm[2] } if(is.null(params.layout$nrow)) params.layout$nrow = ceiling(n/params.layout$ncol) if(is.null(params.layout$ncol)) params.layout$ncol = ceiling(n/params.layout$nrow) nrow <- params.layout$nrow ncol <- params.layout$ncol lay <- do.call(grid.layout, params.layout) fg <- frameGrob(layout=lay) ## if a ggplot is present, make the grob derive from the ggplot class classes <- lapply(grobs, class) inherit.ggplot <- any("ggplot" %in% unlist(classes)) if(inherit.ggplot) arrange.class <- c(arrange.class, "ggplot") ii.p <- 1 for(ii.row in seq(1, nrow)){ ii.table.row <- ii.row if(as.table) {ii.table.row <- nrow - ii.table.row + 1} for(ii.col in seq(1, ncol)){ ii.table <- ii.p if(ii.p > n) break ## select current grob cl <- class(grobs[[ii.table]]) ct <- if("grob" %in% unlist(cl)) "grob" else if("ggplot" %in% unlist(cl)) "ggplot" else cl g.tmp <- switch(ct, ggplot = ggplotGrob(grobs[[ii.table]]), trellis = latticeGrob(grobs[[ii.table]]), grob = grobs[[ii.table]], stop("input must be grobs!")) if(clip) # gTree seems like overkill here ? g.tmp <- gTree(children=gList(clipGrob(), g.tmp)) fg <- placeGrob(fg, g.tmp, row=ii.table.row, col=ii.col) ii.p <- ii.p + 1 } } ## optional annotations in a frame grob wl <- unit(1, "grobwidth", left) wr <- unit(1, "grobwidth", legend) hb <- unit(1, "grobheight", sub) ht <- unit(1, "grobheight", main) annotate.lay <- grid.layout(3, 3, widths=unit.c(wl, unit(1, "npc")-wl-wr, wr), heights=unit.c(ht, unit(1, "npc")-hb-ht, hb)) af <- frameGrob(layout=annotate.lay) af <- placeGrob(af, fg, row=2, col=2) af <- placeGrob(af, main, row=1, col=2) af <- placeGrob(af, sub, row=3, col=2) af <- placeGrob(af, left, row=2, col=1) af <- placeGrob(af, legend, row=2, col=3) invisible(gTree(children=gList(af), cl=arrange.class)) } ##' @export grid.arrange <- function(..., as.table=FALSE, clip=TRUE, main=NULL, sub=NULL, left=NULL, legend=NULL, newpage=TRUE){ if(newpage) grid.newpage() g <- arrangeGrob(...,as.table=as.table, clip=clip, main=main, sub=sub, left=left, legend=legend) grid.draw(g) invisible(g) } ##' @export latticeGrob <- function(p, ...){ grob(p=p, ..., cl="lattice") } ##' @export drawDetails.lattice <- function(x, recording=FALSE){ lattice:::plot.trellis(x$p, newpage=FALSE) } ##' @export print.arrange <- function(x, newpage = is.null(vp), vp = NULL, ...) { if(newpage) grid.newpage() grid.draw(editGrob(x, vp=vp)) } ##' Interface to arrangeGrob that can dispatch on multiple pages ##' ##' If the layout specifies both nrow and ncol, the list of grobs can be split ##' in multiple pages. Interactive devices print open new windows, whilst non-interactive ##' devices such as pdf call grid.newpage() between the drawings. ##' @title marrangeGrob ##' @aliases marrangeGrob print.arrangelist ##' @param ... grobs ##' @param as.table see \link{arrangeGrob} ##' @param clip see \link{arrangeGrob} ##' @param top see \link{arrangeGrob} ##' @param bottom see \link{arrangeGrob} ##' @param left see \link{arrangeGrob} ##' @param right see \link{arrangeGrob} ##' @return a list of class arrangelist ##' @author baptiste Auguie ##' @export ##' @family user ##' @examples ##' \dontrun{ ##' require(ggplot2) ##' pl <- lapply(1:11, function(.x) qplot(1:10,rnorm(10), main=paste("plot",.x))) ##' ml <- do.call(marrangeGrob, c(pl, list(nrow=2, ncol=2))) ##' ## interactive use; open new devices ##' ml ##' ## non-interactive use, multipage pdf ##' ggsave("multipage.pdf", ml) ##' } marrangeGrob <- function(..., as.table=FALSE, clip=TRUE, top=quote(paste("page", g, "of", pages)), bottom=NULL, left=NULL, right=NULL){ arrange.class <- "arrange" # grob class dots <- list(...) params <- c("nrow", "ncol", "widths", "heights", "default.units", "respect", "just" ) ## names(formals(grid.layout)) layout.call <- intersect(names(dots), params) params.layout <- dots[layout.call] if(is.null(names(dots))) not.grobnames <- FALSE else not.grobnames <- names(dots) %in% layout.call grobs <- dots[! not.grobnames ] n <- length(grobs) nm <- n2mfrow(n) if(is.null(params.layout$nrow) & is.null(params.layout$ncol)) { params.layout$nrow = nm[1] params.layout$ncol = nm[2] } if(is.null(params.layout$nrow)) params.layout$nrow = ceiling(n/params.layout$ncol) if(is.null(params.layout$ncol)) params.layout$ncol = ceiling(n/params.layout$nrow) nrow <- params.layout$nrow ncol <- params.layout$ncol ## if nrow and ncol were given, may need multiple pages nlay <- with(params.layout, nrow*ncol) ## add one page if division is not complete pages <- n %/% nlay + as.logical(n %% nlay) groups <- split(seq_along(grobs), gl(pages, nlay, n)) pl <- lapply(names(groups), function(g) { top <- eval(top) ## lazy evaluation do.call(arrangeGrob, c(grobs[groups[[g]]], params.layout, list(as.table=as.table, clip=clip, main=top, sub=bottom, left=left, legend=right))) }) class(pl) <- c("arrangelist", "ggplot", class(pl)) pl } ##' @export print.arrangelist = function(x, ...) lapply(x, function(.x) { if(dev.interactive()) dev.new() else grid.newpage() grid.draw(.x) }, ...)
/R/arrange.r
no_license
davike/gridextra
R
false
false
8,080
r
##' arrange ggplot2, lattice, and grobs on a page ##' ##' @aliases grid.arrange arrangeGrob latticeGrob drawDetails.lattice print.arrange ##' @title arrangeGrob ##' @param ... plots of class ggplot2, trellis, or grobs, and valid arguments to grid.layout ##' @param main string, or grob (requires a well-defined height, see example) ##' @param sub string, or grob (requires a well-defined height, see example) ##' @param legend string, or grob (requires a well-defined width, see example) ##' @param left string, or grob (requires a well-defined width, see example) ##' @param as.table logical: bottom-left to top-right or top-left to bottom-right ##' @param clip logical: clip every object to its viewport ##' @return return a frame grob ##' @export ##' ##' @examples ##' \dontrun{ ##' require(ggplot2) ##' plots = lapply(1:5, function(.x) qplot(1:10,rnorm(10), main=paste("plot",.x))) ##' require(gridExtra) ##' do.call(grid.arrange, plots) ##' require(lattice) ##' grid.arrange(qplot(1:10), xyplot(1:10~1:10), ##' tableGrob(head(iris)), nrow=2, as.table=TRUE, main="test main", ##' left = rectGrob(width=unit(1,"line)), ##' sub=textGrob("test sub", gp=gpar(font=2))) ##' } arrangeGrob <- function(..., as.table=FALSE, clip=TRUE, main=NULL, sub=NULL, left=NULL, legend=NULL) { if(is.null(main)) main <- nullGrob() if(is.null(sub)) sub <- nullGrob() if(is.null(legend)) legend <- nullGrob() if(is.null(left)) left <- nullGrob() if(is.character(main)) main <- textGrob(main) if(is.character(sub)) sub <- textGrob(sub) if(is.character(legend)) legend <- textGrob(legend, rot=-90) if(is.character(left)) left <- textGrob(left, rot=90) arrange.class <- "arrange" # grob class dots <- list(...) params <- c("nrow", "ncol", "widths", "heights", "default.units", "respect", "just" ) ## names(formals(grid.layout)) layout.call <- intersect(names(dots), params) params.layout <- dots[layout.call] if(is.null(names(dots))) not.grobnames <- FALSE else not.grobnames <- names(dots) %in% layout.call grobs <- dots[! not.grobnames ] n <- length(grobs) nm <- n2mfrow(n) if(is.null(params.layout$nrow) & is.null(params.layout$ncol)) { params.layout$nrow = nm[1] params.layout$ncol = nm[2] } if(is.null(params.layout$nrow)) params.layout$nrow = ceiling(n/params.layout$ncol) if(is.null(params.layout$ncol)) params.layout$ncol = ceiling(n/params.layout$nrow) nrow <- params.layout$nrow ncol <- params.layout$ncol lay <- do.call(grid.layout, params.layout) fg <- frameGrob(layout=lay) ## if a ggplot is present, make the grob derive from the ggplot class classes <- lapply(grobs, class) inherit.ggplot <- any("ggplot" %in% unlist(classes)) if(inherit.ggplot) arrange.class <- c(arrange.class, "ggplot") ii.p <- 1 for(ii.row in seq(1, nrow)){ ii.table.row <- ii.row if(as.table) {ii.table.row <- nrow - ii.table.row + 1} for(ii.col in seq(1, ncol)){ ii.table <- ii.p if(ii.p > n) break ## select current grob cl <- class(grobs[[ii.table]]) ct <- if("grob" %in% unlist(cl)) "grob" else if("ggplot" %in% unlist(cl)) "ggplot" else cl g.tmp <- switch(ct, ggplot = ggplotGrob(grobs[[ii.table]]), trellis = latticeGrob(grobs[[ii.table]]), grob = grobs[[ii.table]], stop("input must be grobs!")) if(clip) # gTree seems like overkill here ? g.tmp <- gTree(children=gList(clipGrob(), g.tmp)) fg <- placeGrob(fg, g.tmp, row=ii.table.row, col=ii.col) ii.p <- ii.p + 1 } } ## optional annotations in a frame grob wl <- unit(1, "grobwidth", left) wr <- unit(1, "grobwidth", legend) hb <- unit(1, "grobheight", sub) ht <- unit(1, "grobheight", main) annotate.lay <- grid.layout(3, 3, widths=unit.c(wl, unit(1, "npc")-wl-wr, wr), heights=unit.c(ht, unit(1, "npc")-hb-ht, hb)) af <- frameGrob(layout=annotate.lay) af <- placeGrob(af, fg, row=2, col=2) af <- placeGrob(af, main, row=1, col=2) af <- placeGrob(af, sub, row=3, col=2) af <- placeGrob(af, left, row=2, col=1) af <- placeGrob(af, legend, row=2, col=3) invisible(gTree(children=gList(af), cl=arrange.class)) } ##' @export grid.arrange <- function(..., as.table=FALSE, clip=TRUE, main=NULL, sub=NULL, left=NULL, legend=NULL, newpage=TRUE){ if(newpage) grid.newpage() g <- arrangeGrob(...,as.table=as.table, clip=clip, main=main, sub=sub, left=left, legend=legend) grid.draw(g) invisible(g) } ##' @export latticeGrob <- function(p, ...){ grob(p=p, ..., cl="lattice") } ##' @export drawDetails.lattice <- function(x, recording=FALSE){ lattice:::plot.trellis(x$p, newpage=FALSE) } ##' @export print.arrange <- function(x, newpage = is.null(vp), vp = NULL, ...) { if(newpage) grid.newpage() grid.draw(editGrob(x, vp=vp)) } ##' Interface to arrangeGrob that can dispatch on multiple pages ##' ##' If the layout specifies both nrow and ncol, the list of grobs can be split ##' in multiple pages. Interactive devices print open new windows, whilst non-interactive ##' devices such as pdf call grid.newpage() between the drawings. ##' @title marrangeGrob ##' @aliases marrangeGrob print.arrangelist ##' @param ... grobs ##' @param as.table see \link{arrangeGrob} ##' @param clip see \link{arrangeGrob} ##' @param top see \link{arrangeGrob} ##' @param bottom see \link{arrangeGrob} ##' @param left see \link{arrangeGrob} ##' @param right see \link{arrangeGrob} ##' @return a list of class arrangelist ##' @author baptiste Auguie ##' @export ##' @family user ##' @examples ##' \dontrun{ ##' require(ggplot2) ##' pl <- lapply(1:11, function(.x) qplot(1:10,rnorm(10), main=paste("plot",.x))) ##' ml <- do.call(marrangeGrob, c(pl, list(nrow=2, ncol=2))) ##' ## interactive use; open new devices ##' ml ##' ## non-interactive use, multipage pdf ##' ggsave("multipage.pdf", ml) ##' } marrangeGrob <- function(..., as.table=FALSE, clip=TRUE, top=quote(paste("page", g, "of", pages)), bottom=NULL, left=NULL, right=NULL){ arrange.class <- "arrange" # grob class dots <- list(...) params <- c("nrow", "ncol", "widths", "heights", "default.units", "respect", "just" ) ## names(formals(grid.layout)) layout.call <- intersect(names(dots), params) params.layout <- dots[layout.call] if(is.null(names(dots))) not.grobnames <- FALSE else not.grobnames <- names(dots) %in% layout.call grobs <- dots[! not.grobnames ] n <- length(grobs) nm <- n2mfrow(n) if(is.null(params.layout$nrow) & is.null(params.layout$ncol)) { params.layout$nrow = nm[1] params.layout$ncol = nm[2] } if(is.null(params.layout$nrow)) params.layout$nrow = ceiling(n/params.layout$ncol) if(is.null(params.layout$ncol)) params.layout$ncol = ceiling(n/params.layout$nrow) nrow <- params.layout$nrow ncol <- params.layout$ncol ## if nrow and ncol were given, may need multiple pages nlay <- with(params.layout, nrow*ncol) ## add one page if division is not complete pages <- n %/% nlay + as.logical(n %% nlay) groups <- split(seq_along(grobs), gl(pages, nlay, n)) pl <- lapply(names(groups), function(g) { top <- eval(top) ## lazy evaluation do.call(arrangeGrob, c(grobs[groups[[g]]], params.layout, list(as.table=as.table, clip=clip, main=top, sub=bottom, left=left, legend=right))) }) class(pl) <- c("arrangelist", "ggplot", class(pl)) pl } ##' @export print.arrangelist = function(x, ...) lapply(x, function(.x) { if(dev.interactive()) dev.new() else grid.newpage() grid.draw(.x) }, ...)
