content
large_stringlengths
0
6.46M
path
large_stringlengths
3
331
license_type
large_stringclasses
2 values
repo_name
large_stringlengths
5
125
language
large_stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.46M
extension
large_stringclasses
75 values
text
stringlengths
0
6.46M
# setup ------------------------------------------------------------------- # library(data.table) library(tidyverse) library(readxl) # library(lubridate) library(labelled) # data loading ------------------------------------------------------------ set.seed(42) data.raw <- tibble(id=gl(2, 10), group = gl(2, 10), outcome = rnorm(20)) # data.raw <- read_excel("dataset/file.xlsx") %>% # janitor::clean_names() # data cleaning ----------------------------------------------------------- # data.raw <- data.raw %>% # filter() %>% # select() # data wrangling ---------------------------------------------------------- # data.raw <- data.raw %>% # mutate( # # ) # labels ------------------------------------------------------------------ data.raw <- data.raw %>% set_variable_labels( group = "Study group", outcome = "Study outcome", ) # analytical dataset ------------------------------------------------------ analytical <- data.raw %>% # select analytic variables select( id, group, outcome, ) # mockup of analytical dataset for SAP and public SAR analytical_mockup <- tibble( id = c( "1", "2", "3", "...", as.character(nrow(analytical)) ) ) %>% left_join(analytical %>% head(0), by = "id") %>% mutate_all(as.character) %>% replace(is.na(.), "")
/scripts/input.R
no_license
philsf-biostat/SAR-2021-013-VB
R
false
false
1,301
r
# setup ------------------------------------------------------------------- # library(data.table) library(tidyverse) library(readxl) # library(lubridate) library(labelled) # data loading ------------------------------------------------------------ set.seed(42) data.raw <- tibble(id=gl(2, 10), group = gl(2, 10), outcome = rnorm(20)) # data.raw <- read_excel("dataset/file.xlsx") %>% # janitor::clean_names() # data cleaning ----------------------------------------------------------- # data.raw <- data.raw %>% # filter() %>% # select() # data wrangling ---------------------------------------------------------- # data.raw <- data.raw %>% # mutate( # # ) # labels ------------------------------------------------------------------ data.raw <- data.raw %>% set_variable_labels( group = "Study group", outcome = "Study outcome", ) # analytical dataset ------------------------------------------------------ analytical <- data.raw %>% # select analytic variables select( id, group, outcome, ) # mockup of analytical dataset for SAP and public SAR analytical_mockup <- tibble( id = c( "1", "2", "3", "...", as.character(nrow(analytical)) ) ) %>% left_join(analytical %>% head(0), by = "id") %>% mutate_all(as.character) %>% replace(is.na(.), "")
library(RPostgreSQL) library(dplyr) library(dbplyr) #Uvoz: source("auth.R", encoding="UTF-8") source("uvoz in urejanje podatkov/tabela.R", encoding="UTF-8") # Povezemo se z gonilnikom za PostgreSQL drv <- dbDriver("PostgreSQL") # Funkcija za brisanje tabel delete_table <- function(){ # Uporabimo funkcijo tryCatch, # da prisilimo prekinitev povezave v primeru napake tryCatch({ # Vzpostavimo povezavo z bazo conn <- dbConnect(drv, dbname = db, host = host, user = user, password = password) # Če tabela obstaja, jo zbrišemo, ter najprej zbrišemo tiste, # ki se navezujejo na druge dbSendQuery(conn,build_sql("DROP TABLE IF EXISTS driver CASCADE")) dbSendQuery(conn,build_sql("DROP TABLE IF EXISTS team CASCADE")) dbSendQuery(conn,build_sql("DROP TABLE IF EXISTS results")) dbSendQuery(conn,build_sql("DROP TABLE IF EXISTS grand_prix CASCADE")) dbSendQuery(conn,build_sql("DROP TABLE IF EXISTS has")) }, finally = { dbDisconnect(conn) }) } pravice <- function(){ # Uporabimo tryCatch,(da se povežemo in bazo in odvežemo) # da prisilimo prekinitev povezave v primeru napake tryCatch({ # Vzpostavimo povezavo conn <- dbConnect(drv, dbname = db, host = host,#drv=s čim se povezujemo user = user, password = password) dbSendQuery(conn, build_sql("GRANT CONNECT ON DATABASE sem2017_jurez TO urosk WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT CONNECT ON DATABASE sem2017_jurez TO domenh WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT SELECT ON ALL TABLES IN SCHEMA public TO urosk")) dbSendQuery(conn, build_sql("GRANT SELECT ON ALL TABLES IN SCHEMA public TO domenh")) dbSendQuery(conn, build_sql("GRANT ALL ON SCHEMA public TO urosk WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT ALL ON SCHEMA public TO domenh WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT CONNECT ON DATABASE sem2017_jurez TO javnost")) }, finally = { # Na koncu nujno prekinemo povezavo z bazo, # saj preveč odprtih povezav ne smemo imeti dbDisconnect(conn) #PREKINEMO POVEZAVO # Koda v finally bloku se izvede, preden program konča z napako }) } #Funkcija, ki ustvari tabele create_table <- function(){ # Uporabimo tryCatch,(da se povežemo in bazo in odvežemo) # da prisilimo prekinitev povezave v primeru napake tryCatch({ # Vzpostavimo povezavo conn <- dbConnect(drv, dbname = db, host = host,#drv=s čim se povezujemo user = user, password = password) #Glavne tabele team <- dbSendQuery(conn,build_sql("CREATE TABLE team ( id INTEGER PRIMARY KEY, team_name TEXT NOT NULL UNIQUE, country TEXT NOT NULL, constructor TEXT NOT NULL, chassis VARCHAR(13) NOT NULL UNIQUE, power_unit VARCHAR(22) NOT NULL)")) driver <- dbSendQuery(conn,build_sql("CREATE TABLE driver ( name TEXT NOT NULL, surname TEXT NOT NULL, car_number INTEGER PRIMARY KEY, age INTEGER NOT NULL, height INTEGER NOT NULL, weight INTEGER NOT NULL, country TEXT NOT NULL )")) grand_prix <- dbSendQuery(conn,build_sql("CREATE TABLE grand_prix ( round INTEGER PRIMARY KEY, official_name TEXT NOT NULL UNIQUE, name TEXT NOT NULL, circuit_name TEXT NOT NULL, date DATE NOT NULL, circuit_length DECIMAL NOT NULL, laps INTEGER NOT NULL)")) has <- dbSendQuery(conn,build_sql("CREATE TABLE has ( team INTEGER NOT NULL REFERENCES team(id), driver INTEGER NOT NULL REFERENCES driver(car_number), first INTEGER NOT NULL REFERENCES grand_prix(round), last INTEGER NOT NULL REFERENCES grand_prix(round), PRIMARY KEY (team,driver))")) results <- dbSendQuery(conn,build_sql("CREATE TABLE results ( position INTEGER, car_number INTEGER REFERENCES driver(car_number), laps INTEGER, time INTERVAL, points INTEGER, grand_prix INTEGER REFERENCES grand_prix(round), start_position INTEGER NOT NULL)")) dbSendQuery(conn, build_sql("GRANT ALL ON ALL TABLES IN SCHEMA public TO jurez WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT ALL ON ALL TABLES IN SCHEMA public TO urosk WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT ALL ON ALL TABLES IN SCHEMA public TO domenh WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT ALL ON ALL SEQUENCES IN SCHEMA public TO jurez WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT ALL ON ALL SEQUENCES IN SCHEMA public TO urosk WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT ALL ON ALL SEQUENCES IN SCHEMA public TO domenh WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT SELECT ON ALL TABLES IN SCHEMA public TO javnost")) }, finally = { # Na koncu nujno prekinemo povezavo z bazo, # saj preveč odprtih povezav ne smemo imeti dbDisconnect(conn) #PREKINEMO POVEZAVO # Koda v finally bloku se izvede, preden program konča z napako }) } #Funcija, ki vstavi podatke insert_data <- function(){ tryCatch({ conn <- dbConnect(drv, dbname = db, host = host, user = user, password = password) dbWriteTable(conn, name="driver", tabeladirkacev, append=T, row.names=FALSE) dbWriteTable(conn, name="team", tabelaekip, append=T, row.names=FALSE) dbWriteTable(conn, name="grand_prix", tabelaGrandPrix16, append=T, row.names=FALSE) dbWriteTable(conn, name="results", ultimatetabela, append=T, row.names=FALSE) dbWriteTable(conn, name="has", data.has, append=T, row.names=FALSE) }, finally = { dbDisconnect(conn) }) } delete_table() pravice() create_table() insert_data() con <- src_postgres(dbname = db, host = host, user = user, password = password)
/baza/baza.r
permissive
UrosKrampelj/Formula-1
R
false
false
7,037
r
library(RPostgreSQL) library(dplyr) library(dbplyr) #Uvoz: source("auth.R", encoding="UTF-8") source("uvoz in urejanje podatkov/tabela.R", encoding="UTF-8") # Povezemo se z gonilnikom za PostgreSQL drv <- dbDriver("PostgreSQL") # Funkcija za brisanje tabel delete_table <- function(){ # Uporabimo funkcijo tryCatch, # da prisilimo prekinitev povezave v primeru napake tryCatch({ # Vzpostavimo povezavo z bazo conn <- dbConnect(drv, dbname = db, host = host, user = user, password = password) # Če tabela obstaja, jo zbrišemo, ter najprej zbrišemo tiste, # ki se navezujejo na druge dbSendQuery(conn,build_sql("DROP TABLE IF EXISTS driver CASCADE")) dbSendQuery(conn,build_sql("DROP TABLE IF EXISTS team CASCADE")) dbSendQuery(conn,build_sql("DROP TABLE IF EXISTS results")) dbSendQuery(conn,build_sql("DROP TABLE IF EXISTS grand_prix CASCADE")) dbSendQuery(conn,build_sql("DROP TABLE IF EXISTS has")) }, finally = { dbDisconnect(conn) }) } pravice <- function(){ # Uporabimo tryCatch,(da se povežemo in bazo in odvežemo) # da prisilimo prekinitev povezave v primeru napake tryCatch({ # Vzpostavimo povezavo conn <- dbConnect(drv, dbname = db, host = host,#drv=s čim se povezujemo user = user, password = password) dbSendQuery(conn, build_sql("GRANT CONNECT ON DATABASE sem2017_jurez TO urosk WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT CONNECT ON DATABASE sem2017_jurez TO domenh WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT SELECT ON ALL TABLES IN SCHEMA public TO urosk")) dbSendQuery(conn, build_sql("GRANT SELECT ON ALL TABLES IN SCHEMA public TO domenh")) dbSendQuery(conn, build_sql("GRANT ALL ON SCHEMA public TO urosk WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT ALL ON SCHEMA public TO domenh WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT CONNECT ON DATABASE sem2017_jurez TO javnost")) }, finally = { # Na koncu nujno prekinemo povezavo z bazo, # saj preveč odprtih povezav ne smemo imeti dbDisconnect(conn) #PREKINEMO POVEZAVO # Koda v finally bloku se izvede, preden program konča z napako }) } #Funkcija, ki ustvari tabele create_table <- function(){ # Uporabimo tryCatch,(da se povežemo in bazo in odvežemo) # da prisilimo prekinitev povezave v primeru napake tryCatch({ # Vzpostavimo povezavo conn <- dbConnect(drv, dbname = db, host = host,#drv=s čim se povezujemo user = user, password = password) #Glavne tabele team <- dbSendQuery(conn,build_sql("CREATE TABLE team ( id INTEGER PRIMARY KEY, team_name TEXT NOT NULL UNIQUE, country TEXT NOT NULL, constructor TEXT NOT NULL, chassis VARCHAR(13) NOT NULL UNIQUE, power_unit VARCHAR(22) NOT NULL)")) driver <- dbSendQuery(conn,build_sql("CREATE TABLE driver ( name TEXT NOT NULL, surname TEXT NOT NULL, car_number INTEGER PRIMARY KEY, age INTEGER NOT NULL, height INTEGER NOT NULL, weight INTEGER NOT NULL, country TEXT NOT NULL )")) grand_prix <- dbSendQuery(conn,build_sql("CREATE TABLE grand_prix ( round INTEGER PRIMARY KEY, official_name TEXT NOT NULL UNIQUE, name TEXT NOT NULL, circuit_name TEXT NOT NULL, date DATE NOT NULL, circuit_length DECIMAL NOT NULL, laps INTEGER NOT NULL)")) has <- dbSendQuery(conn,build_sql("CREATE TABLE has ( team INTEGER NOT NULL REFERENCES team(id), driver INTEGER NOT NULL REFERENCES driver(car_number), first INTEGER NOT NULL REFERENCES grand_prix(round), last INTEGER NOT NULL REFERENCES grand_prix(round), PRIMARY KEY (team,driver))")) results <- dbSendQuery(conn,build_sql("CREATE TABLE results ( position INTEGER, car_number INTEGER REFERENCES driver(car_number), laps INTEGER, time INTERVAL, points INTEGER, grand_prix INTEGER REFERENCES grand_prix(round), start_position INTEGER NOT NULL)")) dbSendQuery(conn, build_sql("GRANT ALL ON ALL TABLES IN SCHEMA public TO jurez WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT ALL ON ALL TABLES IN SCHEMA public TO urosk WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT ALL ON ALL TABLES IN SCHEMA public TO domenh WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT ALL ON ALL SEQUENCES IN SCHEMA public TO jurez WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT ALL ON ALL SEQUENCES IN SCHEMA public TO urosk WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT ALL ON ALL SEQUENCES IN SCHEMA public TO domenh WITH GRANT OPTION")) dbSendQuery(conn, build_sql("GRANT SELECT ON ALL TABLES IN SCHEMA public TO javnost")) }, finally = { # Na koncu nujno prekinemo povezavo z bazo, # saj preveč odprtih povezav ne smemo imeti dbDisconnect(conn) #PREKINEMO POVEZAVO # Koda v finally bloku se izvede, preden program konča z napako }) } #Funcija, ki vstavi podatke insert_data <- function(){ tryCatch({ conn <- dbConnect(drv, dbname = db, host = host, user = user, password = password) dbWriteTable(conn, name="driver", tabeladirkacev, append=T, row.names=FALSE) dbWriteTable(conn, name="team", tabelaekip, append=T, row.names=FALSE) dbWriteTable(conn, name="grand_prix", tabelaGrandPrix16, append=T, row.names=FALSE) dbWriteTable(conn, name="results", ultimatetabela, append=T, row.names=FALSE) dbWriteTable(conn, name="has", data.has, append=T, row.names=FALSE) }, finally = { dbDisconnect(conn) }) } delete_table() pravice() create_table() insert_data() con <- src_postgres(dbname = db, host = host, user = user, password = password)
/plot1.R
no_license
molinerojo/ExData_Plotting1
R
false
false
4,659
r
print.summary.rfit <- function (x, digits = max(5, .Options$digits - 2), ...) { cat("Call:\n") print(x$call) cat("\nCoefficients:\n") est <- x$coef printCoefmat(x$coefficients, P.values = TRUE, has.Pvalue = TRUE) cat("\nMultiple R-squared (Robust):", x$R2, "\n") cat("Reduction in Dispersion Test:", round(x$dropstat, digits = digits), "p-value:", round(x$droppval, digits = digits), "\n") cat("\n") }
/Rfit/R/print.summary.rfit.R
no_license
ingted/R-Examples
R
false
false
443
r
print.summary.rfit <- function (x, digits = max(5, .Options$digits - 2), ...) { cat("Call:\n") print(x$call) cat("\nCoefficients:\n") est <- x$coef printCoefmat(x$coefficients, P.values = TRUE, has.Pvalue = TRUE) cat("\nMultiple R-squared (Robust):", x$R2, "\n") cat("Reduction in Dispersion Test:", round(x$dropstat, digits = digits), "p-value:", round(x$droppval, digits = digits), "\n") cat("\n") }
options(repos = c(CRAN = "http://cran.rstudio.com")) if (!require(devtools)){ install.packages("devtools", dependencies = TRUE) } if (!require(dplyr)){ install.packages("dplyr", dependencies = TRUE) } if (!require(ggplot2)){ install.packages("ggplot2", dependencies = TRUE) } if (!require(readxl)){ install.packages("readxl", dependencies = TRUE) } if (!require(pwr)){ install.packages("pwr", dependencies = TRUE) } if (!require(effsize)){ install.packages("effsize", dependencies = TRUE) } if (!require(gmodels)){ install.packages("gmodels", dependencies = TRUE) } if (!require(coin)){ install.packages("coin", dependencies = TRUE) } if (!require(gdata)){ install.packages("gdata", dependencies = TRUE) } if (!require(Hmisc)){ install.packages("Hmisc", dependencies = TRUE) require(Hmisc) }
/install.r
no_license
mochodek/qmese
R
false
false
837
r
options(repos = c(CRAN = "http://cran.rstudio.com")) if (!require(devtools)){ install.packages("devtools", dependencies = TRUE) } if (!require(dplyr)){ install.packages("dplyr", dependencies = TRUE) } if (!require(ggplot2)){ install.packages("ggplot2", dependencies = TRUE) } if (!require(readxl)){ install.packages("readxl", dependencies = TRUE) } if (!require(pwr)){ install.packages("pwr", dependencies = TRUE) } if (!require(effsize)){ install.packages("effsize", dependencies = TRUE) } if (!require(gmodels)){ install.packages("gmodels", dependencies = TRUE) } if (!require(coin)){ install.packages("coin", dependencies = TRUE) } if (!require(gdata)){ install.packages("gdata", dependencies = TRUE) } if (!require(Hmisc)){ install.packages("Hmisc", dependencies = TRUE) require(Hmisc) }
library(ape) testtree <- read.tree("2957_28.txt") unrooted_tr <- unroot(testtree) write.tree(unrooted_tr, file="2957_28_unrooted.txt")
/codeml_files/newick_trees_processed/2957_28/rinput.R
no_license
DaniBoo/cyanobacteria_project
R
false
false
137
r
library(ape) testtree <- read.tree("2957_28.txt") unrooted_tr <- unroot(testtree) write.tree(unrooted_tr, file="2957_28_unrooted.txt")
data("Train", package="mlogit") Train$ID <- Train$id Train$CHOICE <- as.numeric(Train$choice) generate_default_availabilities(Train, 5)
/R/examples/generate_default_availabilities.R
no_license
joemolloy/fast-mixed-mnl
R
false
false
135
r
data("Train", package="mlogit") Train$ID <- Train$id Train$CHOICE <- as.numeric(Train$choice) generate_default_availabilities(Train, 5)
packages.used=c("shiny","ggmap","leaflet","dplyr","shinyBS","plotly","extrafont","grDevices","shinyjs") # check packages that need to be installed. packages.needed=setdiff(packages.used,intersect(installed.packages()[,1],packages.used)) # install additional packages if(length(packages.needed)>0){ install.packages(packages.needed, dependencies = TRUE) } library(shiny) library(ggmap) library(leaflet) library(dplyr) library(shinyBS) library(plotly) library(extrafont) library(grDevices) library(shinyjs) #Read in files college.filtered = readRDS("../data/school.select.rds") college = readRDS("../data/College2014_15_new.rds") #Support data frames major = c("Agriculture, Agriculture Operations, And Related Sciences","Natural Resources And Conservation", "Architecture And Related Services","Area, Ethnic, Cultural, Gender, And Group Studies"," Communication, Journalism, And Related Programs","Communications Technologies/Technicians And Support Services","Computer And Information Sciences And Support Services","Personal And Culinary Services"," Education","Engineering","Engineering Technologies And Engineering-Related Fields","Foreign Languages, Literatures, And Linguistics"," Family And Consumer Sciences/Human Sciences","Legal Professions And Studies","English Language And Literature/Letters","Liberal Arts And Sciences, General Studies And Humanities","Library Science"," Biological And Biomedical Sciences","Mathematics And Statistics","Military Technologies And Applied Sciences","Multi/Interdisciplinary Studies","Parks, Recreation, Leisure, And Fitness Studies","Philosophy And Religious Studies","Theology And Religious Vocations"," Physical Sciences"," Science Technologies/Technicians"," Psychology"," Homeland Security, Law Enforcement, Firefighting And Related Protective Services","Public Administration And Social Service Professions","Social Sciences","Construction Trades","Mechanic And Repair Technologies/Technicians","Precision Production","Transportation And Materials Moving","Visual And Performing Arts","Health Professions And Related Programs","Business, Management, Marketing, And Related Support Services","History") major.index =c("PCIP01","PCIP03","PCIP04","PCIP05","PCIP09","PCIP10","PCIP11","PCIP12","PCIP13","PCIP14","PCIP15","PCIP16","PCIP19","PCIP22","PCIP23","PCIP24","PCIP25","PCIP26","PCIP27","PCIP29","PCIP30","PCIP31","PCIP38","PCIP39","PCIP40","PCIP41","PCIP42","PCIP43","PCIP44","PCIP45","PCIP46","PCIP47","PCIP48","PCIP49","PCIP50","PCIP51","PCIP52","PCIP54") major.frame = data.frame(major = major, index = major.index) shinyUI(fluidPage( div(id="canvas", navbarPage(strong("NY School Hunter ",style="color: white;"), theme="style.css", tabPanel(strong(tags$i("Map")), div(class="outer", # lealfet map uiOutput("map"), absolutePanel(id = "controls", class = "panel panel-default", fixed = TRUE, draggable = TRUE, top = 100, left = 5, bottom = "auto", width = "auto", height = "auto", cursor = "move", wellPanel(style = "overflow-y:scroll; max-height: 600px", bsCollapse(id="collapse.filter",open="Filter", bsCollapsePanel(tags$strong("Filter"),style="primary", fluidRow(column(12,checkboxGroupInput("filter","Filtered By...",choices=list("Scores","Major","Tuition","None"),selected="None",inline = TRUE))), fluidRow(column(10,uiOutput("ui.filter")))), bsCollapsePanel(tags$strong("Filter Options"),style = "primary", bsCollapsePanel(tags$strong("Major"),style="info", fluidRow(column(10,selectInput("major",tags$strong("Your Major"),choices = c(major),selected = "")) ) ), bsCollapsePanel(tags$strong("SAT"),style="info", fluidRow(column(4,numericInput("sat.reading",tags$strong("Read"),value=800,min=0,max=800,step=10)), column(4,numericInput("sat.math",tags$strong("Math"),value=800,min=0,max=800,step=10),offset = 0), column(4,numericInput("sat.writing",tags$strong("Write"),value=800,min=20,max=800,step=10),offset = 0) ) ), bsCollapsePanel(tags$strong("ACT"),style="info", fluidRow(column(10,numericInput("score.act",tags$strong("Cumulative Scores"),value=36,min=0,max=36,step=1)) ) ), bsCollapsePanel(tags$strong("Tuition"),style="info", fluidRow( column(10,numericInput("max",tags$strong("Max Tution"),min = 0, max = 90000, value = 10000))), fluidRow(column(10, offset = 1,radioButtons("location",tags$strong("Tuition Options"),choices = list("State Resident", "Non-State Resident"),selected = "State Resident", inline = FALSE)) ) ) ) ), bsCollapsePanel(tags$strong("Map Options"),style="primary", fluidRow(column(10,selectInput("Focus",tags$strong("Area of Focus"),choices = c("New York State","New York City","Western New York","Finger Lakes","Southern Tier","Central New York","North Country","Mohawk Valley","Capital District","Hudson Valley","Long Island"), selected = "New York Sate")) ), fluidRow(column(12,radioButtons("output.cluster",tags$strong("Classification Options"),choices=list("Degree","Length","Transfer Rate","Type"),selected = "Degree",inline=TRUE))) ), actionButton("search", tags$strong("Searching!")) )#WellPanel ends here ), absolutePanel(class = "panel panel-default", fixed = TRUE, draggable = TRUE, top = 50, right = 0, bottom = "auto", width = 450, height = 30, cursor = "move", bsCollapsePanel(tags$strong("Classification Map"),style = "primary", leafletOutput('myMap_1', width = "102%", height = 450) )#Collapse panel ends here ) ) ,div(class="footer", "Applied Data Science Group 4") ), #Comparison tabPanel(strong(tags$i("Comparision!")), ###########################################TEAM 2 IMPLEMENTATION STARTS########################################################## wellPanel(id = "tPanel",style = "overflow-y:scroll; max-height: 600px", tags$hr(style="border-color: #6088B1;"), h1("Side-by-Side Two School Comparison",align= "center",style = "color: #333333; font-family: Times; font-size:50pt"), tags$hr(style="border-color: #6088B1;"), fluidRow(align="center",splitLayout(cellWidths = c("50%","50%"), uiOutput("ui.1"), uiOutput("ui.2") ) ), br(),br(), fluidRow(align="center",splitLayout(cellWidths = c("50%","50%"), imageOutput("logo1",height = "400", width = "400"),imageOutput("logo2",height = "400", width = "400") )), br(), # ==== Title in Orange fluidRow(align="center", style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;", column(6,offset=3, br(),hr(style="color:#808080"), helpText( strong("Basic Information" , style="color:#6088B1 ; font-family: 'times'; font-size:30pt ; font-type:bold" )) , hr(style="color:#808080") )), # === Some text to explain the Figure: br(), # === display instnm fluidRow(align = "center",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=2,offset=1,"Institution Name: ")),textOutput("instnm1")), fluidRow(strong(column(width=2,offset=1,"Institution Name: ")),textOutput("instnm2"))) ),br(), # === display city fluidRow(align = "justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=2,offset=1,"City: ")),textOutput("city1")), fluidRow(strong(column(width=2,offset=1,"City: ")),textOutput("city2"))) ),br(), # === display clevel fluidRow(align = "justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=4,offset=1,"Level of Institution: ")),textOutput("iclevel1")), fluidRow(strong(column(width=4,offset=1,"Level of Institution: ")),textOutput("iclevel2"))) ),br(), # === display control fluidRow(align="justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=4,offset=1,"Control of Institution: ")),textOutput("control1")), fluidRow(strong(column(width=4,offset=1,"Control of Institution: ")),textOutput("control2"))) ),br(), # === display highest degree fluidRow(align="justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=3,offset=1,"Highest Degree: ")),textOutput("highdeg1")), fluidRow(strong(column(width=3,offset=1,"Highest Degree: ")),textOutput("highdeg2"))) ),br(), # === display locale fluidRow(align="justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=2,offset=1,"Locale: ")),textOutput("locale1")), fluidRow(strong(column(width=2,offset=1,"Locale: ")),textOutput("locale2"))) ),br(), # === display admission rate fluidRow(align="justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=4,offset=1,"Admission Rate: ")),textOutput("adm_rate1")), fluidRow(strong(column(width=4,offset=1,"Admission Rate: ")),textOutput("adm_rate2"))) ),br(), # === display in-state tuition fluidRow(align="justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=4,offset=1,"In-State Tuition: ")),textOutput("tuitionfee_in1")), fluidRow(strong(column(width=4,offset=1,"In-State Tuition: ")),textOutput("tuitionfee_in2"))) ),br(), # === display out-of-state tuition fluidRow(align="justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=4,offset=1,"Out-of-State Tuition: ")),textOutput("tuitionfee_out1")), fluidRow(strong(column(width=4,offset=1,"Out-of-State Tuition: ")),textOutput("tuitionfee_out2"))) ),br(), # === display percentage of federal loans fluidRow(align="center",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=7,offset=1,"Percentage of Students Receiving Federal Loans: ")), textOutput("pctfloan1")), fluidRow(strong(column(width=7,offset=1,"Percentage of Students Receiving Federal Loans: ")), textOutput("pctfloan2"))) ),br(), # === display total Undergraduates Seeking Degrees fluidRow(align="center",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=5,offset=1,"Total Undergraduates Seeking Degrees: ")), textOutput("ugds1")), fluidRow(strong(column(width=5,offset=1,"Total Undergraduates Seeking Degrees: ")), textOutput("ugds2"))) ), br(), br(), fluidRow(align="center", style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;", column(6,offset=3, br(),hr(style="color:#808080"), helpText( strong("Calculate Median Debt by Family Income" , style="color:#6088B1 ; font-family: 'times'; font-size:30pt ; font-type:bold" )) , hr(style="color:#808080") )), br(), # === display sliderInput for family income fluidRow(align="center",sliderInput("fincome","Family Income: ", min=0,max=200000,value=0,width = 600) ),br(), # === display median debt based on family income input fluidRow(align="justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(column(width=7,offset=1,textOutput("school1")), strong(column(width=7,offset = 1,"Median Debt based on Family Income : ")),br(), textOutput("debt1")), fluidRow(column(width=7,offset=1,textOutput("school2")), strong(column(width=7,offset=1,"Median Debt based on Family Income: ")),br(), textOutput("debt2"))) ), br(), br(), fluidRow(align="center", style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;", column(6,offset=3, br(),hr(style="color:#808080"), helpText( strong("SAT & ACT Scores" , style="color:#6088B1 ; font-family: 'times'; font-size:30pt ; font-type:bold" )) , helpText( strong("25th-75th Percentile" , style="color:#6088B1 ; font-family: 'times'; font-size:20pt ; font-type:bold" )), hr(style="color:#808080") )), br(), fluidRow(align="center",splitLayout(cellWidths = c("50%","50%"), textOutput("school1.2"), textOutput("school2.2")) ), fluidRow(align="center",splitLayout(cellWidths = c("50%","50%"), tableOutput("sat1"), tableOutput("sat2")) ),br(), fluidRow(align="center",splitLayout(cellWidths = c("50%","50%"), tableOutput("act1"), tableOutput("act2")) ), br(), br(), fluidRow(align="center", style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;", column(6,offset=3, br(), hr(style="color:#808080"), helpText( strong("Demographics of Students" , style="color: #6088B1 ; font-family: 'times'; font-size:30pt ; font-type:bold" )) , hr(style="color:#808080") )), br(), # === Bar with corresponding widget fluidRow(align="center",column(4,h2("Major Diversity", style="color:#4C4C4C ; font-family: Times"), tags$hr(style="border-color: #6088B1;")),br()), fluidRow(align="center", splitLayout(cellWidths = c("50%","50%"), plotlyOutput("my_barplot1" , height = "500px"), plotlyOutput("my_barplot2" , height = "500px") ) ),br(),br(), # === pie chart of ethnicity fluidRow(align="center",column(8,h2("Degree-Seeking Undergraduates by Ethnicity", style="color:#4C4C4C ; font-family: Times"), tags$hr(style="border-color: #6088B1;")),br()), fluidRow(align="center", splitLayout(cellWidths = c("50%","50%"), plotlyOutput("demographics1",height="550"), plotlyOutput("demographics2",height="550")) ),br(), fluidRow(align="center",column(8,h2("Degree-Seeking Undergraduates by Gender", style="color:#4C4C4C ; font-family: Times"), tags$hr(style="border-color: #6088B1;")),br()), fluidRow(align="center", splitLayout(cellWidths = c("50%","50%"), plotlyOutput("female1",height="450"), plotlyOutput("female2",height="450") )) ############################################TEAM 2 IMPLEMENTATION ENDS############################################################ ) ),#Comparison ends here #Data presentation #Introduction tabPanel(strong(tags$i("About us")), mainPanel(width=12, h1("Project: NY School Hunter - A Shiny App Development"), h3("Background"), p("Our project takes all available data on colleges and universities in New York State and creates a useful shiny app that allows users to explore and compare schools based on user-specific filtering criteria. The purpose of our design is to provide users with a bird's eye view of New York colleges and universities; allow them to filter, search, and group schools by their preferred criteria; and further compare two schools on a more micro level."),#Our motivation h3("Project summary"), p("A distinguishing feature of our app is the map search function - users can see all the specified schools on the map (normal map view or satellite map view), focus in on a specific area of New York State. The side-by-side school comparison feature allows users to see a detailed breakdown of meaningful data and statistics from our available data on each school."),#What did we do h3("Team Members"), p(" - ",strong("I. Ka Heng (Helen) Lo - Presenter")), p(" - ",strong("II. Boxuan Zhao")), p(" - ",strong("III. Zijun Nie")), p(" - ",strong("IV. Senyao Han")), p(" - ",strong("V. Song Wang")), p(""), p(""), br(), p(em("Release 02/22/2017.","VERSION 1.0.0")), p(em(a("Github link",href="https://github.com/TZstatsADS/Spr2017-proj2-grp4.git")))) ,div(class="footer", "Applied Data Science Group 4") )#Introduciton ends here )#navarbarPage ends here ) ))
/app/ui.r
no_license
bz2290/Spr2017-proj2-grp4
R
false
false
26,020
r