context("test-g01-constraints") TOL <- 1e-6 a <- Variable(name = "a") b <- Variable(name = "b") x <- Variable(2, name = "x") y <- Variable(3, name = "y") z <- Variable(2, name = "z") A <- Variable(2, 2, name = "A") B <- Variable(2, 2, name = "B") C <- Variable(3, 2, name = "C") SOC <- CVXR:::SOC save_value <- CVXR:::save_value test_that("test the EqConstraint class", { constr <- x == z expect_equal(name(constr), "x == z") expect_equal(dim(constr), c(2,1)) # Test value and dual_value expect_true(is.na(dual_value(constr))) expect_error(constr_value(constr)) x <- save_value(x, 2) z <- save_value(z, 2) constr <- x == z expect_true(constr_value(constr)) x <- save_value(x, 3) constr <- x == z expect_false(constr_value(constr)) value(x) <- c(2,1) value(z) <- c(2,2) constr <- x == z expect_false(constr_value(constr)) expect_equal(violation(constr), matrix(c(0,1)), tolerance = TOL) expect_equal(residual(constr), matrix(c(0,1)), tolerance = TOL) value(z) <- c(2,1) constr <- x == z expect_true(constr_value(constr)) expect_equal(violation(constr), matrix(c(0,0))) expect_equal(residual(constr), matrix(c(0,0))) expect_error(x == y) }) test_that("test the LeqConstraint class", { constr <- x <= z expect_equal(name(constr), "x <= z") expect_equal(dim(constr), c(2,1)) # Test value and dual_value expect_true(is.na(dual_value(constr))) expect_error(constr_value(constr)) x <- save_value(x, 1) z <- save_value(z, 2) constr <- x <= z expect_true(constr_value(constr)) x <- save_value(x, 3) constr <- x <= z expect_false(constr_value(constr)) value(x) <- c(2,1) value(z) <- c(2,0) constr <- x <= z expect_false(constr_value(constr)) expect_equal(violation(constr), matrix(c(0,1)), tolerance = TOL) expect_equal(residual(constr), matrix(c(0,1)), tolerance = TOL) value(z) <- c(2,2) constr <- x <= z expect_true(constr_value(constr)) expect_equal(violation(constr), matrix(c(0,0)), tolerance = TOL) expect_equal(residual(constr), matrix(c(0,0)), tolerance = TOL) expect_error(x <= y) }) test_that("Test the PSD constraint %>>%", { constr <- A %>>% B expect_equal(name(constr), "A + -B >> 0") expect_equal(dim(constr), c(2,2)) # Test value and dual_value expect_true(is.na(dual_value(constr))) expect_error(constr_value(constr)) A <- save_value(A, rbind(c(2,-1), c(1,2))) B <- save_value(B, rbind(c(1,0), c(0,1))) constr <- A %>>% B expect_true(constr_value(constr)) expect_equal(violation(constr), 0, tolerance = TOL) expect_equal(residual(constr), 0, tolerance = TOL) B <- save_value(B, rbind(c(3,0), c(0,3))) constr <- A %>>% B expect_false(constr_value(constr)) expect_equal(violation(constr), 1, tolerance = TOL) expect_equal(residual(constr), 1, tolerance = TOL) expect_error(x %>>% 0, "Non-square matrix in positive definite constraint.") }) test_that("Test the PSD constraint %<<%", { constr <- A %<<% B expect_equal(name(constr), "B + -A >> 0") expect_equal(dim(constr), c(2,2)) # Test value and dual_value expect_true(is.na(dual_value(constr))) expect_error(constr_value(constr)) B <- save_value(B, rbind(c(2,-1), c(1,2))) A <- save_value(A, rbind(c(1,0), c(0,1))) constr <- A %<<% B expect_true(constr_value(constr)) A <- save_value(A, rbind(c(3,0), c(0,3))) constr <- A %<<% B expect_false(constr_value(constr)) expect_error(x %<<% 0, "Non-square matrix in positive definite constraint.") }) test_that("test the >= operator", { constr <- z >= x expect_equal(name(constr), "x <= z") expect_equal(dim(constr), c(2,1)) expect_error(y >= x) }) test_that("test the SOC class", { exp <- x + z scalar_exp <- a + b constr <- SOC(scalar_exp, exp) expect_equal(size(constr), 3) })
/tests/testthat/test-g01-constraints.R
permissive
bedantaguru/CVXR
R
false
false
3,811
r
context("test-g01-constraints") TOL <- 1e-6 a <- Variable(name = "a") b <- Variable(name = "b") x <- Variable(2, name = "x") y <- Variable(3, name = "y") z <- Variable(2, name = "z") A <- Variable(2, 2, name = "A") B <- Variable(2, 2, name = "B") C <- Variable(3, 2, name = "C") SOC <- CVXR:::SOC save_value <- CVXR:::save_value test_that("test the EqConstraint class", { constr <- x == z expect_equal(name(constr), "x == z") expect_equal(dim(constr), c(2,1)) # Test value and dual_value expect_true(is.na(dual_value(constr))) expect_error(constr_value(constr)) x <- save_value(x, 2) z <- save_value(z, 2) constr <- x == z expect_true(constr_value(constr)) x <- save_value(x, 3) constr <- x == z expect_false(constr_value(constr)) value(x) <- c(2,1) value(z) <- c(2,2) constr <- x == z expect_false(constr_value(constr)) expect_equal(violation(constr), matrix(c(0,1)), tolerance = TOL) expect_equal(residual(constr), matrix(c(0,1)), tolerance = TOL) value(z) <- c(2,1) constr <- x == z expect_true(constr_value(constr)) expect_equal(violation(constr), matrix(c(0,0))) expect_equal(residual(constr), matrix(c(0,0))) expect_error(x == y) }) test_that("test the LeqConstraint class", { constr <- x <= z expect_equal(name(constr), "x <= z") expect_equal(dim(constr), c(2,1)) # Test value and dual_value expect_true(is.na(dual_value(constr))) expect_error(constr_value(constr)) x <- save_value(x, 1) z <- save_value(z, 2) constr <- x <= z expect_true(constr_value(constr)) x <- save_value(x, 3) constr <- x <= z expect_false(constr_value(constr)) value(x) <- c(2,1) value(z) <- c(2,0) constr <- x <= z expect_false(constr_value(constr)) expect_equal(violation(constr), matrix(c(0,1)), tolerance = TOL) expect_equal(residual(constr), matrix(c(0,1)), tolerance = TOL) value(z) <- c(2,2) constr <- x <= z expect_true(constr_value(constr)) expect_equal(violation(constr), matrix(c(0,0)), tolerance = TOL) expect_equal(residual(constr), matrix(c(0,0)), tolerance = TOL) expect_error(x <= y) }) test_that("Test the PSD constraint %>>%", { constr <- A %>>% B expect_equal(name(constr), "A + -B >> 0") expect_equal(dim(constr), c(2,2)) # Test value and dual_value expect_true(is.na(dual_value(constr))) expect_error(constr_value(constr)) A <- save_value(A, rbind(c(2,-1), c(1,2))) B <- save_value(B, rbind(c(1,0), c(0,1))) constr <- A %>>% B expect_true(constr_value(constr)) expect_equal(violation(constr), 0, tolerance = TOL) expect_equal(residual(constr), 0, tolerance = TOL) B <- save_value(B, rbind(c(3,0), c(0,3))) constr <- A %>>% B expect_false(constr_value(constr)) expect_equal(violation(constr), 1, tolerance = TOL) expect_equal(residual(constr), 1, tolerance = TOL) expect_error(x %>>% 0, "Non-square matrix in positive definite constraint.") }) test_that("Test the PSD constraint %<<%", { constr <- A %<<% B expect_equal(name(constr), "B + -A >> 0") expect_equal(dim(constr), c(2,2)) # Test value and dual_value expect_true(is.na(dual_value(constr))) expect_error(constr_value(constr)) B <- save_value(B, rbind(c(2,-1), c(1,2))) A <- save_value(A, rbind(c(1,0), c(0,1))) constr <- A %<<% B expect_true(constr_value(constr)) A <- save_value(A, rbind(c(3,0), c(0,3))) constr <- A %<<% B expect_false(constr_value(constr)) expect_error(x %<<% 0, "Non-square matrix in positive definite constraint.") }) test_that("test the >= operator", { constr <- z >= x expect_equal(name(constr), "x <= z") expect_equal(dim(constr), c(2,1)) expect_error(y >= x) }) test_that("test the SOC class", { exp <- x + z scalar_exp <- a + b constr <- SOC(scalar_exp, exp) expect_equal(size(constr), 3) })
% Generated by roxygen2 (4.0.2): do not edit by hand \name{worms_common} \alias{worms_common} \title{Common names from WoRMS ID} \usage{ worms_common(ids = NULL, opts = NULL, iface = NULL, ...) } \arguments{ \item{ids}{(numeric) One or more WoRMS AphidID's for a taxon.} \item{opts}{(character) a named list of elements that are passed to the curlPerform function which actually invokes the SOAP method. These options control aspects of the HTTP request, including debugging information that is displayed on the console, e.g. .opts = list(verbose = TRUE)} \item{iface}{Interface to WoRMS SOAP API methods. By default we use a previously created object. If you want to create a new one, use \code{worms_gen_iface}, assign the output to an object, then pass it into any \code{worms_*} function. in the \code{iface} parameter.} \item{...}{Further args passed on to \code{SSOAP::.SOAP}.} } \description{ Common names from WoRMS ID } \examples{ \dontrun{ worms_common(ids=1080) worms_common(ids=22388) worms_common(ids=123080) worms_common(ids=160281) worms_common(ids=c(1080,22388,160281,123080,22388)) } }
/man/worms_common.Rd
permissive
fmichonneau/taxizesoap
R
false
false
1,107
rd
% Generated by roxygen2 (4.0.2): do not edit by hand \name{worms_common} \alias{worms_common} \title{Common names from WoRMS ID} \usage{ worms_common(ids = NULL, opts = NULL, iface = NULL, ...) } \arguments{ \item{ids}{(numeric) One or more WoRMS AphidID's for a taxon.} \item{opts}{(character) a named list of elements that are passed to the curlPerform function which actually invokes the SOAP method. These options control aspects of the HTTP request, including debugging information that is displayed on the console, e.g. .opts = list(verbose = TRUE)} \item{iface}{Interface to WoRMS SOAP API methods. By default we use a previously created object. If you want to create a new one, use \code{worms_gen_iface}, assign the output to an object, then pass it into any \code{worms_*} function. in the \code{iface} parameter.} \item{...}{Further args passed on to \code{SSOAP::.SOAP}.} } \description{ Common names from WoRMS ID } \examples{ \dontrun{ worms_common(ids=1080) worms_common(ids=22388) worms_common(ids=123080) worms_common(ids=160281) worms_common(ids=c(1080,22388,160281,123080,22388)) } }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/arg.R \name{model_arg} \alias{model_arg} \title{Setup model file for running} \usage{ model_arg(model, examples_dir) } \arguments{ \item{model}{A character vector (length 1) specifying the model} \item{examples_dir}{A character vector (length 1), containing the path to the Examples directory in the MultiBUGS directory} } \value{ The full path to the just-created (as a result of copying) file } \description{ Finds the standard model file for the specified model, and copies it into the current working directory }
/man/model_arg.Rd
no_license
MultiBUGS/multibugstests
R
false
true
596
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/arg.R \name{model_arg} \alias{model_arg} \title{Setup model file for running} \usage{ model_arg(model, examples_dir) } \arguments{ \item{model}{A character vector (length 1) specifying the model} \item{examples_dir}{A character vector (length 1), containing the path to the Examples directory in the MultiBUGS directory} } \value{ The full path to the just-created (as a result of copying) file } \description{ Finds the standard model file for the specified model, and copies it into the current working directory }