packages.used=c("shiny","ggmap","leaflet","dplyr","shinyBS","plotly","extrafont","grDevices","shinyjs") # check packages that need to be installed. packages.needed=setdiff(packages.used,intersect(installed.packages()[,1],packages.used)) # install additional packages if(length(packages.needed)>0){ install.packages(packages.needed, dependencies = TRUE) } library(shiny) library(ggmap) library(leaflet) library(dplyr) library(shinyBS) library(plotly) library(extrafont) library(grDevices) library(shinyjs) #Read in files college.filtered = readRDS("../data/school.select.rds") college = readRDS("../data/College2014_15_new.rds") #Support data frames major = c("Agriculture, Agriculture Operations, And Related Sciences","Natural Resources And Conservation", "Architecture And Related Services","Area, Ethnic, Cultural, Gender, And Group Studies"," Communication, Journalism, And Related Programs","Communications Technologies/Technicians And Support Services","Computer And Information Sciences And Support Services","Personal And Culinary Services"," Education","Engineering","Engineering Technologies And Engineering-Related Fields","Foreign Languages, Literatures, And Linguistics"," Family And Consumer Sciences/Human Sciences","Legal Professions And Studies","English Language And Literature/Letters","Liberal Arts And Sciences, General Studies And Humanities","Library Science"," Biological And Biomedical Sciences","Mathematics And Statistics","Military Technologies And Applied Sciences","Multi/Interdisciplinary Studies","Parks, Recreation, Leisure, And Fitness Studies","Philosophy And Religious Studies","Theology And Religious Vocations"," Physical Sciences"," Science Technologies/Technicians"," Psychology"," Homeland Security, Law Enforcement, Firefighting And Related Protective Services","Public Administration And Social Service Professions","Social Sciences","Construction Trades","Mechanic And Repair Technologies/Technicians","Precision Production","Transportation And Materials Moving","Visual And Performing Arts","Health Professions And Related Programs","Business, Management, Marketing, And Related Support Services","History") major.index =c("PCIP01","PCIP03","PCIP04","PCIP05","PCIP09","PCIP10","PCIP11","PCIP12","PCIP13","PCIP14","PCIP15","PCIP16","PCIP19","PCIP22","PCIP23","PCIP24","PCIP25","PCIP26","PCIP27","PCIP29","PCIP30","PCIP31","PCIP38","PCIP39","PCIP40","PCIP41","PCIP42","PCIP43","PCIP44","PCIP45","PCIP46","PCIP47","PCIP48","PCIP49","PCIP50","PCIP51","PCIP52","PCIP54") major.frame = data.frame(major = major, index = major.index) shinyUI(fluidPage( div(id="canvas", navbarPage(strong("NY School Hunter ",style="color: white;"), theme="style.css", tabPanel(strong(tags$i("Map")), div(class="outer", # lealfet map uiOutput("map"), absolutePanel(id = "controls", class = "panel panel-default", fixed = TRUE, draggable = TRUE, top = 100, left = 5, bottom = "auto", width = "auto", height = "auto", cursor = "move", wellPanel(style = "overflow-y:scroll; max-height: 600px", bsCollapse(id="collapse.filter",open="Filter", bsCollapsePanel(tags$strong("Filter"),style="primary", fluidRow(column(12,checkboxGroupInput("filter","Filtered By...",choices=list("Scores","Major","Tuition","None"),selected="None",inline = TRUE))), fluidRow(column(10,uiOutput("ui.filter")))), bsCollapsePanel(tags$strong("Filter Options"),style = "primary", bsCollapsePanel(tags$strong("Major"),style="info", fluidRow(column(10,selectInput("major",tags$strong("Your Major"),choices = c(major),selected = "")) ) ), bsCollapsePanel(tags$strong("SAT"),style="info", fluidRow(column(4,numericInput("sat.reading",tags$strong("Read"),value=800,min=0,max=800,step=10)), column(4,numericInput("sat.math",tags$strong("Math"),value=800,min=0,max=800,step=10),offset = 0), column(4,numericInput("sat.writing",tags$strong("Write"),value=800,min=20,max=800,step=10),offset = 0) ) ), bsCollapsePanel(tags$strong("ACT"),style="info", fluidRow(column(10,numericInput("score.act",tags$strong("Cumulative Scores"),value=36,min=0,max=36,step=1)) ) ), bsCollapsePanel(tags$strong("Tuition"),style="info", fluidRow( column(10,numericInput("max",tags$strong("Max Tution"),min = 0, max = 90000, value = 10000))), fluidRow(column(10, offset = 1,radioButtons("location",tags$strong("Tuition Options"),choices = list("State Resident", "Non-State Resident"),selected = "State Resident", inline = FALSE)) ) ) ) ), bsCollapsePanel(tags$strong("Map Options"),style="primary", fluidRow(column(10,selectInput("Focus",tags$strong("Area of Focus"),choices = c("New York State","New York City","Western New York","Finger Lakes","Southern Tier","Central New York","North Country","Mohawk Valley","Capital District","Hudson Valley","Long Island"), selected = "New York Sate")) ), fluidRow(column(12,radioButtons("output.cluster",tags$strong("Classification Options"),choices=list("Degree","Length","Transfer Rate","Type"),selected = "Degree",inline=TRUE))) ), actionButton("search", tags$strong("Searching!")) )#WellPanel ends here ), absolutePanel(class = "panel panel-default", fixed = TRUE, draggable = TRUE, top = 50, right = 0, bottom = "auto", width = 450, height = 30, cursor = "move", bsCollapsePanel(tags$strong("Classification Map"),style = "primary", leafletOutput('myMap_1', width = "102%", height = 450) )#Collapse panel ends here ) ) ,div(class="footer", "Applied Data Science Group 4") ), #Comparison tabPanel(strong(tags$i("Comparision!")), ###########################################TEAM 2 IMPLEMENTATION STARTS########################################################## wellPanel(id = "tPanel",style = "overflow-y:scroll; max-height: 600px", tags$hr(style="border-color: #6088B1;"), h1("Side-by-Side Two School Comparison",align= "center",style = "color: #333333; font-family: Times; font-size:50pt"), tags$hr(style="border-color: #6088B1;"), fluidRow(align="center",splitLayout(cellWidths = c("50%","50%"), uiOutput("ui.1"), uiOutput("ui.2") ) ), br(),br(), fluidRow(align="center",splitLayout(cellWidths = c("50%","50%"), imageOutput("logo1",height = "400", width = "400"),imageOutput("logo2",height = "400", width = "400") )), br(), # ==== Title in Orange fluidRow(align="center", style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;", column(6,offset=3, br(),hr(style="color:#808080"), helpText( strong("Basic Information" , style="color:#6088B1 ; font-family: 'times'; font-size:30pt ; font-type:bold" )) , hr(style="color:#808080") )), # === Some text to explain the Figure: br(), # === display instnm fluidRow(align = "center",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=2,offset=1,"Institution Name: ")),textOutput("instnm1")), fluidRow(strong(column(width=2,offset=1,"Institution Name: ")),textOutput("instnm2"))) ),br(), # === display city fluidRow(align = "justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=2,offset=1,"City: ")),textOutput("city1")), fluidRow(strong(column(width=2,offset=1,"City: ")),textOutput("city2"))) ),br(), # === display clevel fluidRow(align = "justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=4,offset=1,"Level of Institution: ")),textOutput("iclevel1")), fluidRow(strong(column(width=4,offset=1,"Level of Institution: ")),textOutput("iclevel2"))) ),br(), # === display control fluidRow(align="justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=4,offset=1,"Control of Institution: ")),textOutput("control1")), fluidRow(strong(column(width=4,offset=1,"Control of Institution: ")),textOutput("control2"))) ),br(), # === display highest degree fluidRow(align="justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=3,offset=1,"Highest Degree: ")),textOutput("highdeg1")), fluidRow(strong(column(width=3,offset=1,"Highest Degree: ")),textOutput("highdeg2"))) ),br(), # === display locale fluidRow(align="justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=2,offset=1,"Locale: ")),textOutput("locale1")), fluidRow(strong(column(width=2,offset=1,"Locale: ")),textOutput("locale2"))) ),br(), # === display admission rate fluidRow(align="justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=4,offset=1,"Admission Rate: ")),textOutput("adm_rate1")), fluidRow(strong(column(width=4,offset=1,"Admission Rate: ")),textOutput("adm_rate2"))) ),br(), # === display in-state tuition fluidRow(align="justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=4,offset=1,"In-State Tuition: ")),textOutput("tuitionfee_in1")), fluidRow(strong(column(width=4,offset=1,"In-State Tuition: ")),textOutput("tuitionfee_in2"))) ),br(), # === display out-of-state tuition fluidRow(align="justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=4,offset=1,"Out-of-State Tuition: ")),textOutput("tuitionfee_out1")), fluidRow(strong(column(width=4,offset=1,"Out-of-State Tuition: ")),textOutput("tuitionfee_out2"))) ),br(), # === display percentage of federal loans fluidRow(align="center",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=7,offset=1,"Percentage of Students Receiving Federal Loans: ")), textOutput("pctfloan1")), fluidRow(strong(column(width=7,offset=1,"Percentage of Students Receiving Federal Loans: ")), textOutput("pctfloan2"))) ),br(), # === display total Undergraduates Seeking Degrees fluidRow(align="center",splitLayout(cellWidths = c("50%","50%"), fluidRow(strong(column(width=5,offset=1,"Total Undergraduates Seeking Degrees: ")), textOutput("ugds1")), fluidRow(strong(column(width=5,offset=1,"Total Undergraduates Seeking Degrees: ")), textOutput("ugds2"))) ), br(), br(), fluidRow(align="center", style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;", column(6,offset=3, br(),hr(style="color:#808080"), helpText( strong("Calculate Median Debt by Family Income" , style="color:#6088B1 ; font-family: 'times'; font-size:30pt ; font-type:bold" )) , hr(style="color:#808080") )), br(), # === display sliderInput for family income fluidRow(align="center",sliderInput("fincome","Family Income: ", min=0,max=200000,value=0,width = 600) ),br(), # === display median debt based on family income input fluidRow(align="justify",splitLayout(cellWidths = c("50%","50%"), fluidRow(column(width=7,offset=1,textOutput("school1")), strong(column(width=7,offset = 1,"Median Debt based on Family Income : ")),br(), textOutput("debt1")), fluidRow(column(width=7,offset=1,textOutput("school2")), strong(column(width=7,offset=1,"Median Debt based on Family Income: ")),br(), textOutput("debt2"))) ), br(), br(), fluidRow(align="center", style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;", column(6,offset=3, br(),hr(style="color:#808080"), helpText( strong("SAT & ACT Scores" , style="color:#6088B1 ; font-family: 'times'; font-size:30pt ; font-type:bold" )) , helpText( strong("25th-75th Percentile" , style="color:#6088B1 ; font-family: 'times'; font-size:20pt ; font-type:bold" )), hr(style="color:#808080") )), br(), fluidRow(align="center",splitLayout(cellWidths = c("50%","50%"), textOutput("school1.2"), textOutput("school2.2")) ), fluidRow(align="center",splitLayout(cellWidths = c("50%","50%"), tableOutput("sat1"), tableOutput("sat2")) ),br(), fluidRow(align="center",splitLayout(cellWidths = c("50%","50%"), tableOutput("act1"), tableOutput("act2")) ), br(), br(), fluidRow(align="center", style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;", column(6,offset=3, br(), hr(style="color:#808080"), helpText( strong("Demographics of Students" , style="color: #6088B1 ; font-family: 'times'; font-size:30pt ; font-type:bold" )) , hr(style="color:#808080") )), br(), # === Bar with corresponding widget fluidRow(align="center",column(4,h2("Major Diversity", style="color:#4C4C4C ; font-family: Times"), tags$hr(style="border-color: #6088B1;")),br()), fluidRow(align="center", splitLayout(cellWidths = c("50%","50%"), plotlyOutput("my_barplot1" , height = "500px"), plotlyOutput("my_barplot2" , height = "500px") ) ),br(),br(), # === pie chart of ethnicity fluidRow(align="center",column(8,h2("Degree-Seeking Undergraduates by Ethnicity", style="color:#4C4C4C ; font-family: Times"), tags$hr(style="border-color: #6088B1;")),br()), fluidRow(align="center", splitLayout(cellWidths = c("50%","50%"), plotlyOutput("demographics1",height="550"), plotlyOutput("demographics2",height="550")) ),br(), fluidRow(align="center",column(8,h2("Degree-Seeking Undergraduates by Gender", style="color:#4C4C4C ; font-family: Times"), tags$hr(style="border-color: #6088B1;")),br()), fluidRow(align="center", splitLayout(cellWidths = c("50%","50%"), plotlyOutput("female1",height="450"), plotlyOutput("female2",height="450") )) ############################################TEAM 2 IMPLEMENTATION ENDS############################################################ ) ),#Comparison ends here #Data presentation #Introduction tabPanel(strong(tags$i("About us")), mainPanel(width=12, h1("Project: NY School Hunter - A Shiny App Development"), h3("Background"), p("Our project takes all available data on colleges and universities in New York State and creates a useful shiny app that allows users to explore and compare schools based on user-specific filtering criteria. The purpose of our design is to provide users with a bird's eye view of New York colleges and universities; allow them to filter, search, and group schools by their preferred criteria; and further compare two schools on a more micro level."),#Our motivation h3("Project summary"), p("A distinguishing feature of our app is the map search function - users can see all the specified schools on the map (normal map view or satellite map view), focus in on a specific area of New York State. The side-by-side school comparison feature allows users to see a detailed breakdown of meaningful data and statistics from our available data on each school."),#What did we do h3("Team Members"), p(" - ",strong("I. Ka Heng (Helen) Lo - Presenter")), p(" - ",strong("II. Boxuan Zhao")), p(" - ",strong("III. Zijun Nie")), p(" - ",strong("IV. Senyao Han")), p(" - ",strong("V. Song Wang")), p(""), p(""), br(), p(em("Release 02/22/2017.","VERSION 1.0.0")), p(em(a("Github link",href="https://github.com/TZstatsADS/Spr2017-proj2-grp4.git")))) ,div(class="footer", "Applied Data Science Group 4") )#Introduciton ends here )#navarbarPage ends here ) ))
# Part 1 #Load CSV precorpus <- read.csv("~/Desktop/Third Semester/BA/Trump and Forbe 500/Part1.csv",header=TRUE, stringsAsFactors = FALSE) dim(precorpus) # dim of file names(precorpus) str(precorpus) #### Corpus mission and Core Value # create a corpus of mission statement require(quanteda) newscorpus1<- corpus(precorpus$Mission, docnames=precorpus$Document_ID, docvar=data.frame(name=precorpus$Name,Subject= precorpus$Description)) #explore the corpus of mission names(newscorpus1) #to explore summary(newscorpus1) #summary of corpus head(newscorpus1) # create a corpus of Core value newscorpus2<- corpus(precorpus$Description, docnames=precorpus$Document_ID, docvar=data.frame(name=precorpus$Name,Subject= precorpus$Mission)) #explore the corpus of Core Value names(newscorpus2) #to explore summary(newscorpus2) #summary of corpus head(newscorpus2) #### Clean corpus #mission newscorpus1<- toLower(newscorpus1, keepAcronyms = FALSE) cleancorpus1 <- tokenize(newscorpus1, removeNumbers=TRUE, removePunct = TRUE, removeSeparators=TRUE, removeTwitter=FALSE, verbose=TRUE) # core value newscorpus2<- toLower(newscorpus2, keepAcronyms = FALSE) cleancorpus2 <- tokenize(newscorpus2, removeNumbers=TRUE, removePunct = TRUE, removeSeparators=TRUE, removeTwitter=FALSE, verbose=TRUE) ### create DFM dfm.mission<- dfm(cleancorpus1, toLower = TRUE, ignoredFeatures =stopwords("english"), # stopword verbose=TRUE, stem=FALSE) dfm.core<- dfm(cleancorpus2, toLower = TRUE, ignoredFeatures =stopwords("english"), # stopword verbose=TRUE, stem=FALSE) #### To display most frequent terms in dfm topfeatures1<-topfeatures(dfm.mission, n=50) topfeatures1 # words:can,s every,way topfeatures2<-topfeatures(dfm.core, n=50) topfeatures2 # words:s,make use ###to create a custom dictionary list of stop words swlist1 = c("can", "s", "every","way") # remove those words dfm_mission.stem<- dfm(cleancorpus1, toLower = TRUE, ignoredFeatures = c(swlist1, stopwords("english")), #put stopwords verbose=TRUE, # show process stem=TRUE) # roots of word topfeatures1.stem<-topfeatures(dfm_mission.stem, n=50) # top 50 words topfeatures1.stem quartz() plot(dfm_mission.stem) swlist2 =c("make", "s", "use") # remove those words dfm_core.stem<- dfm(cleancorpus2, toLower = TRUE, ignoredFeatures = c(swlist2, stopwords("english")), #put stopwords verbose=TRUE, # show process stem=TRUE) #roots of word topfeatures2.stem<-topfeatures(dfm_core.stem, n=50) # top 50 words topfeatures2.stem quartz() plot(dfm_core.stem) #### Dfm with bigrams #mission bigrams cleancorpus1 <- tokenize(newscorpus1, removeNumbers=TRUE, removePunct = TRUE, removeSeparators=TRUE, removeTwitter=FALSE, ngrams=2, verbose=TRUE) # ngrams=2 ,combinged 2 words dfm_mission.bigram<- dfm(cleancorpus1, toLower = TRUE, ignoredFeatures = c(swlist1, stopwords("english")), verbose=TRUE, stem=FALSE) topfeatures1.bigram<-topfeatures(dfm_mission.bigram, n=50) topfeatures1.bigram # Core bigrams cleancorpus2 <- tokenize(newscorpus2, removeNumbers=TRUE, removePunct = TRUE, removeSeparators=TRUE, removeTwitter=FALSE, ngrams=2, verbose=TRUE) # ngrams=2 ,combinged 2 words dfm_core.bigram<- dfm(cleancorpus2, toLower = TRUE, ignoredFeatures = c(swlist2, stopwords("english")), verbose=TRUE, stem=FALSE) topfeatures1.bigram<-topfeatures(dfm_core.bigram, n=50) topfeatures1.bigram #specifying a correlation limit of 0.5 library(tm) #mission dfm_mission.tm<-convert(dfm_mission.stem, to="tm") findAssocs(dfm_mission.tm, c("data", "analyt", "busi"), # correlation corlimit=0.6) # core dfm_core.tm<-convert(dfm_core.stem, to="tm") findAssocs(dfm_core.tm, c("data","analytics", "world" ), # correlation corlimit=0.7) ########################## ### Topic Modeling ########################## library(stm) ###### Mission ####### #Process the data for analysis. help("textProcessor") temp<-textProcessor(documents=precorpus$Mission, metadata = precorpus) names(temp) # produces: "documents", "vocab", "meta", "docs.removed" meta<-temp$meta vocab<-temp$vocab docs<-temp$documents out <- prepDocuments(docs, vocab, meta) docs<-out$documents vocab<-out$vocab meta <-out$meta #running stm for top 20 topics prevfit <-stm(docs , vocab , K=20, verbose=TRUE, data=meta, max.em.its=25) topics1 <-labelTopics(prevfit , topics=c(1:20)) topics1 #shows topics with highest probability words #explore the topics in context. Provides an example of the text help("findThoughts") findThoughts(prevfit, texts = precorpus$Mission, topics = 10, n = 2) help("plot.STM") plot.STM(prevfit, type="summary") plot.STM(prevfit, type="labels", topics=c(3,12,13)) plot.STM(prevfit, type="perspectives", topics = c(3,12)) # to aid on assigment of labels & intepretation of topics help(topicCorr) mod.out.corr <- topicCorr(prevfit) #Estimates a graph of topic correlations topic plot.topicCorr(mod.out.corr) ######## Core ############ #Process the data for analysis. help("textProcessor") temp<-textProcessor(documents=precorpus$core, metadata = precorpus) names(temp) # produces: "documents", "vocab", "meta", "docs.removed" meta<-temp$meta vocab<-temp$vocab docs<-temp$documents out <- prepDocuments(docs, vocab, meta) docs<-out$documents vocab<-out$vocab meta <-out$meta #running stm for top 20 topics prevfit <-stm(docs , vocab , K=20, verbose=TRUE, data=meta, max.em.its=25) topics2 <-labelTopics(prevfit , topics=c(1:20)) topics2 #shows topics with highest probability words #explore the topics in context. Provides an example of the text help("findThoughts") findThoughts(prevfit, texts = precorpus$core, topics = 10, n = 2) help("plot.STM") plot.STM(prevfit, type="summary") plot.STM(prevfit, type="labels", topics=c(3,12,13)) plot.STM(prevfit, type="perspectives", topics = c(3,12)) # to aid on assigment of labels & intepretation of topics help(topicCorr) mod.out.corr <- topicCorr(prevfit) #Estimates a graph of topic correlations topic plot.topicCorr(mod.out.corr) # Part 2 #Load CSV Part2 <- read.csv("~/Desktop/Third Semester/BA/Trump and Forbe 500/Part2.csv", header=TRUE, stringsAsFactors = FALSE) #### Corpus mission and Core Value require(quanteda) newscorpus3<- corpus(Part2$Speech, docnames=Part2$Document_ID, docvar=data.frame(name=Part2$Name)) names(newscorpus3) #to explore the output of the corpus function: "documents" "metadata" "settings" "tokens" summary(newscorpus3) #summary of corpus #clean corpus: removes punctuation, digits, converts to lower case newscorpus3<- toLower(newscorpus3, keepAcronyms = FALSE) cleancorpus3 <- tokenize(newscorpus3, removeNumbers=TRUE, removePunct = TRUE, removeSeparators=TRUE, removeTwitter=FALSE, verbose=TRUE) # DFM dfm.speech<- dfm(cleancorpus3, toLower = TRUE, ignoredFeatures =stopwords("english"), # stopword verbose=TRUE, stem=FALSE) ### Frequency analysis of word usage topfeatures3<-topfeatures(dfm.speech, n=50) topfeatures3 quartz() plot(dfm.speech) #to create a custom dictionary list of stop words swlist3 = c("will", "s", "t","come","day","put","just") # remove these words dfm_speech.stem<- dfm(cleancorpus3, toLower = TRUE, ignoredFeatures = c(swlist3, stopwords("english")), verbose=TRUE, stem=TRUE) topfeatures3.stem<-topfeatures(dfm_speech.stem, n=50) # top 50 words topfeatures3.stem #Sentiment Analysis help(dfm) mydict <- dictionary(list(negative = c("detriment*", "bad*", "awful*", "terrib*", "horribl*"), postive = c("good", "great", "super*", "excellent", "yay"))) dfm_speech.sentiment <- dfm(cleancorpus3, dictionary = mydict) topfeatures(dfm_speech.sentiment) View(dfm_speech.sentiment) ########################## ### Topic Modeling ########################## library(stm) temp<-textProcessor(documents=Part2$Speech, metadata = Part2) names(temp) # produces: "documents", "vocab", "meta", "docs.removed" meta<-temp$meta vocab<-temp$vocab docs<-temp$documents out <- prepDocuments(docs, vocab, meta) docs<-out$documents vocab<-out$vocab meta <-out$meta temp #running stm for top 20 topics help("stm") prevfit <-stm(docs , vocab , K=3, verbose=TRUE, data=meta, max.em.its=20) topics <-labelTopics(prevfit, topics=c(1:3)) topics #shows topics with highest probability words #explore the topics in context. Provides an example of the text findThoughts(prevfit, texts = Part2$Speech, topics = 3, n = 2) plot.STM(prevfit, type="summary") plot.STM(prevfit, type="labels", topics=c(1,2,3)) plot.STM(prevfit, type="perspectives", topics = c(1,2)) plot.STM(prevfit, type="perspectives", topics = c(2,3)) # to aid on assigment of labels & intepretation of topics mod.out.corr <- topicCorr(prevfit) #Estimates a graph of topic correlations topic plot.topicCorr(mod.out.corr)
/Homework.R
no_license
wjcdenis/Dennis10
R
false
false
10,197
r
# Part 1 #Load CSV precorpus <- read.csv("~/Desktop/Third Semester/BA/Trump and Forbe 500/Part1.csv",header=TRUE, stringsAsFactors = FALSE) dim(precorpus) # dim of file names(precorpus) str(precorpus) #### Corpus mission and Core Value # create a corpus of mission statement require(quanteda) newscorpus1<- corpus(precorpus$Mission, docnames=precorpus$Document_ID, docvar=data.frame(name=precorpus$Name,Subject= precorpus$Description)) #explore the corpus of mission names(newscorpus1) #to explore summary(newscorpus1) #summary of corpus head(newscorpus1) # create a corpus of Core value newscorpus2<- corpus(precorpus$Description, docnames=precorpus$Document_ID, docvar=data.frame(name=precorpus$Name,Subject= precorpus$Mission)) #explore the corpus of Core Value names(newscorpus2) #to explore summary(newscorpus2) #summary of corpus head(newscorpus2) #### Clean corpus #mission newscorpus1<- toLower(newscorpus1, keepAcronyms = FALSE) cleancorpus1 <- tokenize(newscorpus1, removeNumbers=TRUE, removePunct = TRUE, removeSeparators=TRUE, removeTwitter=FALSE, verbose=TRUE) # core value newscorpus2<- toLower(newscorpus2, keepAcronyms = FALSE) cleancorpus2 <- tokenize(newscorpus2, removeNumbers=TRUE, removePunct = TRUE, removeSeparators=TRUE, removeTwitter=FALSE, verbose=TRUE) ### create DFM dfm.mission<- dfm(cleancorpus1, toLower = TRUE, ignoredFeatures =stopwords("english"), # stopword verbose=TRUE, stem=FALSE) dfm.core<- dfm(cleancorpus2, toLower = TRUE, ignoredFeatures =stopwords("english"), # stopword verbose=TRUE, stem=FALSE) #### To display most frequent terms in dfm topfeatures1<-topfeatures(dfm.mission, n=50) topfeatures1 # words:can,s every,way topfeatures2<-topfeatures(dfm.core, n=50) topfeatures2 # words:s,make use ###to create a custom dictionary list of stop words swlist1 = c("can", "s", "every","way") # remove those words dfm_mission.stem<- dfm(cleancorpus1, toLower = TRUE, ignoredFeatures = c(swlist1, stopwords("english")), #put stopwords verbose=TRUE, # show process stem=TRUE) # roots of word topfeatures1.stem<-topfeatures(dfm_mission.stem, n=50) # top 50 words topfeatures1.stem quartz() plot(dfm_mission.stem) swlist2 =c("make", "s", "use") # remove those words dfm_core.stem<- dfm(cleancorpus2, toLower = TRUE, ignoredFeatures = c(swlist2, stopwords("english")), #put stopwords verbose=TRUE, # show process stem=TRUE) #roots of word topfeatures2.stem<-topfeatures(dfm_core.stem, n=50) # top 50 words topfeatures2.stem quartz() plot(dfm_core.stem) #### Dfm with bigrams #mission bigrams cleancorpus1 <- tokenize(newscorpus1, removeNumbers=TRUE, removePunct = TRUE, removeSeparators=TRUE, removeTwitter=FALSE, ngrams=2, verbose=TRUE) # ngrams=2 ,combinged 2 words dfm_mission.bigram<- dfm(cleancorpus1, toLower = TRUE, ignoredFeatures = c(swlist1, stopwords("english")), verbose=TRUE, stem=FALSE) topfeatures1.bigram<-topfeatures(dfm_mission.bigram, n=50) topfeatures1.bigram # Core bigrams cleancorpus2 <- tokenize(newscorpus2, removeNumbers=TRUE, removePunct = TRUE, removeSeparators=TRUE, removeTwitter=FALSE, ngrams=2, verbose=TRUE) # ngrams=2 ,combinged 2 words dfm_core.bigram<- dfm(cleancorpus2, toLower = TRUE, ignoredFeatures = c(swlist2, stopwords("english")), verbose=TRUE, stem=FALSE) topfeatures1.bigram<-topfeatures(dfm_core.bigram, n=50) topfeatures1.bigram #specifying a correlation limit of 0.5 library(tm) #mission dfm_mission.tm<-convert(dfm_mission.stem, to="tm") findAssocs(dfm_mission.tm, c("data", "analyt", "busi"), # correlation corlimit=0.6) # core dfm_core.tm<-convert(dfm_core.stem, to="tm") findAssocs(dfm_core.tm, c("data","analytics", "world" ), # correlation corlimit=0.7) ########################## ### Topic Modeling ########################## library(stm) ###### Mission ####### #Process the data for analysis. help("textProcessor") temp<-textProcessor(documents=precorpus$Mission, metadata = precorpus) names(temp) # produces: "documents", "vocab", "meta", "docs.removed" meta<-temp$meta vocab<-temp$vocab docs<-temp$documents out <- prepDocuments(docs, vocab, meta) docs<-out$documents vocab<-out$vocab meta <-out$meta #running stm for top 20 topics prevfit <-stm(docs , vocab , K=20, verbose=TRUE, data=meta, max.em.its=25) topics1 <-labelTopics(prevfit , topics=c(1:20)) topics1 #shows topics with highest probability words #explore the topics in context. Provides an example of the text help("findThoughts") findThoughts(prevfit, texts = precorpus$Mission, topics = 10, n = 2) help("plot.STM") plot.STM(prevfit, type="summary") plot.STM(prevfit, type="labels", topics=c(3,12,13)) plot.STM(prevfit, type="perspectives", topics = c(3,12)) # to aid on assigment of labels & intepretation of topics help(topicCorr) mod.out.corr <- topicCorr(prevfit) #Estimates a graph of topic correlations topic plot.topicCorr(mod.out.corr) ######## Core ############ #Process the data for analysis. help("textProcessor") temp<-textProcessor(documents=precorpus$core, metadata = precorpus) names(temp) # produces: "documents", "vocab", "meta", "docs.removed" meta<-temp$meta vocab<-temp$vocab docs<-temp$documents out <- prepDocuments(docs, vocab, meta) docs<-out$documents vocab<-out$vocab meta <-out$meta #running stm for top 20 topics prevfit <-stm(docs , vocab , K=20, verbose=TRUE, data=meta, max.em.its=25) topics2 <-labelTopics(prevfit , topics=c(1:20)) topics2 #shows topics with highest probability words #explore the topics in context. Provides an example of the text help("findThoughts") findThoughts(prevfit, texts = precorpus$core, topics = 10, n = 2) help("plot.STM") plot.STM(prevfit, type="summary") plot.STM(prevfit, type="labels", topics=c(3,12,13)) plot.STM(prevfit, type="perspectives", topics = c(3,12)) # to aid on assigment of labels & intepretation of topics help(topicCorr) mod.out.corr <- topicCorr(prevfit) #Estimates a graph of topic correlations topic plot.topicCorr(mod.out.corr) # Part 2 #Load CSV Part2 <- read.csv("~/Desktop/Third Semester/BA/Trump and Forbe 500/Part2.csv", header=TRUE, stringsAsFactors = FALSE) #### Corpus mission and Core Value require(quanteda) newscorpus3<- corpus(Part2$Speech, docnames=Part2$Document_ID, docvar=data.frame(name=Part2$Name)) names(newscorpus3) #to explore the output of the corpus function: "documents" "metadata" "settings" "tokens" summary(newscorpus3) #summary of corpus #clean corpus: removes punctuation, digits, converts to lower case newscorpus3<- toLower(newscorpus3, keepAcronyms = FALSE) cleancorpus3 <- tokenize(newscorpus3, removeNumbers=TRUE, removePunct = TRUE, removeSeparators=TRUE, removeTwitter=FALSE, verbose=TRUE) # DFM dfm.speech<- dfm(cleancorpus3, toLower = TRUE, ignoredFeatures =stopwords("english"), # stopword verbose=TRUE, stem=FALSE) ### Frequency analysis of word usage topfeatures3<-topfeatures(dfm.speech, n=50) topfeatures3 quartz() plot(dfm.speech) #to create a custom dictionary list of stop words swlist3 = c("will", "s", "t","come","day","put","just") # remove these words dfm_speech.stem<- dfm(cleancorpus3, toLower = TRUE, ignoredFeatures = c(swlist3, stopwords("english")), verbose=TRUE, stem=TRUE) topfeatures3.stem<-topfeatures(dfm_speech.stem, n=50) # top 50 words topfeatures3.stem #Sentiment Analysis help(dfm) mydict <- dictionary(list(negative = c("detriment*", "bad*", "awful*", "terrib*", "horribl*"), postive = c("good", "great", "super*", "excellent", "yay"))) dfm_speech.sentiment <- dfm(cleancorpus3, dictionary = mydict) topfeatures(dfm_speech.sentiment) View(dfm_speech.sentiment) ########################## ### Topic Modeling ########################## library(stm) temp<-textProcessor(documents=Part2$Speech, metadata = Part2) names(temp) # produces: "documents", "vocab", "meta", "docs.removed" meta<-temp$meta vocab<-temp$vocab docs<-temp$documents out <- prepDocuments(docs, vocab, meta) docs<-out$documents vocab<-out$vocab meta <-out$meta temp #running stm for top 20 topics help("stm") prevfit <-stm(docs , vocab , K=3, verbose=TRUE, data=meta, max.em.its=20) topics <-labelTopics(prevfit, topics=c(1:3)) topics #shows topics with highest probability words #explore the topics in context. Provides an example of the text findThoughts(prevfit, texts = Part2$Speech, topics = 3, n = 2) plot.STM(prevfit, type="summary") plot.STM(prevfit, type="labels", topics=c(1,2,3)) plot.STM(prevfit, type="perspectives", topics = c(1,2)) plot.STM(prevfit, type="perspectives", topics = c(2,3)) # to aid on assigment of labels & intepretation of topics mod.out.corr <- topicCorr(prevfit) #Estimates a graph of topic correlations topic plot.topicCorr(mod.out.corr)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/BPmix.R \name{BPmix} \alias{BPmix} \title{Binomial mixtures with Poisson Trials via Kiefer Wolfowitz NPMLE} \usage{ BPmix(x, m, v = 50, weights = NULL, ...) } \arguments{ \item{x}{Count of "successes" for binomial observations} \item{m}{Number of trials for binomial observations} \item{v}{Grid Values for the mixing distribution defaults to equal spacing of length v on [eps, 1- eps], if v is scalar.} \item{weights}{replicate weights for x obervations, should sum to 1} \item{...}{Other arguments to be passed to KWDual to control optimization} } \value{ An object of class density with components: \item{v}{grid points of evaluation of the success probabilities} \item{u}{grid points of evaluation of the Poisson rate for number of trials} \item{y}{function values of the mixing density at (v,u)} \item{g}{estimates of the mixture density at the distinct data values} \item{logLik}{Log Likelihood value at the estimate} \item{status}{exit code from the optimizer} } \description{ Interior point solution of Kiefer-Wolfowitz NPMLE for mixture of Poisson Binomials } \details{ The joint distribution of the probabilities of success and the number of trials is estimated. The grid specification for success probabilities is as for \code{Bmix} whereas the grid for the Poisson rate parameters is currently the support of the observed trials. There is no predict method as yet. See \code{demo(BPmix1)}. } \references{ Kiefer, J. and J. Wolfowitz Consistency of the Maximum Likelihood Estimator in the Presence of Infinitely Many Incidental Parameters \emph{Ann. Math. Statist}. 27, (1956), 887-906. } \author{ R. Koenker } \keyword{nonparametric}
/man/BPmix.Rd
no_license
cran/REBayes
R
false
true
1,742
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/BPmix.R \name{BPmix} \alias{BPmix} \title{Binomial mixtures with Poisson Trials via Kiefer Wolfowitz NPMLE} \usage{ BPmix(x, m, v = 50, weights = NULL, ...) } \arguments{ \item{x}{Count of "successes" for binomial observations} \item{m}{Number of trials for binomial observations} \item{v}{Grid Values for the mixing distribution defaults to equal spacing of length v on [eps, 1- eps], if v is scalar.} \item{weights}{replicate weights for x obervations, should sum to 1} \item{...}{Other arguments to be passed to KWDual to control optimization} } \value{ An object of class density with components: \item{v}{grid points of evaluation of the success probabilities} \item{u}{grid points of evaluation of the Poisson rate for number of trials} \item{y}{function values of the mixing density at (v,u)} \item{g}{estimates of the mixture density at the distinct data values} \item{logLik}{Log Likelihood value at the estimate} \item{status}{exit code from the optimizer} } \description{ Interior point solution of Kiefer-Wolfowitz NPMLE for mixture of Poisson Binomials } \details{ The joint distribution of the probabilities of success and the number of trials is estimated. The grid specification for success probabilities is as for \code{Bmix} whereas the grid for the Poisson rate parameters is currently the support of the observed trials. There is no predict method as yet. See \code{demo(BPmix1)}. } \references{ Kiefer, J. and J. Wolfowitz Consistency of the Maximum Likelihood Estimator in the Presence of Infinitely Many Incidental Parameters \emph{Ann. Math. Statist}. 27, (1956), 887-906. } \author{ R. Koenker } \keyword{nonparametric}
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/RmRMR-auxiliary.R \name{balancedOrderingDependency} \alias{balancedOrderingDependency} \title{Balanced ordering-based dependency measure} \usage{ balancedOrderingDependency(attrVec, target, numericTarget = NULL, nSamples = 100, sampleSize = 10, ...) } \arguments{ \item{attrVec, target}{two numeric attributes or an attribute and a decision vector (not necessarily ordered). At least the first argument has to be numeric.} \item{numericTarget}{logical indicating whether the \code{target} is ordered and numeric. The default is \code{NULL} in which case the function makes a guess using a simple heuristic.} \item{...}{optional arguments (currently omitted).} } \value{ a numeric value expressing ordering dependency between \code{attrVec} and \code{target} } \description{ A balanced version of the function for measuring ordering dependency between two vectors (the ordering measure). } \examples{ ############################################# data(methaneSampleData) ## an experiment on a sample from the data used in a data mining competition - ## IJCRS'15 Data Challenge: Mining Data from Coal Mines ## (https://knowledgepit.fedcsis.org/contest/view.php?id=109). ## The whole data set can be downloaded from the competition web page. mrmrAttrs = mRMRfs(dataT = methaneData$methaneTraining, target = methaneData$methaneTrainingLabels[, V2], dependencyF = balancedOrderingDependency, sampleSize = 10) mrmrAttrs } \author{ Andrzej Janusz } \references{ Andrzej Janusz and Marek Grzegorowski. Efficient Attribute Quality Assessment Using a Decision Ordering Measure. 2017. }
/man/balancedOrderingDependency.Rd
no_license
janusza/RmRMR
R
false
true
1,706
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/RmRMR-auxiliary.R \name{balancedOrderingDependency} \alias{balancedOrderingDependency} \title{Balanced ordering-based dependency measure} \usage{ balancedOrderingDependency(attrVec, target, numericTarget = NULL, nSamples = 100, sampleSize = 10, ...) } \arguments{ \item{attrVec, target}{two numeric attributes or an attribute and a decision vector (not necessarily ordered). At least the first argument has to be numeric.} \item{numericTarget}{logical indicating whether the \code{target} is ordered and numeric. The default is \code{NULL} in which case the function makes a guess using a simple heuristic.} \item{...}{optional arguments (currently omitted).} } \value{ a numeric value expressing ordering dependency between \code{attrVec} and \code{target} } \description{ A balanced version of the function for measuring ordering dependency between two vectors (the ordering measure). } \examples{ ############################################# data(methaneSampleData) ## an experiment on a sample from the data used in a data mining competition - ## IJCRS'15 Data Challenge: Mining Data from Coal Mines ## (https://knowledgepit.fedcsis.org/contest/view.php?id=109). ## The whole data set can be downloaded from the competition web page. mrmrAttrs = mRMRfs(dataT = methaneData$methaneTraining, target = methaneData$methaneTrainingLabels[, V2], dependencyF = balancedOrderingDependency, sampleSize = 10) mrmrAttrs } \author{ Andrzej Janusz } \references{ Andrzej Janusz and Marek Grzegorowski. Efficient Attribute Quality Assessment Using a Decision Ordering Measure. 2017. }
mat <- compute_correspondence_tables(data, "LandUse", "HgBand") display_table(mat$P_r, "Conditional Hg given LandUse", "cond. likelihood") # Burt matrix analogue of variance-covariance matrix for discrete data. display_table(mat$var_covar_mat, "Burt Matrix", "var. covar") require(corrplot) corrplot(mat$var_covar_mat) # row marginal probabilities barplot(mat$P_row_margins) # column marginal probabilities barplot(mat$P_col_margins) ## TODO: Example of plotting profile coordinates. ## Row profiles G_P and H_S ## Column profiles G_s and H_p ## Both profiles G_p and H_p draw_profiles(mat, "LandUse vs HgBand") v <- mat$R_inertia$R_eigen$vectors plot(v[1,], v[2,])
/test2.R
no_license
cxd/notes_correspondence
R
false
false
678
r
mat <- compute_correspondence_tables(data, "LandUse", "HgBand") display_table(mat$P_r, "Conditional Hg given LandUse", "cond. likelihood") # Burt matrix analogue of variance-covariance matrix for discrete data. display_table(mat$var_covar_mat, "Burt Matrix", "var. covar") require(corrplot) corrplot(mat$var_covar_mat) # row marginal probabilities barplot(mat$P_row_margins) # column marginal probabilities barplot(mat$P_col_margins) ## TODO: Example of plotting profile coordinates. ## Row profiles G_P and H_S ## Column profiles G_s and H_p ## Both profiles G_p and H_p draw_profiles(mat, "LandUse vs HgBand") v <- mat$R_inertia$R_eigen$vectors plot(v[1,], v[2,])
## Set working directory. setwd("C://Tejas//Learnings//Coursera//Exploratory_Data_Analysis//Project1") getwd() ## Load required libraries ##install.packages('data.table') library(data.table) ## Check if file exists else download the file and extract in the folder fileurl <- "https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip" if (!file.exists('./household_power_consumption.zip')){ download.file(fileurl,'./household_power_consumption.zip', mode = 'wb') unzip("household_power_consumption.zip", exdir = '.') } ## Read Household Power Consumption data into dataset using fread for dates 2007-02-01 and 2007-02-02. ## Skip all rows upto 2007-02-01. read next 2 days of data with 1 min interval. 24(hr)*60(min)*2(days) hpc_data <- fread('./household_power_consumption.txt',sep = ';',header = FALSE, na.strings = "?",skip = 66637,nrows = 2879,check.names = FALSE) var_names <- names(hpc_data) ## Get column headers hpc_cols <- fread('./household_power_consumption.txt',sep = ';',header = TRUE, na.strings = "?",nrows = 1) hpc_cols <- names(hpc_cols) ## Apply back column headers setnames(hpc_data,var_names,hpc_cols) ## Convert dates col_datetime <- paste(as.Date(hpc_data$Date, format="%d/%m/%Y"), hpc_data$Time) hpc_data$Datetime <- as.POSIXct(col_datetime) ## Generate Plot-3 (Multiple Lines) with (hpc_data, {plot(Sub_metering_1 ~ Datetime, type="l", ylab="Energy sub metering",xlab="") lines(Sub_metering_2 ~ Datetime,col='Red') lines(Sub_metering_3 ~ Datetime,col='Blue') } ) ## Add Legend legend("topright", col=c("black", "red", "blue"), lty=1, legend=c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"),cex = 0.75) ## Save plot to .PNG file dev.copy(png, file="plot3.png", height=480, width=480) dev.off()
/Plot3.R
no_license
tejasatalati/ExData_Plotting1
R
false
false
1,811
r
## Set working directory. setwd("C://Tejas//Learnings//Coursera//Exploratory_Data_Analysis//Project1") getwd() ## Load required libraries ##install.packages('data.table') library(data.table) ## Check if file exists else download the file and extract in the folder fileurl <- "https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip" if (!file.exists('./household_power_consumption.zip')){ download.file(fileurl,'./household_power_consumption.zip', mode = 'wb') unzip("household_power_consumption.zip", exdir = '.') } ## Read Household Power Consumption data into dataset using fread for dates 2007-02-01 and 2007-02-02. ## Skip all rows upto 2007-02-01. read next 2 days of data with 1 min interval. 24(hr)*60(min)*2(days) hpc_data <- fread('./household_power_consumption.txt',sep = ';',header = FALSE, na.strings = "?",skip = 66637,nrows = 2879,check.names = FALSE) var_names <- names(hpc_data) ## Get column headers hpc_cols <- fread('./household_power_consumption.txt',sep = ';',header = TRUE, na.strings = "?",nrows = 1) hpc_cols <- names(hpc_cols) ## Apply back column headers setnames(hpc_data,var_names,hpc_cols) ## Convert dates col_datetime <- paste(as.Date(hpc_data$Date, format="%d/%m/%Y"), hpc_data$Time) hpc_data$Datetime <- as.POSIXct(col_datetime) ## Generate Plot-3 (Multiple Lines) with (hpc_data, {plot(Sub_metering_1 ~ Datetime, type="l", ylab="Energy sub metering",xlab="") lines(Sub_metering_2 ~ Datetime,col='Red') lines(Sub_metering_3 ~ Datetime,col='Blue') } ) ## Add Legend legend("topright", col=c("black", "red", "blue"), lty=1, legend=c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"),cex = 0.75) ## Save plot to .PNG file dev.copy(png, file="plot3.png", height=480, width=480) dev.off()
## ## Metric to calculate the correlation between two streams of seismic data ## ## Copyright (C) 2012 Mazama Science, Inc. ## by Jonathan Callahan, jonathan@mazamascience.com ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ################################################################################ # correlationMetric <- function(st1, st2) { # Get the first traces tr1 <- st1@traces[[1]] tr2 <- st2@traces[[1]] starttime <- st1@requestedStarttime endtime <- st1@requestedEndtime # Sanity check stream lengths if (st2@requestedStarttime != starttime || st2@requestedEndtime != endtime) { stop(paste("correlationMetric: Incompatible starttimes or endtimes")) } # Sanity check sampling rates if (tr1@stats@sampling_rate != tr2@stats@sampling_rate) { stop(paste("correlationMetric: Incompatible sampling rates")) } # NOTE: Correlation demands vectors of the same length (even though we will ignore NA). # NOTE: We will truncate by up to one second to ensure this. # Sanity check lengths l1 <- length(tr1) l2 <- length(tr2) # Only complain if if sample lengths differ AND the difference is greater than the inverse sampling rate if ( (abs(l1 - l2) > 1) && (abs(l1 - l2) > 1/tr1@stats@sampling_rate) ) { stop(paste("correlationMetric: Incompatible lengths tr1 =",l1,", tr2 =",l2)) } else { min_length <- min(l1,l2) } # Sanity check network and station if (tr1@stats@network != tr2@stats@network || tr1@stats@station != tr2@stats@station) { stop(paste("correlationMetric: Incompatible trace ids '", tr1@id, "', '", tr2@id, "'", sep="")) } # Create two-channel ids if needed locations <- tr1@stats@location if (tr2@stats@location != tr1@stats@location) { locations <- paste(locations, ":", tr2@stats@location, sep="") } channels <- tr1@stats@channel if (tr2@stats@channel != tr1@stats@channel) { channels <- paste(channels, ":", tr2@stats@channel, sep="") } snclq <- paste(tr1@stats@network, tr1@stats@station, locations, channels, tr1@stats@quality, sep=".") # Calculate the correlation metric cor <- cor(tr1@data[1:min_length], tr2@data[1:min_length], use="na.or.complete") # Create and return a list of Metric objects m1 <- new("SingleValueMetric", snclq=snclq, starttime=starttime, endtime=endtime, metricName="cross_talk", value=cor) return(c(m1)) }
/IRISMustangMetrics/R/correlationMetric.R
no_license
ingted/R-Examples
R
false
false
3,102
r
## ## Metric to calculate the correlation between two streams of seismic data ## ## Copyright (C) 2012 Mazama Science, Inc. ## by Jonathan Callahan, jonathan@mazamascience.com ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ################################################################################ # correlationMetric <- function(st1, st2) { # Get the first traces tr1 <- st1@traces[[1]] tr2 <- st2@traces[[1]] starttime <- st1@requestedStarttime endtime <- st1@requestedEndtime # Sanity check stream lengths if (st2@requestedStarttime != starttime || st2@requestedEndtime != endtime) { stop(paste("correlationMetric: Incompatible starttimes or endtimes")) } # Sanity check sampling rates if (tr1@stats@sampling_rate != tr2@stats@sampling_rate) { stop(paste("correlationMetric: Incompatible sampling rates")) } # NOTE: Correlation demands vectors of the same length (even though we will ignore NA). # NOTE: We will truncate by up to one second to ensure this. # Sanity check lengths l1 <- length(tr1) l2 <- length(tr2) # Only complain if if sample lengths differ AND the difference is greater than the inverse sampling rate if ( (abs(l1 - l2) > 1) && (abs(l1 - l2) > 1/tr1@stats@sampling_rate) ) { stop(paste("correlationMetric: Incompatible lengths tr1 =",l1,", tr2 =",l2)) } else { min_length <- min(l1,l2) } # Sanity check network and station if (tr1@stats@network != tr2@stats@network || tr1@stats@station != tr2@stats@station) { stop(paste("correlationMetric: Incompatible trace ids '", tr1@id, "', '", tr2@id, "'", sep="")) } # Create two-channel ids if needed locations <- tr1@stats@location if (tr2@stats@location != tr1@stats@location) { locations <- paste(locations, ":", tr2@stats@location, sep="") } channels <- tr1@stats@channel if (tr2@stats@channel != tr1@stats@channel) { channels <- paste(channels, ":", tr2@stats@channel, sep="") } snclq <- paste(tr1@stats@network, tr1@stats@station, locations, channels, tr1@stats@quality, sep=".") # Calculate the correlation metric cor <- cor(tr1@data[1:min_length], tr2@data[1:min_length], use="na.or.complete") # Create and return a list of Metric objects m1 <- new("SingleValueMetric", snclq=snclq, starttime=starttime, endtime=endtime, metricName="cross_talk", value=cor) return(c(m1)) }
#' Load a user-provided token #' #' @description #' This function does very little when called directly with a token: #' * If input has class `request`, i.e. it is a token that has been prepared #' with [httr::config()], the `auth_token` component is extracted. For #' example, such input could be produced by `googledrive::drive_token()` #' or `bigrquery::bq_token()`. #' * Checks that the input appears to be a Google OAuth token, based on #' the embedded `oauth_endpoint`. #' * Refreshes the token, if it's refreshable. #' * Returns its input. #' #' There is no point providing `scopes`. They are ignored because the `scopes` #' associated with the token have already been baked in to the token itself and #' gargle does not support incremental authorization. The main point of #' `credentials_byo_oauth2()` is to allow `token_fetch()` (and packages that #' wrap it) to accommodate a "bring your own token" workflow. #' #' This also makes it possible to obtain a token with one package and then #' register it for use with another package. For example, the default scope #' requested by googledrive is also sufficient for operations available in #' googlesheets4. You could use a shared token like so: #' ``` #' library(googledrive) #' library(googlesheets4) #' drive_auth(email = "jane_doe@example.com") #' sheets_auth(token = drive_token()) #' # work with both packages freely now #' ``` #' #' @inheritParams token_fetch #' @inheritParams token-info #' #' @return An [Token2.0][httr::Token-class]. #' @family credential functions #' @export #' @examples #' \dontrun{ #' # assume `my_token` is a Token2.0 object returned by a function such as #' # httr::oauth2.0_token() or gargle::gargle2.0_token() #' credentials_byo_oauth2(token = my_token) #' } credentials_byo_oauth2 <- function(scopes = NULL, token, ...) { gargle_debug("trying {.fun credentials_byo_oauth}") if (inherits(token, "request")) { token <- token$auth_token } stopifnot(inherits(token, "Token2.0")) if (!is.null(scopes)) { gargle_debug(c( "{.arg scopes} cannot be specified when user brings their own OAuth token", "{.arg scopes} are already implicit in the token" )) } check_endpoint(token$endpoint) if (token$can_refresh()) { token$refresh() } token } check_endpoint <- function(endpoint) { stopifnot(inherits(endpoint, "oauth_endpoint")) urls <- endpoint[c("authorize", "access", "validate", "revoke")] urls_ok <- all(grepl("google", urls)) if (!urls_ok) { gargle_abort("Token doesn't use Google's OAuth endpoint") } endpoint }
/R/credentials_byo_oauth2.R
permissive
jimsforks/gargle
R
false
false
2,593
r
#' Load a user-provided token #' #' @description #' This function does very little when called directly with a token: #' * If input has class `request`, i.e. it is a token that has been prepared #' with [httr::config()], the `auth_token` component is extracted. For #' example, such input could be produced by `googledrive::drive_token()` #' or `bigrquery::bq_token()`. #' * Checks that the input appears to be a Google OAuth token, based on #' the embedded `oauth_endpoint`. #' * Refreshes the token, if it's refreshable. #' * Returns its input. #' #' There is no point providing `scopes`. They are ignored because the `scopes` #' associated with the token have already been baked in to the token itself and #' gargle does not support incremental authorization. The main point of #' `credentials_byo_oauth2()` is to allow `token_fetch()` (and packages that #' wrap it) to accommodate a "bring your own token" workflow. #' #' This also makes it possible to obtain a token with one package and then #' register it for use with another package. For example, the default scope #' requested by googledrive is also sufficient for operations available in #' googlesheets4. You could use a shared token like so: #' ``` #' library(googledrive) #' library(googlesheets4) #' drive_auth(email = "jane_doe@example.com") #' sheets_auth(token = drive_token()) #' # work with both packages freely now #' ``` #' #' @inheritParams token_fetch #' @inheritParams token-info #' #' @return An [Token2.0][httr::Token-class]. #' @family credential functions #' @export #' @examples #' \dontrun{ #' # assume `my_token` is a Token2.0 object returned by a function such as #' # httr::oauth2.0_token() or gargle::gargle2.0_token() #' credentials_byo_oauth2(token = my_token) #' } credentials_byo_oauth2 <- function(scopes = NULL, token, ...) { gargle_debug("trying {.fun credentials_byo_oauth}") if (inherits(token, "request")) { token <- token$auth_token } stopifnot(inherits(token, "Token2.0")) if (!is.null(scopes)) { gargle_debug(c( "{.arg scopes} cannot be specified when user brings their own OAuth token", "{.arg scopes} are already implicit in the token" )) } check_endpoint(token$endpoint) if (token$can_refresh()) { token$refresh() } token } check_endpoint <- function(endpoint) { stopifnot(inherits(endpoint, "oauth_endpoint")) urls <- endpoint[c("authorize", "access", "validate", "revoke")] urls_ok <- all(grepl("google", urls)) if (!urls_ok) { gargle_abort("Token doesn't use Google's OAuth endpoint") } endpoint }
#' deFinetti #' #' A package for plotting a de Finetti diagram and distributions of F-statistics of genotypes. #' @name deFinetti #' @rdname deFinetti-package #' @docType package #' @author Masahiro Kanai #' @author Kenji Yamane NULL #' Genotype Frequency #' #' An example input. #' @docType data #' @keywords datasets #' @name GenotypeFreq #' @usage data(GenotypeFreq) #' @format A data frame with 3 rows and 3 variables NULL
/R/deFinetti-package.R
no_license
mkanai/deFinetti
R
false
false
429
r
#' deFinetti #' #' A package for plotting a de Finetti diagram and distributions of F-statistics of genotypes. #' @name deFinetti #' @rdname deFinetti-package #' @docType package #' @author Masahiro Kanai #' @author Kenji Yamane NULL #' Genotype Frequency #' #' An example input. #' @docType data #' @keywords datasets #' @name GenotypeFreq #' @usage data(GenotypeFreq) #' @format A data frame with 3 rows and 3 variables NULL
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{dodgr_cache_off} \alias{dodgr_cache_off} \title{dodgr_cache_off} \usage{ dodgr_cache_off() } \value{ Nothing; the function invisibly returns \code{TRUE} if successful. } \description{ Turn off all dodgr caching in current session. This is useful is speed is paramount, and if graph contraction is not needed. Caching can be switched back on with \link{dodgr_cache_on}. }
/fuzzedpackages/dodgr/man/dodgr_cache_off.Rd
no_license
akhikolla/testpackages
R
false
true
463
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{dodgr_cache_off} \alias{dodgr_cache_off} \title{dodgr_cache_off} \usage{ dodgr_cache_off() } \value{ Nothing; the function invisibly returns \code{TRUE} if successful. } \description{ Turn off all dodgr caching in current session. This is useful is speed is paramount, and if graph contraction is not needed. Caching can be switched back on with \link{dodgr_cache_on}. }
library(VaRES) ### Name: burr7 ### Title: Burr XII distribution ### Aliases: dburr7 pburr7 varburr7 esburr7 ### Keywords: Value at risk, expected shortfall ### ** Examples x=runif(10,min=0,max=1) dburr7(x) pburr7(x) varburr7(x) esburr7(x)
/data/genthat_extracted_code/VaRES/examples/burr7.Rd.R
no_license
surayaaramli/typeRrh
R
false
false
244
r
library(VaRES) ### Name: burr7 ### Title: Burr XII distribution ### Aliases: dburr7 pburr7 varburr7 esburr7 ### Keywords: Value at risk, expected shortfall ### ** Examples x=runif(10,min=0,max=1) dburr7(x) pburr7(x) varburr7(x) esburr7(x)
library(phylosim) ### Name: getInsertHook.GeneralInsertor ### Title: Get the insert hook function ### Aliases: getInsertHook.GeneralInsertor GeneralInsertor.getInsertHook ### getInsertHook,GeneralInsertor-method ### ** Examples # create a GeneralInsertor object i<-GeneralInsertor( rate=0.5, propose.by=function(process){sample(c(5:10),1)}, # inserts between 5 and 10 template.seq=NucleotideSequence(length=5,processes=list(list(JC69()))) ) # set a dummy insert hook setInsertHook(i,function(seq){return(seq)}) # set a new insert hook via virtual field i$insertHook<-function(seq){ seq$processes<-list(list(GTR())) # replace the subsitution process return(seq) } # get the insert hook via virtual field i$insertHook # get the insert hook getInsertHook(i)
/data/genthat_extracted_code/phylosim/examples/getInsertHook.GeneralInsertor.Rd.R
no_license
surayaaramli/typeRrh
R
false
false
787
r
library(phylosim) ### Name: getInsertHook.GeneralInsertor ### Title: Get the insert hook function ### Aliases: getInsertHook.GeneralInsertor GeneralInsertor.getInsertHook ### getInsertHook,GeneralInsertor-method ### ** Examples # create a GeneralInsertor object i<-GeneralInsertor( rate=0.5, propose.by=function(process){sample(c(5:10),1)}, # inserts between 5 and 10 template.seq=NucleotideSequence(length=5,processes=list(list(JC69()))) ) # set a dummy insert hook setInsertHook(i,function(seq){return(seq)}) # set a new insert hook via virtual field i$insertHook<-function(seq){ seq$processes<-list(list(GTR())) # replace the subsitution process return(seq) } # get the insert hook via virtual field i$insertHook # get the insert hook getInsertHook(i)
#for using ddply library(plyr) #reading data NEI <- readRDS("summarySCC_PM25.rds") SCC <- readRDS("Source_Classification_Code.rds") #split data by year, sum up all the emissions, recombine plot2data <- ddply(NEI[NEI$fips== "24510",], .(year),summarize,totalEM = sum(Emissions)) png("plot2.png") plot(plot2data$year,plot2data$totalEM,type="b",pch=2,bg = "transparent",xlab="Year",ylab="Total PM25 Emission in Baltimore") dev.off()
/plot2.R
no_license
Hdooster/Exploratory-CP2
R
false
false
433
r
#for using ddply library(plyr) #reading data NEI <- readRDS("summarySCC_PM25.rds") SCC <- readRDS("Source_Classification_Code.rds") #split data by year, sum up all the emissions, recombine plot2data <- ddply(NEI[NEI$fips== "24510",], .(year),summarize,totalEM = sum(Emissions)) png("plot2.png") plot(plot2data$year,plot2data$totalEM,type="b",pch=2,bg = "transparent",xlab="Year",ylab="Total PM25 Emission in Baltimore") dev.off()
#read in a vector of variable names, and keep only those with 'mean' or 'std' # (i.e. standard deviation) in the name features <- read.table("~/Desktop/UCI HAR Dataset/features.txt") features <- features[grep("mean\\(|std",features[[2]]),2] #create vector of activity names in the right order act <- c("walking", "walking up", "walking down", "sitting", "standing", "laying") # read in training data, select measurements on mean and standard deviation, # replace activity numbers with activity names, label the activity and subject # variables, put the columns together, convert to a table X_train <- read.table("~/Desktop/UCI HAR Dataset/train/X_train.txt") #7352 x 561 y_train <- read.table("~/Desktop/UCI HAR Dataset/train/y_train.txt") #7352 x 1 subject_train <- read.table("~/Desktop/UCI HAR Dataset/train/subject_train.txt") #7352 x 1 X_train <- select(X_train, features) y_train <- mutate(y_train, activity = act[V1], V1 = NULL) subject_train <- rename(subject_train, subject = V1) train_data <- cbind(y_train, subject_train, X_train) train_data <- tbl_df(train_data) # do the same thing, but now with the test data X_test <- read.table("~/Desktop/UCI HAR Dataset/test/X_test.txt") #2947 x 561 y_test <- read.table("~/Desktop/UCI HAR Dataset/test/y_test.txt") #2947 x 1 subject_test <- read.table("~/Desktop/UCI HAR Dataset/test/subject_test.txt") #2947 x 1 X_test <- select(X_test,features) y_test <- mutate(y_test, activity = act[V1], V1 = NULL) subject_test <- rename(subject_test, subject = V1) test_data <- cbind(y_test, subject_test, X_test) test_data <- tbl_df(test_data) # merge the training and test data sets vertically, give variables descriptive names data <- rbind(train_data, test_data) names(data)[3:68] <- as.character(features) # group dataset by activity and subject, then produce a second dataset with the # averages of each variable for each activity and subject data <- group_by(data, activity, subject) averaged_data <- summarise_all(data, mean) write.table(averaged_data, "~/Desktop/averaged_data.txt") # here is the code for reading in and viewing "averaged_data.txt" #data <- read.table("~/Desktop/averaged_data.txt", header = TRUE) #View(data)
/run_analysis.R
no_license
MJSpong/getting_data
R
false
false
2,198
r
#read in a vector of variable names, and keep only those with 'mean' or 'std' # (i.e. standard deviation) in the name features <- read.table("~/Desktop/UCI HAR Dataset/features.txt") features <- features[grep("mean\\(|std",features[[2]]),2] #create vector of activity names in the right order act <- c("walking", "walking up", "walking down", "sitting", "standing", "laying") # read in training data, select measurements on mean and standard deviation, # replace activity numbers with activity names, label the activity and subject # variables, put the columns together, convert to a table X_train <- read.table("~/Desktop/UCI HAR Dataset/train/X_train.txt") #7352 x 561 y_train <- read.table("~/Desktop/UCI HAR Dataset/train/y_train.txt") #7352 x 1 subject_train <- read.table("~/Desktop/UCI HAR Dataset/train/subject_train.txt") #7352 x 1 X_train <- select(X_train, features) y_train <- mutate(y_train, activity = act[V1], V1 = NULL) subject_train <- rename(subject_train, subject = V1) train_data <- cbind(y_train, subject_train, X_train) train_data <- tbl_df(train_data) # do the same thing, but now with the test data X_test <- read.table("~/Desktop/UCI HAR Dataset/test/X_test.txt") #2947 x 561 y_test <- read.table("~/Desktop/UCI HAR Dataset/test/y_test.txt") #2947 x 1 subject_test <- read.table("~/Desktop/UCI HAR Dataset/test/subject_test.txt") #2947 x 1 X_test <- select(X_test,features) y_test <- mutate(y_test, activity = act[V1], V1 = NULL) subject_test <- rename(subject_test, subject = V1) test_data <- cbind(y_test, subject_test, X_test) test_data <- tbl_df(test_data) # merge the training and test data sets vertically, give variables descriptive names data <- rbind(train_data, test_data) names(data)[3:68] <- as.character(features) # group dataset by activity and subject, then produce a second dataset with the # averages of each variable for each activity and subject data <- group_by(data, activity, subject) averaged_data <- summarise_all(data, mean) write.table(averaged_data, "~/Desktop/averaged_data.txt") # here is the code for reading in and viewing "averaged_data.txt" #data <- read.table("~/Desktop/averaged_data.txt", header = TRUE) #View(data)
library(rPref) ### Name: plot_front ### Title: Pareto Front Plot ### Aliases: plot_front ### ** Examples # plots Pareto fronts for the hp/mpg values of mtcars show_front <- function(pref) { plot(mtcars$hp, mtcars$mpg) sky <- psel(mtcars, pref) plot_front(mtcars, pref, col = rgb(0, 0, 1)) points(sky$hp, sky$mpg, lwd = 3) } # do this for all four combinations of Pareto compositions show_front(low(hp) * low(mpg)) show_front(low(hp) * high(mpg)) show_front(high(hp) * low(mpg)) show_front(high(hp) * high(mpg)) # compare this to the front of a intersection preference show_front(high(hp) | high(mpg))
/data/genthat_extracted_code/rPref/examples/plot_front.Rd.R
no_license
surayaaramli/typeRrh
R
false
false
623
r
library(rPref) ### Name: plot_front ### Title: Pareto Front Plot ### Aliases: plot_front ### ** Examples # plots Pareto fronts for the hp/mpg values of mtcars show_front <- function(pref) { plot(mtcars$hp, mtcars$mpg) sky <- psel(mtcars, pref) plot_front(mtcars, pref, col = rgb(0, 0, 1)) points(sky$hp, sky$mpg, lwd = 3) } # do this for all four combinations of Pareto compositions show_front(low(hp) * low(mpg)) show_front(low(hp) * high(mpg)) show_front(high(hp) * low(mpg)) show_front(high(hp) * high(mpg)) # compare this to the front of a intersection preference show_front(high(hp) | high(mpg))
# This R file accomanies the .Rmd blog post # _source/2016-02-28-third-post.Rmd
/_source/third-post.R
permissive
SCgeeker/knitr-jekyll
R
false
false
81
r
# This R file accomanies the .Rmd blog post # _source/2016-02-28-third-post.Rmd
# Checklist builder # Keaton Wilson # keatonwilson@me.com # 2020-05-29 # packages library(tidyverse) library(raster) library(rgeos) #test raster test_rast = raster("./data/thresh_maps_rasters/checklist_rasters/aglais_milberti_all_thresh.tif") # NFS polygons nfs = readRDS("./data/nfs_small.rds") #same proj crs(test_rast) = crs(nfs) # intersection angeles = subset(nfs, nfs$FORESTNAME == "Angeles National Forest") intersect = raster::intersect(test_rast, angeles) # building a checklist for one species for all forests forest_list = split(nfs, nfs$FORESTNAME, drop = TRUE) # getting all species threshold file names files = list.files("./data/thresh_maps_rasters/checklist_rasters/", full.names = TRUE) to_run = files[str_detect(files, "all")] df_out = data.frame(forest_name = c(), species = c(), present = c()) for(j in 1:length(to_run)){ spec_rast = raster(to_run[j]) crs(spec_rast) = crs(nfs) species_name = str_remove(to_run[j], "./data/thresh_maps_rasters/checklist_rasters//") %>% str_remove("_all_thresh.tif") for(i in 1:length(forest_list)){ check_intersect = try(raster::intersect(spec_rast, forest_list[[i]])) df = data.frame(forest_name = names(forest_list[i]), species = species_name, present = ifelse(class(check_intersect) == "try-error", FALSE, ifelse(sum(check_intersect@data@values) > 0, TRUE, FALSE))) df_out = rbind(df_out, df) print(paste(species_name, names(forest_list[i]))) } } write_csv(df_out, "checklist.csv")
/scripts/checklists.R
no_license
keatonwilson/butterfly_mapper
R
false
false
1,766
r
# Checklist builder # Keaton Wilson # keatonwilson@me.com # 2020-05-29 # packages library(tidyverse) library(raster) library(rgeos) #test raster test_rast = raster("./data/thresh_maps_rasters/checklist_rasters/aglais_milberti_all_thresh.tif") # NFS polygons nfs = readRDS("./data/nfs_small.rds") #same proj crs(test_rast) = crs(nfs) # intersection angeles = subset(nfs, nfs$FORESTNAME == "Angeles National Forest") intersect = raster::intersect(test_rast, angeles) # building a checklist for one species for all forests forest_list = split(nfs, nfs$FORESTNAME, drop = TRUE) # getting all species threshold file names files = list.files("./data/thresh_maps_rasters/checklist_rasters/", full.names = TRUE) to_run = files[str_detect(files, "all")] df_out = data.frame(forest_name = c(), species = c(), present = c()) for(j in 1:length(to_run)){ spec_rast = raster(to_run[j]) crs(spec_rast) = crs(nfs) species_name = str_remove(to_run[j], "./data/thresh_maps_rasters/checklist_rasters//") %>% str_remove("_all_thresh.tif") for(i in 1:length(forest_list)){ check_intersect = try(raster::intersect(spec_rast, forest_list[[i]])) df = data.frame(forest_name = names(forest_list[i]), species = species_name, present = ifelse(class(check_intersect) == "try-error", FALSE, ifelse(sum(check_intersect@data@values) > 0, TRUE, FALSE))) df_out = rbind(df_out, df) print(paste(species_name, names(forest_list[i]))) } } write_csv(df_out, "checklist.csv")
"%&%" = function(a,b) paste(a,b,sep="") pheno_name <- c("CHOL_rank", "HDL_rank", "LDL_rank", "TRIG_rank") database_tissues <- read.table('/home/angela/px_yri_chol/PrediXcan/database_tissues2.txt') database_tissues <- database_tissues$V1 for (i in pheno_name){ for (j in database_tissues){ MetaXcan <- 'python /home/angela/MetaXcan-master/software/MetaXcan.py --model_db_path /home/wheelerlab1/Data/PrediXcan_db/GTEx-V6p-HapMap-2016-09-08/' %&% j %&% '_0.5.db --gwas_folder /home/angela/px_cebu_chol/GEMMA/MichGEMMA/output/' %&% i %&% '/ --snp_column rs --effect_allele_column allele1 --non_effect_allele_column allele0 --chromosome_column chr --position_column ps --freq_column af --beta_column beta --se_column se --pvalue_column p_wald --covariance /home/wheelerlab1/Data/PrediXcan_db/GTEx-V6p-HapMap-2016-09-08/' %&% j %&% '.txt.gz --output_file /home/angela/MetaXcan-master/GEMMA_Cebu/Mich/' %&% j %&%'_0.5.db/' %&% i %&% '.csv' system(MetaXcan) } }
/06_runMetaXcan.r
no_license
quanrd/px_chol
R
false
false
978
r
"%&%" = function(a,b) paste(a,b,sep="") pheno_name <- c("CHOL_rank", "HDL_rank", "LDL_rank", "TRIG_rank") database_tissues <- read.table('/home/angela/px_yri_chol/PrediXcan/database_tissues2.txt') database_tissues <- database_tissues$V1 for (i in pheno_name){ for (j in database_tissues){ MetaXcan <- 'python /home/angela/MetaXcan-master/software/MetaXcan.py --model_db_path /home/wheelerlab1/Data/PrediXcan_db/GTEx-V6p-HapMap-2016-09-08/' %&% j %&% '_0.5.db --gwas_folder /home/angela/px_cebu_chol/GEMMA/MichGEMMA/output/' %&% i %&% '/ --snp_column rs --effect_allele_column allele1 --non_effect_allele_column allele0 --chromosome_column chr --position_column ps --freq_column af --beta_column beta --se_column se --pvalue_column p_wald --covariance /home/wheelerlab1/Data/PrediXcan_db/GTEx-V6p-HapMap-2016-09-08/' %&% j %&% '.txt.gz --output_file /home/angela/MetaXcan-master/GEMMA_Cebu/Mich/' %&% j %&%'_0.5.db/' %&% i %&% '.csv' system(MetaXcan) } }
num <- scan("stdin", what = integer(), quiet = TRUE) cas <- num[1] ans <- integer(cas) for (i in 1:cas) { if (num[i + 1] == 1) { ans[i] = 1 } else { ans[i] = num[i + 1] %/% 2 } } write(as.integer(ans), file = "", sep = "\n")
/Round1/A/A.r
no_license
Rachelwwwwb/TPC
R
false
false
260
r
num <- scan("stdin", what = integer(), quiet = TRUE) cas <- num[1] ans <- integer(cas) for (i in 1:cas) { if (num[i + 1] == 1) { ans[i] = 1 } else { ans[i] = num[i + 1] %/% 2 } } write(as.integer(ans), file = "", sep = "\n")