library(tidyverse) library(ggthemes) library(plotly) library(gifski) library(viridis) options(encoding = "UTF-8") ## defined brand colors cus_blue <- "#00aae7" cus_black <- "#323232" cus_grey <- "#969696" cus_dblue <- "#002c77" cus_orange <- "#f55523" cus_yellow <- "#fdfd2f" region_data <- read_csv2("data/csv/region_ha_analysis_utf8.csv", locale = locale(encoding = "UTF-8")) %>% mutate(region = case_when(region == "ÜlemisteJärve" ~ "Ülemistejärve", TRUE ~ region)) area_plot <- read_csv2("data/csv/area_plot_utf8.csv", locale = locale(encoding = "UTF-8")) # area_plot <- data.table::fread("data/csv/area_plot_utf8.csv", encoding = "UTF-8") full_data <- readRDS("data/full_data.RDS") %>% mutate(qtr_year = as.character(qtr_year), qtr = str_replace_all(qtr,"[[.]]","-")) # price_map <- area_plot %>% # left_join(subset(full_data,qtr_year == "2013-01-01"), by = c("id" = "region")) # # mutate(id = tolower(id), # id = str_replace_all(id, "ä","a"), # id = str_replace_all(id, "ü","u"), # id = str_replace_all(id, "ö","o"), # id = str_replace_all(id, "õ","o")) time_list <- unique(full_data$qtr_year) for (time_item in time_list){ price_map <- area_plot %>% left_join(subset(full_data,qtr_year == time_item), by = c("id" = "region")) # %>% # mutate(tran_p_ha = case_when(is.na(tran_p_ha) == TRUE ~ 0, # TRUE ~ tran_p_ha)) # mid <- mean(transaction_map$tran_p_ha,na.rm = TRUE) tln_plot <- ggplot(aes(x = long, y = lat, group = id, fill = em_mean), data = price_map, alpha = 0.6) + geom_polygon(color = "grey40") + ggtitle(label = time_item)+ # geom_map(aes(x = long, # y = lat, # group = id, # fill = tran_p_ha), # data = transaction_map)+ labs(fill = "Price per region")+ theme_map()+ coord_fixed()+ theme(legend.position = "top")+ scale_fill_viridis(limits = c(0, 3500),breaks = seq(0,4500,1000)) tln_plot ggsave(filename = paste0("output/price/price_",time_item,".png"), dpi = 300) } gif_files <- list.files(path = "output/price/", pattern = ".png") gifski(png_files = paste0("output/price/",gif_files), gif_file = "output/price_map.gif", delay = 1, loop = TRUE)
/r/04_price_map.R
permissive
snailwellington/TLN_apt_market
R
false
false
2,476
r
library(tidyverse) library(ggthemes) library(plotly) library(gifski) library(viridis) options(encoding = "UTF-8") ## defined brand colors cus_blue <- "#00aae7" cus_black <- "#323232" cus_grey <- "#969696" cus_dblue <- "#002c77" cus_orange <- "#f55523" cus_yellow <- "#fdfd2f" region_data <- read_csv2("data/csv/region_ha_analysis_utf8.csv", locale = locale(encoding = "UTF-8")) %>% mutate(region = case_when(region == "ÜlemisteJärve" ~ "Ülemistejärve", TRUE ~ region)) area_plot <- read_csv2("data/csv/area_plot_utf8.csv", locale = locale(encoding = "UTF-8")) # area_plot <- data.table::fread("data/csv/area_plot_utf8.csv", encoding = "UTF-8") full_data <- readRDS("data/full_data.RDS") %>% mutate(qtr_year = as.character(qtr_year), qtr = str_replace_all(qtr,"[[.]]","-")) # price_map <- area_plot %>% # left_join(subset(full_data,qtr_year == "2013-01-01"), by = c("id" = "region")) # # mutate(id = tolower(id), # id = str_replace_all(id, "ä","a"), # id = str_replace_all(id, "ü","u"), # id = str_replace_all(id, "ö","o"), # id = str_replace_all(id, "õ","o")) time_list <- unique(full_data$qtr_year) for (time_item in time_list){ price_map <- area_plot %>% left_join(subset(full_data,qtr_year == time_item), by = c("id" = "region")) # %>% # mutate(tran_p_ha = case_when(is.na(tran_p_ha) == TRUE ~ 0, # TRUE ~ tran_p_ha)) # mid <- mean(transaction_map$tran_p_ha,na.rm = TRUE) tln_plot <- ggplot(aes(x = long, y = lat, group = id, fill = em_mean), data = price_map, alpha = 0.6) + geom_polygon(color = "grey40") + ggtitle(label = time_item)+ # geom_map(aes(x = long, # y = lat, # group = id, # fill = tran_p_ha), # data = transaction_map)+ labs(fill = "Price per region")+ theme_map()+ coord_fixed()+ theme(legend.position = "top")+ scale_fill_viridis(limits = c(0, 3500),breaks = seq(0,4500,1000)) tln_plot ggsave(filename = paste0("output/price/price_",time_item,".png"), dpi = 300) } gif_files <- list.files(path = "output/price/", pattern = ".png") gifski(png_files = paste0("output/price/",gif_files), gif_file = "output/price_map.gif", delay = 1, loop = TRUE)
require(PMCMRplus) options("width"=10000) ARRAY <- c(0.006078,0.034145,0.002997,0.005162,0.012252,0.005584,0.008777,0.014586,0.008631,0.008911,0.009405,0.009275,0.013533,0.006105,0.003567,0.005993,0.006952,0.031407,0.012595,0.006302,0.05367,0.059235,0.060677,0.056981,0.057675,0.053739,0.053429,0.055306,0.054656,0.054805,0.047582,0.064404,0.037039,0.05675,0.061967,0.04885,0.054908,0.059882,0.050609,0.048947,0.024502,0.01944,0.042629,0.011223,0.04047,0.03851,0.044424,0.023336,0.044331,0.015105,0.0327,0.034203,0.036544,0.019355,0.028367,0.011952,0.022492,0.039328,0.013975,0.032278,0.012488,0.011722,0.027706,0.003971,0.02529,0.015127,0.020797,0.013759,0.029244,0.004716,0.019912,0.009094,0.019934,0.012615,0.010876,0.005583,0.007618,0.026212,0.007738,0.023667,0.008898,0.006689,0.011042,0.007156,0.003971,0.009049,0.012544,0.005679,0.00958,0.008678,1.58E-4,0.012325,0.006285,0.014952,0.008417,0.007734,0.010892,0.015973,0.005703,0.007175,0.001585,0.0,9.06E-4,0.0,4.4E-5,0.0,0.001703,3.44E-4,0.0,0.0,0.007045,3.0E-6,0.0,5.15E-4,0.0,0.0,0.0,2.72E-4,0.0,0.0) categs<-as.factor(rep(c("HHCORandomMINMAX","HHCORandomSDE","HHCOR2SDE","HHCOR2MINMAX","HHCORandomLPNORM","HHCOR2LPNORM"),each=20)); result <- kruskal.test(ARRAY,categs) print(result);pos_teste<-kwAllPairsNemenyiTest(ARRAY, categs, method='Tukey');print(pos_teste);
/MaFMethodology/R/prune/HV/5/kruskalscript.R
no_license
fritsche/hhcoanalysisresults
R
false
false
1,324
r
require(PMCMRplus) options("width"=10000) ARRAY <- c(0.006078,0.034145,0.002997,0.005162,0.012252,0.005584,0.008777,0.014586,0.008631,0.008911,0.009405,0.009275,0.013533,0.006105,0.003567,0.005993,0.006952,0.031407,0.012595,0.006302,0.05367,0.059235,0.060677,0.056981,0.057675,0.053739,0.053429,0.055306,0.054656,0.054805,0.047582,0.064404,0.037039,0.05675,0.061967,0.04885,0.054908,0.059882,0.050609,0.048947,0.024502,0.01944,0.042629,0.011223,0.04047,0.03851,0.044424,0.023336,0.044331,0.015105,0.0327,0.034203,0.036544,0.019355,0.028367,0.011952,0.022492,0.039328,0.013975,0.032278,0.012488,0.011722,0.027706,0.003971,0.02529,0.015127,0.020797,0.013759,0.029244,0.004716,0.019912,0.009094,0.019934,0.012615,0.010876,0.005583,0.007618,0.026212,0.007738,0.023667,0.008898,0.006689,0.011042,0.007156,0.003971,0.009049,0.012544,0.005679,0.00958,0.008678,1.58E-4,0.012325,0.006285,0.014952,0.008417,0.007734,0.010892,0.015973,0.005703,0.007175,0.001585,0.0,9.06E-4,0.0,4.4E-5,0.0,0.001703,3.44E-4,0.0,0.0,0.007045,3.0E-6,0.0,5.15E-4,0.0,0.0,0.0,2.72E-4,0.0,0.0) categs<-as.factor(rep(c("HHCORandomMINMAX","HHCORandomSDE","HHCOR2SDE","HHCOR2MINMAX","HHCORandomLPNORM","HHCOR2LPNORM"),each=20)); result <- kruskal.test(ARRAY,categs) print(result);pos_teste<-kwAllPairsNemenyiTest(ARRAY, categs, method='Tukey');print(pos_teste);
# *** Header ************************************************************************** # # Create .csv version of Table S3 # # Read in national baseline national_baseline <- read.csv( stringr::str_c( build_data_dir, "/national_baseline.csv" ) ) # Format the table table_s3 <- national_baseline %>% select( group, n_group, c19_ifr_group, sus_to_inf, vax_uptake_census, average_2vax_efficacy, yll, ) %>% mutate( group = stringr::str_replace( group, "agebin_", "" ), d_E = "4 days (age invariant)", d_I = "9 days (age invariant)", sus_to_inf = round(sus_to_inf, 2), c19_ifr_group = round(c19_ifr_group, 3), n_group = prettyNum(n_group, big.mark = ","), vax_uptake_census = round(vax_uptake_census, 3), c_ij = "See Table S1", average_2vax_efficacy = round(average_2vax_efficacy, 3), yll = round(yll, 1) ) %>% rename( `Age group` = group, beta_i = sus_to_inf, IFR_i = c19_ifr_group, N_i = n_group, vu_i = vax_uptake_census, ve_i = average_2vax_efficacy, YLL_i = yll ) %>% relocate( `Age group`, d_E, d_I, beta_i, IFR_i, N_i, vu_i, c_ij, ve_i, YLL_i ) # Write the table write.csv( table_s3, stringr::str_c( exhibit_data_dir, "/table_s3.csv" ), row.names = FALSE )
/code/R/supplementary_materials_building_scripts/b3_supplementary_materials_table_s3.R
no_license
patelchetana/vaccine-speed-vs-prioritization
R
false
false
1,510
r
# *** Header ************************************************************************** # # Create .csv version of Table S3 # # Read in national baseline national_baseline <- read.csv( stringr::str_c( build_data_dir, "/national_baseline.csv" ) ) # Format the table table_s3 <- national_baseline %>% select( group, n_group, c19_ifr_group, sus_to_inf, vax_uptake_census, average_2vax_efficacy, yll, ) %>% mutate( group = stringr::str_replace( group, "agebin_", "" ), d_E = "4 days (age invariant)", d_I = "9 days (age invariant)", sus_to_inf = round(sus_to_inf, 2), c19_ifr_group = round(c19_ifr_group, 3), n_group = prettyNum(n_group, big.mark = ","), vax_uptake_census = round(vax_uptake_census, 3), c_ij = "See Table S1", average_2vax_efficacy = round(average_2vax_efficacy, 3), yll = round(yll, 1) ) %>% rename( `Age group` = group, beta_i = sus_to_inf, IFR_i = c19_ifr_group, N_i = n_group, vu_i = vax_uptake_census, ve_i = average_2vax_efficacy, YLL_i = yll ) %>% relocate( `Age group`, d_E, d_I, beta_i, IFR_i, N_i, vu_i, c_ij, ve_i, YLL_i ) # Write the table write.csv( table_s3, stringr::str_c( exhibit_data_dir, "/table_s3.csv" ), row.names = FALSE )
#' @title Get the number of rows of the file #' @description Use iterators to avoid the memory overhead of #' obtaining the number of rows of a file. #' @param file the name of a file (possible with a path) #' @param n the size of the chunks used by the iterator #' @return an integer #' @examples #' data(CO2) #' write.csv(CO2, "CO2.csv", row.names=FALSE) #' getnrows("CO2.csv") #' unlink("CO2.csv") #' @export getnrows <- function(file, n=10000) { i <- NULL # To kill off an annoying R CMD check NOTE it <- ireadLines(file, n=n) return( foreach(i=it, .combine=sum) %do% length(i) ) }
/R/getnrows.R
no_license
cran/YaleToolkit
R
false
false
591
r
#' @title Get the number of rows of the file #' @description Use iterators to avoid the memory overhead of #' obtaining the number of rows of a file. #' @param file the name of a file (possible with a path) #' @param n the size of the chunks used by the iterator #' @return an integer #' @examples #' data(CO2) #' write.csv(CO2, "CO2.csv", row.names=FALSE) #' getnrows("CO2.csv") #' unlink("CO2.csv") #' @export getnrows <- function(file, n=10000) { i <- NULL # To kill off an annoying R CMD check NOTE it <- ireadLines(file, n=n) return( foreach(i=it, .combine=sum) %do% length(i) ) }
### # Question 1 library(tidyverse) library(nycflights13) #a. nrow(filter(flights, dest == "LAX")) #b nrow(filter(flights, origin == "LAX")) #c nrow(filter(flights, distance >= "2000")) #d doesnt work, why? something to do with Tibble? flights %>% filter( dest %in% c("LAX", "ONT", "SNA", "PSP", "SBD", "BUR", "LGB"), origin != "JFK" ) %>% nrow() #2 nrow(filter(flights, is.na(arr_time))) #3 arrange(flights, desc(is.na(arr_time))) #4 select(flights, contains("TIME")) # it includes variables with "time" in them... I would probably specifically filter for time based on certain variables using the select function in order to fix this default setting #5 a<-filter(flights, distance >= "2000") a<-group_by(a, dest) summarize(a) mutate(a) arrange(a, dep_delay) #complete journey library(tidyverse) library(completejourney) transaction_data <- transaction_data %>% select( quantity, sales_value, retail_disc, coupon_disc, coupon_match_disc, household_key, store_id, basket_id, product_id, week_no, day, trans_time ) #1 ?mutate transaction_data <- mutate(transaction_data, abs(retail_disc)) transaction_data <- mutate(transaction_data, abs(coupon_disc)) transaction_data <- mutate(transaction_data, abs(coupon_match_disc)) #2 transaction_data$regular_price<- mutate(transaction_data, (sales_value + retail_disc + coupon_match_disc) / quantity) transaction_data$loyalty_price<- mutate(transaction_data, (loyalty_price = (sales_value + coupon_match_disc) / quantity)) transaction_data$coupon_price<- mutate(transaction_data, ((sales_value - coupon_disc) / quantity)) #3 transaction_data %>% filter(regular_price <= 1) %>% select(product_id) %>% n_distinct() transaction_data %>% filter(loyalty_price <= 1) %>% select(product_id) %>% n_distinct() transaction_data %>% filter(coupon_price <= 1) %>% select(product_id) %>% n_distinct() #4 transaction_data %>% group_by(basket_id) %>% summarize(basket_value = sum(sales_value)) %>% ungroup() %>% summarize(proportion_over_10 = mean(basket_value > 10)) #5 transaction_data %>% filter( is.finite(regular_price), is.finite(loyalty_price), regular_price > 0 ) %>% mutate( pct_loyalty_disc = 1 - (loyalty_price / regular_price) ) %>% group_by(store_id) %>% summarize( total_sales_value = sum(sales_value), avg_pct_loyalty_disc = mean(pct_loyalty_disc) ) %>% filter(total_sales_value > 10000) %>% arrange(desc(avg_pct_loyalty_disc))
/submissions/01-r4ds-data-transformation-Kotz-Sam.R