library("dplyr") library("gdxtools") # BASE FUNCTIONS -------------------------------------- #' Extract simple variable #' @noRd getGDX_Variable<- function(gdx_filename, variable_name, unit = NULL){ gdx_file = gdx(gdx_filename) myvar = gdx_file[as.character(variable_name)] if(is.null(unit)){return(myvar)} else{return(myvar %>% mutate("unit" = unit))} } #' Extract nty variable #' @noRd getGDX_Variable_nty <- function( variable_name, gdx_filename, year_start = 0, year_limit = 2300, unit = NULL ){ gdx_file = gdx(gdx_filename) myvar = gdx_file[as.character(variable_name)] %>% mutate(year = t_to_y(as.integer(t))) %>% mutate(year =as.integer(year)) %>% mutate(t = as.integer(t)) %>% dplyr::filter(year >= year_start) %>% dplyr::filter(year <= year_limit) if(is.null(unit)){return(myvar)} else{return(myvar %>% mutate(unit = unit))} } #' Extract ty variable #' @noRd getGDX_Variable_ty <- function( variable_name, gdx_filename, year_start = 0, year_limit = 2300, unit = NULL ){ gdx_file = gdx(gdx_filename) myvar = gdx_file[as.character(variable_name)] %>% mutate(year = t_to_y(as.integer(t)) ) %>% mutate(year =as.integer(year)) %>% mutate(t = as.integer(t)) %>% dplyr::filter(year >= year_start) %>% dplyr::filter(year <= year_limit) if(is.null(unit)){return(myvar)} else{return(myvar %>% mutate("unit" = unit))} } # AGGREGATING FUNCTIONS ----------------------- #' Extract cumulated (5-years-period) n variable #' @noRd getGDX_Variable_CUML5y_n <- function(variable_name, gdx_filename, unit = NULL, year_start = 0, year_limit=2300){ myvar =getGDX_Variable_nty( variable_name, gdx_filename, year_start, year_limit ) %>% group_by(n) %>% summarise(value = sum(value*5)) %>% # multiplied because is the dplyr::select(n, value) %>% as.data.frame() if(is.null(unit)){return(myvar)} else{return(myvar %>% mutate("unit" = unit))} } #' Extract world variable summing across countries #' @noRd getGDX_Variable_WORLDagg_ntySUMty <- function( variable_name, gdx_filename, unit = NULL, year_start = 0, year_limit = 2300 ) { VAR_nty = getGDX_Variable_nty(variable_name, gdx_filename, year_start,year_limit) VAR_ty = WORLDaggr_ntySUMty(VAR_nty) if(is.null(unit)){return(VAR_ty)} else{return(VAR_ty %>% mutate("unit" = unit))} } ## -------------: DISAGGREGATING FUNCTIONS :----------------------- # # # getGDX_Variable_dsagg_ntyTOiso3ty <- function( variable_name, # gdx_file, # unit = NULL, # year_start = 0, # year_limit = 2300 ){ # # d_n = getGDX_Variable_nty(variable_name, gdx_file, year_start,year_limit) # map_n_iso3 = getGDX_Parameter(gdx_file,"map_n_iso3") # iso3_variable = merge(map_n_iso3,d_n,by=c("n")) %>% sanitizeISO3() # # if(is.null(unit)){return(iso3_variable)} # else{return(iso3_variable %>% mutate("unit" = unit))} # # } # # # # # getGDX_Parameter_dsagg_ntyTOiso3ty <- function( parameter_name, # gdx_file, # unit = NULL, # year_start = 0, # year_limit = 2300 ){ # # d_n = getGDX_Parameter_nty(parameter_name, gdx_file, year_start,year_limit) # map_n_iso3 = getGDX_Parameter(gdx_file,"map_n_iso3") # iso3_parameter = merge(map_n_iso3,d_n,by=c("n")) %>% sanitizeISO3() # # if(is.null(unit)){return(iso3_parameter)} # else{return(iso3_parameter %>% mutate("unit" = unit))} # } # #
/R/02_gdx_extract_utils.R
permissive
gappix/rice50xplots
R
false
false
4,704
r
library("dplyr") library("gdxtools") # BASE FUNCTIONS -------------------------------------- #' Extract simple variable #' @noRd getGDX_Variable<- function(gdx_filename, variable_name, unit = NULL){ gdx_file = gdx(gdx_filename) myvar = gdx_file[as.character(variable_name)] if(is.null(unit)){return(myvar)} else{return(myvar %>% mutate("unit" = unit))} } #' Extract nty variable #' @noRd getGDX_Variable_nty <- function( variable_name, gdx_filename, year_start = 0, year_limit = 2300, unit = NULL ){ gdx_file = gdx(gdx_filename) myvar = gdx_file[as.character(variable_name)] %>% mutate(year = t_to_y(as.integer(t))) %>% mutate(year =as.integer(year)) %>% mutate(t = as.integer(t)) %>% dplyr::filter(year >= year_start) %>% dplyr::filter(year <= year_limit) if(is.null(unit)){return(myvar)} else{return(myvar %>% mutate(unit = unit))} } #' Extract ty variable #' @noRd getGDX_Variable_ty <- function( variable_name, gdx_filename, year_start = 0, year_limit = 2300, unit = NULL ){ gdx_file = gdx(gdx_filename) myvar = gdx_file[as.character(variable_name)] %>% mutate(year = t_to_y(as.integer(t)) ) %>% mutate(year =as.integer(year)) %>% mutate(t = as.integer(t)) %>% dplyr::filter(year >= year_start) %>% dplyr::filter(year <= year_limit) if(is.null(unit)){return(myvar)} else{return(myvar %>% mutate("unit" = unit))} } # AGGREGATING FUNCTIONS ----------------------- #' Extract cumulated (5-years-period) n variable #' @noRd getGDX_Variable_CUML5y_n <- function(variable_name, gdx_filename, unit = NULL, year_start = 0, year_limit=2300){ myvar =getGDX_Variable_nty( variable_name, gdx_filename, year_start, year_limit ) %>% group_by(n) %>% summarise(value = sum(value*5)) %>% # multiplied because is the dplyr::select(n, value) %>% as.data.frame() if(is.null(unit)){return(myvar)} else{return(myvar %>% mutate("unit" = unit))} } #' Extract world variable summing across countries #' @noRd getGDX_Variable_WORLDagg_ntySUMty <- function( variable_name, gdx_filename, unit = NULL, year_start = 0, year_limit = 2300 ) { VAR_nty = getGDX_Variable_nty(variable_name, gdx_filename, year_start,year_limit) VAR_ty = WORLDaggr_ntySUMty(VAR_nty) if(is.null(unit)){return(VAR_ty)} else{return(VAR_ty %>% mutate("unit" = unit))} } ## -------------: DISAGGREGATING FUNCTIONS :----------------------- # # # getGDX_Variable_dsagg_ntyTOiso3ty <- function( variable_name, # gdx_file, # unit = NULL, # year_start = 0, # year_limit = 2300 ){ # # d_n = getGDX_Variable_nty(variable_name, gdx_file, year_start,year_limit) # map_n_iso3 = getGDX_Parameter(gdx_file,"map_n_iso3") # iso3_variable = merge(map_n_iso3,d_n,by=c("n")) %>% sanitizeISO3() # # if(is.null(unit)){return(iso3_variable)} # else{return(iso3_variable %>% mutate("unit" = unit))} # # } # # # # # getGDX_Parameter_dsagg_ntyTOiso3ty <- function( parameter_name, # gdx_file, # unit = NULL, # year_start = 0, # year_limit = 2300 ){ # # d_n = getGDX_Parameter_nty(parameter_name, gdx_file, year_start,year_limit) # map_n_iso3 = getGDX_Parameter(gdx_file,"map_n_iso3") # iso3_parameter = merge(map_n_iso3,d_n,by=c("n")) %>% sanitizeISO3() # # if(is.null(unit)){return(iso3_parameter)} # else{return(iso3_parameter %>% mutate("unit" = unit))} # } # #
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/epanetmsx.rpt-s3.r \name{summary.epanetmsx.rpt} \alias{summary.epanetmsx.rpt} \title{Summary of Epanet-msx Simulation Results} \usage{ \method{summary}{epanetmsx.rpt}(object, ...) } \arguments{ \item{object}{of epanetmsx.rpt class} \item{...}{further arguments passed to summary()} } \description{ Provides a basic summary of simulation results }
/man/summary.epanetmsx.rpt.Rd
permissive
gintaem/epanetReader
R
false
true
427
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/epanetmsx.rpt-s3.r \name{summary.epanetmsx.rpt} \alias{summary.epanetmsx.rpt} \title{Summary of Epanet-msx Simulation Results} \usage{ \method{summary}{epanetmsx.rpt}(object, ...) } \arguments{ \item{object}{of epanetmsx.rpt class} \item{...}{further arguments passed to summary()} } \description{ Provides a basic summary of simulation results }
library(readxl) data=read_xlsx("E:/Data_Nilai_Pegawai.xlsx") View(data) library(ggplot2) library(RColorBrewer) library(doBy) summary(data) #variabel Tingkat Pendidikan Akhir counts=table(data$`Tingkat Pendidikan Akhir`) barplot(counts,main="Tingkat Pendidikan Akhir Pegawai", xlab="pendidikan akhir", ylab="jumlah",col=brewer.pal(8,"Set3")) mytable=table(data$`Tingkat Pendidikan Akhir`) pct=((mytable/sum(mytable))*100) pct=round(pct,digit=2) lbls=paste(names(mytable),pct) lbls=paste(lbls,"%",sep="") pie(mytable,labels = lbls, main="Pie Chart dari Tingkat Pendidikan Akhir Pegawai") boxplot(data$Nilai~data$`Tingkat Pendidikan Akhir`, data=data,main="Perbedaan Boxplot untuk Masing-Masing Tingkat Pendidikan Akhir", xlab="Tingkat Pendidikan Akhir", ylab="Nilai", col="orange",border="brown") #variabel Satuan Kerja counts=table(data$`Satuan Kerja`) barplot(counts,main="Satuan Kerja", ylab="jumlah",col=brewer.pal(6,"Set2")) mytable=table(data$`Satuan Kerja`) pct=((mytable/sum(mytable))*100) pct=round(pct,digit=2) lbls=paste(names(mytable),pct) lbls=paste(lbls,"%",sep="") pie(mytable,labels = lbls, col=rainbow(length(lbls)), main="Pie Chart dari Satuan Kerja Pegawai") boxplot(data$Nilai~data$`Satuan Kerja`, data=data,main="Perbedaan Boxplot untuk Masing-Masing Satuan Kerja", xlab="Satuan Kerja", ylab="Nilai", col="orange",border="brown") #variabel Usia plot(data$Usia,data$Nilai,main="Persebaran Nilai Berdasarkan Usia",ylab="Nilai",xlab="Usia",col=brewer.pal(3,"Set2")) #ANOVA AND TUKEY TEST Anova_result=aov(data$Nilai~data$`Tingkat Pendidikan Akhir`,data=data) summary(Anova_result) tukey=TukeyHSD(Anova_result) tukey plot(tukey) Anova_result=aov(data$Nilai~data$`Satuan Kerja`,data=data) summary(Anova_result) tukey=TukeyHSD(Anova_result) tukey plot(tukey)
/JDS_.R
no_license
Novitadwiutami/analisis-evaluasi-kinerja-asn-pemprov-jabar
R
false
false
1,923
r
library(readxl) data=read_xlsx("E:/Data_Nilai_Pegawai.xlsx") View(data) library(ggplot2) library(RColorBrewer) library(doBy) summary(data) #variabel Tingkat Pendidikan Akhir counts=table(data$`Tingkat Pendidikan Akhir`) barplot(counts,main="Tingkat Pendidikan Akhir Pegawai", xlab="pendidikan akhir", ylab="jumlah",col=brewer.pal(8,"Set3")) mytable=table(data$`Tingkat Pendidikan Akhir`) pct=((mytable/sum(mytable))*100) pct=round(pct,digit=2) lbls=paste(names(mytable),pct) lbls=paste(lbls,"%",sep="") pie(mytable,labels = lbls, main="Pie Chart dari Tingkat Pendidikan Akhir Pegawai") boxplot(data$Nilai~data$`Tingkat Pendidikan Akhir`, data=data,main="Perbedaan Boxplot untuk Masing-Masing Tingkat Pendidikan Akhir", xlab="Tingkat Pendidikan Akhir", ylab="Nilai", col="orange",border="brown") #variabel Satuan Kerja counts=table(data$`Satuan Kerja`) barplot(counts,main="Satuan Kerja", ylab="jumlah",col=brewer.pal(6,"Set2")) mytable=table(data$`Satuan Kerja`) pct=((mytable/sum(mytable))*100) pct=round(pct,digit=2) lbls=paste(names(mytable),pct) lbls=paste(lbls,"%",sep="") pie(mytable,labels = lbls, col=rainbow(length(lbls)), main="Pie Chart dari Satuan Kerja Pegawai") boxplot(data$Nilai~data$`Satuan Kerja`, data=data,main="Perbedaan Boxplot untuk Masing-Masing Satuan Kerja", xlab="Satuan Kerja", ylab="Nilai", col="orange",border="brown") #variabel Usia plot(data$Usia,data$Nilai,main="Persebaran Nilai Berdasarkan Usia",ylab="Nilai",xlab="Usia",col=brewer.pal(3,"Set2")) #ANOVA AND TUKEY TEST Anova_result=aov(data$Nilai~data$`Tingkat Pendidikan Akhir`,data=data) summary(Anova_result) tukey=TukeyHSD(Anova_result) tukey plot(tukey) Anova_result=aov(data$Nilai~data$`Satuan Kerja`,data=data) summary(Anova_result) tukey=TukeyHSD(Anova_result) tukey plot(tukey)
\name{lagmess} \alias{lagmess} \alias{print.lagmess} \alias{print.summary.lagmess} \alias{summary.lagmess} \alias{residuals.lagmess} \alias{deviance.lagmess} \alias{coef.lagmess} \alias{fitted.lagmess} \alias{logLik.lagmess} %- Also NEED an '\alias' for EACH other topic documented here. \title{Matrix exponential spatial lag model} \description{The function fits a matrix exponential spatial lag model, using \code{optim} to find the value of \code{alpha}, the spatial coefficient.} \usage{ lagmess(formula, data = list(), listw, zero.policy = NULL, na.action = na.fail, q = 10, start = -2.5, control=list(), method="BFGS", verbose=NULL, use_expm=FALSE) \method{summary}{lagmess}(object, ...) \method{print}{lagmess}(x, ...) \method{print}{summary.lagmess}(x, digits = max(5, .Options$digits - 3), signif.stars = FALSE, ...) \method{residuals}{lagmess}(object, ...) \method{deviance}{lagmess}(object, ...) \method{coef}{lagmess}(object, ...) \method{fitted}{lagmess}(object, ...) \method{logLik}{lagmess}(object, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{formula}{a symbolic description of the model to be fit. The details of model specification are given for \code{lm()}} \item{data}{an optional data frame containing the variables in the model. By default the variables are taken from the environment which the function is called.} \item{listw}{a \code{listw} object created for example by \code{nb2listw}} \item{zero.policy}{default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA - causing \code{lagmess()} to terminate with an error} \item{na.action}{a function (default \code{options("na.action")}), can also be \code{na.omit} or \code{na.exclude} with consequences for residuals and fitted values - in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to \code{nb2listw} may be subsetted.} \item{q}{default 10; number of powers of the spatial weights to use} \item{start}{starting value for numerical optimization, should be a small negative number} \item{control}{control parameters passed to \code{optim}} \item{method}{default \code{BFGS}, method passed to \code{optim}} \item{verbose}{default NULL, use global option value; if TRUE report function values during optimization} \item{use_expm}{default FALSE; if TRUE use \code{expm::expAtv} instead of a truncated power series of W} \item{x,object}{Objects of classes \code{lagmess} or \code{summary.lagmess} to be passed to methods} \item{digits}{the number of significant digits to use when printing} \item{signif.stars}{logical. If TRUE, "significance stars" are printed for each coefficient.} \item{\dots}{further arguments passed to or from other methods} } \details{The underlying spatial lag model: \deqn{y = \rho W y + X \beta + \varepsilon}{y = rho W y + X beta + e} where \eqn{\rho}{rho} is the spatial parameter may be fitted by maximum likelihood. In that case, the log likelihood function includes the logartithm of cumbersome Jacobian term \eqn{|I - \rho W|}{|I - rho W|}. If we rewrite the model as: \deqn{S y = X \beta + \varepsilon}{S y = X beta + e} we see that in the ML case \eqn{S y = (I - \rho W) y}{S y = (I - rho W) y}. If W is row-stochastic, S may be expressed as a linear combination of row-stochastic matrices. By pre-computing the matrix \eqn{[y Wy, W^2y, ..., W^{q-1}y]}{[y Wy, W^2y, ..., W^{q-1}y]}, the term \eqn{S y (\alpha)}{S y (alpha)} can readily be found by numerical optimization using the matrix exponential approach. \eqn{\alpha}{alpha} and \eqn{\rho}{rho} are related as \eqn{\rho = 1 - \exp{\alpha}}{rho = 1 - exp(alpha)}, conditional on the number of matrix power terms taken \code{q}.} \value{ The function returns an object of class \code{lagmess} with components: \item{lmobj}{the \code{lm} object returned after fitting \code{alpha}} \item{alpha}{the spatial coefficient} \item{alphase}{the standard error of the spatial coefficient using the numerical Hessian} \item{rho}{the value of \code{rho} implied by \code{alpha}} \item{bestmess}{the object returned by \code{optim}} \item{q}{the number of powers of the spatial weights used} \item{start}{the starting value for numerical optimization used} \item{na.action}{(possibly) named vector of excluded or omitted observations if non-default na.action argument used} \item{nullLL}{the log likelihood of the aspatial model for the same data} } \references{J. P. LeSage and R. K. Pace (2007) A matrix exponential specification. Journal of Econometrics, 140, 190-214; J. P. LeSage and R. K. Pace (2009) Introduction to Spatial Econometrics. CRC Press, Chapter 9.} \author{Roger Bivand \email{Roger.Bivand@nhh.no} and Eric Blankmeyer} \seealso{\code{\link{lagsarlm}}, \code{\link[stats]{optim}}} \examples{ data(baltimore) baltimore$AGE <- ifelse(baltimore$AGE < 1, 1, baltimore$AGE) lw <- nb2listw(knn2nb(knearneigh(cbind(baltimore$X, baltimore$Y), k=7))) obj1 <- lm(log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data=baltimore) lm.morantest(obj1, lw) lm.LMtests(obj1, lw, test="all") system.time(obj2 <- lagmess(log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data=baltimore, listw=lw)) summary(obj2) system.time(obj2a <- lagmess(log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data=baltimore, listw=lw, use_expm=TRUE)) summary(obj2a) obj3 <- lagsarlm(log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data=baltimore, listw=lw) summary(obj3) data(boston) lw <- nb2listw(boston.soi) gp2 <- lagsarlm(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT), data=boston.c, lw, method="Matrix") summary(gp2) gp2a <- lagmess(CMEDV ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT), data=boston.c, lw) summary(gp2a) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{spatial}
/man/lagmess.Rd
no_license
jsjae2000/spdep-1
R
false
false
6,182
rd
\name{lagmess} \alias{lagmess} \alias{print.lagmess} \alias{print.summary.lagmess} \alias{summary.lagmess} \alias{residuals.lagmess} \alias{deviance.lagmess} \alias{coef.lagmess} \alias{fitted.lagmess} \alias{logLik.lagmess} %- Also NEED an '\alias' for EACH other topic documented here. \title{Matrix exponential spatial lag model} \description{The function fits a matrix exponential spatial lag model, using \code{optim} to find the value of \code{alpha}, the spatial coefficient.} \usage{ lagmess(formula, data = list(), listw, zero.policy = NULL, na.action = na.fail, q = 10, start = -2.5, control=list(), method="BFGS", verbose=NULL, use_expm=FALSE) \method{summary}{lagmess}(object, ...) \method{print}{lagmess}(x, ...) \method{print}{summary.lagmess}(x, digits = max(5, .Options$digits - 3), signif.stars = FALSE, ...) \method{residuals}{lagmess}(object, ...) \method{deviance}{lagmess}(object, ...) \method{coef}{lagmess}(object, ...) \method{fitted}{lagmess}(object, ...) \method{logLik}{lagmess}(object, ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{formula}{a symbolic description of the model to be fit. The details of model specification are given for \code{lm()}} \item{data}{an optional data frame containing the variables in the model. By default the variables are taken from the environment which the function is called.} \item{listw}{a \code{listw} object created for example by \code{nb2listw}} \item{zero.policy}{default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA - causing \code{lagmess()} to terminate with an error} \item{na.action}{a function (default \code{options("na.action")}), can also be \code{na.omit} or \code{na.exclude} with consequences for residuals and fitted values - in these cases the weights list will be subsetted to remove NAs in the data. It may be necessary to set zero.policy to TRUE because this subsetting may create no-neighbour observations. Note that only weights lists created without using the glist argument to \code{nb2listw} may be subsetted.} \item{q}{default 10; number of powers of the spatial weights to use} \item{start}{starting value for numerical optimization, should be a small negative number} \item{control}{control parameters passed to \code{optim}} \item{method}{default \code{BFGS}, method passed to \code{optim}} \item{verbose}{default NULL, use global option value; if TRUE report function values during optimization} \item{use_expm}{default FALSE; if TRUE use \code{expm::expAtv} instead of a truncated power series of W} \item{x,object}{Objects of classes \code{lagmess} or \code{summary.lagmess} to be passed to methods} \item{digits}{the number of significant digits to use when printing} \item{signif.stars}{logical. If TRUE, "significance stars" are printed for each coefficient.} \item{\dots}{further arguments passed to or from other methods} } \details{The underlying spatial lag model: \deqn{y = \rho W y + X \beta + \varepsilon}{y = rho W y + X beta + e} where \eqn{\rho}{rho} is the spatial parameter may be fitted by maximum likelihood. In that case, the log likelihood function includes the logartithm of cumbersome Jacobian term \eqn{|I - \rho W|}{|I - rho W|}. If we rewrite the model as: \deqn{S y = X \beta + \varepsilon}{S y = X beta + e} we see that in the ML case \eqn{S y = (I - \rho W) y}{S y = (I - rho W) y}. If W is row-stochastic, S may be expressed as a linear combination of row-stochastic matrices. By pre-computing the matrix \eqn{[y Wy, W^2y, ..., W^{q-1}y]}{[y Wy, W^2y, ..., W^{q-1}y]}, the term \eqn{S y (\alpha)}{S y (alpha)} can readily be found by numerical optimization using the matrix exponential approach. \eqn{\alpha}{alpha} and \eqn{\rho}{rho} are related as \eqn{\rho = 1 - \exp{\alpha}}{rho = 1 - exp(alpha)}, conditional on the number of matrix power terms taken \code{q}.} \value{ The function returns an object of class \code{lagmess} with components: \item{lmobj}{the \code{lm} object returned after fitting \code{alpha}} \item{alpha}{the spatial coefficient} \item{alphase}{the standard error of the spatial coefficient using the numerical Hessian} \item{rho}{the value of \code{rho} implied by \code{alpha}} \item{bestmess}{the object returned by \code{optim}} \item{q}{the number of powers of the spatial weights used} \item{start}{the starting value for numerical optimization used} \item{na.action}{(possibly) named vector of excluded or omitted observations if non-default na.action argument used} \item{nullLL}{the log likelihood of the aspatial model for the same data} } \references{J. P. LeSage and R. K. Pace (2007) A matrix exponential specification. Journal of Econometrics, 140, 190-214; J. P. LeSage and R. K. Pace (2009) Introduction to Spatial Econometrics. CRC Press, Chapter 9.} \author{Roger Bivand \email{Roger.Bivand@nhh.no} and Eric Blankmeyer} \seealso{\code{\link{lagsarlm}}, \code{\link[stats]{optim}}} \examples{ data(baltimore) baltimore$AGE <- ifelse(baltimore$AGE < 1, 1, baltimore$AGE) lw <- nb2listw(knn2nb(knearneigh(cbind(baltimore$X, baltimore$Y), k=7))) obj1 <- lm(log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data=baltimore) lm.morantest(obj1, lw) lm.LMtests(obj1, lw, test="all") system.time(obj2 <- lagmess(log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data=baltimore, listw=lw)) summary(obj2) system.time(obj2a <- lagmess(log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data=baltimore, listw=lw, use_expm=TRUE)) summary(obj2a) obj3 <- lagsarlm(log(PRICE) ~ PATIO + log(AGE) + log(SQFT), data=baltimore, listw=lw) summary(obj3) data(boston) lw <- nb2listw(boston.soi) gp2 <- lagsarlm(log(CMEDV) ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT), data=boston.c, lw, method="Matrix") summary(gp2) gp2a <- lagmess(CMEDV ~ CRIM + ZN + INDUS + CHAS + I(NOX^2) + I(RM^2) + AGE + log(DIS) + log(RAD) + TAX + PTRATIO + B + log(LSTAT), data=boston.c, lw) summary(gp2a) } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{spatial}
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/terrain_analysis.R \name{wbt_plan_curvature} \alias{wbt_plan_curvature} \title{Plan curvature} \usage{ wbt_plan_curvature(dem, output, zfactor = 1, wd = NULL, verbose_mode = FALSE) } \arguments{ \item{dem}{Input raster DEM file.} \item{output}{Output raster file.} \item{zfactor}{Optional multiplier for when the vertical and horizontal units are not the same.} \item{wd}{Changes the working directory.} \item{verbose_mode}{Sets verbose mode. If verbose mode is False, tools will not print output messages.} } \value{ Returns the tool text outputs. } \description{ Calculates a plan (contour) curvature raster from an input DEM. }
/man/wbt_plan_curvature.Rd
permissive
gitWayneZhang/whiteboxR
R
false
true
713
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/terrain_analysis.R \name{wbt_plan_curvature} \alias{wbt_plan_curvature} \title{Plan curvature} \usage{ wbt_plan_curvature(dem, output, zfactor = 1, wd = NULL, verbose_mode = FALSE) } \arguments{ \item{dem}{Input raster DEM file.} \item{output}{Output raster file.} \item{zfactor}{Optional multiplier for when the vertical and horizontal units are not the same.} \item{wd}{Changes the working directory.} \item{verbose_mode}{Sets verbose mode. If verbose mode is False, tools will not print output messages.} } \value{ Returns the tool text outputs. } \description{ Calculates a plan (contour) curvature raster from an input DEM. }
#' @title Function to compute the confidence interval for the Spearman #' correelation coefficient #' #' @description #' This function enables to compute the confidence interval for the Spearman #' correelation coefficient using the Fischer Z transformation. #' #' @usage #' spearmanCI(x, n, alpha = 0.05) #' #' @param x Spearman correlation coefficient rho. #' @param n the sample size used to compute the Spearman rho. #' @param alpha alpha level for confidence interval. #' #' @return #' A vector containing the lower, upper values for the confidence interval #' and p-value for Spearman rho #' #' @examples #' spearmanCI(x=0.2, n=100, alpha=0.05) #' #' @md #' @export spearmanCI <- function (x, n, alpha=0.05) { zz <- sqrt((n-3)/1.06) * survcomp::fisherz(x) zz.se <- 1/sqrt(n - 3) ll <- zz - qnorm(p=alpha / 2, lower.tail=FALSE) * zz.se ll <- survcomp::fisherz(ll / sqrt((n-3)/1.06), inv=TRUE) uu <- zz + qnorm(p=alpha / 2, lower.tail=FALSE) * zz.se uu <- survcomp::fisherz(uu / sqrt((n-3)/1.06), inv=TRUE) pp <- pnorm(q=zz, lower.tail=x < 0) res <- c("lower"=ll, "upper"=uu, "p.value"=pp) return(res) }
/R/SpearmanCI.R
no_license
bhklab/genefu
R
false
false
1,153
r
#' @title Function to compute the confidence interval for the Spearman #' correelation coefficient #' #' @description #' This function enables to compute the confidence interval for the Spearman #' correelation coefficient using the Fischer Z transformation. #' #' @usage #' spearmanCI(x, n, alpha = 0.05) #' #' @param x Spearman correlation coefficient rho. #' @param n the sample size used to compute the Spearman rho. #' @param alpha alpha level for confidence interval. #' #' @return #' A vector containing the lower, upper values for the confidence interval #' and p-value for Spearman rho #' #' @examples #' spearmanCI(x=0.2, n=100, alpha=0.05) #' #' @md #' @export spearmanCI <- function (x, n, alpha=0.05) { zz <- sqrt((n-3)/1.06) * survcomp::fisherz(x) zz.se <- 1/sqrt(n - 3) ll <- zz - qnorm(p=alpha / 2, lower.tail=FALSE) * zz.se ll <- survcomp::fisherz(ll / sqrt((n-3)/1.06), inv=TRUE) uu <- zz + qnorm(p=alpha / 2, lower.tail=FALSE) * zz.se uu <- survcomp::fisherz(uu / sqrt((n-3)/1.06), inv=TRUE) pp <- pnorm(q=zz, lower.tail=x < 0) res <- c("lower"=ll, "upper"=uu, "p.value"=pp) return(res) }
## Put comments here that give an overall description of what your ## functions do. ## Write a short comment describing this function ## This function creates a special "matrix" object that can cache its inverse. makeCacheMatrix <- function(x = matrix()) { invs <- NULL sets <- function(y) { x <<- y invs <<- NULL } gets <- function() x set_Inverse <- function(inverse) invs <<- inverse get_Inverse <- function() invs list(sets = sets, gets = gets, set_Inverse = set_Inverse, get_Inverse = get_Inverse) } ## This function computes the inverse of the special "matrix" created by ## makeCacheMatrix above. If the inverse has already been calculated (and the ## matrix has not changed), then it should retrieve the inverse from the cache. cacheSolve <- function(x, ...) { ## Return a matrix that is the inverse of 'x' invs <- x$get_Inverse() if (!is.null(invs)) { message("getting cached data") return(invs) } mat <- x$gets() invs <- solve(mat, ...) x$set_Inverse(invs) invs }
/cachematrix.R
no_license
PrajwalP54/ProgrammingAssignment2
R
false
false
1,222
r
## Put comments here that give an overall description of what your ## functions do. ## Write a short comment describing this function ## This function creates a special "matrix" object that can cache its inverse. makeCacheMatrix <- function(x = matrix()) { invs <- NULL sets <- function(y) { x <<- y invs <<- NULL } gets <- function() x set_Inverse <- function(inverse) invs <<- inverse get_Inverse <- function() invs list(sets = sets, gets = gets, set_Inverse = set_Inverse, get_Inverse = get_Inverse) } ## This function computes the inverse of the special "matrix" created by ## makeCacheMatrix above. If the inverse has already been calculated (and the ## matrix has not changed), then it should retrieve the inverse from the cache. cacheSolve <- function(x, ...) { ## Return a matrix that is the inverse of 'x' invs <- x$get_Inverse() if (!is.null(invs)) { message("getting cached data") return(invs) } mat <- x$gets() invs <- solve(mat, ...) x$set_Inverse(invs) invs }
gelev <- c(-1.02375613068687, -0.821718941602767, -0.93505687694263, -1.58551807106706, -0.163866142999653, -0.3043066280947, -0.686206192826845, -0.806935732645394, -0.964623294857376, -0.922737536144818, -1.07549736203768, -0.95723169037869, -1.24057652872835, -1.04593094412293, -0.88085177743226, -1.5436323123545, -0.962159426697814, -0.656639774912098, -0.306770496254262, 0.146581245105187, -0.200824165393087, -0.585187598284794, -0.666495247550347, -0.774905446571085, -0.797080260007145, -0.765049973932836, -0.632001093316476, -0.59257920276348, -0.641856565954725, -0.686206192826845, -0.654175906752536, -0.73548355601809, -1.05085868044205, -1.57073486210968, -1.06564188939943, -1.52884910339713, -1.48449947652501, -1.18637142921798, -0.917809799825694, -0.718236478901154, -0.32648144153076, 0.274702389402423, -0.0382088668619799, -0.380686541041129, -0.479241267423618, -0.346192386807258, -0.1934325609144, -0.200824165393087, -0.324017573371198, -0.420108431594125, -0.533446366933987, -0.496488344540554, -0.627073356997351, -0.905490459027883, -0.535910235093549, -0.71330874258203, -0.644320434114287, -0.733019687858527, -1.47957174020588, -1.22825718793053, -0.959695558538252, -0.83650215056014, -0.705917138103343, -0.227926715148271, -0.00371471262810869, 0.291949466519358, 0.57036656854989, 0.76008441683618, 0.873422352176043, 0.20571408093468, -0.040672735021542, -0.205751901712211, -0.585187598284794, -0.575332125646545, -0.471849662944931, -0.264884737541704, -0.43735550871106, -0.269812473860829, -0.306770496254262, -1.08781670283549, -0.84635762319839, -1.61754835714137, -1.46232466308895, -1.39826409094033, -1.34898672774908, -1.31942030983434, -1.16912435210104, -1.08781670283549, -0.782297051049772, -0.484169003742742, -0.23778218778652, 0.533408546156456, 1.16415879500439, 1.07792340941971, 0.38311258842316, 0.257455312285487, -0.267348605701267, -0.17125774747834, -0.360975595764631, 0.0357071779248868, 0.0406349142440112, 0.274702389402423, -0.0234256579046066, -0.252565396743893, -0.363439463924194, -0.587651466444356, -0.434891640551498, -1.21347397897316, -1.57073486210968, -1.53624070787581, -1.55102391683319, -1.52884910339713, -1.46725239940807, -1.47464400388676, -1.45000532229113, -1.41058343173814, -1.2824622874409, -1.1198469889098, -0.888243381910947, -0.353583991285945, 0.20571408093468, 0.343690697870165, 1.48199778758791, 0.799506307389176, 0.287021730200234, -0.0973417026914733, 0.200786344615556, 0.107159354552191, 0.900524901931227, 0.617180063581572, 0.0332433097653246, -0.368367200243318, 0.0135323644888267, -0.0332811305428555, -0.39300588183894, -0.109661043489284, -0.494024476380991, -0.826646677921892, -1.58059033474793, -1.5436323123545, -1.4524691904507, -1.32681191431302, -1.21840171529229, -0.870996304794012, -0.715772610741592, -0.247637660424769, 0.232816630689865, 0.698487712847125, 1.69635431746983, 1.38097919304586, 0.506305996401272, 0.942410660643785, 0.691096108368439, 1.23807483979125, 0.851247538739983, -0.176185483797464, 0.678776767570627, 0.526016941677769, 0.508769864560834, 0.0381710460844491, -0.0258895260641687, -0.0899500982127866, -0.380686541041129, -1.3415951232704, -1.06317802123987, -1.51160202628019, -1.45739692676982, -1.30710096903653, -1.05825028492074, -0.949840085900003, -0.64678430227385, -0.279667946499078, 0.0529542550418224, 1.10009822285577, 1.47707005126879, 1.5805525139704, 0.954730001441596, 1.42286495175842, 2.26797173048826, 1.20358068555738, 0.420070610816594, 0.767476021314868, 1.61504666820427, 0.922699715367287, 0.4718118421674, -0.644320434114287, -0.688670060986407, -0.693597797305532, -0.506343817178803, -0.900562722708758, -1.34898672774908, -1.55841552131187, -1.30463710087696, -1.61754835714137, -1.61015675266268, -0.489096740061867, -1.5042104218015, -1.3021732327174, -1.24550426504747, -1.10259991179286, -0.95723169037869, -0.730555819698965, 0.00614076001014017, 1.19865294923826, 0.577758173028576, 1.42532881991798, 1.94520500158561, 2.12013964091453, 1.93534952894736, 0.757620548676619, 1.04835699150496, 1.31199088457812, 1.34648503881199, 0.806897911867863, -0.181113220116589, 0.4718118421674, 0.331371357072354, 0.144117376945625, -0.0874862300532245, -0.949840085900003, -0.649248170433412, -0.752730633135025, -1.36376993670646, -0.222998978829147, -0.094877834531911, -1.23564879240922, -0.898098854549196, -0.760122237613712, -0.39300588183894, -0.395469749998502, -0.287059550977764, -0.79215252368802, -0.64678430227385, -0.715772610741592, -0.516199289817051, -0.72562808337984, -1.60030128002443, -1.3021732327174, -1.23318492424966, -1.06317802123987, -0.89070725007051, -0.351120123126382, -0.109661043489284, 0.0578819913609468, 0.821681120825237, 2.00926557373423, 1.9131747155113, 1.34894890697155, 1.40315400648192, 1.802300648331, 1.72345686722501, 1.10502595917489, 0.296877202838483, 0.8044340437083, 1.36126824776936, 0.666457426772816, 0.00860462816970227, -0.213143506190898, -0.927665272463943, -0.17125774747834, -0.99172584461256, -1.03114773516556, -0.873460172953574, -1.30463710087696, -1.06564188939943, -0.765049973932836, -0.765049973932836, 0.0455626505631356, -0.23778218778652, -0.32648144153076, -0.0874862300532245, -0.484169003742742, -0.240246055946082, 0.530944677996894, 0.5826859093477, -0.267348605701267, -0.688670060986407, -0.383150409200691, -0.203288033552649, -1.10752764811199, -1.09767217547374, -1.3933363546212, -1.34405899142996, -1.17405208842017, -1.01636452620818, -0.915345931666132, -0.612290148039978, -0.429963904232373, 0.195858608296431, 0.900524901931227, 0.683704503889752, 1.72592073538457, 2.42319542454068, 2.26797173048826, 1.63968534979989, 1.31691862089724, 1.3390934343333, 1.23561097163169, 1.61258280004471, 1.3390934343333, 1.18879747660001, 0.730517998921434, 0.424998347135718, 0.166292190381685, 0.390504192901847, -1.12477472522892, 0.070201332158758, -0.511271553497927, -0.77983318289021, -0.821718941602767, -0.203288033552649, 0.0825206729565692, 0.284557862040672, 0.333835225231916, 0.0406349142440112, 0.269774653083298, 0.252527575966363, 0.503842128241709, 0.321515884434105, -0.328945309690322, -0.094877834531911, -0.742875160496776, -0.0529920758193532, -1.10506377995242, -0.688670060986407, 0.109623222711753, -0.255029264903456, -0.28213181465864, -0.324017573371198, -1.20361850633491, -1.57812646658837, -0.900562722708758, -1.48203560836544, -1.11245538443111, -0.954767822219127, -0.878387909272698, -0.338800782328571, -0.28213181465864, -0.109661043489284, 0.215569553572929, 0.878350088495167, 1.2479303124295, 2.30739362104126, 2.83466140718757, 2.51682241460405, 1.78751743937363, 2.04129585980854, 2.01172944189379, 2.04868746428722, 1.38837079752455, 0.466884105848276, 0.609788459102885, -0.14908293404228, -0.60243467540173, -0.375758804722005, 0.53833628247558, -0.114588779808409, -0.299378891775576, -0.314162100732949, 0.0406349142440112, 0.5826859093477, 0.71573478996406, 0.819217252665674, 0.575294304869014, 0.900524901931227, 0.368329379465787, 0.816753384506112, 0.284557862040672, 0.523553073518207, 0.141653508786062, 0.523553073518207, -0.39300588183894, 0.109623222711753, -0.466921926625807, -0.06038368029804, 0.378184852104036, 0.518625337199083, -0.0234256579046066, -0.93505687694263, -1.56580712579056, -1.39826409094033, -1.61754835714137, -0.720700347060716, -0.676350720188596, -0.915345931666132, -1.61754835714137, -1.26028747400484, -0.755194501294587, -0.962159426697814, -1.10752764811199, -1.01143678988906, -1.16419661578192, -1.03361160332512, -0.538374103253111, -0.161402274840091, -0.269812473860829, 0.296877202838483, 0.4718118421674, 0.952266133282034, 1.01879057359021, 2.20391115833964, 1.57316090949171, 2.50450307380624, 3.01205991467605, 2.90857745197444, 1.90824697919218, 1.91071084735174, 1.54359449157697, 0.656601954134567, 0.890669429292979, 0.368329379465787, -0.518663157976614, 0.518625337199083, 0.72559026260231, 0.668921294932379, 0.700951581006687, -0.00125084446854659, 0.599932986464636, 0.53833628247558, 1.81954772544794, 1.07299567310058, 1.32923796169505, 1.25285804874863, 1.14691171788745, 0.942410660643785, 1.03110991438803, 0.713270921804499, 0.299341070998045, 0.429926083454843, 0.649210349655881, 0.402823533699658, 0.68124063573019, 0.885741692973854, -0.102269439010598, -0.967087163016938, -0.76997771025196, -0.457066453987558, -0.757658369454149, -0.848821491357952, -1.33173965063215, -1.16912435210104, -1.48696334468457, -1.6150844889818, -1.50913815812063, -1.02621999884643, -0.700989401784218, -0.733019687858527, -1.07549736203768, -1.0607141530803, -1.20608237449447, -1.30710096903653, -1.35637833222777, -1.4327582451742, -1.55841552131187, -1.46725239940807, -1.61754835714137, -1.03853933964424, -1.06810575755899, -1.01636452620818, -0.917809799825694, -0.469385794785369, -0.205751901712211, -0.141691329563593, 0.496450523763023, 0.402823533699658, 0.811825648186987, 1.08777888205796, 2.3566709842325, 2.90857745197444, 3.35207372069564, 3.05640954154817, 2.92089679277225, 2.37884579766856, 1.43764816071579, 1.14691171788745, -0.0135701852663576, 0.68124063573019, 0.336299093391478, 0.831536593463485, 1.61011893188515, 0.875886220335605, 0.496450523763023, 1.30213541193987, 0.922699715367287, 1.86389735232006, 1.50170873286441, 2.3960928747855, 2.5069669419658, 1.4499675015136, 1.27996059850381, 1.78012583489494, 1.50417260102397, 0.935019056165099, 1.94274113342605, 1.98462689213861, 1.35634051145024, 1.1370562452492, 0.134261904307376, 0.166292190381685, -0.385614277360254, 0.356010038667976, -0.230390583307833, -0.346192386807258, -1.02129226252731, -0.94737621774044, -0.878387909272698, -1.04100320780381, -1.48203560836544, -1.15187727498411, -1.10999151627155, -0.708381006262905, -0.518663157976614, -0.461994190306682, -0.538374103253111, -0.826646677921892, -0.745339028656338, -0.848821491357952, -0.922737536144818, -1.46232466308895, -1.16912435210104, -0.73548355601809, -0.528518630614862, -0.883315645591823, -1.05578641676118, -1.34898672774908, -1.48696334468457, -0.811863468964518, -0.590115334603918, -0.198360297233525, -0.358511727605069, -0.205751901712211, -0.264884737541704, 0.474275710326963, 0.0529542550418224, 0.962121605920283, 1.31199088457812, 1.75302328513976, 1.87375282495831, 3.15989200424979, 3.02930699179299, 2.20144729018008, 2.0240487826916, 1.11241756365358, 0.806897911867863, 1.53127515077916, 0.838928197942172, 1.65939629507639, 2.14231445435059, 1.92795792446868, 1.08531501389839, 1.75302328513976, 1.9723075513408, 1.94520500158561, 2.19651955386096, 2.13985058619103, 2.44537023797674, 2.24086918073308, 1.95998821054298, 1.70128205378895, 1.87868056127743, 1.90824697919218, 2.47493665589149, 2.415803820062, 1.74316781250151, 0.779795362112678, 0.530944677996894, 0.210641817253805, 0.94733839696291, 0.523553073518207, 0.0849845411161313, -0.863604700315325, -0.245173792265207, -0.407789090796314, -0.380686541041129, -0.560548916689171, -0.93505687694263, -0.80200799632627, -0.6369288296356, -1.33666738695127, -1.40811956357858, 0.311660411795856, 0.102231618233067, -0.121980384287095, -0.102269439010598, -0.161402274840091, -0.289523419137327, -0.336336914169009, -0.68127845650772, -1.44507758597201, -1.04100320780381, -0.787224787368896, -0.533446366933987, -0.341264650488133, -0.469385794785369, -0.767513842092398, -1.13955793418629, -1.04100320780381, -1.20854624265404, -1.33666738695127, -1.54856004867362, -1.04593094412293, -0.76997771025196, -0.733019687858527, -0.23778218778652, 0.0603458595205091, -0.306770496254262, 0.427462215295281, 0.595005250145512, 0.59254138198595, 1.22575549899344, 1.32677409353549, 1.72345686722501, 2.73117894448596, 2.77306470319852, 2.13985058619103, 1.74809554882063, 1.50417260102397, 2.05607906876591, 1.5091003373431, 2.22854983993527, 2.13738671803146, 2.3049297528817, 2.00680170557467, 1.68649884483158, 2.33942390711557, 2.49464760116799, 2.41826768822156, 2.68436544945428, 2.57349138227398, 2.49957533748711, 2.63508808626303, 2.7090041310499, 2.5069669419658, 2.98988510123999, 2.8593000887832, 1.95506047422386, 1.79737291201188, 1.47707005126879, 1.45982297415185, 1.33170182985462, 0.452100896890903, -0.291987287296889, -0.363439463924194, 0.269774653083298, 0.0726652003183201, -0.0825584937341, -0.560548916689171, -0.257493133063018, -0.464458058466245, -0.466921926625807, -0.351120123126382, -1.04346707596337, -1.43768598149332, -0.885779513751385, 0.107159354552191, 0.577758173028576, 0.540800150635143, 0.380648720263598, -0.395469749998502, -0.397933618158065, -0.767513842092398, -1.02129226252731, -0.981870371974312, -0.91288206350657, -0.506343817178803, -0.895634986389634, -0.432427772391936, -0.32648144153076, -0.269812473860829, -0.429963904232373, -0.94737621774044, -1.12231085706936, -0.851285359517514, -0.942448481421316, -0.986798108293436, -1.14694953866498, -1.33173965063215, -1.44507758597201, -1.08781670283549, -0.799544128166707, -0.70345326994378, -0.654175906752536, -0.0431366031811044, 0.237744367008989, -0.131835856925344, 0.259919180445049, 0.284557862040672, 0.745301207878807, 0.720662526283185, 1.58794411844909, 1.74316781250151, 2.54146109619967, 2.08318161852109, 2.47986439221061, 2.72378734000727, 1.98462689213861, 2.62523261362478, 2.36159872055163, 2.49464760116799, 2.38130966582812, 2.61291327282697, 2.96771028780393, 2.5981300638696, 2.950463210687, 3.17713908136672, 3.06872888234599, 3.20670549928147, 3.27569380774921, 3.16728360872847, 3.40627882020601, 3.32989890725958, 2.72132347184771, 3.03177085995255, 2.54638883251879, 2.56609977779529, 1.66186016323595, 0.875886220335605, 0.269774653083298, 0.730517998921434, 0.400359665540096, 0.797042439229614, 0.92516358352685, 0.331371357072354, -0.213143506190898, -0.0677752847767265, -0.0973417026914733, -0.119516516127533, -0.183577088276151, -0.498952212700116, -1.18637142921798, -1.1912991655371, -0.385614277360254, -0.365903332083756, 0.503842128241709, 0.81428951634655, 0.215569553572929, 0.395431929220972, 0.114550959030878, -0.112124911648847, -0.37083106840288, -0.319089837052073, -0.247637660424769, -0.146619065882718, -0.114588779808409, -0.06038368029804, -0.092413966372349, -0.343728518647696, -0.269812473860829, -0.338800782328571, -0.563012784848734, -0.696061665465094, -0.73548355601809, -0.967087163016938, -1.11738312075023, -1.12723859338848, -1.25043200136659, -1.46232466308895, -1.27753455112178, -1.11491925259067, -0.972014899336063, -0.76997771025196, -0.469385794785369, -0.250101528584331, -0.0529920758193532, 0.0948400137543802, 0.151508981424311, 0.415142874497469, 0.476739578486525, 0.434853819773967, 0.85863914321867, 1.37358758856717, 1.51895580998135, 1.50170873286441, 1.42040108359886, 1.18633360844045, 1.23314710347213, 1.9525966060643, 2.44044250165762, 2.19898342202052, 2.26797173048826, 2.60305780018872, 3.20177776296234, 3.56643025057755, 4.02224586009657, 3.91876339739495, 2.97756576044218, 2.49957533748711, 2.87654716590013, 2.60798553650785, 2.6695822404969, 2.35174324791338, 2.40348447926418, 3.22888031271753, 2.15709766330796, 1.92549405630911, 1.45735910599229, 1.21836389451475, 1.4893893920666, 1.02371830990934, 1.0656040686219, 1.09024275021752, 0.0997677500735046, 0.693559976528001, 0.331371357072354, -0.17125774747834, -0.109661043489284, 0.171219926700809, -0.496488344540554, -0.71330874258203, -1.42783050885507, -1.60769288450312, -0.82418280976233, -0.245173792265207, 0.671385163091941, 1.03603765070715, 0.952266133282034, 0.627035536219821, 0.338762961551041, 0.604860722783761, 0.705879317325812, 0.930091319845974, 0.511233732720396, 0.314124279955418, 0.336299093391478, 0.158900585902998, 0.166292190381685, 0.146581245105187, -0.00864244894723313, -0.195896429073962, -0.257493133063018, -0.577795993806107, -0.94737621774044, -0.93505687694263, -1.09028057099505, -1.07056962571855, -1.11491925259067, -1.48696334468457, -1.50174655364194, -1.39087248646164, -1.17651595657973, -0.922737536144818, -0.976942635655187, -0.88085177743226, -0.688670060986407, -0.607362411720854, -0.385614277360254, -0.289523419137327, -0.205751901712211, 0.368329379465787, 0.16136445406256, 0.439781556093091, 0.237744367008989, 0.587613645666825, 0.353546170508414, 0.267310784923736, 0.917771979048163, 1.50663646918353, 1.80476451649056, 2.45522571061499, 1.77766196673538, 1.80969225280969, 2.21869436729702, 3.18453068584541, 3.05640954154817, 2.7287150763264, 3.56150251425843, 2.5981300638696, 1.81708385728837, 1.94027726526649, 1.84911414336268, 1.81215612096925, 1.96737981502167, 1.73577620802282, 2.81002272559195, 2.79277564847502, 1.96245207870255, 1.91071084735174, 2.16695313594621, 1.64214921795946, 1.89592763839437, 2.07579001404241, 1.20850842187651, 0.900524901931227, 1.18140587212132, 0.53833628247558, -0.0456004713406665, 0.262383048604611, -0.0677752847767265, -0.5260547624553, -0.696061665465094, -0.861140832155763, -1.22825718793053, -1.59537354370531, -0.316625968892511, 0.646746481496318, 1.29227993930162, 1.27010512586556, 0.92516358352685, 1.30459928009943, 1.73331233986326, 1.56823317317259, 1.30706314825899, 0.843855934261296, 0.575294304869014, 0.18353926749862, 0.363401643146663, -0.208215769871773, -0.112124911648847, 0.114550959030878, -0.388078145519816, -0.627073356997351, -0.538374103253111, -0.683742324667283, -0.848821491357952, -1.12477472522892, -1.06564188939943, -1.2307210560901, -1.31942030983434, -1.57566259842881, -1.42290277253595, -1.47957174020588, -1.32927578247259, -1.11738312075023, -0.91288206350657, -0.917809799825694, -0.851285359517514, -0.664031379390785, -0.686206192826845, -0.644320434114287, -0.565476653008296, -0.395469749998502, -0.412716827115438, -0.395469749998502, 0.466884105848276, 0.444709292412216, -0.0702391529362889, 0.875886220335605, 1.23807483979125, 1.07299567310058, 1.23561097163169, 1.85896961600093, 1.82693932992662, 1.69389044931026, 1.61751053636383, 2.26797173048826, 2.54638883251879, 1.70620979010808, 2.21376663097789, 2.50943081012536, 1.88114442943699, 1.27256899402512, 1.65446855875727, 2.01912104637248, 1.18633360844045, 1.43272042439667, 1.84911414336268, 2.81741433007064, 2.81741433007064, 3.01452378283562, 2.50203920564667, 2.08318161852109, 2.30000201656257, 1.71360139458676, 1.19126134475957, 1.49678099654529, 0.558047227752078, 1.07299567310058, 0.365865511306225, 0.331371357072354, 0.521089205358645, -0.306770496254262, 0.134261904307376, -0.257493133063018, -0.324017573371198, -0.794616391847583, -1.14202180234586, -1.35145059590865, -0.324017573371198, -0.0505282076597911, 0.834000461623047, 1.45489523783273, 1.73331233986326, 1.91563858367086, 1.52634741446003, 1.15430332236614, 1.34648503881199, 0.81428951634655, 0.656601954134567, 0.149045113264749, 0.336299093391478, 0.0529542550418224, -0.0160340534259199, -0.917809799825694, -0.774905446571085, -0.730555819698965, -0.895634986389634, -1.01882839436775, -1.01882839436775, -1.17405208842017, -1.2824622874409, -1.2307210560901, -1.28985389191959, -1.16912435210104, -0.888243381910947, -0.819255073443205, -0.959695558538252, -1.18883529737754, -1.07549736203768, -1.00650905356993, -0.964623294857376, -0.932593008783067, -0.811863468964518, -0.79215252368802, -0.696061665465094, -0.693597797305532, -0.617217884359103, -0.321553705211636, -0.0505282076597911, 0.151508981424311, 0.2500637078068, 0.976904814877656, 0.686168372049314, 1.32431022537593, 1.75302328513976, 1.76534262593757, 1.45243136967317, 1.6002634592469, 1.49185326022616, 1.48446165574747, 1.36865985224805, 1.83186706624575, 1.93781339710692, 2.07086227772328, 1.44257589703492, 1.38837079752455, 1.93781339710692, 1.38097919304586, 1.42286495175842, 1.841722538884, 2.08071775036153, 2.55131656883792, 1.99201849661729, 2.28275493944564, 2.70407639473078, 2.76320923056027, 2.30739362104126, 2.50203920564667, 1.3390934343333, 1.70620979010808, 1.30213541193987, 1.30459928009943, 0.558047227752078, 0.767476021314868, 0.328907488912791, 0.599932986464636, 0.518625337199083, 0.0381710460844491, -0.375758804722005, -1.10506377995242, -1.56580712579056, -1.60769288450312, -0.61475401619954, -1.1001360436333, 0.0973038819139425, -0.284595682818202, 0.27223852124286, 0.962121605920283, 1.87868056127743, 1.74316781250151, 1.38097919304586, 1.00154349647328, 0.518625337199083, 0.0775929366374445, 0.43731768793353, -0.232854451467396, -0.10473330717016, -0.508807685338365, -0.698525533624656, -1.16912435210104, -0.972014899336063, -1.02621999884643, -0.905490459027883, -0.994189712772123, -1.06564188939943, -1.11738312075023, -1.563343257631, -0.986798108293436, -1.01143678988906, -1.12231085706936, -0.68127845650772, -0.915345931666132, -0.750266764975463, -1.0089729217295, -1.03607547148468, -0.666495247550347, -0.353583991285945, -0.380686541041129, -0.0234256579046066, 0.0430987824035735, 0.193394740136869, 0.351082302348851, 0.0825206729565692, -0.0579198121384777, -0.427500036072811, -0.225462846988709, 0.321515884434105, 0.388040324742285, 0.668921294932379, 0.846319802420858, 1.63229374532121, 1.66678789955508, 1.14444784972789, 1.11980916813227, 1.34894890697155, 1.05082085966452, 1.55344996421522, 2.20637502649921, 1.9328856607878, 1.65200469059771, 1.19126134475957, 0.846319802420858, 1.12720077261095, 1.02125444174978, 1.47460618310923, 2.06593454140416, 1.90824697919218, 1.59287185476821, 1.91563858367086, 2.16941700410577, 2.35420711607294, 2.66711837233734, 2.03636812348941, 2.16448926778665, 2.16941700410577, 2.33449617079644, 1.09270661837708, 1.24300257611038, 1.63229374532121, 1.57808864581084, 0.981832551196781, 0.723126394442748, 0.254991444125925, -0.210679638031336, -0.415180695275, -1.25535973768572, -1.61015675266268, -0.316625968892511, -0.624609488837789, -0.0751668892554133, -0.696061665465094, -0.136763593244469, 0.585149777507263, 1.03110991438803, 1.85650574784137, 2.31478522551994, 1.53866675525784, 0.974440946718094, 0.476739578486525, 0.0652735958396336, -0.0702391529362889, -0.575332125646545, -0.582723730125231, -0.644320434114287, -0.752730633135025, -1.28492615560047, -1.09028057099505, -1.04100320780381, -1.31695644167477, -1.24550426504747, -1.17651595657973, -1.02129226252731, -0.937520745102192, -0.79215252368802, -0.863604700315325, -0.61475401619954, -0.294451155456451, -0.506343817178803, -0.595043070923043, -0.8586769639962, -0.565476653008296, -0.341264650488133, -0.0382088668619799, 0.447173160571778, 0.375720983944474, 0.686168372049314, 0.728054130761872, 0.794578571070052, 0.523553073518207, 0.070201332158758, 0.112087090871316, 0.380648720263598, 0.651674217815443, 0.890669429292979, 1.5608415686939, 1.44503976519448, 1.27749673034425, 0.962121605920283, 0.996615760154154, 1.10995369549402, 1.51156420550266, 1.13952011340876, 1.02864604622846, 1.74070394434195, 1.0261821780689, 0.452100896890903, 0.907916506409914, 1.45489523783273, 1.56823317317259, 1.80476451649056, 1.53373901893872, 1.2873522029825, 2.38870127030681, 1.66432403139552, 1.82693932992662, 2.28275493944564, 2.8198781982302, 2.89872197933619, 1.92549405630911, 1.7308484717037, 2.09796482747847, 2.34927937975382, 1.43518429255623, 1.75795102145888, 1.3588043796098, 0.981832551196781, -0.00371471262810869, -0.242709924105645, -0.700989401784218, -1.2110101108136, -1.60276514818399, -1.09767217547374, -1.30956483719609, -1.42043890437639, -1.59290967554574, -1.61754835714137, -1.54116844419494, -0.178649351957027, 0.555583359592516, 0.336299093391478, -0.23778218778652, 0.242672103328114, -0.247637660424769, 0.166292190381685, 1.09024275021752, 1.5805525139704, 1.97723528765992, 2.45029797429587, 1.62982987716165, 1.38344306120542, 0.691096108368439, 0.181075399339058, -0.400397486317627, -0.641856565954725, -0.604898543561291, -0.622145620678227, -0.878387909272698, -1.27014294664309, -1.58551807106706, -1.31449257351521, -1.17405208842017, -1.33420351879171, -1.24550426504747, -1.21593784713272, -1.09274443915461, -0.962159426697814, -0.811863468964518, -0.331409177849885, -0.144155197723156, -0.210679638031336, -0.523590894295738, -0.535910235093549, 0.0899122774352557, 0.218033421732491, 0.459492501369589, 0.841392066101734, 0.277166257561985, 0.686168372049314, 1.15923105868526, 1.14937558604701, 0.299341070998045, 0.885741692973854, 1.1764781358022, 1.79244517569275, 1.86389735232006, 1.86143348416049, 1.71852913090589, 1.61504666820427, 1.17894200396176, 0.602396854624198, 0.742837339719245, 0.654138085975005, 0.762548284995743, 0.915308110888601, 1.07545954126015, 0.676312899411065, 0.774867625793554, 0.861103011378232, 1.1370562452492, 1.39329853384367, 1.52388354630047, 1.12227303629183, 1.59287185476821, 1.28242446666337, 1.36373211592893, 1.83925867072443, 1.41054561096061, 1.98955462845773, 2.78784791215589, 2.83712527534714, 2.03636812348941, 1.60765506372559, 1.23807483979125, 1.12966464077051, 0.907916506409914, 0.296877202838483, -0.324017573371198, 0.1391896406265, -0.252565396743893, -1.43522211333376, -1.11491925259067, -0.484169003742742, -0.806935732645394, -0.740411292337214, -1.43768598149332, -1.36376993670646, -0.962159426697814, -0.565476653008296, -0.545765707731798, -1.04593094412293, -1.47957174020588, -1.60030128002443, -1.58798193922662, -0.429963904232373, 0.363401643146663, 0.535872414316018, 1.18879747660001, 0.358473906827538, 0.144117376945625, 0.700951581006687, 0.841392066101734, 1.07792340941971, 1.33170182985462, 1.94520500158561, 2.21623049913746, 2.71639573552859, 2.06100680508503, 1.73824007618238, 1.17894200396176, 0.641818745177194, 0.173683794860371, -0.0653114166171644, -0.535910235093549, -0.821718941602767, -1.03853933964424, -1.40565569541901, -1.05578641676118, -1.05578641676118, -0.939984613261754, -0.752730633135025, -0.93505687694263, -1.05578641676118, -0.752730633135025, -0.61475401619954, -0.811863468964518, -0.893171118230072, -0.405325222636751, -0.232854451467396, 0.0233878371270758, -0.230390583307833, -0.57040438932742, -0.378222672881567, -0.0357449987024176, 0.129334167988251, 0.188467003817745, 0.518625337199083, 1.54359449157697, 1.6199744045234, 1.13212850893008, 1.15923105868526, 1.87375282495831, 1.82447546176706, 1.47953391942835, 1.12720077261095, 1.1370562452492, 1.40808174280105, 1.52141967814091, 1.38590692936499, 0.885741692973854, 0.511233732720396, 0.466884105848276, 0.553119491432954, 0.562974964071203, 0.575294304869014, 0.277166257561985, 0.3609377749871, 0.868494615856919, 0.550655623273392, 0.595005250145512, 0.806897911867863, 1.24546644426994, 1.20358068555738, 0.920235847207725, 0.772403757633992, 1.3785153248863, 1.45982297415185, 1.34155730249287, 1.75302328513976, 1.71606526274632, 1.26024965322731, 1.10009822285577, 0.905452638250352, -0.0234256579046066, -0.984334240133874, -1.12231085706936, -0.915345931666132, -1.35145059590865, -1.54856004867362, -0.496488344540554, -0.351120123126382, -0.168793879318778, -0.220535110669585, -0.676350720188596, -0.733019687858527, -0.21560737435046, -0.272276342020391, -0.0998055708510354, -0.496488344540554, -0.986798108293436, -0.883315645591823, -0.826646677921892, -1.37608927750427, -1.61015675266268, -1.33913125511083, -1.22825718793053, -0.89070725007051, -0.767513842092398, -0.14908293404228, 0.390504192901847, 0.545727886954267, 1.13212850893008, 1.15430332236614, 0.663993558613254, 0.641818745177194, 1.23314710347213, 1.10009822285577, 0.627035536219821, 1.6199744045234, 1.83925867072443, 2.00680170557467, 2.37145419318988, 1.10995369549402, 1.16662266316395, 0.666457426772816, 0.0233878371270758, -0.405325222636751, -0.442283245030185, -0.747802896815901, -0.8586769639962, -1.23318492424966, -0.737947424177652, -0.533446366933987, -0.0628475484576021, -0.183577088276151, -0.210679638031336, -0.173721615637902, -0.247637660424769, -0.269812473860829, -0.434891640551498, -0.513735421657489, -0.567940521167858, -0.617217884359103, -0.375758804722005, -0.0431366031811044, 0.0628097276800712, -0.247637660424769, -0.139227461404031, 0.567902700390327, 0.718198658123623, 1.50417260102397, 1.00893510095197, 1.43272042439667, 1.30213541193987, 1.228219367153, 1.14691171788745, 0.700951581006687, 0.700951581006687, 0.585149777507263, 1.59287185476821, 1.96491594686211, 1.53373901893872, 1.61258280004471, 1.37112372040761, 0.602396854624198, 0.31658814811498, 0.326443620753229, 0.380648720263598, 0.328907488912791, 0.521089205358645, 0.0578819913609468, 0.213105685413367, -0.34865625496682, 0.114550959030878, 0.683704503889752, 0.434853819773967, 0.380648720263598, 0.370793247625349, 1.28981607114206, 0.971977078558532, 0.905452638250352, 0.651674217815443, 1.3588043796098, 0.942410660643785, -0.291987287296889, 0.434853819773967, -0.141691329563593, -1.44261371781245, -0.757658369454149, -1.08781670283549, -1.23564879240922, -0.811863468964518, 0.149045113264749, -0.235318319626958, 0.304268807317169, 0.0332433097653246, -0.37083106840288, -0.331409177849885, -0.188504824595276, 0.230352762530303, 0.0899122774352557, 0.0381710460844491, -0.287059550977764, -0.1934325609144, -0.232854451467396, -0.23778218778652, -0.464458058466245, -0.494024476380991, 0.0307794416057623, -0.279667946499078, -0.0431366031811044, -0.14908293404228, 0.0578819913609468, -0.0850223618936621, 0.432389951614405, 0.333835225231916, 0.96951321039897, 1.60272732740646, 1.40315400648192, 1.3390934343333, 0.895597165612103, 0.535872414316018, 0.464420237688714, 1.06806793678146, 1.43518429255623, 1.67910724035289, 1.66925176771464, 1.80969225280969, 0.851247538739983, 0.245135971487676, -0.491560608221429, -0.691133929145969, -1.01390065804862, -1.07303349387811, -1.0607141530803, -0.870996304794012, -0.784760919209334, -0.432427772391936, 0.0825206729565692, 0.31658814811498, 0.422534478976156, 0.0554181232013847, 0.0997677500735046, 0.20571408093468, -0.250101528584331, 0.0455626505631356, 0.168756058541247, -0.0184979215854822, -0.464458058466245, 0.0997677500735046, 0.43731768793353, 0.565438832230765, 0.296877202838483, 0.742837339719245, 0.718198658123623, 0.971977078558532, 0.489058919284336, 0.730517998921434, 0.553119491432954, 0.735445735240559, 0.29441333467892, 0.225425026211178, 0.767476021314868, 1.37358758856717, 1.86389735232006, 1.24300257611038, 1.36865985224805, 1.62736600900208, 1.0261821780689, 0.888205561133416, 0.949802265122472, 0.31658814811498, 0.388040324742285, 0.254991444125925, -0.12690812060622, -0.363439463924194, -0.710844874422467, 0.126870299828689, 0.269774653083298, 0.193394740136869, 0.144117376945625, 0.459492501369589, 0.74776507603837, 0.883277824814292, 0.720662526283185, 0.323979752593667, 0.78225923027224, 0.370793247625349, -0.39300588183894, -0.819255073443205, -1.12723859338848, -1.35145059590865, -0.949840085900003, 0.092376145594818, -0.0628475484576021, 0.190930871977307, 0.395431929220972, 0.0135323644888267, 0.392968061061409, -0.247637660424769, -0.277204078339516, 0.119478695350003, 0.331371357072354, 0.346154566029727, 0.328907488912791, 0.2500637078068, 0.4718118421674, 0.422534478976156, 0.545727886954267, 0.506305996401272, 0.274702389402423, 0.112087090871316, 0.171219926700809, 0.222961158051616, 0.78225923027224, 0.198322476455994, 0.599932986464636, 0.131798036147813, 0.99168802383503, 1.08531501389839, 1.35634051145024, 1.57316090949171, 1.46721457863054, 1.61011893188515, 1.33662956617374, 1.26271352138687, 0.491522787443898, 0.513697600879958, 0.824144988984798, 0.469347974007839, 1.22575549899344, 0.942410660643785, 0.732981867080996, 0.351082302348851, -0.461994190306682, -0.80200799632627, -1.09767217547374, -1.24304039688791, -1.04593094412293, -0.915345931666132, -0.336336914169009, -0.0628475484576021, 0.158900585902998, 0.447173160571778, 0.390504192901847, 0.0357071779248868, 0.528480809837332, 0.314124279955418, 0.230352762530303, 0.474275710326963, 0.422534478976156, 0.484131182965212, -0.245173792265207, 0.222961158051616, 0.415142874497469, 0.661529690453692, 0.585149777507263, 0.476739578486525, 0.612252327262447, 0.373257115784911, 0.269774653083298, 0.149045113264749, 0.380648720263598, -0.208215769871773, 0.567902700390327, 1.23068323531257, 1.6717156358742, 1.60765506372559, 1.08285114573883, 0.765012153155305, 1.76780649409713, 1.80969225280969, 1.44257589703492, 1.35141277513111, 1.22329163083388, 0.691096108368439, 0.843855934261296, -0.154010670361404, -0.0209617897450443, -0.723164215220278, -0.521127026136176, -0.417644563434562, -0.466921926625807, -0.21560737435046, 0.230352762530303, 0.0258517052866379, 0.530944677996894, 0.356010038667976, -0.368367200243318, -0.0332811305428555, -0.131835856925344, -0.853749227677076, -1.07796123019724, -0.50387994901924, -0.639392697795163, -0.402861354477189, -0.00371471262810869, 0.767476021314868, 0.79211470291049, 0.666457426772816, 0.287021730200234, 0.617180063581572, 0.631963272538945, 0.422534478976156, 0.651674217815443, 0.572830436709452, 0.861103011378232, 0.976904814877656, 1.12227303629183, 1.16169492684482, 1.22575549899344, 1.20850842187651, 0.762548284995743, 0.356010038667976, 0.29441333467892, 0.326443620753229, 0.585149777507263, 0.651674217815443, 0.498914391922585, 1.36126824776936, 0.61471619542201, 1.09024275021752, 1.62243827268296, 1.87868056127743, 1.68649884483158, 1.19372521291913, 0.868494615856919, 1.40315400648192, 0.730517998921434, 0.883277824814292, 0.0258517052866379, 0.0406349142440112, 0.562974964071203, 0.176147663019934, 0.252527575966363, 0.210641817253805, -0.351120123126382, -0.442283245030185, -0.66895911570991, -0.742875160496776, -0.853749227677076, -1.61262062082224, -0.920273667985256, -0.678814588348158, -0.388078145519816, 0.136725772466938, 0.0800568047970069, 0.284557862040672, -0.158938406680529, -0.365903332083756, 0.0357071779248868, 0.0357071779248868, 0.346154566029727, 0.296877202838483, 0.0332433097653246, 0.341226829710603, 0.422534478976156, 0.107159354552191, 0.331371357072354, 0.323979752593667, 0.590077513826387, 0.20571408093468, 0.629499404379383, 0.427462215295281, -0.299378891775576, -0.365903332083756, -0.262420869382142, 0.0652735958396336, 0.885741692973854, 1.12227303629183, 1.6717156358742, 0.661529690453692, 0.277166257561985, 1.21097229003607, 1.62243827268296, 1.45489523783273, 1.66186016323595, 1.38837079752455, 1.63722148164033, 1.51649194182178, 1.02864604622846, 0.920235847207725, 0.834000461623047, -0.0874862300532245, -0.60243467540173, -0.799544128166707, -0.806935732645394, -0.794616391847583, -0.585187598284794, -0.309234364413825, -0.06038368029804, -0.0998055708510354, -0.186040956435713, -1.09274443915461, -0.84635762319839, -0.59257920276348, 0.156436717743436, 0.385576456582723, 0.158900585902998, 0.540800150635143, 0.92516358352685, 1.15183945420657, 1.37358758856717, 0.661529690453692, 0.829072725303923, 0.767476021314868, 0.789650834750928, 1.12227303629183, 1.22082776267432, 1.31445475273768, 1.27996059850381, 1.68403497667201, 1.64954082243814, 1.70867365826764, 1.50417260102397, 1.25778578506775, 1.2873522029825, 0.644282613336756, 0.829072725303923, 0.952266133282034, 1.29967154378031, 1.02125444174978, 1.43025655623711, 1.58794411844909, 1.14444784972789, 1.64461308611902, 1.38590692936499, 1.29967154378031, 0.912844242729039, 0.962121605920283, 1.4893893920666, 0.434853819773967, 0.562974964071203, 0.193394740136869, 0.474275710326963, -0.314162100732949, -0.279667946499078, 0.27223852124286, -0.25995700122258, -0.360975595764631, -0.50387994901924, -0.402861354477189, -0.585187598284794, -0.821718941602767, -1.19622690185623, -1.26028747400484, -0.664031379390785, -0.787224787368896, -0.641856565954725, -0.474313531104494, -0.146619065882718, -0.390542013679378, -0.676350720188596, -0.257493133063018, -0.328945309690322, -0.587651466444356, -0.0874862300532245, -0.452138717668433, 0.0948400137543802, 0.457028633210027, 0.331371357072354, 1.03357378254759, 1.16169492684482, 0.937482924324661, -0.0899500982127866, 0.0209239689675135, 0.38311258842316, -0.257493133063018, -0.205751901712211, -0.363439463924194, -0.0184979215854822, 0.168756058541247, 0.678776767570627, 1.05082085966452, 1.12473690445139, -0.00617858078767102, 0.434853819773967, 1.18879747660001, 1.18386974028088, 1.51895580998135, 0.937482924324661, 1.50663646918353, 1.26517738954644, 1.45489523783273, 1.33170182985462, 0.824144988984798, 0.508769864560834, 0.287021730200234, -0.476777399264056, -0.691133929145969, -0.831574414241016, -0.942448481421316, -0.917809799825694, -0.819255073443205, -0.6369288296356, -0.8586769639962, -0.986798108293436, -0.262420869382142, -0.0357449987024176, -0.00864244894723313, 0.210641817253805, 0.392968061061409, 0.511233732720396, 0.974440946718094, 1.29227993930162, 1.5805525139704, 1.08038727757927, 1.07299567310058, 1.44750363335404, 1.267641257706, 1.40561787464148, 1.32677409353549, 0.875886220335605, 1.01632670543065, 1.01139896911153, 1.32923796169505, 1.0064712327924, 1.22329163083388, 1.87128895679874, 1.41547334727973, 1.02125444174978, 1.53866675525784, 1.39329853384367, 1.07053180494102, 1.14198398156833, 0.996615760154154, 1.33170182985462, 1.08038727757927, 1.31445475273768, 0.585149777507263, 0.735445735240559, 0.237744367008989, 0.668921294932379, 1.20111681739782, 0.476739578486525, -0.250101528584331, -0.0357449987024176, -0.3043066280947, -0.321553705211636, -0.176185483797464, -0.710844874422467, -0.461994190306682, 0.0406349142440112, -0.311698232573387, -0.627073356997351, -0.402861354477189, -1.2307210560901, -1.24550426504747, -0.90302659086832, -0.930129140623505, -0.720700347060716, -0.50387994901924, -0.21560737435046, -0.728091951539403, -0.811863468964518, -0.410252958955876, -0.905490459027883, -0.89070725007051, -0.489096740061867, -0.506343817178803, -0.0579198121384777, -0.0776307574149754, 0.168756058541247, 0.609788459102885, 0.811825648186987, 0.0973038819139425, -0.471849662944931, -0.3043066280947, -0.134299725084907, -0.799544128166707, -0.518663157976614, 0.225425026211178, -0.0579198121384777, 0.220497289892054, 0.356010038667976, 0.971977078558532, 0.0504903868822603, 0.466884105848276, 1.02125444174978, 0.937482924324661, 1.13212850893008, 0.311660411795856, 1.30459928009943, 0.560511095911641, 1.29227993930162, 1.66925176771464, 1.45982297415185, 0.70341544916625, -0.0456004713406665, 0.0529542550418224, 0.186003135658182, -0.154010670361404, -0.71330874258203, -0.907954327187445, -1.04839481228249, -1.06564188939943, -1.05578641676118, -1.10752764811199, -1.0089729217295, -0.755194501294587, -0.494024476380991, -0.37083106840288, -0.0998055708510354, 0.0775929366374445, 0.489058919284336, 0.718198658123623, 0.728054130761872, 0.708343185485374, 0.981832551196781, 1.21343615819563, 0.787186966591365, 0.816753384506112, 1.50417260102397, 1.44750363335404, 0.540800150635143, 1.10502595917489, 1.28242446666337, 0.61471619542201, 1.43025655623711, 1.83186706624575, 1.50417260102397, 1.7505594169802, 1.67664337219333, 1.7308484717037, 1.38344306120542, 1.36619598408849, 1.16169492684482, 0.74776507603837, 0.351082302348851, 0.683704503889752, 0.824144988984798, 0.498914391922585, -0.119516516127533, 0.762548284995743, 1.00154349647328, 0.341226829710603, -0.0554559439789156, -0.136763593244469, -0.513735421657489, -0.826646677921892, -0.907954327187445, -0.333873046009447, -0.538374103253111, -0.838966018719703, -0.356047859445507, -0.587651466444356, -1.05332254860162, -1.05085868044205, -0.461994190306682, -0.222998978829147, -0.272276342020391, -0.092413966372349, -0.639392697795163, -0.708381006262905, -1.13216632970761, -0.838966018719703, -1.10259991179286, -0.76997771025196, -0.856213095836638, -0.540837971412674, -0.518663157976614, -0.417644563434562, 0.585149777507263, 0.567902700390327, 0.819217252665674, 0.420070610816594, -0.094877834531911, -0.730555819698965, -0.353583991285945, -0.927665272463943, -0.301842759935138, -0.198360297233525, -0.373294936562442, -0.0973417026914733, 0.0652735958396336, 0.18353926749862, -0.400397486317627, 0.407751270018783, 0.732981867080996, 