no_license
zhuoaprilfu/r4ds-exercises
R
false
false
2,519
r
### # Question 1 library(tidyverse) library(nycflights13) #a. nrow(filter(flights, dest == "LAX")) #b nrow(filter(flights, origin == "LAX")) #c nrow(filter(flights, distance >= "2000")) #d doesnt work, why? something to do with Tibble? flights %>% filter( dest %in% c("LAX", "ONT", "SNA", "PSP", "SBD", "BUR", "LGB"), origin != "JFK" ) %>% nrow() #2 nrow(filter(flights, is.na(arr_time))) #3 arrange(flights, desc(is.na(arr_time))) #4 select(flights, contains("TIME")) # it includes variables with "time" in them... I would probably specifically filter for time based on certain variables using the select function in order to fix this default setting #5 a<-filter(flights, distance >= "2000") a<-group_by(a, dest) summarize(a) mutate(a) arrange(a, dep_delay) #complete journey library(tidyverse) library(completejourney) transaction_data <- transaction_data %>% select( quantity, sales_value, retail_disc, coupon_disc, coupon_match_disc, household_key, store_id, basket_id, product_id, week_no, day, trans_time ) #1 ?mutate transaction_data <- mutate(transaction_data, abs(retail_disc)) transaction_data <- mutate(transaction_data, abs(coupon_disc)) transaction_data <- mutate(transaction_data, abs(coupon_match_disc)) #2 transaction_data$regular_price<- mutate(transaction_data, (sales_value + retail_disc + coupon_match_disc) / quantity) transaction_data$loyalty_price<- mutate(transaction_data, (loyalty_price = (sales_value + coupon_match_disc) / quantity)) transaction_data$coupon_price<- mutate(transaction_data, ((sales_value - coupon_disc) / quantity)) #3 transaction_data %>% filter(regular_price <= 1) %>% select(product_id) %>% n_distinct() transaction_data %>% filter(loyalty_price <= 1) %>% select(product_id) %>% n_distinct() transaction_data %>% filter(coupon_price <= 1) %>% select(product_id) %>% n_distinct() #4 transaction_data %>% group_by(basket_id) %>% summarize(basket_value = sum(sales_value)) %>% ungroup() %>% summarize(proportion_over_10 = mean(basket_value > 10)) #5 transaction_data %>% filter( is.finite(regular_price), is.finite(loyalty_price), regular_price > 0 ) %>% mutate( pct_loyalty_disc = 1 - (loyalty_price / regular_price) ) %>% group_by(store_id) %>% summarize( total_sales_value = sum(sales_value), avg_pct_loyalty_disc = mean(pct_loyalty_disc) ) %>% filter(total_sales_value > 10000) %>% arrange(desc(avg_pct_loyalty_disc))
source(file.path(rprojroot::find_package_root_file(), "tests/init_tests.R")) context("invokeParallelFits_allok_rss0") test_that("invokeParallelFits_allok_rss0", { result <- invokeParallelFits(x = ATP_targets_stauro$temperature, y = ATP_targets_stauro$relAbundance, id = ATP_targets_stauro$uniqueID, groups = ATP_targets_stauro$uniqueID, BPPARAM = BiocParallel::SerialParam(), maxAttempts = 100, returnModels = TRUE, start = c(Pl = 0, a = 550, b = 10)) rss0_new <- result$modelMetrics$rss expect_equal(unname(rss0_new)[-16], rss0_ref[-16]) # position 16: ATP5G1_IPI00009075 -> was a different seed used to resample due to negative RSS-Diff? }) context("invokeParallelFits_allok_rss1") test_that("invokeParallelFits_allok_rss1", { result <- invokeParallelFits(x = ATP_targets_stauro$temperature, y = ATP_targets_stauro$relAbundance, id = ATP_targets_stauro$uniqueID, groups = ATP_targets_stauro$compoundConcentration, BPPARAM = BiocParallel::SerialParam(), maxAttempts = 100, returnModels = TRUE, start = c(Pl = 0, a = 550, b = 10)) rss1_new <- result$modelMetrics %>% group_by(id) %>% summarise(rss = sum(rss)) expect_equal(rss1_new$rss, rss1_ref) }) context("fitAllModels_allok_rss0") test_that("fitAllModels_allok_rss0", { models <- fitAllModels(x = ATP_targets_stauro$temperature, y = ATP_targets_stauro$relAbundance, iter = ATP_targets_stauro$uniqueID, BPPARAM = BiocParallel::SerialParam(), maxAttempts = 100, start = c(Pl = 0, a = 550, b = 10)) rss0_new <- sapply(models, function(m) { ifelse(inherits(m , "try-error"), NA, m$m$deviance()) }) expect_equal(unname(rss0_new)[-16], rss0_ref[-16]) # position 16: ATP5G1_IPI00009075 -> was a different seed used to resample due to negative RSS-Diff? }) context("fitAllModels_allok_rss1") test_that("fitAllModels_allok_rss1", { models <- fitAllModels(x = ATP_targets_stauro$temperature, y = ATP_targets_stauro$relAbundance, iter = paste(ATP_targets_stauro$uniqueID, ATP_targets_stauro$compoundConcentration), BPPARAM = BiocParallel::SerialParam(), maxAttempts = 100, start = c(Pl = 0, a = 550, b = 10)) rss1_new <- sapply(models, function(m) { ifelse(inherits(m , "try-error"), NA, m$m$deviance()) }) rss1_new <- tibble(groups = names(rss1_new), rss1 = rss1_new) %>% separate("groups", c("id", "compoundConcentration"), remove = FALSE, sep = " ") %>% group_by(id) %>% summarise(rss1 = sum(rss1)) expect_equal(unname(rss1_new$rss1), rss1_ref) })
/tests/testthat/test_fitting.R
no_license
Huber-group-EMBL/NPARC
R
false
false
3,156
r
source(file.path(rprojroot::find_package_root_file(), "tests/init_tests.R")) context("invokeParallelFits_allok_rss0") test_that("invokeParallelFits_allok_rss0", { result <- invokeParallelFits(x = ATP_targets_stauro$temperature, y = ATP_targets_stauro$relAbundance, id = ATP_targets_stauro$uniqueID, groups = ATP_targets_stauro$uniqueID, BPPARAM = BiocParallel::SerialParam(), maxAttempts = 100, returnModels = TRUE, start = c(Pl = 0, a = 550, b = 10)) rss0_new <- result$modelMetrics$rss expect_equal(unname(rss0_new)[-16], rss0_ref[-16]) # position 16: ATP5G1_IPI00009075 -> was a different seed used to resample due to negative RSS-Diff? }) context("invokeParallelFits_allok_rss1") test_that("invokeParallelFits_allok_rss1", { result <- invokeParallelFits(x = ATP_targets_stauro$temperature, y = ATP_targets_stauro$relAbundance, id = ATP_targets_stauro$uniqueID, groups = ATP_targets_stauro$compoundConcentration, BPPARAM = BiocParallel::SerialParam(), maxAttempts = 100, returnModels = TRUE, start = c(Pl = 0, a = 550, b = 10)) rss1_new <- result$modelMetrics %>% group_by(id) %>% summarise(rss = sum(rss)) expect_equal(rss1_new$rss, rss1_ref) }) context("fitAllModels_allok_rss0") test_that("fitAllModels_allok_rss0", { models <- fitAllModels(x = ATP_targets_stauro$temperature, y = ATP_targets_stauro$relAbundance, iter = ATP_targets_stauro$uniqueID, BPPARAM = BiocParallel::SerialParam(), maxAttempts = 100, start = c(Pl = 0, a = 550, b = 10)) rss0_new <- sapply(models, function(m) { ifelse(inherits(m , "try-error"), NA, m$m$deviance()) }) expect_equal(unname(rss0_new)[-16], rss0_ref[-16]) # position 16: ATP5G1_IPI00009075 -> was a different seed used to resample due to negative RSS-Diff? }) context("fitAllModels_allok_rss1") test_that("fitAllModels_allok_rss1", { models <- fitAllModels(x = ATP_targets_stauro$temperature, y = ATP_targets_stauro$relAbundance, iter = paste(ATP_targets_stauro$uniqueID, ATP_targets_stauro$compoundConcentration), BPPARAM = BiocParallel::SerialParam(), maxAttempts = 100, start = c(Pl = 0, a = 550, b = 10)) rss1_new <- sapply(models, function(m) { ifelse(inherits(m , "try-error"), NA, m$m$deviance()) }) rss1_new <- tibble(groups = names(rss1_new), rss1 = rss1_new) %>% separate("groups", c("id", "compoundConcentration"), remove = FALSE, sep = " ") %>% group_by(id) %>% summarise(rss1 = sum(rss1)) expect_equal(unname(rss1_new$rss1), rss1_ref) })
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ipums_info.r \name{ipums_file_info} \alias{ipums_file_info} \title{Get IPUMS file information} \usage{ ipums_file_info(object, type = NULL) } \arguments{ \item{object}{An ipums_ddi object (loaded with \code{\link{read_ipums_ddi}}).} \item{type}{NULL to load all types, or one of "ipums_project", "extract_data", "extract_notes", "conditions" or "citation".} } \value{ If \code{type} is NULL, a list with the \code{ipums_project}, \code{extract_date}, \code{extract_notes}, \code{conditions}, and \code{citation}. Otherwise a string with the type of information requested in \code{type}. } \description{ Get IPUMS metadata information about the data file loaded into R from an ipums_ddi } \examples{ ddi <- read_ipums_ddi(ripums_example("cps_00006.xml")) ipums_file_info(ddi) }
/man/ipums_file_info.Rd
no_license
cran/ripums
R
false
true
887
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ipums_info.r \name{ipums_file_info} \alias{ipums_file_info} \title{Get IPUMS file information} \usage{ ipums_file_info(object, type = NULL) } \arguments{ \item{object}{An ipums_ddi object (loaded with \code{\link{read_ipums_ddi}}).} \item{type}{NULL to load all types, or one of "ipums_project", "extract_data", "extract_notes", "conditions" or "citation".} } \value{ If \code{type} is NULL, a list with the \code{ipums_project}, \code{extract_date}, \code{extract_notes}, \code{conditions}, and \code{citation}. Otherwise a string with the type of information requested in \code{type}. } \description{ Get IPUMS metadata information about the data file loaded into R from an ipums_ddi } \examples{ ddi <- read_ipums_ddi(ripums_example("cps_00006.xml")) ipums_file_info(ddi) }