0.254991444125925, 0.996615760154154, 0.114550959030878, 0.834000461623047, 0.181075399339058, 1.29720767562075, 1.05082085966452, 1.25778578506775, 1.18140587212132, 0.927627451686412, 0.264846916764174, -0.454602585827996, -0.136763593244469, -0.513735421657489, -0.232854451467396, -0.454602585827996, -0.565476653008296, -0.843893755038827, -0.848821491357952, -1.00404518541037, -0.976942635655187, -0.927665272463943, -0.797080260007145, -0.639392697795163, -0.373294936562442, -0.250101528584331, -0.06038368029804, 0.0874484092756936, 0.370793247625349, 0.126870299828689, 0.51616146903952, 0.27223852124286, 0.388040324742285, 0.72559026260231, 0.856175275059107, 0.885741692973854, 0.444709292412216, 1.267641257706, 0.114550959030878, 1.54113062341741, 1.74563168066107, 1.7825897030545, 1.87621669311787, 1.98216302397904, 1.80722838465013, 1.41547334727973, 1.10995369549402, 1.1567671905257, 0.939946792484223, 0.718198658123623, 0.176147663019934, 0.415142874497469, 0.72559026260231, 0.20571408093468, 0.166292190381685, 0.479203446646087, 0.0751290684778824, -0.644320434114287, -0.356047859445507, -0.656639774912098, -1.13709406602673, -1.13709406602673, -1.40565569541901, -1.07056962571855, -1.21840171529229, -1.45739692676982, -0.609826279880416, 0.0628097276800712, -0.094877834531911, -0.762586105773274, -0.789688655528458, -1.20608237449447, -1.27260681480265, -1.15434114314367, -0.471849662944931, -0.0529920758193532, 0.0455626505631356, -0.117052647967971, -0.00371471262810869, -0.23778218778652, 0.0652735958396336, 0.432389951614405, 1.14937558604701, 0.402823533699658, -0.402861354477189, -0.491560608221429, -0.949840085900003, -1.00158131725081, -0.838966018719703, -0.461994190306682, -0.469385794785369, -0.14908293404228, 0.198322476455994, -0.262420869382142, -0.607362411720854, -0.161402274840091, -0.0357449987024176, 0.222961158051616, 0.0825206729565692, -0.230390583307833, 0.277166257561985, 0.476739578486525, 0.873422352176043, 0.696023844687563, 0.74776507603837, 0.79211470291049, 1.16415879500439, 0.240208235168551, 0.461956369529151, 0.363401643146663, 0.247599839647238, 0.43731768793353, 0.230352762530303, -0.0258895260641687, -0.0677752847767265, -0.486632871902305, -0.410252958955876, -0.550693444050923, -0.641856565954725, -0.710844874422467, -0.45953032214712, -0.693597797305532, -0.577795993806107, -0.535910235093549, -0.346192386807258, -0.449674849508871, -0.117052647967971, -0.181113220116589, 0.015996232648389, -0.0431366031811044, 0.18353926749862, 0.129334167988251, 0.65906582229413, 0.22788889437074, 0.513697600879958, -0.284595682818202, 0.691096108368439, 0.580222041188138, 1.10009822285577, 1.34155730249287, 1.26271352138687, 0.898061033771665, 0.912844242729039, 0.523553073518207, 0.242672103328114, 0.363401643146663, -0.121980384287095, 0.0480265187226979, -0.528518630614862, 0.434853819773967, 0.252527575966363, -0.553157312210485, 0.0209239689675135, -0.309234364413825, -0.6369288296356, -1.18144369289885, -1.55102391683319, -1.21840171529229, -0.476777399264056, -0.218071242510022, -1.06564188939943, -1.18637142921798, -1.39826409094033, -1.00158131725081, -0.688670060986407, -0.0160340534259199, -0.139227461404031, -0.299378891775576, -0.821718941602767, -0.291987287296889, 0.417606742657032, 0.163828322222122, 0.666457426772816, 1.14444784972789, 0.654138085975005, 0.380648720263598, -0.21560737435046, -0.48170513558318, -0.715772610741592, -1.16912435210104, -0.516199289817051, -0.737947424177652, -0.543301839572236, 0.134261904307376, -0.474313531104494, -0.540837971412674, -0.136763593244469, -0.208215769871773, 0.0529542550418224, 0.210641817253805, -0.412716827115438, -0.321553705211636, 0.53833628247558, 0.51616146903952, 0.38311258842316, 0.2500637078068, 0.498914391922585, 0.861103011378232, 1.10995369549402, 0.873422352176043, 0.619643931741134, 0.508769864560834, 0.220497289892054, 0.634427140698507, 0.622107799900696, 0.649210349655881, 0.358473906827538, 0.11701482719044, -0.0456004713406665, 0.0110684963292646, -0.235318319626958, 0.168756058541247, -0.245173792265207, -0.181113220116589, -0.0209617897450443, -0.264884737541704, -0.629537225156914, -0.826646677921892, -0.691133929145969, -0.405325222636751, -0.6369288296356, -0.54822957589136, -0.5260547624553, -0.407789090796314, -0.597506939082605, -0.232854451467396, -0.353583991285945, -0.476777399264056, -0.624609488837789, -0.617217884359103, -0.040672735021542, 0.230352762530303, 0.134261904307376, -0.733019687858527, -0.809399600804956, -0.528518630614862, 0.213105685413367, -0.575332125646545, -0.851285359517514, -0.740411292337214, -0.700989401784218, -0.245173792265207, -1.08535283467593, -0.50387994901924, -0.920273667985256, -1.42783050885507, -1.30463710087696, -0.95723169037869, -1.18144369289885, -1.48942721284413, -1.13709406602673, -0.88085177743226, -0.368367200243318, -0.715772610741592, -0.518663157976614, -0.799544128166707, -0.733019687858527, -0.782297051049772, -0.461994190306682, 0.407751270018783, 0.76993988947443, 1.52141967814091, 0.875886220335605, 0.508769864560834, 0.489058919284336, 0.4718118421674, 0.306732675476732, -1.13216632970761, -0.959695558538252, -0.71330874258203, -0.797080260007145, -0.489096740061867, -0.0850223618936621, -0.851285359517514, -0.45953032214712, -0.12690812060622, -0.107197175329722, -0.489096740061867, 0.015996232648389, -0.612290148039978, -0.25995700122258, -0.255029264903456, -0.279667946499078, -0.0800946255745377, 0.00860462816970227, 0.373257115784911, 1.05574859598365, 1.24300257611038, 0.806897911867863, 0.395431929220972, 0.31658814811498, 0.429926083454843, 0.651674217815443, 0.168756058541247, 0.291949466519358, 0.0480265187226979, 0.597469118305074, 0.63689100885807, 0.252527575966363, 0.629499404379383, 0.518625337199083, 0.683704503889752, 0.639354877017632, 0.439781556093091, -0.14908293404228, -0.676350720188596, -0.866068568474887, -0.984334240133874, -1.12970246154805, -1.18144369289885, -1.1912991655371, -1.18883529737754, -1.54116844419494, -1.1001360436333, -0.917809799825694, -0.227926715148271, -0.190968692754838, -0.784760919209334, -1.21593784713272, -1.1715882202606, -0.863604700315325, -0.686206192826845, -0.287059550977764, 0.242672103328114, 0.479203446646087, 2.09796482747847, 0.757620548676619, 0.59254138198595, 0.232816630689865, -0.540837971412674, -0.873460172953574, -1.19622690185623, -1.15926887946279, -1.21840171529229, -0.821718941602767, -0.5260547624553, -0.190968692754838, -0.654175906752536, -0.831574414241016, -0.417644563434562, -0.752730633135025, -0.321553705211636, -0.10473330717016, -0.10473330717016, -0.619681752518665, -0.622145620678227, -0.395469749998502, 0.0332433097653246, 0.489058919284336, 0.809361780027425, 1.41547334727973, 1.87128895679874, 0.989224155675468, 0.752692812357494, -0.156474538520967, 0.363401643146663, 0.619643931741134, -0.0209617897450443, -0.040672735021542, -0.530982498774425, 0.486595051124774, 0.092376145594818, -0.0184979215854822, 0.20571408093468, 0.984296419356343, 0.365865511306225, 0.528480809837332, 0.43731768793353, -0.341264650488133, -0.06038368029804, -0.66895911570991, -0.77983318289021, -1.18144369289885, -1.29970936455784, -0.740411292337214, -0.866068568474887, -0.296915023616013, -0.641856565954725, -1.23811266056878, -0.718236478901154, -0.54822957589136, -0.494024476380991, -0.432427772391936, -0.32648144153076, 0.585149777507263, 1.29720767562075, 0.341226829710603, -0.291987287296889, 0.306732675476732, -0.0800946255745377, -0.8586769639962, -1.18637142921798, -1.29970936455784, -0.676350720188596, -0.279667946499078, 0.168756058541247, 0.521089205358645, -0.609826279880416, -1.11738312075023, -0.644320434114287, -0.804471864485832, -0.545765707731798, -0.0160340534259199, -0.156474538520967, -0.932593008783067, -0.654175906752536, -0.274740210179954, 0.198322476455994, 0.979368683037219, 1.38590692936499, 1.48446165574747, 1.13952011340876, 0.341226829710603, 0.341226829710603, -0.257493133063018, -0.178649351957027, -0.0653114166171644, -0.750266764975463, -0.0998055708510354, -0.789688655528458, 0.328907488912791, -0.0751668892554133, -0.368367200243318, -0.232854451467396, 0.88081395665473, 0.0973038819139425, 0.27223852124286, 0.0233878371270758, 0.198322476455994, -0.255029264903456, -0.994189712772123, -1.22825718793053, -1.36869767302558, -0.799544128166707, -0.720700347060716, -0.981870371974312, -1.38348088198295, -1.12970246154805, -0.688670060986407, -0.678814588348158, -0.819255073443205, -0.794616391847583, -0.521127026136176, 0.1391896406265, 0.213105685413367, -0.700989401784218, 0.00121302369101574, 0.843855934261296, 0.299341070998045, -0.494024476380991, -1.40319182725945, -0.432427772391936, -0.407789090796314, -0.0677752847767265, -0.040672735021542, -0.494024476380991, -1.02621999884643, -1.03853933964424, -0.575332125646545, -0.425036167913249, -0.247637660424769, -0.728091951539403, -1.01143678988906, -0.37083106840288, 0.856175275059107, 1.11241756365358, 0.999079628313717, 0.577758173028576, 0.432389951614405, 0.353546170508414, 0.136725772466938, -0.0160340534259199, -0.439819376870623, -0.543301839572236, -0.915345931666132, -1.14448567050542, -0.91288206350657, -0.607362411720854, -0.64678430227385, 0.188467003817745, -0.750266764975463, 0.489058919284336, 0.420070610816594, -0.203288033552649, -0.6369288296356, -0.624609488837789, -1.22086558345185, -1.44014984965289, -1.06810575755899, -1.15187727498411, -1.4327582451742, -1.45000532229113, -1.38348088198295, -1.21840171529229, -1.13709406602673, -0.9695510311765, -1.11738312075023, -0.358511727605069, 0.153972849583874, -0.661567511231223, -0.45953032214712, -0.272276342020391, -0.728091951539403, -0.994189712772123, -1.33420351879171, -0.885779513751385, -0.124444252446658, -0.407789090796314, -0.71330874258203, -0.454602585827996, -0.917809799825694, -0.84635762319839, -0.550693444050923, -0.0258895260641687, 0.356010038667976, -0.173721615637902, -1.03114773516556, -0.225462846988709, 0.474275710326963, -0.146619065882718, -0.0579198121384777, -0.333873046009447, -0.363439463924194, -0.129371988765782, -0.644320434114287, -0.213143506190898, -0.405325222636751, -0.654175906752536, -0.183577088276151, -0.39300588183894, -1.19376303369666, -1.33173965063215, -1.01636452620818, -0.767513842092398, -0.8586769639962, -0.622145620678227, -0.336336914169009, -0.287059550977764, -0.898098854549196, -1.48449947652501, -1.58798193922662, -1.54609618051406, -1.29724549639828, -1.20608237449447, -0.873460172953574, -0.944912349580878, -0.422572299753687, -1.08535283467593, -0.95723169037869, -0.73548355601809, -1.10999151627155, -1.27014294664309, -0.772441578411523, 0.0603458595205091, 0.0258517052866379, -0.632001093316476, -0.666495247550347, -1.34405899142996, -1.11245538443111, -0.782297051049772, -0.390542013679378, -0.944912349580878, -1.04100320780381, -1.20608237449447, -0.567940521167858, -0.826646677921892, -0.673886852029034, -0.673886852029034, -0.794616391847583, -1.07056962571855, -0.986798108293436, -0.700989401784218, -0.533446366933987, -0.32648144153076, -0.210679638031336, 0.284557862040672, 0.121942563509565, -0.269812473860829, -1.26521521032397, -1.33666738695127, -0.567940521167858, -1.36869767302558, -0.898098854549196, -0.974478767495625, -1.52638523523756, -1.33420351879171, -1.05578641676118, -0.84635762319839, -1.15434114314367, -0.895634986389634, -0.875924041113136, -1.27999841928134, -1.27260681480265, -0.89070725007051, 0.163828322222122, 0.31658814811498, -0.0431366031811044, -0.9695510311765, -1.40565569541901, -1.2110101108136, -1.24550426504747, -0.905490459027883, -0.664031379390785, -1.15187727498411, -1.25289586952616, -1.3021732327174, -0.723164215220278, -1.11245538443111, -0.587651466444356, -1.1715882202606, -1.07549736203768, -0.71330874258203, -0.464458058466245, -0.252565396743893, 0.424998347135718, 0.385576456582723, -0.296915023616013, -0.498952212700116, -0.905490459027883, -1.18144369289885, -1.08535283467593, -1.13216632970761, -1.56580712579056, -1.3218841779939, -1.23811266056878, -0.996653580931685, -1.52638523523756, -0.838966018719703, -0.784760919209334, -1.50174655364194, -1.33173965063215, -0.86853243663445, -0.205751901712211, -0.338800782328571, -1.01882839436775, -1.25782360584528, -1.20854624265404, -1.46232466308895, -0.619681752518665, -0.225462846988709, -0.752730633135025, -1.40072795909989, -1.35884220038733, -1.17405208842017, -1.02129226252731, -0.782297051049772, -1.45986079492938, -1.16912435210104, -0.72562808337984, 0.264846916764174, -0.447210981349309, -0.309234364413825, 0.311660411795856, -0.213143506190898, -0.535910235093549, -0.930129140623505, -1.50174655364194, -1.15680501130323, -0.45953032214712, -0.82418280976233, -1.56087938947143, -0.90302659086832, -0.77983318289021, -0.83650215056014, -0.944912349580878, -0.565476653008296, -0.972014899336063, -1.47710787204632, -1.3218841779939, -0.634464961476038, -0.794616391847583, -1.04593094412293, -0.506343817178803, 0.171219926700809, -0.683742324667283, 0.121942563509565, -1.08288896651636, -0.851285359517514, -0.851285359517514, -0.93505687694263) gfor <- c(-0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.272882177730234, -0.272882177730234, -0.272882177730234, -0.199793375803889, -0.272882177730234, -0.199793375803889, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.0536157719511992, -0.199793375803889, -0.199793375803889, 0.0194730299751457, -0.199793375803889, -0.126704573877544, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.38491703960687, 0.311828237680525, 0.0925618319014905, -0.272882177730234, -0.419059781582923, 0.0925618319014905, 0.23873943575418, -0.272882177730234, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.199793375803889, 0.604183445385904, 0.458005841533215, -0.0536157719511992, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.126704573877544, -0.126704573877544, -0.492148583509268, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.604183445385904, 1.4081602665757, 1.84669307813377, 0.458005841533215, 0.458005841533215, 0.53109464345956, 0.677272247312249, 1.04271625694397, -0.126704573877544, 0.165650633827835, 0.165650633827835, -0.345970979656579, -0.492148583509268, -0.345970979656579, -0.199793375803889, -0.0536157719511992, -0.199793375803889, 0.0194730299751457, 1.26198266272301, 0.969627455017629, 0.677272247312249, 0.0925618319014905, -0.419059781582923, 0.23873943575418, 0.823449851164939, 0.969627455017629, 0.311828237680525, -0.0536157719511992, 0.165650633827835, 0.165650633827835, 0.0925618319014905, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.0925618319014905, 0.0925618319014905, -0.0536157719511992, 0.969627455017629, 1.99287068198646, 2.28522588969184, 2.13904828583915, 1.33507146464935, 0.750361049238594, 0.896538653091284, 0.458005841533215, 0.23873943575418, 0.677272247312249, 0.969627455017629, 0.458005841533215, -0.419059781582923, 0.0194730299751457, -0.199793375803889, 0.458005841533215, 0.0925618319014905, 0.23873943575418, 0.969627455017629, 0.53109464345956, 0.53109464345956, -0.126704573877544, 0.604183445385904, 1.48124906850204, 1.84669307813377, 1.4081602665757, 1.11580505887032, 1.11580505887032, 0.750361049238594, 0.823449851164939, 1.18889386079666, 0.0194730299751457, -0.272882177730234, 0.165650633827835, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.0925618319014905, 0.23873943575418, 0.53109464345956, 1.91978188006011, 3.08920271088163, 2.94302510702894, 2.0659594839128, 1.62742667235473, 1.70051547428108, 1.18889386079666, 0.458005841533215, 0.458005841533215, 0.823449851164939, 0.677272247312249, 0.311828237680525, -0.345970979656579, 0.604183445385904, 0.458005841533215, 0.53109464345956, 0.53109464345956, 0.165650633827835, 0.896538653091284, -0.199793375803889, 0.311828237680525, 0.0925618319014905, 0.677272247312249, 1.04271625694397, 1.26198266272301, 1.55433787042839, 1.26198266272301, 2.13904828583915, 1.70051547428108, 1.99287068198646, 1.55433787042839, 0.0925618319014905, 0.23873943575418, 0.677272247312249, -0.126704573877544, 0.0194730299751457, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.0194730299751457, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.199793375803889, 1.26198266272301, 2.79684750317625, 2.79684750317625, 2.43140349354453, 1.70051547428108, 1.4081602665757, 0.604183445385904, 0.0194730299751457, 1.04271625694397, 0.750361049238594, 1.04271625694397, 0.677272247312249, -0.419059781582923, 1.04271625694397, 0.969627455017629, 0.311828237680525, 0.23873943575418, 0.311828237680525, 0.823449851164939, 0.165650633827835, 0.0194730299751457, 0.823449851164939, 1.4081602665757, 0.969627455017629, 2.0659594839128, 2.28522588969184, 1.26198266272301, 1.18889386079666, 1.48124906850204, 0.823449851164939, 0.458005841533215, 0.604183445385904, 1.18889386079666, 0.677272247312249, -0.345970979656579, -0.492148583509268, -0.0536157719511992, 0.23873943575418, 0.311828237680525, 0.38491703960687, -0.199793375803889, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.199793375803889, 0.0194730299751457, 0.23873943575418, -0.126704573877544, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.23873943575418, 0.458005841533215, 0.677272247312249, 0.0925618319014905, 0.0194730299751457, 0.0194730299751457, 0.165650633827835, 0.38491703960687, 0.458005841533215, 1.91978188006011, 0.896538653091284, -0.272882177730234, 0.677272247312249, 1.33507146464935, 1.04271625694397, 1.33507146464935, 0.969627455017629, 0.969627455017629, 1.18889386079666, 0.458005841533215, 0.823449851164939, 2.0659594839128, 1.77360427620742, 2.0659594839128, 2.35831469161818, 0.458005841533215, 0.53109464345956, 0.750361049238594, 0.0194730299751457, 0.0925618319014905, 0.750361049238594, 1.26198266272301, 0.311828237680525, -0.419059781582923, 0.165650633827835, 0.0194730299751457, -0.199793375803889, 0.823449851164939, 1.62742667235473, 0.969627455017629, 2.57758109739721, 3.16229151280797, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.199793375803889, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.199793375803889, 0.0925618319014905, 0.0925618319014905, -0.0536157719511992, 1.18889386079666, 0.896538653091284, 0.38491703960687, 1.11580505887032, 2.21213708776549, 1.4081602665757, 1.55433787042839, 0.969627455017629, 0.604183445385904, 0.677272247312249, 0.23873943575418, 0.896538653091284, 2.50449229547087, 2.57758109739721, 2.28522588969184, 1.4081602665757, 0.165650633827835, 0.53109464345956, 1.18889386079666, 0.38491703960687, 0.677272247312249, 0.165650633827835, -0.199793375803889, -0.126704573877544, 0.23873943575418, 0.823449851164939, 0.38491703960687, -0.345970979656579, 0.823449851164939, 2.43140349354453, 2.86993630510259, 4.11244593785046, 5.86657718408273, 2.94302510702894, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.199793375803889, -0.345970979656579, -0.419059781582923, 1.04271625694397, 1.4081602665757, -0.126704573877544, 1.04271625694397, 2.21213708776549, 1.4081602665757, 1.48124906850204, 1.55433787042839, 0.38491703960687, 0.896538653091284, 0.823449851164939, 1.48124906850204, 2.79684750317625, 1.84669307813377, 1.26198266272301, 0.0925618319014905, 0.38491703960687, 1.77360427620742, 1.70051547428108, 0.823449851164939, 0.311828237680525, 0.0925618319014905, 0.38491703960687, 0.458005841533215, 0.604183445385904, 0.750361049238594, 0.23873943575418, 0.604183445385904, 1.04271625694397, 1.55433787042839, 2.65066989932356, 4.62406755133487, 6.45128759949349, 5.42804437252466, 1.84669307813377, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.23873943575418, -0.0536157719511992, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, 0.38491703960687, 1.04271625694397, 0.38491703960687, 0.458005841533215, 0.969627455017629, 1.48124906850204, 1.91978188006011, 2.28522588969184, 1.4081602665757, 1.99287068198646, 2.28522588969184, 1.4081602665757, 1.33507146464935, 0.677272247312249, 0.0194730299751457, -0.345970979656579, -0.272882177730234, 0.311828237680525, -0.126704573877544, -0.272882177730234, 0.0194730299751457, 1.04271625694397, 1.84669307813377, 0.53109464345956, -0.0536157719511992, 0.38491703960687, 0.23873943575418, 0.750361049238594, 1.11580505887032, -0.199793375803889, 1.18889386079666, 4.03935713592411, 6.15893239178811, 6.81673160912522, 4.33171234362949, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.199793375803889, 0.165650633827835, -0.199793375803889, 0.165650633827835, 0.165650633827835, 0.23873943575418, 0.165650633827835, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.0194730299751457, -0.345970979656579, -0.199793375803889, -0.345970979656579, -0.0536157719511992, 0.823449851164939, 0.823449851164939, 0.604183445385904, 0.969627455017629, 0.0194730299751457, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.126704573877544, 1.18889386079666, 2.21213708776549, 0.896538653091284, 0.23873943575418, -0.272882177730234, 0.23873943575418, 0.969627455017629, 0.750361049238594, -0.126704573877544, 0.165650633827835, 2.0659594839128, 4.8433339571139, 5.72039958023004, 4.9895115609666, 2.35831469161818, 0.0925618319014905, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.126704573877544, 0.23873943575418, 1.55433787042839, 1.33507146464935, 0.823449851164939, 0.604183445385904, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.0194730299751457, 0.23873943575418, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, 0.0194730299751457, 0.604183445385904, 0.23873943575418, -0.126704573877544, -0.419059781582923, 0.53109464345956, 0.896538653091284, 0.23873943575418, 0.165650633827835, 0.23873943575418, 0.823449851164939, 3.38155791858701, 4.11244593785046, 4.25862354170315, 3.60082432436604, 2.21213708776549, 2.13904828583915, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.311828237680525, 0.750361049238594, 0.604183445385904, 0.165650633827835, -0.0536157719511992, 0.0194730299751457, -0.199793375803889, 0.0194730299751457, 0.311828237680525, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, 0.311828237680525, -0.0536157719511992, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.126704573877544, -0.126704573877544, 0.0194730299751457, 0.38491703960687, 0.311828237680525, 0.604183445385904, 2.21213708776549, 3.30846911666066, 4.9895115609666, 4.33171234362949, 3.38155791858701, 4.40480114555584, 2.0659594839128, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.0194730299751457, -0.0536157719511992, -0.345970979656579, -0.345970979656579, -0.272882177730234, -0.272882177730234, -0.272882177730234, 0.311828237680525, 0.53109464345956, -0.126704573877544, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.0536157719511992, 0.311828237680525, 0.0925618319014905, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.126704573877544, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.272882177730234, -0.272882177730234, -0.345970979656579, -0.0536157719511992, -0.126704573877544, 1.48124906850204, 3.45464672051335, 4.55097874940853, 4.9895115609666, 4.11244593785046, 4.40480114555584, 3.38155791858701, 0.750361049238594, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.199793375803889, -0.199793375803889, -0.272882177730234, 0.0194730299751457, -0.126704573877544, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.199793375803889, -0.126704573877544, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.750361049238594, 1.55433787042839, 0.677272247312249, 0.165650633827835, 0.896538653091284, 1.4081602665757, 0.677272247312249, 0.311828237680525, 0.311828237680525, 0.38491703960687, 0.165650633827835, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.165650633827835, 1.77360427620742, 3.23538031473432, 3.23538031473432, 3.60082432436604, 3.96626833399777, 4.62406755133487, 4.11244593785046, 2.13904828583915, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.199793375803889, 0.23873943575418, -0.199793375803889, -0.419059781582923, -0.345970979656579, -0.272882177730234, 0.0194730299751457, -0.0536157719511992, -0.199793375803889, -0.345970979656579, -0.492148583509268, -0.419059781582923, -0.0536157719511992, 0.311828237680525, 0.0194730299751457, -0.345970979656579, -0.492148583509268, -0.419059781582923, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.492148583509268, -0.492148583509268, 0.0925618319014905, 0.53109464345956, 1.11580505887032, 0.969627455017629, 1.48124906850204, 3.01611390895528, 3.30846911666066, 3.01611390895528, 3.08920271088163, 3.01611390895528, 3.16229151280797, 3.08920271088163, 2.35831469161818, 1.18889386079666, -0.126704573877544, -0.199793375803889, 0.0194730299751457, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.0194730299751457, 0.23873943575418, 1.18889386079666, 1.4081602665757, 2.28522588969184, 2.57758109739721, 2.13904828583915, 1.33507146464935, 1.04271625694397, 1.33507146464935, 0.38491703960687, 0.750361049238594, 0.0194730299751457, -0.419059781582923, -0.492148583509268, 0.23873943575418, 0.38491703960687, -0.272882177730234, 0.823449851164939, 0.458005841533215, 0.750361049238594, 0.165650633827835, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.492148583509268, -0.345970979656579, -0.126704573877544, 0.0194730299751457, 0.23873943575418, -0.0536157719511992, -0.345970979656579, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.492148583509268, -0.345970979656579, -0.199793375803889, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.0925618319014905, 0.38491703960687, -0.199793375803889, 0.165650633827835, 1.4081602665757, 2.50449229547087, 2.7237587012499, 4.11244593785046, 4.9895115609666, 5.28186676867197, 4.25862354170315, 3.74700192821873, 4.8433339571139, 5.20877796674563, 3.96626833399777, 2.28522588969184, 0.311828237680525, -0.0536157719511992, 0.458005841533215, 0.165650633827835, -0.0536157719511992, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, 0.53109464345956, 0.311828237680525, 0.0925618319014905, 0.23873943575418, 0.0194730299751457, 0.165650633827835, 2.13904828583915, 1.99287068198646, 0.677272247312249, 1.04271625694397, 0.311828237680525, 0.0194730299751457, -0.0536157719511992, 0.0925618319014905, -0.126704573877544, -0.126704573877544, -0.126704573877544, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.23873943575418, 0.896538653091284, 0.0194730299751457, 2.13904828583915, 3.08920271088163, 1.11580505887032, -0.199793375803889, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.0536157719511992, 0.165650633827835, -0.0536157719511992, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.0536157719511992, -0.419059781582923, -0.199793375803889, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.458005841533215, 1.4081602665757, 1.33507146464935, 0.750361049238594, 0.165650633827835, 2.28522588969184, 4.55097874940853, 6.01275478793542, 5.57422197637735, 5.79348838215639, 5.06260036289294, 3.38155791858701, 2.35831469161818, 1.33507146464935, 0.53109464345956, -0.126704573877544, -0.492148583509268, -0.492148583509268, 0.165650633827835, 0.311828237680525, 0.23873943575418, -0.0536157719511992, -0.199793375803889, -0.345970979656579, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.311828237680525, 0.458005841533215, 0.53109464345956, 1.11580505887032, 1.26198266272301, 2.21213708776549, 2.7237587012499, 0.458005841533215, -0.419059781582923, -0.199793375803889, -0.419059781582923, -0.272882177730234, -0.272882177730234, 0.165650633827835, -0.199793375803889, -0.345970979656579, 0.38491703960687, 0.165650633827835, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.750361049238594, 1.4081602665757, 0.969627455017629, 1.84669307813377, 3.08920271088163, 1.48124906850204, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.199793375803889, 0.23873943575418, 0.458005841533215, 0.0194730299751457, -0.345970979656579, -0.199793375803889, -0.199793375803889, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.199793375803889, 0.23873943575418, 1.33507146464935, 0.38491703960687, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.165650633827835, 1.55433787042839, 2.86993630510259, 3.60082432436604, 4.40480114555584, 5.28186676867197, 5.50113317445101, 5.28186676867197, 5.50113317445101, 4.8433339571139, 3.08920271088163, 0.311828237680525, -0.492148583509268, -0.492148583509268, -0.199793375803889, -0.272882177730234, -0.199793375803889, -0.272882177730234, -0.345970979656579, -0.199793375803889, -0.199793375803889, 0.0925618319014905, 0.0925618319014905, -0.199793375803889, -0.419059781582923, -0.345970979656579, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.272882177730234, -0.492148583509268, -0.419059781582923, -0.199793375803889, -0.0536157719511992, 0.23873943575418, 1.70051547428108, 2.0659594839128, 3.45464672051335, 4.11244593785046, 2.13904828583915, 0.969627455017629, 0.0194730299751457, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.0536157719511992, -0.345970979656579, -0.492148583509268, -0.126704573877544, 0.0194730299751457, -0.419059781582923, -0.126704573877544, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.0925618319014905, 0.750361049238594, 0.969627455017629, 1.55433787042839, 0.896538653091284, 0.53109464345956, 0.0925618319014905, -0.126704573877544, 0.0925618319014905, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.0194730299751457, 0.23873943575418, 0.0925618319014905, -0.345970979656579, 0.311828237680525, 0.0925618319014905, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.0536157719511992, 0.896538653091284, -0.126704573877544, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.311828237680525, 1.62742667235473, 3.45464672051335, 3.82009073014508, 4.25862354170315, 4.47788994748218, 4.62406755133487, 4.40480114555584, 3.08920271088163, 1.48124906850204, -0.126704573877544, -0.492148583509268, 0.0194730299751457, 0.0925618319014905, 0.0194730299751457, -0.0536157719511992, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.126704573877544, 0.0194730299751457, -0.126704573877544, -0.199793375803889, -0.492148583509268, 0.0194730299751457, -0.272882177730234, -0.126704573877544, -0.126704573877544, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.126704573877544, 0.604183445385904, 0.823449851164939, 1.48124906850204, 1.04271625694397, 2.28522588969184, 1.84669307813377, 1.18889386079666, 1.11580505887032, 0.969627455017629, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.199793375803889, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.199793375803889, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.0925618319014905, -0.272882177730234, -0.0536157719511992, -0.199793375803889, -0.419059781582923, -0.492148583509268, -0.272882177730234, -0.126704573877544, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.0536157719511992, 0.165650633827835, -0.345970979656579, -0.126704573877544, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.604183445385904, 1.48124906850204, 1.99287068198646, 0.750361049238594, 0.969627455017629, 1.99287068198646, 2.35831469161818, 2.65066989932356, 2.79684750317625, 2.50449229547087, 0.750361049238594, -0.492148583509268, -0.419059781582923, -0.199793375803889, -0.199793375803889, -0.126704573877544, -0.126704573877544, -0.419059781582923, -0.419059781582923, -0.345970979656579, -0.199793375803889, -0.0536157719511992, -0.345970979656579, -0.419059781582923, -0.345970979656579, -0.199793375803889, -0.126704573877544, 0.0925618319014905, 0.0194730299751457, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.126704573877544, 0.38491703960687, 0.53109464345956, 0.823449851164939, 0.53109464345956, 0.458005841533215, -0.199793375803889, 0.0925618319014905, -0.126704573877544, -0.199793375803889, 0.38491703960687, 0.604183445385904, 0.311828237680525, -0.0536157719511992, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.0194730299751457, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.272882177730234, 0.53109464345956, 0.23873943575418, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.165650633827835, 0.0925618319014905, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.0925618319014905, 0.750361049238594, 2.43140349354453, 3.74700192821873, 4.62406755133487, 5.13568916481928, 3.30846911666066, 0.896538653091284, 0.896538653091284, 0.750361049238594, -0.272882177730234, -0.492148583509268, -0.126704573877544, -0.199793375803889, -0.345970979656579, -0.419059781582923, -0.272882177730234, -0.126704573877544, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.126704573877544, -0.126704573877544, -0.419059781582923, -0.492148583509268, -0.345970979656579, -0.126704573877544, -0.199793375803889, 0.165650633827835, 0.0194730299751457, -0.126704573877544, -0.345970979656579, -0.199793375803889, 0.458005841533215, 0.750361049238594, 0.38491703960687, 0.23873943575418, -0.272882177730234, -0.492148583509268, -0.345970979656579, -0.492148583509268, -0.345970979656579, -0.199793375803889, -0.199793375803889, -0.345970979656579, -0.345970979656579, 0.165650633827835, 0.0925618319014905, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.419059781582923, -0.126704573877544, 0.165650633827835, 0.165650633827835, 0.969627455017629, 0.823449851164939, -0.272882177730234, -0.492148583509268, -0.419059781582923, -0.199793375803889, -0.199793375803889, -0.199793375803889, 1.18889386079666, 1.26198266272301, -0.0536157719511992, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.311828237680525, 2.13904828583915, 3.08920271088163, 3.74700192821873, 2.35831469161818, 0.165650633827835, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.272882177730234, -0.272882177730234, -0.492148583509268, -0.126704573877544, -0.126704573877544, 0.23873943575418, 0.23873943575418, 0.458005841533215, 0.0925618319014905, 0.604183445385904, 1.4081602665757, 0.823449851164939, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.419059781582923, -0.419059781582923, -0.126704573877544, -0.199793375803889, 0.0194730299751457, 1.18889386079666, 0.823449851164939, -0.345970979656579, -0.345970979656579, 0.0194730299751457, 0.0925618319014905, -0.272882177730234, 0.0194730299751457, 0.969627455017629, 0.604183445385904, -0.272882177730234, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.165650633827835, 1.04271625694397, 1.04271625694397, 0.38491703960687, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.345970979656579, -0.419059781582923, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.199793375803889, 0.53109464345956, 0.750361049238594, 0.53109464345956, 0.896538653091284, 1.4081602665757, 0.165650633827835, -0.199793375803889, 0.23873943575418, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.0536157719511992, 0.0925618319014905, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.199793375803889, -0.345970979656579, -0.126704573877544, 0.604183445385904, 0.0925618319014905, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, 0.311828237680525, 1.26198266272301, 1.04271625694397, 0.604183445385904, -0.199793375803889, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.419059781582923, -0.272882177730234, -0.0536157719511992, -0.199793375803889, -0.272882177730234, 0.0194730299751457, -0.199793375803889, 0.38491703960687, 0.896538653091284, 0.896538653091284, 0.165650633827835, 0.23873943575418, 0.604183445385904, -0.126704573877544, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.126704573877544, 1.33507146464935, 0.969627455017629, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 1.11580505887032, 1.4081602665757, 0.896538653091284, 1.11580505887032, 0.896538653091284, 0.0194730299751457, -0.345970979656579, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.0536157719511992, -0.199793375803889, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.199793375803889, 0.0194730299751457, -0.199793375803889, -0.345970979656579, -0.345970979656579, -0.0536157719511992, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.165650633827835, 0.0194730299751457, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, 1.04271625694397, 1.99287068198646, 0.53109464345956, 0.458005841533215, 0.896538653091284, 0.0925618319014905, 0.0925618319014905, -0.126704573877544, -0.272882177730234, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.126704573877544, -0.199793375803889, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.0536157719511992, 0.0194730299751457, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, 0.311828237680525, 0.823449851164939, -0.126704573877544, -0.126704573877544, 0.0194730299751457, -0.345970979656579, -0.126704573877544, -0.419059781582923, -0.272882177730234, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.272882177730234, -0.199793375803889, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.126704573877544, -0.126704573877544, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.0536157719511992, 0.53109464345956, 0.458005841533215, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.199793375803889, -0.345970979656579, -0.345970979656579, -0.126704573877544, -0.199793375803889, -0.419059781582923, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.126704573877544, 0.165650633827835, 0.0925618319014905, -0.199793375803889, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.345970979656579, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.126704573877544, -0.0536157719511992, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.345970979656579, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.272882177730234, -0.0536157719511992, -0.126704573877544, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.0925618319014905, 0.0925618319014905, -0.126704573877544, -0.345970979656579, -0.492148583509268, -0.419059781582923, -0.272882177730234, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.199793375803889, -0.272882177730234, -0.272882177730234, -0.345970979656579, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.272882177730234, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.272882177730234, -0.199793375803889, -0.419059781582923, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.272882177730234, -0.345970979656579, -0.492148583509268, -0.126704573877544, 0.165650633827835, 0.0194730299751457, -0.419059781582923, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.345970979656579, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.199793375803889, -0.345970979656579, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.492148583509268, -0.272882177730234, -0.199793375803889, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.272882177730234, -0.199793375803889, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.199793375803889, -0.0536157719511992, -0.345970979656579, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.272882177730234, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.419059781582923, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268) gchap <- c(-1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -1.11345776981734, -1.07069156057321, -1.02792535132908, -1.11345776981734, -1.15622397906146, -1.07069156057321, -0.985159142084955, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.985159142084955, -0.942392932840828, -0.77132809586432, -0.64302946813194, -1.02792535132908, -1.07069156057321, -0.600263258887813, 0.212294716750598, 0.682723018435993, 0.383359553727105, 0.169528507506471, -0.386432212667179, -0.557497049643686, -0.386432212667179, -0.129834957202417, -0.471964631155432, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.899626723596701, -0.215367375690671, 0.0412298797740903, -0.258133584934798, -0.514730840399559, -0.0443025387141636, 0.639956809191867, 1.19591752936552, 1.45251478483028, 1.3242161570979, 0.255060925994725, 0.554424390703613, 0.811021646168374, 1.40974857558615, 1.19591752936552, 0.768255436924247, -0.386432212667179, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.814094305108448, -0.728561886620194, -0.685795677376067, -0.77132809586432, -0.728561886620194, -0.600263258887813, -0.129834957202417, 0.59719059994774, 1.11038511087726, 0.426125762971232, 0.939320273900755, 1.23868373860964, 1.36698236634202, 0.982086483144882, 1.06761890163314, 0.468891972215359, -0.0870687479582905, -0.172601166446544, -1.15622397906146, -1.07069156057321, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.899626723596701, -0.814094305108448, -0.899626723596701, -1.11345776981734, -1.15622397906146, -0.814094305108448, -0.300899794178925, -0.215367375690671, 0.0412298797740903, 0.811021646168374, 0.59719059994774, 0.340593344482978, -0.0870687479582905, 0.383359553727105, -0.0443025387141636, 0.297827135238852, 1.06761890163314, -0.258133584934798, -0.557497049643686, -0.685795677376067, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -0.471964631155432, -0.0870687479582905, -0.471964631155432, -0.814094305108448, -1.07069156057321, -1.07069156057321, -0.600263258887813, -0.600263258887813, -0.172601166446544, 0.126762298262344, -0.172601166446544, -0.600263258887813, -1.02792535132908, -0.814094305108448, -1.11345776981734, -0.215367375690671, 0.297827135238852, 0.212294716750598, 0.426125762971232, 0.982086483144882, 0.212294716750598, -1.11345776981734, -1.11345776981734, -1.15622397906146, -1.11345776981734, -0.899626723596701, -0.728561886620194, -0.728561886620194, -0.77132809586432, -0.942392932840828, -1.07069156057321, -1.07069156057321, -0.514730840399559, -0.0443025387141636, -0.300899794178925, -0.64302946813194, -1.07069156057321, -1.07069156057321, -0.985159142084955, -0.942392932840828, -1.11345776981734, -0.514730840399559, -0.258133584934798, 0.212294716750598, 0.768255436924247, 0.383359553727105, -0.172601166446544, -0.258133584934798, -1.15622397906146, -0.985159142084955, -0.600263258887813, -0.856860514352574, -1.07069156057321, -0.899626723596701, -0.77132809586432, -0.856860514352574, -1.11345776981734, -0.985159142084955, -0.129834957202417, -0.0443025387141636, -0.899626723596701, -1.07069156057321, -0.77132809586432, -0.343666003423052, -0.77132809586432, -1.15622397906146, -1.15622397906146, -0.77132809586432, -0.172601166446544, -0.258133584934798, 0.0412298797740903, 0.853787855412501, 0.682723018435993, -0.00153632947003662, -1.11345776981734, -0.942392932840828, -0.77132809586432, -1.02792535132908, -1.11345776981734, -0.985159142084955, -0.600263258887813, -1.02792535132908, -0.942392932840828, -1.15622397906146, -0.985159142084955, -0.942392932840828, -1.11345776981734, -1.15622397906146, -0.77132809586432, -0.514730840399559, -0.942392932840828, -1.15622397906146, -0.942392932840828, -0.600263258887813, -0.985159142084955, -1.11345776981734, -1.02792535132908, -0.600263258887813, -0.429198421911306, -0.942392932840828, -0.600263258887813, -0.0870687479582905, 0.126762298262344, 0.682723018435993, -0.300899794178925, -1.02792535132908, -0.64302946813194, -0.985159142084955, -0.685795677376067, -0.471964631155432, -0.728561886620194, -0.899626723596701, -0.00153632947003662, 0.0412298797740903, -0.77132809586432, -0.557497049643686, -0.557497049643686, -0.514730840399559, -0.258133584934798, -1.02792535132908, -0.856860514352574, -0.685795677376067, -0.77132809586432, -0.77132809586432, -0.77132809586432, -1.02792535132908, -1.15622397906146, -0.985159142084955, -0.985159142084955, -1.02792535132908, -0.985159142084955, -1.07069156057321, -1.11345776981734, -1.15622397906146, -1.07069156057321, -0.985159142084955, -0.985159142084955, -1.07069156057321, -1.11345776981734, -1.02792535132908, -1.02792535132908, -0.471964631155432, 0.426125762971232, -0.00153632947003662, 0.554424390703613, 1.45251478483028, 0.896554064656628, -0.429198421911306, 0.0412298797740903, 0.083996089018217, -0.343666003423052, -0.728561886620194, -0.728561886620194, -0.343666003423052, -0.471964631155432, -0.343666003423052, 0.72548922768012, 0.426125762971232, -0.172601166446544, 0.0412298797740903, 0.340593344482978, 0.639956809191867, 1.28144994785377, 0.768255436924247, 0.511658181459486, -0.215367375690671, -0.942392932840828, -0.856860514352574, 0.0412298797740903, -0.343666003423052, -0.985159142084955, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.02792535132908, -1.02792535132908, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.11345776981734, -1.02792535132908, -1.07069156057321, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.899626723596701, -0.471964631155432, -0.386432212667179, 0.212294716750598, 0.72548922768012, 1.58081341256266, 0.59719059994774, 1.15315132012139, 0.554424390703613, -0.386432212667179, -0.685795677376067, -0.685795677376067, -0.172601166446544, -0.129834957202417, -0.64302946813194, -0.343666003423052, -0.215367375690671, 0.468891972215359, 0.682723018435993, 0.682723018435993, 0.72548922768012, 1.19591752936552, 1.53804720331853, 1.53804720331853, 0.639956809191867, -0.300899794178925, -0.728561886620194, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.64302946813194, 0.340593344482978, -0.386432212667179, -0.728561886620194, -0.600263258887813, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.02792535132908, -1.07069156057321, -0.985159142084955, -0.814094305108448, -1.11345776981734, -1.02792535132908, -0.557497049643686, -0.129834957202417, 0.169528507506471, -0.172601166446544, -0.129834957202417, 0.982086483144882, 0.426125762971232, 0.212294716750598, -0.343666003423052, -0.514730840399559, -0.429198421911306, -0.600263258887813, -0.172601166446544, -0.514730840399559, -0.429198421911306, -0.685795677376067, -0.0870687479582905, 0.639956809191867, 1.45251478483028, 0.982086483144882, 0.383359553727105, -0.172601166446544, 0.340593344482978, 0.768255436924247, 0.426125762971232, -0.514730840399559, -0.172601166446544, 0.511658181459486, 0.297827135238852, -0.215367375690671, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.728561886620194, -0.985159142084955, -0.942392932840828, -0.685795677376067, -0.899626723596701, -1.07069156057321, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -0.814094305108448, -1.07069156057321, -0.942392932840828, -0.64302946813194, -0.64302946813194, -0.215367375690671, -0.0443025387141636, -0.386432212667179, -0.300899794178925, 0.169528507506471, 0.126762298262344, -0.215367375690671, 0.169528507506471, 2.17954034198043, 1.06761890163314, -0.0870687479582905, -0.471964631155432, -1.02792535132908, -0.728561886620194, -0.557497049643686, -0.343666003423052, -0.685795677376067, -0.985159142084955, -0.64302946813194, 0.768255436924247, 0.982086483144882, 0.511658181459486, 0.939320273900755, 0.255060925994725, -0.258133584934798, -0.258133584934798, -0.215367375690671, 0.083996089018217, -0.300899794178925, 0.639956809191867, 1.66634583105091, 1.15315132012139, 0.383359553727105, 0.72548922768012, 0.896554064656628, 0.811021646168374, 0.083996089018217, -1.15622397906146, -1.02792535132908, -1.02792535132908, -1.15622397906146, -0.899626723596701, -0.856860514352574, -1.15622397906146, -1.15622397906146, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.11345776981734, -1.15622397906146, -1.02792535132908, -0.899626723596701, -0.985159142084955, -0.899626723596701, -0.856860514352574, -1.15622397906146, -1.15622397906146, -1.11345776981734, -0.685795677376067, -0.343666003423052, -1.02792535132908, -0.856860514352574, -0.172601166446544, 0.554424390703613, 1.15315132012139, 0.59719059994774, 0.340593344482978, -0.386432212667179, 0.468891972215359, 0.511658181459486, 0.0412298797740903, 1.06761890163314, 1.92294308651567, 1.62357962180679, 0.383359553727105, -0.514730840399559, -1.15622397906146, -1.15622397906146, -0.985159142084955, -0.814094305108448, -0.985159142084955, -1.15622397906146, -0.814094305108448, 0.340593344482978, 0.682723018435993, -0.0443025387141636, -0.215367375690671, -0.685795677376067, -0.985159142084955, -0.899626723596701, -0.557497049643686, -0.0870687479582905, -0.258133584934798, -0.00153632947003662, 0.511658181459486, 0.468891972215359, 0.083996089018217, 0.383359553727105, 0.982086483144882, 1.23868373860964, 0.72548922768012, -0.557497049643686, -0.814094305108448, -1.11345776981734, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.942392932840828, -0.899626723596701, -0.856860514352574, -0.856860514352574, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.11345776981734, -1.11345776981734, -1.15622397906146, -1.15622397906146, -0.942392932840828, -1.11345776981734, -1.07069156057321, -0.856860514352574, -1.15622397906146, -1.15622397906146, -1.02792535132908, -0.77132809586432, -0.685795677376067, -0.942392932840828, -1.15622397906146, -0.985159142084955, 0.169528507506471, 0.72548922768012, 0.682723018435993, -0.129834957202417, 0.297827135238852, 0.682723018435993, 0.72548922768012, 0.982086483144882, 1.28144994785377, 1.19591752936552, 0.982086483144882, 0.768255436924247, -0.172601166446544, -0.985159142084955, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.11345776981734, -0.64302946813194, -0.00153632947003662, -0.0870687479582905, -0.899626723596701, -1.15622397906146, -1.11345776981734, -0.728561886620194, -0.0870687479582905, -0.215367375690671, -0.471964631155432, -0.429198421911306, 0.083996089018217, 0.0412298797740903, 0.212294716750598, 0.853787855412501, 0.853787855412501, 0.426125762971232, -0.0870687479582905, -0.64302946813194, -0.942392932840828, -0.77132809586432, -1.11345776981734, -0.856860514352574, -0.64302946813194, -0.77132809586432, -0.64302946813194, -0.386432212667179, -0.258133584934798, -0.258133584934798, -0.814094305108448, -0.899626723596701, -0.856860514352574, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.728561886620194, -0.685795677376067, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -1.07069156057321, -0.172601166446544, 0.468891972215359, 1.06761890163314, 1.79464445878329, 1.79464445878329, 1.62357962180679, 1.23868373860964, 0.468891972215359, 0.682723018435993, 0.468891972215359, 0.896554064656628, 0.340593344482978, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.11345776981734, -1.11345776981734, -1.15622397906146, -1.15622397906146, -0.985159142084955, -0.685795677376067, -0.685795677376067, -1.07069156057321, -1.15622397906146, -0.856860514352574, -0.471964631155432, -0.215367375690671, -0.343666003423052, -0.600263258887813, -0.0443025387141636, 0.554424390703613, 0.0412298797740903, 0.212294716750598, 0.811021646168374, 1.02485269238901, 1.45251478483028, 0.682723018435993, -0.77132809586432, -1.15622397906146, -0.64302946813194, -0.129834957202417, 0.169528507506471, -0.215367375690671, -0.814094305108448, -0.685795677376067, -0.514730840399559, -0.514730840399559, 0.083996089018217, 0.72548922768012, 0.511658181459486, -0.172601166446544, -0.600263258887813, -0.899626723596701, -0.985159142084955, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -0.728561886620194, -0.64302946813194, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.856860514352574, -0.728561886620194, -0.814094305108448, -0.514730840399559, 0.297827135238852, 0.939320273900755, 0.59719059994774, 0.468891972215359, -0.00153632947003662, -0.64302946813194, -0.429198421911306, -0.300899794178925, -0.129834957202417, -0.258133584934798, -0.942392932840828, -1.15622397906146, -1.15622397906146, -0.728561886620194, -0.728561886620194, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.11345776981734, -0.856860514352574, -0.300899794178925, -0.856860514352574, -0.942392932840828, -0.429198421911306, -0.172601166446544, -0.300899794178925, -0.343666003423052, -0.0870687479582905, -0.0443025387141636, -0.215367375690671, -0.300899794178925, 0.212294716750598, 0.340593344482978, 1.06761890163314, 0.340593344482978, -0.899626723596701, -1.15622397906146, -1.15622397906146, -0.64302946813194, 0.126762298262344, 1.36698236634202, 0.340593344482978, -0.856860514352574, -0.814094305108448, -0.471964631155432, -0.600263258887813, -0.129834957202417, 0.255060925994725, 0.768255436924247, 0.0412298797740903, -0.386432212667179, -0.685795677376067, -0.985159142084955, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -0.985159142084955, -1.07069156057321, -1.07069156057321, -1.07069156057321, -1.11345776981734, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.899626723596701, -0.343666003423052, -0.514730840399559, -0.856860514352574, -0.985159142084955, -0.814094305108448, -0.899626723596701, -0.985159142084955, -0.300899794178925, -0.129834957202417, -0.514730840399559, -1.07069156057321, -1.02792535132908, -0.814094305108448, -0.856860514352574, -1.15622397906146, -1.07069156057321, -0.814094305108448, -0.856860514352574, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.77132809586432, 0.255060925994725, -0.172601166446544, -0.899626723596701, -0.685795677376067, -0.258133584934798, 0.0412298797740903, -0.514730840399559, -0.728561886620194, -0.258133584934798, -0.0870687479582905, -0.300899794178925, -0.429198421911306, -0.300899794178925, -0.386432212667179, -0.429198421911306, -1.02792535132908, -1.11345776981734, -0.685795677376067, -0.728561886620194, -0.899626723596701, -1.07069156057321, 0.511658181459486, -0.0443025387141636, -0.77132809586432, -0.814094305108448, -0.172601166446544, -0.0870687479582905, -0.0870687479582905, -0.471964631155432, -0.215367375690671, -0.557497049643686, -0.64302946813194, -0.471964631155432, -0.856860514352574, -0.557497049643686, -0.64302946813194, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.11345776981734, -0.856860514352574, -0.471964631155432, -0.557497049643686, -0.728561886620194, -0.728561886620194, -0.685795677376067, -0.471964631155432, -0.471964631155432, -0.899626723596701, -1.07069156057321, -1.02792535132908, -0.814094305108448, -1.02792535132908, -0.64302946813194, 0.126762298262344, -0.343666003423052, -0.300899794178925, 0.212294716750598, 0.59719059994774, 0.169528507506471, -0.471964631155432, -0.899626723596701, -0.557497049643686, -0.429198421911306, -0.985159142084955, -1.11345776981734, -0.899626723596701, -0.985159142084955, -1.15622397906146, -1.11345776981734, -0.942392932840828, -0.942392932840828, -0.985159142084955, -0.64302946813194, 0.383359553727105, 0.169528507506471, -0.514730840399559, -0.343666003423052, -0.0443025387141636, -0.00153632947003662, -0.514730840399559, -0.899626723596701, -0.77132809586432, -0.343666003423052, -0.172601166446544, -0.300899794178925, -0.64302946813194, -0.0870687479582905, -0.300899794178925, -0.814094305108448, -1.02792535132908, -0.728561886620194, -0.514730840399559, -0.985159142084955, -0.856860514352574, -0.942392932840828, -0.600263258887813, -0.685795677376067, -0.899626723596701, -0.129834957202417, 0.169528507506471, -0.429198421911306, -0.856860514352574, -0.985159142084955, -0.899626723596701, -0.429198421911306, 0.083996089018217, -0.300899794178925, -0.685795677376067, -0.856860514352574, -0.856860514352574, -0.814094305108448, -0.77132809586432, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -1.07069156057321, -0.129834957202417, 0.554424390703613, 0.297827135238852, -0.129834957202417, -0.429198421911306, -0.557497049643686, -0.300899794178925, -0.300899794178925, -0.600263258887813, -0.899626723596701, -0.942392932840828, -0.77132809586432, -0.386432212667179, 0.126762298262344, 0.0412298797740903, -0.557497049643686, -0.386432212667179, 0.083996089018217, -0.129834957202417, -0.64302946813194, -0.77132809586432, -0.942392932840828, -0.172601166446544, -0.557497049643686, -1.15622397906146, -1.15622397906146, -0.856860514352574, -0.77132809586432, -0.856860514352574, -0.985159142084955, -0.814094305108448, -0.685795677376067, -0.814094305108448, 0.212294716750598, 1.3242161570979, 0.468891972215359, -0.0443025387141636, -0.215367375690671, -0.215367375690671, -0.300899794178925, -0.172601166446544, -0.728561886620194, -1.02792535132908, -0.429198421911306, -0.0443025387141636, -0.0870687479582905, -0.0870687479582905, 0.682723018435993, 0.083996089018217, -0.471964631155432, -0.386432212667179, -0.514730840399559, -1.07069156057321, -1.11345776981734, -0.685795677376067, -0.856860514352574, -0.728561886620194, -1.15622397906146, -0.942392932840828, -1.02792535132908, -0.856860514352574, -0.429198421911306, -0.300899794178925, -0.343666003423052, 0.383359553727105, 0.426125762971232, -0.343666003423052, -0.300899794178925, -0.300899794178925, 0.212294716750598, -0.343666003423052, -0.77132809586432, -0.64302946813194, -0.0870687479582905, -0.343666003423052, -0.942392932840828, -1.15622397906146, -1.15622397906146, -1.02792535132908, -1.02792535132908, -1.15622397906146, -1.15622397906146, -0.942392932840828, 0.083996089018217, 0.468891972215359, 0.682723018435993, 0.811021646168374, 0.639956809191867, -0.215367375690671, -0.215367375690671, 0.297827135238852, 0.426125762971232, 0.255060925994725, 0.554424390703613, 0.853787855412501, 0.896554064656628, 1.02485269238901, 0.468891972215359, 0.126762298262344, -0.172601166446544, -0.64302946813194, -0.258133584934798, -0.00153632947003662, -0.728561886620194, -0.942392932840828, -0.600263258887813, -0.300899794178925, -0.856860514352574, -1.15622397906146, -1.07069156057321, -0.899626723596701, -0.685795677376067, -0.814094305108448, -1.07069156057321, -0.471964631155432, 0.0412298797740903, 0.426125762971232, 1.3242161570979, 1.19591752936552, 0.811021646168374, 0.0412298797740903, -0.471964631155432, -0.215367375690671, -0.514730840399559, -0.728561886620194, -1.07069156057321, -0.856860514352574, -0.514730840399559, -0.00153632947003662, -0.0443025387141636, 0.511658181459486, 0.768255436924247, 0.126762298262344, -0.00153632947003662, -0.172601166446544, -0.728561886620194, -0.814094305108448, -0.64302946813194, -0.942392932840828, -0.215367375690671, -0.172601166446544, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.856860514352574, -0.856860514352574, -0.899626723596701, -0.386432212667179, 0.59719059994774, 1.15315132012139, 0.340593344482978, 0.083996089018217, 0.59719059994774, 1.11038511087726, 1.15315132012139, 0.853787855412501, -0.00153632947003662, 0.083996089018217, -0.300899794178925, -1.15622397906146, -1.11345776981734, -0.77132809586432, -0.942392932840828, -1.11345776981734, -1.15622397906146, -1.15622397906146, -0.899626723596701, 0.126762298262344, -0.0443025387141636, -0.0870687479582905, 0.682723018435993, 1.02485269238901, 1.19591752936552, 1.15315132012139, 0.811021646168374, 1.23868373860964, 1.70911204029504, 1.75187824953917, 1.19591752936552, 0.939320273900755, 1.9657092957598, 2.22230655122456, 1.45251478483028, 0.426125762971232, 0.212294716750598, 0.554424390703613, 0.853787855412501, 0.083996089018217, -0.343666003423052, -0.386432212667179, -0.429198421911306, -0.64302946813194, -0.685795677376067, -0.899626723596701, -0.942392932840828, -0.64302946813194, -0.600263258887813, -0.899626723596701, -0.343666003423052, 0.939320273900755, 0.939320273900755, 0.554424390703613, 0.896554064656628, 0.682723018435993, 0.383359553727105, 0.169528507506471, 0.0412298797740903, -0.557497049643686, -0.557497049643686, -0.514730840399559, -0.429198421911306, 0.083996089018217, 0.340593344482978, -0.600263258887813, -0.386432212667179, 0.383359553727105, 0.0412298797740903, -0.685795677376067, -0.685795677376067, -0.0870687479582905, -0.0870687479582905, -0.64302946813194, -0.942392932840828, -0.856860514352574, -0.386432212667179, -1.11345776981734, -0.64302946813194, -0.0870687479582905, -0.600263258887813, -0.985159142084955, -0.942392932840828, -0.942392932840828, -1.11345776981734, -0.77132809586432, -0.129834957202417, 0.126762298262344, -0.429198421911306, -0.215367375690671, 0.59719059994774, 0.768255436924247, 0.853787855412501, 0.768255436924247, 0.297827135238852, -0.258133584934798, -0.685795677376067, -1.15622397906146, -0.985159142084955, -0.685795677376067, -1.15622397906146, -1.15622397906146, -0.942392932840828, -0.685795677376067, -0.600263258887813, -0.343666003423052, -0.258133584934798, 1.06761890163314, 1.92294308651567, 0.982086483144882, 0.939320273900755, 1.06761890163314, 0.896554064656628, 0.426125762971232, 0.768255436924247, 1.66634583105091, 1.75187824953917, 1.4952809940744, 0.811021646168374, 0.468891972215359, 0.426125762971232, 0.340593344482978, 0.554424390703613, 0.126762298262344, -0.514730840399559, -0.64302946813194, -0.300899794178925, 0.340593344482978, 0.297827135238852, -0.343666003423052, -0.557497049643686, -0.429198421911306, -0.386432212667179, -0.728561886620194, -0.129834957202417, 0.72548922768012, 0.639956809191867, -0.0443025387141636, -0.386432212667179, -0.129834957202417, -0.0870687479582905, -0.172601166446544, -0.258133584934798, -0.172601166446544, 0.383359553727105, 0.340593344482978, 0.297827135238852, 0.255060925994725, -0.64302946813194, -0.685795677376067, 0.126762298262344, 0.169528507506471, -0.343666003423052, -0.429198421911306, -0.215367375690671, 0.255060925994725, 0.554424390703613, -0.172601166446544, -0.343666003423052, 0.896554064656628, 0.255060925994725, -0.856860514352574, -0.258133584934798, -0.258133584934798, -0.64302946813194, -1.07069156057321, -1.02792535132908, -0.856860514352574, -0.343666003423052, -0.0870687479582905, 0.0412298797740903, -0.471964631155432, -0.0870687479582905, -0.215367375690671, -1.07069156057321, -1.15622397906146, -0.942392932840828, -0.557497049643686, -0.343666003423052, -0.172601166446544, 0.169528507506471, 0.126762298262344, 0.0412298797740903, 0.083996089018217, -0.172601166446544, -0.514730840399559, -0.77132809586432, -1.02792535132908, -1.02792535132908, -1.07069156057321, -1.15622397906146, -1.15622397906146, -0.514730840399559, 0.083996089018217, 0.383359553727105, 0.468891972215359, -0.0443025387141636, 0.511658181459486, 0.939320273900755, 0.72548922768012, 0.811021646168374, 0.169528507506471, 0.297827135238852, 0.340593344482978, 0.768255436924247, 0.939320273900755, 0.340593344482978, 0.853787855412501, 0.383359553727105, -0.258133584934798, -0.300899794178925, 0.255060925994725, 0.639956809191867, -0.129834957202417, -0.728561886620194, -0.514730840399559, -0.0870687479582905, 0.72548922768012, 1.92294308651567, 1.36698236634202, 0.853787855412501, 0.896554064656628, 0.896554064656628, -0.129834957202417, -0.728561886620194, -0.343666003423052, 0.255060925994725, 0.468891972215359, -0.0443025387141636, -0.300899794178925, -0.172601166446544, -0.343666003423052, -0.172601166446544, 0.426125762971232, 1.06761890163314, 0.811021646168374, 0.383359553727105, 1.19591752936552, 0.126762298262344, -0.856860514352574, -0.942392932840828, -0.64302946813194, -0.64302946813194, -0.64302946813194, -0.471964631155432, 0.554424390703613, 1.15315132012139, 0.297827135238852, -0.343666003423052, 0.768255436924247, -0.00153632947003662, -0.386432212667179, 0.72548922768012, 0.554424390703613, -0.386432212667179, -0.899626723596701, -1.15622397906146, -0.985159142084955, -0.856860514352574, -0.77132809586432, -0.942392932840828, -1.02792535132908, -1.15622397906146, -1.02792535132908, 0.426125762971232, 1.75187824953917, 1.4952809940744, 0.0412298797740903, -0.728561886620194, 0.169528507506471, 0.511658181459486, -0.471964631155432, -1.02792535132908, -1.15622397906146, -1.11345776981734, -1.02792535132908, -0.429198421911306, -0.172601166446544, -0.172601166446544, -0.514730840399559, -0.343666003423052, -0.0443025387141636, -0.300899794178925, -0.64302946813194, -0.814094305108448, -0.899626723596701, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.11345776981734, -0.0870687479582905, 1.06761890163314, 1.40974857558615, 1.70911204029504, 1.92294308651567, 1.3242161570979, 0.59719059994774, 0.468891972215359, 0.939320273900755, 0.126762298262344, -0.0870687479582905, 0.212294716750598, 0.768255436924247, 1.06761890163314, 0.511658181459486, -0.00153632947003662, -0.814094305108448, -0.942392932840828, -0.814094305108448, -0.215367375690671, 0.682723018435993, 0.468891972215359, -0.0443025387141636, 0.468891972215359, 0.59719059994774, 0.853787855412501, 2.22230655122456, 2.4361375974452, 2.39337138820107, 2.35060517895694, 2.26507276046869, 1.11038511087726, -0.0870687479582905, -1.02792535132908, -0.215367375690671, 0.896554064656628, 0.639956809191867, 0.169528507506471, 0.255060925994725, 0.340593344482978, 0.169528507506471, 0.255060925994725, 1.15315132012139, 0.982086483144882, 0.768255436924247, 0.682723018435993, 0.126762298262344, -0.172601166446544, -0.429198421911306, -0.77132809586432, -0.557497049643686, -0.300899794178925, 0.0412298797740903, 0.639956809191867, 0.340593344482978, -0.258133584934798, -0.514730840399559, -0.386432212667179, -0.471964631155432, -0.471964631155432, 0.212294716750598, 0.811021646168374, 0.340593344482978, -0.685795677376067, -0.985159142084955, -0.728561886620194, -0.386432212667179, -0.215367375690671, -0.343666003423052, -0.600263258887813, -0.514730840399559, -0.600263258887813, -0.215367375690671, -1.02792535132908, -1.15622397906146, -0.64302946813194, -0.0870687479582905, -0.600263258887813, 0.126762298262344, 1.36698236634202, 2.13677413273631, 1.36698236634202, 0.426125762971232, 0.896554064656628, 0.811021646168374, 0.768255436924247, 0.212294716750598, -1.07069156057321, -1.15622397906146, -1.07069156057321, -1.02792535132908, -1.07069156057321, -1.15622397906146, -1.07069156057321, -0.64302946813194, 0.169528507506471, 0.383359553727105, -0.172601166446544, -0.728561886620194, -0.899626723596701, -1.15622397906146, -1.15622397906146, -1.11345776981734, -0.514730840399559, 0.896554064656628, 0.811021646168374, 1.28144994785377, 1.79464445878329, 0.811021646168374, 0.768255436924247, 1.02485269238901, 1.19591752936552, 0.468891972215359, 0.126762298262344, -0.172601166446544, -0.386432212667179, -0.0870687479582905, -0.0870687479582905, -0.343666003423052, -0.77132809586432, -1.07069156057321, -1.11345776981734, -0.985159142084955, -0.215367375690671, 0.853787855412501, 0.383359553727105, 1.11038511087726, 1.79464445878329, 1.75187824953917, 1.70911204029504, 1.9657092957598, 2.47890380668932, 2.64996864366583, 2.69273485290996, 2.26507276046869, 1.45251478483028, 0.768255436924247, 0.639956809191867, 0.939320273900755, 1.06761890163314, 0.896554064656628, 1.06761890163314, 1.06761890163314, 0.72548922768012, 0.768255436924247, 1.28144994785377, 1.36698236634202, 1.02485269238901, 0.853787855412501, 0.255060925994725, 0.59719059994774, 0.468891972215359, -0.258133584934798, 0.212294716750598, 0.768255436924247, 0.426125762971232, 0.768255436924247, 0.511658181459486, 0.126762298262344, -0.258133584934798, -0.685795677376067, -0.429198421911306, -0.429198421911306, -0.0443025387141636, 0.297827135238852, 0.72548922768012, -0.258133584934798, -0.942392932840828, -0.557497049643686, 0.297827135238852, 1.02485269238901, 0.59719059994774, 0.255060925994725, -0.0443025387141636, -0.300899794178925, 0.169528507506471, 0.126762298262344, -0.300899794178925, 0.0412298797740903, -0.600263258887813, -0.129834957202417, 0.383359553727105, -0.258133584934798, -0.258133584934798, 0.426125762971232, 0.126762298262344, 0.426125762971232, 1.36698236634202, 1.40974857558615, 0.639956809191867, 1.36698236634202, 1.06761890163314, -0.814094305108448, -1.15622397906146, -1.07069156057321, -1.11345776981734, -1.15622397906146, -1.11345776981734, -1.02792535132908, -0.557497049643686, -0.215367375690671, -0.429198421911306, -0.728561886620194, -0.814094305108448, -1.15622397906146, -1.11345776981734, -1.15622397906146, -0.814094305108448, -0.728561886620194, -0.899626723596701, 