#' Calculation of the Jaccard Index between ideseases #' #' This function is able to calculate the Jacard Index between: 1. muliple #' disases, 2. a set og genes and multiple diseases, 3. a set of genes and #' multiple main psychiatric disorders and 4. multiple diseases and multiple #' main psychiatric disorders. #' #' Warning: The main psychiatric disorders are understood as a single set #' of genes composed by the genes of all the diseases that the main #' psychiatric disorder cotains. #' #' @name jaccardEstimation #' @rdname jaccardEstimation-methods #' @aliases jaccardEstimation #' @param pDisease vector of diseases, vector of genes, vector of main #' psychiatric disorder. #' @param sDisease vector of diseases, vector of genes, vector of main #' psychiatric disorder. Only necessary when comparing genes vs. diseases, #' genes vs. main psychiatric disorders or diseases vs. main psychiatric #' disorders. To compare multiple diseases only use \code{pDisease}. #' @param database Name of the database that will be queried. It can take the #' values \code{'psycur15'} to use data validated by experts for first release #' of PsyGeNET; \code{'psycur16'} to use data validated by experts for second #' release of PsyGeNET; or \code{'ALL'} to use both databases. #' @param nboot Number of iterations sued to compute the pvalue associted #' to the calculated Jaccard Index (default 100). #' @param ncores Number of cores used to calculate the pvalue associated to #' the computed Jaccard Index (default 1). #' @param verbose By default \code{FALSE}. Change it to \code{TRUE} to get a #' on-time log from the function. #' @return An object of class \code{JaccardIndexPsy} with the computed #' calculation of the JaccardIndex. #' @examples #' ji <- jaccardEstimation( c( "COMT", "CLOCK", "DRD3" ), "umls:C0005586", "ALL" ) #' @export jaccardEstimation jaccardEstimation <- function(pDisease, sDisease, database="ALL", nboot = 100, ncores = 1, verbose = FALSE) { if(missing(pDisease)) { stop("Argument 'pDisease' must be set. Argument 'sDisease' is optional.") } if(verbose) message("Query PsyGeNET for generic diseases.") psy <- psygenetAll ( database ) #universe <- disGenetCurated() load(system.file("extdata", "disgenetCuratedUniverse.RData", package="psygenet2r")) diseases <- getDiseasesType( pDisease, psy, verbose ) if(missing(sDisease)) { out <- singleInput(diseases, diseases$type, universe, psy, nboot, ncores, verbose) } else { diseases2 <- getDiseasesType( sDisease, psy, verbose ) out <- multipleInput(diseases$diseases, diseases$type, diseases2$diseases, diseases2$type, universe, nboot, ncores, verbose) } return(out) } singleInput <- function(diseases, type, universe, psy, nboot, ncores, verbose) { if(type != "dise") { return(singleInput.genes(diseases$diseases$geneList$genes, psy, universe, nboot, ncores, verbose)) #stop("Jaccard Index only allows single input if 'pDiseases' is a vector of diseases (Given: ", type, ").") } if(length(diseases) <= 1){ stop("Jaccard Index needs, at last, two elements to be calculated.") } diseases <- diseases$diseases items <- combn(names(diseases), 2) xx <- lapply(1:ncol(items), function(nc) { it1 <- diseases[[items[1, nc]]]$genes it2 <- diseases[[items[2, nc]]]$genes ji <- sum(it1 %in% it2) * 1.0 / length(unique(c(it1, it2))) bb <- ji.internal(length(it1), length(it2), universe, nboot, ncores) pval <- (sum(bb > ji) * 1.0) / (nboot+1) return(c(items[1, nc], items[2, nc], length(it1), length(it2), ji, pval)) }) xx <- data.frame(do.call(rbind, xx)) rownames(xx) <- 1:nrow(xx) colnames(xx) <- c("Disease1", "Disease2", "NGenes1", "NGenes2", "JaccardIndex", "pval") new("JaccardIndexPsy", table = xx, type = "disease-disease", nit = nboot, i1 = names(diseases), i2 = "") } singleInput.genes <- function(genes, database, universe, nboot, ncores, verbose) { warning("Jaccard Index for all diseases in PsyGeNET will be calculated.") xx <- parallel::mclapply(unique(as.character(database$c2.DiseaseName)), function(dCode) { disease <- database[database$c2.DiseaseName == dCode, "c1.Gene_Symbol"] ji <- sum(genes %in% disease) * 1.0 / length(unique(c(genes, disease))) bb <- ji.internal(length(genes), length(disease), universe, nboot, ncores) pval <- (sum(bb > ji) * 1.0) / (nboot+1) return(c(dCode, length(genes), length(disease), ji, pval)) }, mc.cores = ncores) xx <- data.frame(disease1="genes", do.call(rbind, xx)) rownames(xx) <- 1:nrow(xx) colnames(xx) <- c("Disease1", "Disease2", "NGenes1", "NGenes2", "JaccardIndex", "pval") new("JaccardIndexPsy", table = xx, type = "geneList - disease", nit = nboot, i1 = genes, i2 = "PsyGeNET") } multipleInput <- function(primary, typeP, secondary, typeS, universe, nboot, ncores, verbose) { if(typeP == typeS) { stop("Invalid input type for 'pDisease' and 'sDisease'.") } xx <- lapply(names(primary), function(nn1) { data.frame(do.call(rbind, lapply(names(secondary), function(nn2) { it1 <- primary[[nn1]]$genes it2 <- secondary[[nn2]]$genes ji <- sum(it1 %in% it2) * 1.0 / length(unique(c(it1, it2))) bb <- ji.internal(length(it1), length(it2), universe, nboot, ncores) pval <- (sum(bb > ji) * 1.0) / (nboot+1) return(c(nn1, nn2, length(it1), length(it2), ji, pval)) }))) }) xx <- data.frame(do.call(rbind, xx)) rownames(xx) <- 1:nrow(xx) colnames(xx) <- c("Disease1", "Disease2", "NGenes1", "NGenes2", "JaccardIndex", "pval") new("JaccardIndexPsy", table = xx, type = paste0(typeP, " - ", typeS), nit = nboot, i1 = names(primary), i2 = names(secondary)) } getDiseasesType <- function(pDiseases, psy, verbose = TRUE) { mpds <- as.character(unique(psy$c2.PsychiatricDisorder)) cuis <- as.character(unique(psy$c2.Disease_code)) umls <- as.character(unique(psy$c2.Disease_Id)) nmms <- as.character(unique(psy$c2.DiseaseName)) type <- NA diseases <- lapply(1:length(pDiseases), function(ii) { it1 <- pDiseases[ii] if (verbose) { message("Checking disorder/disease/gene '", it1, "' (", ii, " of ", length(pDiseases), ").") } if( it1 %in% mpds) { if (is.na(type) | (!is.na(type) & type == "mpds")) { it1 <- list( name=it1, genes=as.character( unique( psy [ psy$c2.PsychiatricDisorder == it1, 1 ] ) ) ) type <<- "mpds" } else { stop("1 All input diseases msut be psyquiatric disorders, diseases (cui or name) or genes.") } } else if( it1 %in% cuis ) { if (is.na(type) | (!is.na(type) & type == "dise")) { it1 <- list( name=it1, genes=as.character( unique( psy [ psy$c2.Disease_code == it1, 1 ] ) ) ) type <<- "dise" } else { stop("2 All input diseases msut be psyquiatric disorders, diseases (cui or name) or genes.") } } else if( it1 %in% umls ) { if (is.na(type) | (!is.na(type) & type == "dise")) { it1 <- list( name=it1, genes=as.character( unique( psy [ psy$c2.Disease_Id == it1, 1 ] ) ) ) type <<- "dise" } else { stop("3 All input diseases msut be psyquiatric disorders, diseases (cui or name) or genes.") } } else if( it1 %in% nmms ) { if (is.na(type) | (!is.na(type) & type == "dise")) { it1 <- list( name=it1, genes=as.character( unique( psy [ psy$c2.DiseaseName == it1, 1 ] ) ) ) type <<- "dise" } else { stop("4 All input diseases msut be psyquiatric disorders, diseases (cui or name) or genes.") } } else { if (is.na(type) | (!is.na(type) & type == "geneList")) { it1 <- list( name="gene list", genes=it1 ) type <<- "geneList" } else { stop("5 All input diseases msut be psyquiatric disorders, diseases (cui or name) or genes.") } } return(it1) }) if(type == "geneList") { diseases <- list( list( name = "geneList", genes = pDiseases ) ) names(diseases) <- "geneList" } else { names(diseases) <- pDiseases } return(list(diseases=diseases, type=type)) } ji.internal <- function(len1, len2, universe, nboot, ncores) { if (!requireNamespace("parallel", quietly = TRUE)) { pfun <- lapply } else { pfun <- parallel::mclapply } unlist(pfun(1:nboot, function(ii) { g1 <- sample( universe, len1 ) g2 <- sample( universe, len2 ) ja.coefr <- length(intersect(g1, g2)) / length(union(g1, g2)) }, mc.cores = ncores)) }
/R/jaccardEstimation.R
permissive
aGutierrezSacristan/psygenet2r
R
false
false
8,500
r
#' Calculation of the Jaccard Index between ideseases #' #' This function is able to calculate the Jacard Index between: 1. muliple #' disases, 2. a set og genes and multiple diseases, 3. a set of genes and #' multiple main psychiatric disorders and 4. multiple diseases and multiple #' main psychiatric disorders. #' #' Warning: The main psychiatric disorders are understood as a single set #' of genes composed by the genes of all the diseases that the main #' psychiatric disorder cotains. #' #' @name jaccardEstimation #' @rdname jaccardEstimation-methods #' @aliases jaccardEstimation #' @param pDisease vector of diseases, vector of genes, vector of main #' psychiatric disorder. #' @param sDisease vector of diseases, vector of genes, vector of main #' psychiatric disorder. Only necessary when comparing genes vs. diseases, #' genes vs. main psychiatric disorders or diseases vs. main psychiatric #' disorders. To compare multiple diseases only use \code{pDisease}. #' @param database Name of the database that will be queried. It can take the #' values \code{'psycur15'} to use data validated by experts for first release #' of PsyGeNET; \code{'psycur16'} to use data validated by experts for second #' release of PsyGeNET; or \code{'ALL'} to use both databases. #' @param nboot Number of iterations sued to compute the pvalue associted #' to the calculated Jaccard Index (default 100). #' @param ncores Number of cores used to calculate the pvalue associated to #' the computed Jaccard Index (default 1). #' @param verbose By default \code{FALSE}. Change it to \code{TRUE} to get a #' on-time log from the function. #' @return An object of class \code{JaccardIndexPsy} with the computed #' calculation of the JaccardIndex. #' @examples #' ji <- jaccardEstimation( c( "COMT", "CLOCK", "DRD3" ), "umls:C0005586", "ALL" ) #' @export jaccardEstimation jaccardEstimation <- function(pDisease, sDisease, database="ALL", nboot = 100, ncores = 1, verbose = FALSE) { if(missing(pDisease)) { stop("Argument 'pDisease' must be set. Argument 'sDisease' is optional.") } if(verbose) message("Query PsyGeNET for generic diseases.") psy <- psygenetAll ( database ) #universe <- disGenetCurated() load(system.file("extdata", "disgenetCuratedUniverse.RData", package="psygenet2r")) diseases <- getDiseasesType( pDisease, psy, verbose ) if(missing(sDisease)) { out <- singleInput(diseases, diseases$type, universe, psy, nboot, ncores, verbose) } else { diseases2 <- getDiseasesType( sDisease, psy, verbose ) out <- multipleInput(diseases$diseases, diseases$type, diseases2$diseases, diseases2$type, universe, nboot, ncores, verbose) } return(out) } singleInput <- function(diseases, type, universe, psy, nboot, ncores, verbose) { if(type != "dise") { return(singleInput.genes(diseases$diseases$geneList$genes, psy, universe, nboot, ncores, verbose)) #stop("Jaccard Index only allows single input if 'pDiseases' is a vector of diseases (Given: ", type, ").") } if(length(diseases) <= 1){ stop("Jaccard Index needs, at last, two elements to be calculated.") } diseases <- diseases$diseases items <- combn(names(diseases), 2) xx <- lapply(1:ncol(items), function(nc) { it1 <- diseases[[items[1, nc]]]$genes it2 <- diseases[[items[2, nc]]]$genes ji <- sum(it1 %in% it2) * 1.0 / length(unique(c(it1, it2))) bb <- ji.internal(length(it1), length(it2), universe, nboot, ncores) pval <- (sum(bb > ji) * 1.0) / (nboot+1) return(c(items[1, nc], items[2, nc], length(it1), length(it2), ji, pval)) }) xx <- data.frame(do.call(rbind, xx)) rownames(xx) <- 1:nrow(xx) colnames(xx) <- c("Disease1", "Disease2", "NGenes1", "NGenes2", "JaccardIndex", "pval") new("JaccardIndexPsy", table = xx, type = "disease-disease", nit = nboot, i1 = names(diseases), i2 = "") } singleInput.genes <- function(genes, database, universe, nboot, ncores, verbose) { warning("Jaccard Index for all diseases in PsyGeNET will be calculated.") xx <- parallel::mclapply(unique(as.character(database$c2.DiseaseName)), function(dCode) { disease <- database[database$c2.DiseaseName == dCode, "c1.Gene_Symbol"] ji <- sum(genes %in% disease) * 1.0 / length(unique(c(genes, disease))) bb <- ji.internal(length(genes), length(disease), universe, nboot, ncores) pval <- (sum(bb > ji) * 1.0) / (nboot+1) return(c(dCode, length(genes), length(disease), ji, pval)) }, mc.cores = ncores) xx <- data.frame(disease1="genes", do.call(rbind, xx)) rownames(xx) <- 1:nrow(xx) colnames(xx) <- c("Disease1", "Disease2", "NGenes1", "NGenes2", "JaccardIndex", "pval") new("JaccardIndexPsy", table = xx, type = "geneList - disease", nit = nboot, i1 = genes, i2 = "PsyGeNET") } multipleInput <- function(primary, typeP, secondary, typeS, universe, nboot, ncores, verbose) { if(typeP == typeS) { stop("Invalid input type for 'pDisease' and 'sDisease'.") } xx <- lapply(names(primary), function(nn1) { data.frame(do.call(rbind, lapply(names(secondary), function(nn2) { it1 <- primary[[nn1]]$genes it2 <- secondary[[nn2]]$genes ji <- sum(it1 %in% it2) * 1.0 / length(unique(c(it1, it2))) bb <- ji.internal(length(it1), length(it2), universe, nboot, ncores) pval <- (sum(bb > ji) * 1.0) / (nboot+1) return(c(nn1, nn2, length(it1), length(it2), ji, pval)) }))) }) xx <- data.frame(do.call(rbind, xx)) rownames(xx) <- 1:nrow(xx) colnames(xx) <- c("Disease1", "Disease2", "NGenes1", "NGenes2", "JaccardIndex", "pval") new("JaccardIndexPsy", table = xx, type = paste0(typeP, " - ", typeS), nit = nboot, i1 = names(primary), i2 = names(secondary)) } getDiseasesType <- function(pDiseases, psy, verbose = TRUE) { mpds <- as.character(unique(psy$c2.PsychiatricDisorder)) cuis <- as.character(unique(psy$c2.Disease_code)) umls <- as.character(unique(psy$c2.Disease_Id)) nmms <- as.character(unique(psy$c2.DiseaseName)) type <- NA diseases <- lapply(1:length(pDiseases), function(ii) { it1 <- pDiseases[ii] if (verbose) { message("Checking disorder/disease/gene '", it1, "' (", ii, " of ", length(pDiseases), ").") } if( it1 %in% mpds) { if (is.na(type) | (!is.na(type) & type == "mpds")) { it1 <- list( name=it1, genes=as.character( unique( psy [ psy$c2.PsychiatricDisorder == it1, 1 ] ) ) ) type <<- "mpds" } else { stop("1 All input diseases msut be psyquiatric disorders, diseases (cui or name) or genes.") } } else if( it1 %in% cuis ) { if (is.na(type) | (!is.na(type) & type == "dise")) { it1 <- list( name=it1, genes=as.character( unique( psy [ psy$c2.Disease_code == it1, 1 ] ) ) ) type <<- "dise" } else { stop("2 All input diseases msut be psyquiatric disorders, diseases (cui or name) or genes.") } } else if( it1 %in% umls ) { if (is.na(type) | (!is.na(type) & type == "dise")) { it1 <- list( name=it1, genes=as.character( unique( psy [ psy$c2.Disease_Id == it1, 1 ] ) ) ) type <<- "dise" } else { stop("3 All input diseases msut be psyquiatric disorders, diseases (cui or name) or genes.") } } else if( it1 %in% nmms ) { if (is.na(type) | (!is.na(type) & type == "dise")) { it1 <- list( name=it1, genes=as.character( unique( psy [ psy$c2.DiseaseName == it1, 1 ] ) ) ) type <<- "dise" } else { stop("4 All input diseases msut be psyquiatric disorders, diseases (cui or name) or genes.") } } else { if (is.na(type) | (!is.na(type) & type == "geneList")) { it1 <- list( name="gene list", genes=it1 ) type <<- "geneList" } else { stop("5 All input diseases msut be psyquiatric disorders, diseases (cui or name) or genes.") } } return(it1) }) if(type == "geneList") { diseases <- list( list( name = "geneList", genes = pDiseases ) ) names(diseases) <- "geneList" } else { names(diseases) <- pDiseases } return(list(diseases=diseases, type=type)) } ji.internal <- function(len1, len2, universe, nboot, ncores) { if (!requireNamespace("parallel", quietly = TRUE)) { pfun <- lapply } else { pfun <- parallel::mclapply } unlist(pfun(1:nboot, function(ii) { g1 <- sample( universe, len1 ) g2 <- sample( universe, len2 ) ja.coefr <- length(intersect(g1, g2)) / length(union(g1, g2)) }, mc.cores = ncores)) }
library(tidyverse) library(lubridate)#convert date formats library(xml2)#for html2txt function source("code/get_collapsed_categories.R")#code for cross journal categories #Relevant Functions---- #function to convert html ecoded characters to text html2txt <- function(str) { xml_text(read_html(paste0("<x>", str, "</x>"))) #create xml node to be read as html, allowing text conversion } #function to replace special characters with standard alphabet letters replace_special <- function(x){ case_when(#these regex expressions won't work when running R on windows str_detect(x, fixed("\xf6")) ~ str_replace(x, fixed("\xf6"), "o"), #replace with "o" str_detect(x, fixed("\xfc")) ~ str_replace(x, fixed("\xfc"), "u"), #replace with "u" str_detect(x, "&amp;") ~ str_replace(x, "&amp;", "and"), #replace with "and" str_detect(x, "&apos;") ~ str_replace(x, "&apos;", "'"), #replace with apostrophes str_detect(x, "&#x[:alnum:]*;") ~ paste(html2txt(x)), #fix html-encoded characters TRUE ~ paste(x)) #keep original value otherwise } #Load & clean datsets---- manu_data <- report_parse %>% mutate(doi = tolower(doi)) %>% #allows joining w. impact data select(-related.manu, -is.resubmission) %>% filter(manuscript.number != "NA") %>% filter(journal != "EC") %>% filter(journal != "CVI") %>% filter(journal != "genomeA") #drop old journals usage_data <- read_csv("processed_data/usage.csv") #read in highwire usage data usage_select <- usage_data %>% select(`Article Date of Publication (article_metadata)`, `Article DOI (article_metadata)`, `Total Abstract`, `Total HTML`, `Total PDF`) citation_data <- read_csv("processed_data/cites.csv") #read in highwire citation data citation_select <- citation_data %>% select(`Article DOI (article_metadata)`, `Article Date of Publication (article_metadata)`, Cites, `Citation Date`, `Published Months`) %>% filter(Cites != 0) %>% #drop entries that don't actually represent citations group_by(`Article DOI (article_metadata)`, `Article Date of Publication (article_metadata)`, `Published Months`) %>% summarise(Cites = n()) #count # cites for each article, while maintaining relavent metadata #merge impact datasets published_data <- full_join(citation_select, usage_select, by = c("Article Date of Publication (article_metadata)", "Article DOI (article_metadata)")) %>% distinct() #merge impact data w. manuscript data report_data <- left_join(manu_data, published_data, by = c("doi" = "Article DOI (article_metadata)")) #clean merged datasets & save----- report_data_ed <- report_data %>% unite(., Editor, first.name, last.name, sep = " ") %>% #create full editor names mutate(Editor = map(Editor, replace_special), #replace special characters with standard text - editor names title = map(title, replace_special), #manuscript titles category = map(category, replace_special)) %>% #category types mutate(category = unlist(category)) %>% mutate(category = map(category, function(x){strtrim(x, 45)})) #crop category lenght to 45 characters clean_report_data <- report_data_ed %>% mutate(Editor = unlist(Editor), #unlist after map function(s) title = unlist(title), category = unlist(category)) %>% mutate(`Article Date of Publication (article_metadata)` = mdy(`Article Date of Publication (article_metadata)`), journal = if_else(journal == "mra", "MRA", journal)) %>% #enable impact data joins rename(., "editor" = "Editor", "ejp.decision" = "EJP.decision", "publication.date" = "Article Date of Publication (article_metadata)", "months.published" = "Published Months", "Total Article Cites"= "Cites", "Abstract" = "Total Abstract", "HTML" = "Total HTML", "PDF" = "Total PDF") %>% gather(`Total Article Cites`:PDF, key = measure.names, value = measure.values) %>% #tidy impact data mutate(category = collapse_cats(.$category)) %>% filter(measure.names != "Measure By") %>% distinct() write_csv(clean_report_data, paste0("processed_data/report_data", this_ym,".csv")) #gather data for calculating estimated journal impact factors----- jif_data <- citation_data %>% select(`Article DOI (article_metadata)`, Cites, `Citation Date`, `Article Date of Publication (article_metadata)`) %>% filter(Cites != 0) %>% distinct() #merge data for jif calculation w. data for published manus jif_report_data <- manu_data %>% filter(!is.na(doi)) %>% select(doi, manuscript.type, journal) %>% left_join(., jif_data, by = c("doi" = "Article DOI (article_metadata)")) %>% distinct() write_csv(jif_report_data, paste0("processed_data/jif_report_data", this_ym, ".csv"))
/code/merge_clean_report_data.R
permissive
SchlossLab/Hagan_monthly_journal_reports_2019
R
false
false
4,948
r
library(tidyverse) library(lubridate)#convert date formats library(xml2)#for html2txt function source("code/get_collapsed_categories.R")#code for cross journal categories #Relevant Functions---- #function to convert html ecoded characters to text html2txt <- function(str) { xml_text(read_html(paste0("<x>", str, "</x>"))) #create xml node to be read as html, allowing text conversion } #function to replace special characters with standard alphabet letters replace_special <- function(x){ case_when(#these regex expressions won't work when running R on windows str_detect(x, fixed("\xf6")) ~ str_replace(x, fixed("\xf6"), "o"), #replace with "o" str_detect(x, fixed("\xfc")) ~ str_replace(x, fixed("\xfc"), "u"), #replace with "u" str_detect(x, "&amp;") ~ str_replace(x, "&amp;", "and"), #replace with "and" str_detect(x, "&apos;") ~ str_replace(x, "&apos;", "'"), #replace with apostrophes str_detect(x, "&#x[:alnum:]*;") ~ paste(html2txt(x)), #fix html-encoded characters TRUE ~ paste(x)) #keep original value otherwise } #Load & clean datsets---- manu_data <- report_parse %>% mutate(doi = tolower(doi)) %>% #allows joining w. impact data select(-related.manu, -is.resubmission) %>% filter(manuscript.number != "NA") %>% filter(journal != "EC") %>% filter(journal != "CVI") %>% filter(journal != "genomeA") #drop old journals usage_data <- read_csv("processed_data/usage.csv") #read in highwire usage data usage_select <- usage_data %>% select(`Article Date of Publication (article_metadata)`, `Article DOI (article_metadata)`, `Total Abstract`, `Total HTML`, `Total PDF`) citation_data <- read_csv("processed_data/cites.csv") #read in highwire citation data citation_select <- citation_data %>% select(`Article DOI (article_metadata)`, `Article Date of Publication (article_metadata)`, Cites, `Citation Date`, `Published Months`) %>% filter(Cites != 0) %>% #drop entries that don't actually represent citations group_by(`Article DOI (article_metadata)`, `Article Date of Publication (article_metadata)`, `Published Months`) %>% summarise(Cites = n()) #count # cites for each article, while maintaining relavent metadata #merge impact datasets published_data <- full_join(citation_select, usage_select, by = c("Article Date of Publication (article_metadata)", "Article DOI (article_metadata)")) %>% distinct() #merge impact data w. manuscript data report_data <- left_join(manu_data, published_data, by = c("doi" = "Article DOI (article_metadata)")) #clean merged datasets & save----- report_data_ed <- report_data %>% unite(., Editor, first.name, last.name, sep = " ") %>% #create full editor names mutate(Editor = map(Editor, replace_special), #replace special characters with standard text - editor names title = map(title, replace_special), #manuscript titles category = map(category, replace_special)) %>% #category types mutate(category = unlist(category)) %>% mutate(category = map(category, function(x){strtrim(x, 45)})) #crop category lenght to 45 characters clean_report_data <- report_data_ed %>% mutate(Editor = unlist(Editor), #unlist after map function(s) title = unlist(title), category = unlist(category)) %>% mutate(`Article Date of Publication (article_metadata)` = mdy(`Article Date of Publication (article_metadata)`), journal = if_else(journal == "mra", "MRA", journal)) %>% #enable impact data joins rename(., "editor" = "Editor", "ejp.decision" = "EJP.decision", "publication.date" = "Article Date of Publication (article_metadata)", "months.published" = "Published Months", "Total Article Cites"= "Cites", "Abstract" = "Total Abstract", "HTML" = "Total HTML", "PDF" = "Total PDF") %>% gather(`Total Article Cites`:PDF, key = measure.names, value = measure.values) %>% #tidy impact data mutate(category = collapse_cats(.$category)) %>% filter(measure.names != "Measure By") %>% distinct() write_csv(clean_report_data, paste0("processed_data/report_data", this_ym,".csv")) #gather data for calculating estimated journal impact factors----- jif_data <- citation_data %>% select(`Article DOI (article_metadata)`, Cites, `Citation Date`, `Article Date of Publication (article_metadata)`) %>% filter(Cites != 0) %>% distinct() #merge data for jif calculation w. data for published manus jif_report_data <- manu_data %>% filter(!is.na(doi)) %>% select(doi, manuscript.type, journal) %>% left_join(., jif_data, by = c("doi" = "Article DOI (article_metadata)")) %>% distinct() write_csv(jif_report_data, paste0("processed_data/jif_report_data", this_ym, ".csv"))
####### Replication data retrieve install.packages("rjson") ## 1 ## data importing # library using rjson to import library(rjson) jsonCPI = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/consumer%20price%20index%20cpi") # generate empty data set CPIdata = data.frame(rep(0, length(jsonCPI))) CPIdata$value = c(0) colnames(CPIdata) = c("dateTime", "value") # extract CPI for(i in seq(from=1, to=length(jsonCPI))){ item = jsonCPI[[i]] CPIdata$dateTime[i] = item$dateTime CPIdata$value[i] = item$value } write.csv(CPIdata,"Documents/CPIdata.csv") ##2 ## GDP deflator jsonGDP = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/gdp%20growth%20rate") # generate empty data set GDPdata = data.frame(rep(0, length(jsonGDP))) GDPdata$value = c(0) colnames(GDPdata) = c("dateTime", "value") for(i in seq(from=1, to=length(jsonGDP))){ item = jsonGDP[[i]] GDPdata$dateTime[i] = item$dateTime GDPdata$value[i] = item$value } ## 3 ## Core Consumer Price jsonCCPI = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/core%20consumer%20prices") # generate empty data set CCPIdata = data.frame(rep(0, length(jsonCCPI))) CCPIdata$value = c(0) colnames(CCPIdata) = c("dateTime", "value") for(i in seq(from=1, to=length(jsonCCPI))){ item = jsonCCPI[[i]] CCPIdata$dateTime[i] = item$dateTime CCPIdata$value[i] = item$value } write.csv(CCPIdata,"Documents/CCPIdata.csv") ## 4 ## jsonPPI = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/producer%20prices") # generate empty data set PPIdata = data.frame(rep(0, length(jsonPPI))) PPIdata$value = c(0) colnames(PPIdata) = c("dateTime", "value") for(i in seq(from=1, to=length(jsonPPI))){ item = jsonPPI[[i]] PPIdata$dateTime[i] = item$dateTime PPIdata$value[i] = item$value } write.csv(PPIdata,"Documents/PPIdata.csv") ## 5 ## IPI Import Price jsonIPI = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/import%20prices") # generate empty data set IPIdata = data.frame(rep(0, length(jsonIPI))) IPIdata$value = c(0) colnames(IPIdata) = c("dateTime", "value") for(i in seq(from=1, to=length(jsonIPI))){ item = jsonIPI[[i]] IPIdata$dateTime[i] = item$dateTime IPIdata$value[i] = item$value } write.csv(IPIdata,"Documents/IPIdata.csv") ## 6 ## EPI Export Price jsonEPI = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/export%20prices") # generate empty data set EPIdata = data.frame(rep(0, length(jsonEPI))) EPIdata$value = c(0) colnames(EPIdata) = c("dateTime", "value") for(i in seq(from=1, to=length(jsonEPI))){ item = jsonEPI[[i]] EPIdata$dateTime[i] = item$dateTime EPIdata$value[i] = item$value } write.csv(EPIdata,"Documents/EPIdata.csv") ## 7 ## GDP Deflator jsonDef = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/gdp%20deflator") # generate empty data set Defdata = data.frame(rep(0, length(jsonDef))) Defdata$value = c(0) colnames(Defdata) = c("dateTime", "value") for(i in seq(from=1, to=length(jsonDef))){ item = jsonDef[[i]] Defdata$dateTime[i] = item$dateTime Defdata$value[i] = item$value } write.csv(CPIdata,"Documents/GDPdefdata.csv") ## 8 ## Inflation MoM jsonINFMOM = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/inflation%20rate%20mom") # generate empty data set INFMOMdata = data.frame(rep(0, length(jsonINFMOM))) INFMOMdata$value = c(0) colnames(INFMOMdata) = c("dateTime", "value") for(i in seq(from=1, to=length(jsonINFMOM))){ item = jsonINFMOM[[i]] INFMOMdata$dateTime[i] = item$dateTime INFMOMdata$value[i] = item$value } write.csv(INFMOMdata,"Documents/Inflationmom.csv") ## 9 ## Inflation Expectation jsonINFEXP = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/inflation%20expectations") # generate empty data set INFEXPdata = data.frame(rep(0, length(jsonINFEXP))) INFEXPdata$value = c(0) colnames(INFEXPdata) = c("dateTime", "value") for(i in seq(from=1, to=length(jsonINFEXP))){ item = jsonINFEXP[[i]] INFEXPdata$dateTime[i] = item$dateTime INFEXPdata$value[i] = item$value } set<-data.frame(CPIdata$value,CCPIdata$value)
/Data_Extraction_TE_Germany.R
no_license
wenfeichu/Wenfei-s-R-code-share
R
false
false
4,778
r
####### Replication data retrieve install.packages("rjson") ## 1 ## data importing # library using rjson to import library(rjson) jsonCPI = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/consumer%20price%20index%20cpi") # generate empty data set CPIdata = data.frame(rep(0, length(jsonCPI))) CPIdata$value = c(0) colnames(CPIdata) = c("dateTime", "value") # extract CPI for(i in seq(from=1, to=length(jsonCPI))){ item = jsonCPI[[i]] CPIdata$dateTime[i] = item$dateTime CPIdata$value[i] = item$value } write.csv(CPIdata,"Documents/CPIdata.csv") ##2 ## GDP deflator jsonGDP = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/gdp%20growth%20rate") # generate empty data set GDPdata = data.frame(rep(0, length(jsonGDP))) GDPdata$value = c(0) colnames(GDPdata) = c("dateTime", "value") for(i in seq(from=1, to=length(jsonGDP))){ item = jsonGDP[[i]] GDPdata$dateTime[i] = item$dateTime GDPdata$value[i] = item$value } ## 3 ## Core Consumer Price jsonCCPI = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/core%20consumer%20prices") # generate empty data set CCPIdata = data.frame(rep(0, length(jsonCCPI))) CCPIdata$value = c(0) colnames(CCPIdata) = c("dateTime", "value") for(i in seq(from=1, to=length(jsonCCPI))){ item = jsonCCPI[[i]] CCPIdata$dateTime[i] = item$dateTime CCPIdata$value[i] = item$value } write.csv(CCPIdata,"Documents/CCPIdata.csv") ## 4 ## jsonPPI = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/producer%20prices") # generate empty data set PPIdata = data.frame(rep(0, length(jsonPPI))) PPIdata$value = c(0) colnames(PPIdata) = c("dateTime", "value") for(i in seq(from=1, to=length(jsonPPI))){ item = jsonPPI[[i]] PPIdata$dateTime[i] = item$dateTime PPIdata$value[i] = item$value } write.csv(PPIdata,"Documents/PPIdata.csv") ## 5 ## IPI Import Price jsonIPI = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/import%20prices") # generate empty data set IPIdata = data.frame(rep(0, length(jsonIPI))) IPIdata$value = c(0) colnames(IPIdata) = c("dateTime", "value") for(i in seq(from=1, to=length(jsonIPI))){ item = jsonIPI[[i]] IPIdata$dateTime[i] = item$dateTime IPIdata$value[i] = item$value } write.csv(IPIdata,"Documents/IPIdata.csv") ## 6 ## EPI Export Price jsonEPI = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/export%20prices") # generate empty data set EPIdata = data.frame(rep(0, length(jsonEPI))) EPIdata$value = c(0) colnames(EPIdata) = c("dateTime", "value") for(i in seq(from=1, to=length(jsonEPI))){ item = jsonEPI[[i]] EPIdata$dateTime[i] = item$dateTime EPIdata$value[i] = item$value } write.csv(EPIdata,"Documents/EPIdata.csv") ## 7 ## GDP Deflator jsonDef = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/gdp%20deflator") # generate empty data set Defdata = data.frame(rep(0, length(jsonDef))) Defdata$value = c(0) colnames(Defdata) = c("dateTime", "value") for(i in seq(from=1, to=length(jsonDef))){ item = jsonDef[[i]] Defdata$dateTime[i] = item$dateTime Defdata$value[i] = item$value } write.csv(CPIdata,"Documents/GDPdefdata.csv") ## 8 ## Inflation MoM jsonINFMOM = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/inflation%20rate%20mom") # generate empty data set INFMOMdata = data.frame(rep(0, length(jsonINFMOM))) INFMOMdata$value = c(0) colnames(INFMOMdata) = c("dateTime", "value") for(i in seq(from=1, to=length(jsonINFMOM))){ item = jsonINFMOM[[i]] INFMOMdata$dateTime[i] = item$dateTime INFMOMdata$value[i] = item$value } write.csv(INFMOMdata,"Documents/Inflationmom.csv") ## 9 ## Inflation Expectation jsonINFEXP = fromJSON(file = "http://markets.prod.services.amana.vpn/api/app/markets/tradingeconomics/historical/country/united%20states/indicator/inflation%20expectations") # generate empty data set INFEXPdata = data.frame(rep(0, length(jsonINFEXP))) INFEXPdata$value = c(0) colnames(INFEXPdata) = c("dateTime", "value") for(i in seq(from=1, to=length(jsonINFEXP))){ item = jsonINFEXP[[i]] INFEXPdata$dateTime[i] = item$dateTime INFEXPdata$value[i] = item$value } set<-data.frame(CPIdata$value,CCPIdata$value)
testlist <- list(testX = c(191493125665849920, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), trainX = structure(c(1.78844646178735e+212, 1.93075223605916e+156, 121373.193669204, 1.26689771433298e+26, 2.46020195254853e+129, 8.54794497535107e-83, 2.61907806894971e-213, 1.5105425626729e+200, 6.51877713351675e+25, 4.40467528702727e-93, 7.6427933587945, 34208333744.1307, 1.6400690920442e-111, 3.9769673154778e-304, 4.76127371594362e-307, 8.63819952335095e+122, 1.18662128550178e-59, 1128.83285802938, 3.80478583615452e-72, 1.21321365773924e-195, 9.69744674150153e-268, 8.98899319496613e+272, 7.63669788330223e+285, 3.85830749537493e+266, 2.65348875902107e+136, 8.14965241967603e+92, 2.59677146539475e-173, 1.55228780425777e-91, 8.25550184376779e+105, 1.18572662524891e+134, 1.04113208597565e+183, 1.01971211553913e-259, 1.23680594512923e-165, 5.24757023065221e+62, 3.41816623041351e-96 ), .Dim = c(5L, 7L))) result <- do.call(dann:::calc_distance_C,testlist) str(result)
/dann/inst/testfiles/calc_distance_C/AFL_calc_distance_C/calc_distance_C_valgrind_files/1609868190-test.R
no_license
akhikolla/updated-only-Issues
R
false
false
1,199
r
testlist <- list(testX = c(191493125665849920, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), trainX = structure(c(1.78844646178735e+212, 1.93075223605916e+156, 121373.193669204, 1.26689771433298e+26, 2.46020195254853e+129, 8.54794497535107e-83, 2.61907806894971e-213, 1.5105425626729e+200, 6.51877713351675e+25, 4.40467528702727e-93, 7.6427933587945, 34208333744.1307, 1.6400690920442e-111, 3.9769673154778e-304, 4.76127371594362e-307, 8.63819952335095e+122, 1.18662128550178e-59, 1128.83285802938, 3.80478583615452e-72, 1.21321365773924e-195, 9.69744674150153e-268, 8.98899319496613e+272, 7.63669788330223e+285, 3.85830749537493e+266, 2.65348875902107e+136, 8.14965241967603e+92, 2.59677146539475e-173, 1.55228780425777e-91, 8.25550184376779e+105, 1.18572662524891e+134, 1.04113208597565e+183, 1.01971211553913e-259, 1.23680594512923e-165, 5.24757023065221e+62, 3.41816623041351e-96 ), .Dim = c(5L, 7L))) result <- do.call(dann:::calc_distance_C,testlist) str(result)
#' @title sets the attributes for the X matrix #' @param R a p by p LD matrix #' @param expected_dim the expected dimension for R #' @param r_tol tolerance level for eigen value check of positive semidefinite matrix of R. #' @param z a p vector of z scores #' @return R with two attributes e.g. #' attr(R, 'det') is the determinant of R. It is 1 if R is not full rank. #' attr(R, 'ztRinvz') is t(z)R^{-1}z. We use pseudoinverse of R when R is not invertible. set_R_attributes = function(R, expected_dim, r_tol, z) { svdR <- svd(R) eigenvalues <- svdR$d eigenvalues[abs(eigenvalues) < r_tol] <- 0 if(all(eigenvalues > 0)){ attr(R, 'det') = prod(eigenvalues) }else{ attr(R, 'det') = 1 } if(!missing(z)){ Dinv = numeric(expected_dim) Dinv[eigenvalues != 0] = 1/(eigenvalues[eigenvalues!=0]) attr(R, 'ztRinvz') <- sum(z*(svdR$v %*% (Dinv * crossprod(svdR$u, z)))) } return(R) }
/R/set_R_attributes.R
permissive
KaiqianZhang/susieR
R
false
false
932
r
#' @title sets the attributes for the X matrix #' @param R a p by p LD matrix #' @param expected_dim the expected dimension for R #' @param r_tol tolerance level for eigen value check of positive semidefinite matrix of R. #' @param z a p vector of z scores #' @return R with two attributes e.g. #' attr(R, 'det') is the determinant of R. It is 1 if R is not full rank. #' attr(R, 'ztRinvz') is t(z)R^{-1}z. We use pseudoinverse of R when R is not invertible. set_R_attributes = function(R, expected_dim, r_tol, z) { svdR <- svd(R) eigenvalues <- svdR$d eigenvalues[abs(eigenvalues) < r_tol] <- 0 if(all(eigenvalues > 0)){ attr(R, 'det') = prod(eigenvalues) }else{ attr(R, 'det') = 1 } if(!missing(z)){ Dinv = numeric(expected_dim) Dinv[eigenvalues != 0] = 1/(eigenvalues[eigenvalues!=0]) attr(R, 'ztRinvz') <- sum(z*(svdR$v %*% (Dinv * crossprod(svdR$u, z)))) } return(R) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/polygons.R \name{dnldGADMCtryShpZip} \alias{dnldGADMCtryShpZip} \title{Download a country's polygon RDS files from \url{http://gadm.org}} \usage{ dnldGADMCtryShpZip(ctryCode, gadmVersion = pkgOptions("gadmVersion"), gadmPolyType = pkgOptions("gadmPolyType"), downloadMethod = pkgOptions("downloadMethod"), custPolyPath = NULL) } \arguments{ \item{ctryCode}{The ISO3 ctryCode of the country polygon to download} \item{gadmVersion}{The GADM version to use} \item{gadmPolyType}{The format of polygons to download from GADM} \item{downloadMethod}{The method used to download polygons} \item{custPolyPath}{Alternative to GADM. A path to a custom shapefile zip} } \value{ TRUE/FALSE Success/Failure of the download } \description{ Download a country's polygon RDS files from \url{http://gadm.org} and combine them into one RDS to match other polygon downloads } \examples{ \dontrun{ Rnightlights:::dnldCtryShpZip("KEN", "3.6", "shpZip") } }
/man/dnldGADMCtryShpZip.Rd
no_license
mjdhasan/Rnightlights
R
false
true
1,027
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/polygons.R \name{dnldGADMCtryShpZip} \alias{dnldGADMCtryShpZip} \title{Download a country's polygon RDS files from \url{http://gadm.org}} \usage{ dnldGADMCtryShpZip(ctryCode, gadmVersion = pkgOptions("gadmVersion"), gadmPolyType = pkgOptions("gadmPolyType"), downloadMethod = pkgOptions("downloadMethod"), custPolyPath = NULL) } \arguments{ \item{ctryCode}{The ISO3 ctryCode of the country polygon to download} \item{gadmVersion}{The GADM version to use} \item{gadmPolyType}{The format of polygons to download from GADM} \item{downloadMethod}{The method used to download polygons} \item{custPolyPath}{Alternative to GADM. A path to a custom shapefile zip} } \value{ TRUE/FALSE Success/Failure of the download } \description{ Download a country's polygon RDS files from \url{http://gadm.org} and combine them into one RDS to match other polygon downloads } \examples{ \dontrun{ Rnightlights:::dnldCtryShpZip("KEN", "3.6", "shpZip") } }
library(tidyverse) ## data science framework library(lubridate) ## for date/time manipulation ## time series packages library(xts) ## for creating ts object library(forecast) ## for fitting ts models
/TripAdvisor/tourism/lalibela - part 3 (Data Analysis)/time series analysis/functions/load_library.R
no_license
awash-analytics/Awash-Analytics-Media-RStudio
R
false
false
218
r
library(tidyverse) ## data science framework library(lubridate) ## for date/time manipulation ## time series packages library(xts) ## for creating ts object library(forecast) ## for fitting ts models
\name{writeEset} \alias{readEset} \alias{writeEset} \title{ Import and export an ExpressionSet object as tab-delimited files } \description{ Two functions, \code{writeEset} and \code{readEset}, import and export an \code{ExpressionSet} object as tab-delimited files respectively. See details below for advantages and limitations. } \usage{ writeEset(eset, exprs.file, fData.file, pData.file) readEset(exprs.file, fData.file, pData.file) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{eset}{Required for \code{writeEset}, an \code{ExpressionSet} object to be exported.} \item{exprs.file}{Required, character string, full name of the file containing the expression matrix.} \item{fData.file}{Optional, character string, full name of the file containing feature annotations. \code{NULL} is handled specially: it will cause no reading or writing of the feature annotation data.} \item{pData.file}{Optional, character string, full name of the file containing sample annotations. \code{NULL} is handled specially: it will cause no reading or writing of the sample annotation data.} } \details{ \code{readEset} and \code{writeEset} provide a lightweighted mechanism to import/export essential information from/to plain text files. They can use up to three tab-delimited files to store information of an \code{ExpressionSet} object: a file holding the expression matrix as returned by the \code{\link{exprs}} function (\code{exprs.file}), a file containing feature annotations as returned by the \code{\link{fData}} function (\code{fData.file}), and finally a file containing sample annotations, as returned by \code{pData} (\code{pData.file}). All three files are saved as tab-delimited, quoted plain files with both row and column names. They can be readily read in by the \code{read.table} function with default parameters. In both functions, \code{fData.file} and \code{pData.file} are optional. Leaving them missing or settign their values to \code{NULL} will prevent exporting/importing annotations. One limitation of these functions is that they only support the export/import of \strong{one} expression matrix from one \code{ExpressionSet}. Although an \code{ExpressionSet} can hold more than one matrices other than the one known as \code{exprs}, they are not handled now by \code{writeEset} or \code{readEset}. If such an \code{ExprssionSet} object is first written in plain files, and then read back as an \code{ExpressionSet}, matrices other than the one accessible by \code{exprs} will be discarded. Similarly, other pieces of information saved in an \code{ExpressionSet}, e.g. annotations or experimental data, are lost as well after a cycle of exporting and subsequent importing. If keeping these information is important for you, other functions should be considered instead of \code{readEset} and \code{writeEset}, for instance to save an image in a binary file with the \code{\link{save}} function. } \value{ \code{readEset} returns an \code{ExpressionSet} object from plain files. \code{writeEset} is used for its side effects (writing files). } \author{ Jitao David Zhang <jitao_david.zhang@roche.com> } \note{ \code{readEset} will stop if the fData.file or pData.file does not look like a valid annotation file, by checking they have the same dimension as suggested by the expression matrix, and matching the feature/sample names with those stored in the expression matrix file. } \seealso{ See \code{\link{readGctCls}} and \code{\link{writeGctCls}} for importing/exporting functions for files in gct/cls formats. } \examples{ sysdir <- system.file("extdata", package="ribiosExpression") sysexp <- file.path(sysdir, "sample_eset_exprs.txt") sysfd <- file.path(sysdir, "sample_eset_fdata.txt") syspd <- file.path(sysdir, "sample_eset_pdata.txt") sys.eset <- readEset(exprs.file=sysexp, fData.file=sysfd, pData.file=syspd) sys.eset }
/ribiosExpression/man/writeEset.Rd
no_license
grst/ribios
R
false
false
4,039
rd
\name{writeEset} \alias{readEset} \alias{writeEset} \title{ Import and export an ExpressionSet object as tab-delimited files } \description{ Two functions, \code{writeEset} and \code{readEset}, import and export an \code{ExpressionSet} object as tab-delimited files respectively. See details below for advantages and limitations. } \usage{ writeEset(eset, exprs.file, fData.file, pData.file) readEset(exprs.file, fData.file, pData.file) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{eset}{Required for \code{writeEset}, an \code{ExpressionSet} object to be exported.} \item{exprs.file}{Required, character string, full name of the file containing the expression matrix.} \item{fData.file}{Optional, character string, full name of the file containing feature annotations. \code{NULL} is handled specially: it will cause no reading or writing of the feature annotation data.} \item{pData.file}{Optional, character string, full name of the file containing sample annotations. \code{NULL} is handled specially: it will cause no reading or writing of the sample annotation data.} } \details{ \code{readEset} and \code{writeEset} provide a lightweighted mechanism to import/export essential information from/to plain text files. They can use up to three tab-delimited files to store information of an \code{ExpressionSet} object: a file holding the expression matrix as returned by the \code{\link{exprs}} function (\code{exprs.file}), a file containing feature annotations as returned by the \code{\link{fData}} function (\code{fData.file}), and finally a file containing sample annotations, as returned by \code{pData} (\code{pData.file}). All three files are saved as tab-delimited, quoted plain files with both row and column names. They can be readily read in by the \code{read.table} function with default parameters. In both functions, \code{fData.file} and \code{pData.file} are optional. Leaving them missing or settign their values to \code{NULL} will prevent exporting/importing annotations. One limitation of these functions is that they only support the export/import of \strong{one} expression matrix from one \code{ExpressionSet}. Although an \code{ExpressionSet} can hold more than one matrices other than the one known as \code{exprs}, they are not handled now by \code{writeEset} or \code{readEset}. If such an \code{ExprssionSet} object is first written in plain files, and then read back as an \code{ExpressionSet}, matrices other than the one accessible by \code{exprs} will be discarded. Similarly, other pieces of information saved in an \code{ExpressionSet}, e.g. annotations or experimental data, are lost as well after a cycle of exporting and subsequent importing. If keeping these information is important for you, other functions should be considered instead of \code{readEset} and \code{writeEset}, for instance to save an image in a binary file with the \code{\link{save}} function. } \value{ \code{readEset} returns an \code{ExpressionSet} object from plain files. \code{writeEset} is used for its side effects (writing files). } \author{ Jitao David Zhang <jitao_david.zhang@roche.com> } \note{ \code{readEset} will stop if the fData.file or pData.file does not look like a valid annotation file, by checking they have the same dimension as suggested by the expression matrix, and matching the feature/sample names with those stored in the expression matrix file. } \seealso{ See \code{\link{readGctCls}} and \code{\link{writeGctCls}} for importing/exporting functions for files in gct/cls formats. } \examples{ sysdir <- system.file("extdata", package="ribiosExpression") sysexp <- file.path(sysdir, "sample_eset_exprs.txt") sysfd <- file.path(sysdir, "sample_eset_fdata.txt") syspd <- file.path(sysdir, "sample_eset_pdata.txt") sys.eset <- readEset(exprs.file=sysexp, fData.file=sysfd, pData.file=syspd) sys.eset }