0.083996089018217, 0.426125762971232, 0.126762298262344, 1.11038511087726, 0.939320273900755, 0.212294716750598, -0.215367375690671, -0.215367375690671, -0.215367375690671, -0.429198421911306, -0.258133584934798, -0.172601166446544, -0.00153632947003662, -0.129834957202417, -0.685795677376067, -1.15622397906146, -1.07069156057321, -0.471964631155432, 1.06761890163314, 1.02485269238901, 1.02485269238901, 1.66634583105091, 1.92294308651567, 0.982086483144882, 0.853787855412501, 1.70911204029504, 1.79464445878329, 2.4361375974452, 2.73550106215408, 2.86379968988646, 2.82103348064234, 2.64996864366583, 2.13677413273631, 1.92294308651567, 1.9657092957598, 1.79464445878329, 1.79464445878329, 1.4952809940744, 0.982086483144882, 1.53804720331853, 1.4952809940744, 1.02485269238901, 0.768255436924247, 0.212294716750598, 0.0412298797740903, 0.426125762971232, 0.169528507506471, 0.59719059994774, 0.982086483144882, 0.853787855412501, 1.19591752936552, 1.36698236634202, 1.11038511087726, 0.554424390703613, 1.06761890163314, 0.896554064656628, 0.383359553727105, 0.169528507506471, 0.126762298262344, 0.212294716750598, -0.814094305108448, -1.02792535132908, -1.07069156057321, -0.343666003423052, -0.0870687479582905, -0.514730840399559, -0.728561886620194, -0.172601166446544, 0.768255436924247, 0.939320273900755, 0.212294716750598, -0.0443025387141636, 0.811021646168374, 0.0412298797740903, -0.00153632947003662, -0.0443025387141636, -0.00153632947003662, -0.129834957202417, -0.0870687479582905, -0.0443025387141636, -0.557497049643686, 0.255060925994725, 0.853787855412501, 1.02485269238901, 2.00847550500393, 1.36698236634202, -0.386432212667179, -1.07069156057321, -0.899626723596701, -1.02792535132908, -1.15622397906146, -1.11345776981734, -1.02792535132908, -0.557497049643686, -0.343666003423052, -0.64302946813194, -0.77132809586432, -0.985159142084955, -0.942392932840828, -1.02792535132908, -1.11345776981734, -1.11345776981734, -1.15622397906146, -0.942392932840828, -0.64302946813194, -0.77132809586432, 0.0412298797740903, 0.083996089018217, -0.814094305108448, -1.15622397906146, -0.814094305108448, -0.77132809586432, -0.172601166446544, 0.896554064656628, 1.28144994785377, 1.06761890163314, 0.426125762971232, -0.215367375690671, -0.985159142084955, -0.685795677376067, -0.386432212667179, 0.939320273900755, 1.62357962180679, 1.9657092957598, 1.83741066802742, 1.40974857558615, 0.768255436924247, 0.511658181459486, 0.811021646168374, 1.3242161570979, 1.79464445878329, 2.13677413273631, 2.47890380668932, 2.69273485290996, 3.03486452686297, 2.64996864366583, 2.05124171424805, 2.00847550500393, 2.17954034198043, 2.09400792349218, 1.36698236634202, 0.896554064656628, 1.45251478483028, 1.75187824953917, 1.11038511087726, 1.02485269238901, 0.255060925994725, 0.511658181459486, 0.511658181459486, 0.169528507506471, 0.0412298797740903, 0.811021646168374, 1.19591752936552, 1.9657092957598, 2.05124171424805, 2.4361375974452, 2.17954034198043, 2.09400792349218, 1.9657092957598, 1.40974857558615, 0.768255436924247, 0.0412298797740903, -0.343666003423052, -1.15622397906146, -1.11345776981734, -0.985159142084955, -1.07069156057321, -0.985159142084955, -0.942392932840828, -1.07069156057321, -0.429198421911306, 0.59719059994774, 1.15315132012139, 0.682723018435993, 0.255060925994725, 0.853787855412501, 0.083996089018217, -0.429198421911306, -0.600263258887813, 0.59719059994774, 0.297827135238852, -0.386432212667179, 0.0412298797740903, -0.856860514352574, -0.685795677376067, -0.429198421911306, 0.083996089018217, 0.72548922768012, 1.06761890163314, 0.126762298262344, -1.02792535132908, -0.557497049643686, -0.600263258887813, -0.899626723596701, -0.728561886620194, -0.942392932840828, -0.600263258887813, -0.557497049643686, -0.856860514352574, -0.985159142084955, -1.07069156057321, -1.15622397906146, -0.985159142084955, -1.07069156057321, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.64302946813194, -0.172601166446544, -0.300899794178925, -0.514730840399559, -0.557497049643686, -0.471964631155432, -0.429198421911306, -0.600263258887813, -0.258133584934798, 0.0412298797740903, 0.554424390703613, 1.3242161570979, 1.23868373860964, 0.939320273900755, 0.340593344482978, 0.340593344482978, 1.3242161570979, 1.58081341256266, 1.15315132012139, 0.72548922768012, 1.45251478483028, 1.62357962180679, 2.17954034198043, 2.39337138820107, 2.22230655122456, 2.09400792349218, 2.64996864366583, 2.64996864366583, 2.77826727139821, 2.09400792349218, 1.40974857558615, 1.28144994785377, 1.02485269238901, 0.59719059994774, 0.982086483144882, 0.426125762971232, 0.939320273900755, 1.15315132012139, 1.02485269238901, 1.45251478483028, 1.79464445878329, 2.22230655122456, 2.13677413273631, 2.22230655122456, 2.17954034198043, 2.39337138820107, 1.79464445878329, 1.40974857558615, 2.09400792349218, 1.19591752936552, 0.212294716750598, -0.172601166446544, -1.11345776981734, -1.02792535132908, -0.685795677376067, -0.600263258887813, -0.899626723596701, -0.685795677376067, -0.814094305108448, -0.600263258887813, -0.471964631155432, -0.0443025387141636, -0.00153632947003662, 0.126762298262344, 1.11038511087726, 1.15315132012139, 0.59719059994774, 0.169528507506471, 0.896554064656628, 1.23868373860964, 1.19591752936552, 0.554424390703613, -0.0443025387141636, -0.814094305108448, -1.07069156057321, -1.11345776981734, -0.814094305108448, 0.169528507506471, 0.297827135238852, -0.77132809586432, -0.814094305108448, -0.728561886620194, -0.685795677376067, -0.514730840399559, -0.300899794178925, 0.0412298797740903, -0.514730840399559, -1.07069156057321, -1.11345776981734, -1.07069156057321, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -1.07069156057321, -0.856860514352574, -0.814094305108448, -1.15622397906146, -1.11345776981734, -0.386432212667179, 1.06761890163314, 0.297827135238852, -1.07069156057321, -1.15622397906146, -0.856860514352574, -0.215367375690671, -0.514730840399559, -0.64302946813194, -0.0870687479582905, 0.72548922768012, 0.939320273900755, 0.426125762971232, 0.939320273900755, 1.02485269238901, 0.639956809191867, 1.79464445878329, 2.69273485290996, 2.26507276046869, 1.23868373860964, 0.682723018435993, 1.15315132012139, 1.83741066802742, 1.53804720331853, 1.88017687727155, 2.09400792349218, 2.47890380668932, 2.4361375974452, 2.39337138820107, 2.52167001593345, 2.4361375974452, 2.35060517895694, 1.75187824953917, 0.939320273900755, 0.340593344482978, 0.255060925994725, 0.383359553727105, 0.212294716750598, 0.768255436924247, 1.53804720331853, 1.75187824953917, 1.3242161570979, 1.3242161570979, 2.13677413273631, 1.92294308651567, 1.06761890163314, 0.511658181459486, 0.682723018435993, 1.88017687727155, 0.853787855412501, -0.429198421911306, -0.514730840399559, -0.685795677376067, -0.514730840399559, -0.64302946813194, -0.600263258887813, -0.300899794178925, 0.126762298262344, -0.215367375690671, 0.340593344482978, 0.468891972215359, -0.129834957202417, -0.386432212667179, -0.215367375690671, 0.768255436924247, 1.19591752936552, 0.682723018435993, 0.639956809191867, 0.639956809191867, 1.15315132012139, 1.66634583105091, 1.11038511087726, 0.340593344482978, -0.429198421911306, -0.942392932840828, -1.07069156057321, -0.386432212667179, 0.083996089018217, 0.0412298797740903, -0.685795677376067, -1.11345776981734, -0.899626723596701, -0.856860514352574, -0.728561886620194, -0.557497049643686, -0.0870687479582905, -0.600263258887813, -1.02792535132908, -1.15622397906146, -0.899626723596701, -0.942392932840828, -0.942392932840828, -0.728561886620194, -1.02792535132908, -1.15622397906146, -0.985159142084955, -0.942392932840828, -0.77132809586432, -0.471964631155432, -0.557497049643686, -0.856860514352574, -0.64302946813194, 1.11038511087726, 1.40974857558615, -0.814094305108448, -1.11345776981734, -0.856860514352574, -0.386432212667179, 0.0412298797740903, -0.258133584934798, -0.215367375690671, 0.811021646168374, 0.212294716750598, 0.169528507506471, 0.72548922768012, 1.15315132012139, 0.59719059994774, 1.23868373860964, 2.47890380668932, 2.77826727139821, 2.00847550500393, 0.255060925994725, 0.554424390703613, 1.62357962180679, 1.70911204029504, 1.9657092957598, 1.4952809940744, 1.4952809940744, 1.75187824953917, 2.17954034198043, 2.22230655122456, 2.47890380668932, 2.56443622517758, 2.35060517895694, 1.88017687727155, 0.554424390703613, 0.297827135238852, 0.126762298262344, -0.856860514352574, -0.942392932840828, -0.600263258887813, -0.343666003423052, -0.258133584934798, 0.59719059994774, 1.40974857558615, 1.9657092957598, 1.19591752936552, 0.639956809191867, 0.72548922768012, 1.40974857558615, 0.511658181459486, -0.77132809586432, -0.814094305108448, -0.471964631155432, 0.297827135238852, 0.169528507506471, -0.172601166446544, 0.383359553727105, 0.982086483144882, 0.212294716750598, 0.682723018435993, 0.768255436924247, 0.340593344482978, -0.0870687479582905, -0.00153632947003662, 1.02485269238901, 1.3242161570979, 0.896554064656628, 0.896554064656628, 0.768255436924247, -0.00153632947003662, 0.169528507506471, 1.19591752936552, 0.982086483144882, -0.172601166446544, -0.814094305108448, -0.514730840399559, -0.0870687479582905, -0.258133584934798, -0.514730840399559, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.02792535132908, -0.985159142084955, -0.899626723596701, -0.514730840399559, -0.685795677376067, -1.02792535132908, -1.02792535132908, -1.07069156057321, -1.07069156057321, -0.728561886620194, -1.11345776981734, -1.15622397906146, -1.07069156057321, -0.814094305108448, -0.129834957202417, 0.255060925994725, 0.811021646168374, 0.255060925994725, -0.0870687479582905, 1.06761890163314, 1.19591752936552, -0.685795677376067, -1.15622397906146, -0.985159142084955, -0.728561886620194, 0.811021646168374, 0.682723018435993, -0.215367375690671, -0.0870687479582905, -0.557497049643686, 0.083996089018217, 1.15315132012139, 0.939320273900755, 0.426125762971232, 0.59719059994774, 1.53804720331853, 1.66634583105091, 0.982086483144882, 0.212294716750598, 0.682723018435993, 1.19591752936552, 1.3242161570979, 1.36698236634202, 0.083996089018217, -0.258133584934798, 0.297827135238852, 1.53804720331853, 2.56443622517758, 2.4361375974452, 2.4361375974452, 2.22230655122456, 2.30783896971282, 1.83741066802742, 1.36698236634202, 1.15315132012139, 0.554424390703613, 0.0412298797740903, -0.77132809586432, -0.942392932840828, -0.942392932840828, -0.514730840399559, 0.340593344482978, 0.554424390703613, 0.72548922768012, 0.896554064656628, 0.768255436924247, 0.811021646168374, 0.768255436924247, -0.258133584934798, -0.429198421911306, -0.685795677376067, 0.169528507506471, 0.212294716750598, -0.258133584934798, -0.172601166446544, 0.340593344482978, 0.340593344482978, 0.468891972215359, 0.853787855412501, 0.59719059994774, 0.554424390703613, -0.0443025387141636, 0.768255436924247, 2.30783896971282, 2.26507276046869, 1.40974857558615, 1.02485269238901, 0.212294716750598, -0.172601166446544, 0.511658181459486, 1.11038511087726, 0.554424390703613, -0.557497049643686, -0.514730840399559, 0.083996089018217, 0.255060925994725, -0.471964631155432, -0.985159142084955, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.942392932840828, -0.429198421911306, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.899626723596701, -0.429198421911306, -0.00153632947003662, 0.0412298797740903, -0.557497049643686, -0.343666003423052, -0.300899794178925, 0.383359553727105, -0.0443025387141636, -0.899626723596701, -1.15622397906146, -1.15622397906146, -0.814094305108448, 0.169528507506471, 0.340593344482978, -0.00153632947003662, -0.129834957202417, -0.429198421911306, 0.126762298262344, 0.982086483144882, 0.682723018435993, 0.255060925994725, 0.72548922768012, 0.939320273900755, 0.468891972215359, 0.083996089018217, 0.554424390703613, 1.3242161570979, 1.66634583105091, 1.58081341256266, 0.682723018435993, -0.429198421911306, -0.300899794178925, -0.343666003423052, 0.169528507506471, 1.36698236634202, 2.52167001593345, 2.4361375974452, 2.35060517895694, 2.26507276046869, 1.9657092957598, 1.53804720331853, 1.62357962180679, 2.22230655122456, 2.35060517895694, 1.58081341256266, 1.11038511087726, 0.768255436924247, 1.19591752936552, 1.62357962180679, 1.28144994785377, 0.939320273900755, 0.72548922768012, -0.172601166446544, -0.514730840399559, -0.129834957202417, -0.386432212667179, -0.129834957202417, -0.129834957202417, -0.215367375690671, -0.471964631155432, -0.685795677376067, -0.64302946813194, -0.471964631155432, -0.172601166446544, -0.600263258887813, -0.343666003423052, 0.0412298797740903, 0.083996089018217, -0.728561886620194, -0.514730840399559, 0.639956809191867, 0.939320273900755, 0.212294716750598, -0.471964631155432, -0.856860514352574, -0.300899794178925, -0.258133584934798, 0.426125762971232, 1.23868373860964, -0.386432212667179, -1.02792535132908, -0.471964631155432, -0.300899794178925, -0.685795677376067, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.728561886620194, -0.600263258887813, -0.899626723596701, -0.942392932840828, -1.11345776981734, -0.856860514352574, -0.429198421911306, -0.429198421911306, -0.215367375690671, -0.728561886620194, -0.942392932840828, -0.942392932840828, -1.07069156057321, -0.942392932840828, -0.600263258887813, -0.685795677376067, -0.300899794178925, -0.0443025387141636, 0.383359553727105, 0.426125762971232, 0.853787855412501, 0.511658181459486, 0.169528507506471, 0.853787855412501, 0.768255436924247, 0.083996089018217, 0.169528507506471, 0.297827135238852, 0.59719059994774, 1.40974857558615, 1.66634583105091, 0.297827135238852, -0.258133584934798, 0.255060925994725, 0.212294716750598, -0.0443025387141636, 0.511658181459486, 1.92294308651567, 2.39337138820107, 2.17954034198043, 2.35060517895694, 2.00847550500393, 1.62357962180679, 1.4952809940744, 1.53804720331853, 2.00847550500393, 2.47890380668932, 2.39337138820107, 2.86379968988646, 2.73550106215408, 2.77826727139821, 2.86379968988646, 2.77826727139821, 2.35060517895694, 1.06761890163314, -0.258133584934798, -0.728561886620194, -0.814094305108448, -0.557497049643686, -0.514730840399559, -0.514730840399559, -0.814094305108448, -0.856860514352574, -0.899626723596701, -1.02792535132908, -0.942392932840828, -1.11345776981734, -1.07069156057321, -1.11345776981734, -1.15622397906146, -1.11345776981734, -1.11345776981734, -1.07069156057321, -0.814094305108448, -0.942392932840828, -1.02792535132908, -1.07069156057321, -1.15622397906146, -0.899626723596701, -0.64302946813194, -0.00153632947003662, -0.728561886620194, -1.15622397906146, -1.07069156057321, -1.15622397906146, -1.07069156057321, -1.07069156057321, -0.514730840399559, 0.169528507506471, -0.300899794178925, -1.11345776981734, -0.856860514352574, -0.600263258887813, -0.728561886620194, -0.0443025387141636, 0.0412298797740903, -0.129834957202417, -0.386432212667179, -0.600263258887813, -1.02792535132908, -1.02792535132908, -0.856860514352574, -0.899626723596701, -0.942392932840828, -1.07069156057321, -0.899626723596701, 0.212294716750598, 0.982086483144882, 1.15315132012139, 0.72548922768012, 0.682723018435993, 0.768255436924247, 0.896554064656628, 0.169528507506471, 0.169528507506471, 0.72548922768012, 0.255060925994725, 0.939320273900755, 1.36698236634202, 0.896554064656628, 0.939320273900755, 1.3242161570979, 1.45251478483028, 1.4952809940744, 1.66634583105091, 1.92294308651567, 1.75187824953917, 1.79464445878329, 2.26507276046869, 1.70911204029504, 1.62357962180679, 1.40974857558615, 0.212294716750598, 0.255060925994725, 0.896554064656628, 1.40974857558615, 1.75187824953917, 2.13677413273631, 2.17954034198043, 2.35060517895694, 2.69273485290996, 2.22230655122456, 1.58081341256266, 0.853787855412501, 0.383359553727105, -0.00153632947003662, -0.429198421911306, -0.77132809586432, -0.985159142084955, -1.02792535132908, -1.15622397906146, -0.685795677376067, -0.300899794178925, -0.77132809586432, -1.11345776981734, -0.856860514352574, -0.429198421911306, -0.258133584934798, 0.083996089018217, -0.386432212667179, -0.685795677376067, -0.429198421911306, -0.814094305108448, -1.07069156057321, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.07069156057321, -0.728561886620194, -0.343666003423052, 0.682723018435993, 1.70911204029504, 1.23868373860964, 0.896554064656628, 0.811021646168374, 0.72548922768012, 0.811021646168374, 0.426125762971232, 0.554424390703613, 0.939320273900755, 0.853787855412501, 0.468891972215359, 1.02485269238901, 1.58081341256266, 1.40974857558615, 2.05124171424805, 2.13677413273631, 1.92294308651567, 2.05124171424805, 1.45251478483028, 1.06761890163314, 1.36698236634202, 1.15315132012139, 0.939320273900755, 0.511658181459486, 0.383359553727105, 0.0412298797740903, -0.172601166446544, 0.340593344482978, 0.896554064656628, 0.982086483144882, 1.23868373860964, 0.896554064656628, 0.896554064656628, 1.02485269238901, 0.639956809191867, 0.383359553727105, 0.72548922768012, 0.811021646168374, 0.297827135238852, -0.258133584934798, -0.77132809586432, -1.15622397906146, -1.11345776981734, -1.15622397906146, -1.15622397906146, -0.985159142084955, -0.300899794178925, -0.343666003423052, -0.77132809586432, -0.899626723596701, -0.942392932840828, -1.07069156057321, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.11345776981734, -1.02792535132908, -0.514730840399559, -0.00153632947003662, 0.853787855412501, 1.06761890163314, -0.172601166446544, -0.514730840399559, -0.600263258887813, -0.557497049643686, 0.083996089018217, -0.0870687479582905, 0.340593344482978, 1.02485269238901, 0.426125762971232, 0.255060925994725, 0.939320273900755, 1.06761890163314, 0.639956809191867, 1.3242161570979, 1.70911204029504, 0.853787855412501, 0.468891972215359, 0.0412298797740903, 0.426125762971232, 0.768255436924247, 0.768255436924247, 0.811021646168374, 0.383359553727105, 0.212294716750598, -0.129834957202417, -0.0443025387141636, 0.083996089018217, 0.169528507506471, 0.554424390703613, 0.59719059994774, 0.212294716750598, -0.258133584934798, -0.129834957202417, -0.64302946813194, -0.600263258887813, -0.0443025387141636, -0.172601166446544, -0.728561886620194, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.11345776981734, -0.814094305108448, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.07069156057321, -1.07069156057321, -1.11345776981734, -1.11345776981734, -1.15622397906146, -1.07069156057321, -1.15622397906146, -0.942392932840828, -0.814094305108448, -0.215367375690671, 0.169528507506471, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.07069156057321, -0.600263258887813, -0.64302946813194, -0.215367375690671, 0.297827135238852, -0.129834957202417, 0.169528507506471, 0.853787855412501, 0.896554064656628, 0.126762298262344, 0.212294716750598, 0.383359553727105, -0.215367375690671, 0.126762298262344, 0.0412298797740903, -0.429198421911306, -0.343666003423052, 0.255060925994725, 0.896554064656628, 1.06761890163314, 1.3242161570979, 1.28144994785377, 0.212294716750598, -0.0870687479582905, -0.728561886620194, -0.00153632947003662, 0.982086483144882, 1.15315132012139, 0.0412298797740903, 0.169528507506471, 0.083996089018217, -0.386432212667179, -0.814094305108448, -1.15622397906146, -0.985159142084955, -0.64302946813194, -0.728561886620194, -1.07069156057321, -1.02792535132908, -0.856860514352574, -0.600263258887813, -0.814094305108448, -1.11345776981734, -1.11345776981734, -1.15622397906146, -1.02792535132908, -1.02792535132908, -1.02792535132908, -0.728561886620194, 0.083996089018217, 0.126762298262344, -0.728561886620194, -0.942392932840828, -1.02792535132908, -0.728561886620194, -0.386432212667179, -0.557497049643686, -0.471964631155432, -0.64302946813194, -0.899626723596701, -0.728561886620194, -0.215367375690671, 0.511658181459486, -0.258133584934798, -0.814094305108448, -0.557497049643686, -0.814094305108448, -0.215367375690671, 0.169528507506471, 0.426125762971232, 0.511658181459486, 0.426125762971232, 0.939320273900755, 1.4952809940744, 1.58081341256266, 1.88017687727155, 1.02485269238901, -0.0870687479582905, -0.300899794178925, 0.383359553727105, 1.88017687727155, 1.36698236634202, 0.126762298262344, 0.426125762971232, -0.129834957202417, -0.942392932840828, -0.685795677376067, -0.386432212667179, -0.514730840399559, -1.02792535132908, -1.07069156057321, -1.15622397906146, -1.07069156057321, -1.02792535132908, -1.11345776981734, -0.985159142084955, 0.0412298797740903, 0.169528507506471, -0.77132809586432, -0.899626723596701, -0.985159142084955, -0.600263258887813, -0.0870687479582905, -0.0870687479582905, 0.0412298797740903, -0.172601166446544, -0.600263258887813, -0.172601166446544, 0.340593344482978, 0.083996089018217, -0.258133584934798, -0.300899794178925, 0.0412298797740903, -0.00153632947003662, 1.02485269238901, 2.00847550500393, 1.88017687727155, 1.45251478483028, 0.72548922768012, 0.811021646168374, 0.59719059994774, 0.169528507506471, 0.340593344482978, 0.811021646168374, 0.297827135238852, -0.215367375690671, 0.511658181459486, 0.639956809191867, -0.429198421911306, -0.942392932840828, -0.985159142084955, -0.985159142084955, -1.15622397906146, -1.15622397906146, -1.11345776981734, -1.15622397906146, -1.15622397906146, -0.64302946813194, -0.429198421911306, -0.942392932840828, -0.985159142084955, -1.15622397906146, -1.02792535132908, -0.129834957202417, -0.0870687479582905, 0.383359553727105, 0.511658181459486, -0.386432212667179, -0.129834957202417, 0.768255436924247, 0.72548922768012, -0.0870687479582905, 0.426125762971232, 0.768255436924247, 0.939320273900755, 1.79464445878329, 2.00847550500393, 1.58081341256266, 0.682723018435993, -0.00153632947003662, -0.386432212667179, -0.471964631155432, -0.215367375690671, -0.00153632947003662, 0.169528507506471, -0.172601166446544, -0.471964631155432, -0.942392932840828, -1.02792535132908, -1.02792535132908, -1.02792535132908, -1.02792535132908, -1.15622397906146, -1.15622397906146, -0.985159142084955, -0.856860514352574, -0.685795677376067, -0.77132809586432, -1.15622397906146, -0.985159142084955, -0.471964631155432, -0.429198421911306, -0.129834957202417, 0.383359553727105, -0.300899794178925, -0.64302946813194, 0.083996089018217, 0.511658181459486, -0.429198421911306, -0.258133584934798, 0.255060925994725, 0.383359553727105, 1.4952809940744, 1.62357962180679, 0.59719059994774, -0.471964631155432, -0.856860514352574, -0.899626723596701, -0.985159142084955, -0.64302946813194, -0.386432212667179, -0.471964631155432, -1.15622397906146, -1.15622397906146, -1.07069156057321, -0.899626723596701, -0.942392932840828, -1.07069156057321, -1.02792535132908, -0.899626723596701, -0.985159142084955, -0.600263258887813, -0.942392932840828, -0.985159142084955, -0.0870687479582905, -0.728561886620194, -1.15622397906146, -1.07069156057321, -1.11345776981734, -1.02792535132908, -1.11345776981734, -0.942392932840828, -1.15622397906146, -1.15622397906146, -0.728561886620194, -0.77132809586432)
/Supplementary_Material_A/grid_covariates.R
no_license
dill/varprop-suppmaterials
R
false
false
165,935
r
gelev <- c(-1.02375613068687, -0.821718941602767, -0.93505687694263, -1.58551807106706, -0.163866142999653, -0.3043066280947, -0.686206192826845, -0.806935732645394, -0.964623294857376, -0.922737536144818, -1.07549736203768, -0.95723169037869, -1.24057652872835, -1.04593094412293, -0.88085177743226, -1.5436323123545, -0.962159426697814, -0.656639774912098, -0.306770496254262, 0.146581245105187, -0.200824165393087, -0.585187598284794, -0.666495247550347, -0.774905446571085, -0.797080260007145, -0.765049973932836, -0.632001093316476, -0.59257920276348, -0.641856565954725, -0.686206192826845, -0.654175906752536, -0.73548355601809, -1.05085868044205, -1.57073486210968, -1.06564188939943, -1.52884910339713, -1.48449947652501, -1.18637142921798, -0.917809799825694, -0.718236478901154, -0.32648144153076, 0.274702389402423, -0.0382088668619799, -0.380686541041129, -0.479241267423618, -0.346192386807258, -0.1934325609144, -0.200824165393087, -0.324017573371198, -0.420108431594125, -0.533446366933987, -0.496488344540554, -0.627073356997351, -0.905490459027883, -0.535910235093549, -0.71330874258203, -0.644320434114287, -0.733019687858527, -1.47957174020588, -1.22825718793053, -0.959695558538252, -0.83650215056014, -0.705917138103343, -0.227926715148271, -0.00371471262810869, 0.291949466519358, 0.57036656854989, 0.76008441683618, 0.873422352176043, 0.20571408093468, -0.040672735021542, -0.205751901712211, -0.585187598284794, -0.575332125646545, -0.471849662944931, -0.264884737541704, -0.43735550871106, -0.269812473860829, -0.306770496254262, -1.08781670283549, -0.84635762319839, -1.61754835714137, -1.46232466308895, -1.39826409094033, -1.34898672774908, -1.31942030983434, -1.16912435210104, -1.08781670283549, -0.782297051049772, -0.484169003742742, -0.23778218778652, 0.533408546156456, 1.16415879500439, 1.07792340941971, 0.38311258842316, 0.257455312285487, -0.267348605701267, -0.17125774747834, -0.360975595764631, 0.0357071779248868, 0.0406349142440112, 0.274702389402423, -0.0234256579046066, -0.252565396743893, -0.363439463924194, -0.587651466444356, -0.434891640551498, -1.21347397897316, -1.57073486210968, -1.53624070787581, -1.55102391683319, -1.52884910339713, -1.46725239940807, -1.47464400388676, -1.45000532229113, -1.41058343173814, -1.2824622874409, -1.1198469889098, -0.888243381910947, -0.353583991285945, 0.20571408093468, 0.343690697870165, 1.48199778758791, 0.799506307389176, 0.287021730200234, -0.0973417026914733, 0.200786344615556, 0.107159354552191, 0.900524901931227, 0.617180063581572, 0.0332433097653246, -0.368367200243318, 0.0135323644888267, -0.0332811305428555, -0.39300588183894, -0.109661043489284, -0.494024476380991, -0.826646677921892, -1.58059033474793, -1.5436323123545, -1.4524691904507, -1.32681191431302, -1.21840171529229, -0.870996304794012, -0.715772610741592, -0.247637660424769, 0.232816630689865, 0.698487712847125, 1.69635431746983, 1.38097919304586, 0.506305996401272, 0.942410660643785, 0.691096108368439, 1.23807483979125, 0.851247538739983, -0.176185483797464, 0.678776767570627, 0.526016941677769, 0.508769864560834, 0.0381710460844491, -0.0258895260641687, -0.0899500982127866, -0.380686541041129, -1.3415951232704, -1.06317802123987, -1.51160202628019, -1.45739692676982, -1.30710096903653, -1.05825028492074, -0.949840085900003, -0.64678430227385, -0.279667946499078, 0.0529542550418224, 1.10009822285577, 1.47707005126879, 1.5805525139704, 0.954730001441596, 1.42286495175842, 2.26797173048826, 1.20358068555738, 0.420070610816594, 0.767476021314868, 1.61504666820427, 0.922699715367287, 0.4718118421674, -0.644320434114287, -0.688670060986407, -0.693597797305532, -0.506343817178803, -0.900562722708758, -1.34898672774908, -1.55841552131187, -1.30463710087696, -1.61754835714137, -1.61015675266268, -0.489096740061867, -1.5042104218015, -1.3021732327174, -1.24550426504747, -1.10259991179286, -0.95723169037869, -0.730555819698965, 0.00614076001014017, 1.19865294923826, 0.577758173028576, 1.42532881991798, 1.94520500158561, 2.12013964091453, 1.93534952894736, 0.757620548676619, 1.04835699150496, 1.31199088457812, 1.34648503881199, 0.806897911867863, -0.181113220116589, 0.4718118421674, 0.331371357072354, 0.144117376945625, -0.0874862300532245, -0.949840085900003, -0.649248170433412, -0.752730633135025, -1.36376993670646, -0.222998978829147, -0.094877834531911, -1.23564879240922, -0.898098854549196, -0.760122237613712, -0.39300588183894, -0.395469749998502, -0.287059550977764, -0.79215252368802, -0.64678430227385, -0.715772610741592, -0.516199289817051, -0.72562808337984, -1.60030128002443, -1.3021732327174, -1.23318492424966, -1.06317802123987, -0.89070725007051, -0.351120123126382, -0.109661043489284, 0.0578819913609468, 0.821681120825237, 2.00926557373423, 1.9131747155113, 1.34894890697155, 1.40315400648192, 1.802300648331, 1.72345686722501, 1.10502595917489, 0.296877202838483, 0.8044340437083, 1.36126824776936, 0.666457426772816, 0.00860462816970227, -0.213143506190898, -0.927665272463943, -0.17125774747834, -0.99172584461256, -1.03114773516556, -0.873460172953574, -1.30463710087696, -1.06564188939943, -0.765049973932836, -0.765049973932836, 0.0455626505631356, -0.23778218778652, -0.32648144153076, -0.0874862300532245, -0.484169003742742, -0.240246055946082, 0.530944677996894, 0.5826859093477, -0.267348605701267, -0.688670060986407, -0.383150409200691, -0.203288033552649, -1.10752764811199, -1.09767217547374, -1.3933363546212, -1.34405899142996, -1.17405208842017, -1.01636452620818, -0.915345931666132, -0.612290148039978, -0.429963904232373, 0.195858608296431, 0.900524901931227, 0.683704503889752, 1.72592073538457, 2.42319542454068, 2.26797173048826, 1.63968534979989, 1.31691862089724, 1.3390934343333, 1.23561097163169, 1.61258280004471, 1.3390934343333, 1.18879747660001, 0.730517998921434, 0.424998347135718, 0.166292190381685, 0.390504192901847, -1.12477472522892, 0.070201332158758, -0.511271553497927, -0.77983318289021, -0.821718941602767, -0.203288033552649, 0.0825206729565692, 0.284557862040672, 0.333835225231916, 0.0406349142440112, 0.269774653083298, 0.252527575966363, 0.503842128241709, 0.321515884434105, -0.328945309690322, -0.094877834531911, -0.742875160496776, -0.0529920758193532, -1.10506377995242, -0.688670060986407, 0.109623222711753, -0.255029264903456, -0.28213181465864, -0.324017573371198, -1.20361850633491, -1.57812646658837, -0.900562722708758, -1.48203560836544, -1.11245538443111, -0.954767822219127, -0.878387909272698, -0.338800782328571, -0.28213181465864, -0.109661043489284, 0.215569553572929, 0.878350088495167, 1.2479303124295, 2.30739362104126, 2.83466140718757, 2.51682241460405, 1.78751743937363, 2.04129585980854, 2.01172944189379, 2.04868746428722, 1.38837079752455, 0.466884105848276, 0.609788459102885, -0.14908293404228, -0.60243467540173, -0.375758804722005, 0.53833628247558, -0.114588779808409, -0.299378891775576, -0.314162100732949, 0.0406349142440112, 0.5826859093477, 0.71573478996406, 0.819217252665674, 0.575294304869014, 0.900524901931227, 0.368329379465787, 0.816753384506112, 0.284557862040672, 0.523553073518207, 0.141653508786062, 0.523553073518207, -0.39300588183894, 0.109623222711753, -0.466921926625807, -0.06038368029804, 0.378184852104036, 0.518625337199083, -0.0234256579046066, -0.93505687694263, -1.56580712579056, -1.39826409094033, -1.61754835714137, -0.720700347060716, -0.676350720188596, -0.915345931666132, -1.61754835714137, -1.26028747400484, -0.755194501294587, -0.962159426697814, -1.10752764811199, -1.01143678988906, -1.16419661578192, -1.03361160332512, -0.538374103253111, -0.161402274840091, -0.269812473860829, 0.296877202838483, 0.4718118421674, 0.952266133282034, 1.01879057359021, 2.20391115833964, 1.57316090949171, 2.50450307380624, 3.01205991467605, 2.90857745197444, 1.90824697919218, 1.91071084735174, 1.54359449157697, 0.656601954134567, 0.890669429292979, 0.368329379465787, -0.518663157976614, 0.518625337199083, 0.72559026260231, 0.668921294932379, 0.700951581006687, -0.00125084446854659, 0.599932986464636, 0.53833628247558, 1.81954772544794, 1.07299567310058, 1.32923796169505, 1.25285804874863, 1.14691171788745, 0.942410660643785, 1.03110991438803, 0.713270921804499, 0.299341070998045, 0.429926083454843, 0.649210349655881, 0.402823533699658, 0.68124063573019, 0.885741692973854, -0.102269439010598, -0.967087163016938, -0.76997771025196, -0.457066453987558, -0.757658369454149, -0.848821491357952, -1.33173965063215, -1.16912435210104, -1.48696334468457, -1.6150844889818, -1.50913815812063, -1.02621999884643, -0.700989401784218, -0.733019687858527, -1.07549736203768, -1.0607141530803, -1.20608237449447, -1.30710096903653, -1.35637833222777, -1.4327582451742, -1.55841552131187, -1.46725239940807, -1.61754835714137, -1.03853933964424, -1.06810575755899, -1.01636452620818, -0.917809799825694, -0.469385794785369, -0.205751901712211, -0.141691329563593, 0.496450523763023, 0.402823533699658, 0.811825648186987, 1.08777888205796, 2.3566709842325, 2.90857745197444, 3.35207372069564, 3.05640954154817, 2.92089679277225, 2.37884579766856, 1.43764816071579, 1.14691171788745, -0.0135701852663576, 0.68124063573019, 0.336299093391478, 0.831536593463485, 1.61011893188515, 0.875886220335605, 0.496450523763023, 1.30213541193987, 0.922699715367287, 1.86389735232006, 1.50170873286441, 2.3960928747855, 2.5069669419658, 1.4499675015136, 1.27996059850381, 1.78012583489494, 1.50417260102397, 0.935019056165099, 1.94274113342605, 1.98462689213861, 1.35634051145024, 1.1370562452492, 0.134261904307376, 0.166292190381685, -0.385614277360254, 0.356010038667976, -0.230390583307833, -0.346192386807258, -1.02129226252731, -0.94737621774044, -0.878387909272698, -1.04100320780381, -1.48203560836544, -1.15187727498411, -1.10999151627155, -0.708381006262905, -0.518663157976614, -0.461994190306682, -0.538374103253111, -0.826646677921892, -0.745339028656338, -0.848821491357952, -0.922737536144818, -1.46232466308895, -1.16912435210104, -0.73548355601809, -0.528518630614862, -0.883315645591823, -1.05578641676118, -1.34898672774908, -1.48696334468457, -0.811863468964518, -0.590115334603918, -0.198360297233525, -0.358511727605069, -0.205751901712211, -0.264884737541704, 0.474275710326963, 0.0529542550418224, 0.962121605920283, 1.31199088457812, 1.75302328513976, 1.87375282495831, 3.15989200424979, 3.02930699179299, 2.20144729018008, 2.0240487826916, 1.11241756365358, 0.806897911867863, 1.53127515077916, 0.838928197942172, 1.65939629507639, 2.14231445435059, 1.92795792446868, 1.08531501389839, 1.75302328513976, 1.9723075513408, 1.94520500158561, 2.19651955386096, 2.13985058619103, 2.44537023797674, 2.24086918073308, 1.95998821054298, 1.70128205378895, 1.87868056127743, 1.90824697919218, 2.47493665589149, 2.415803820062, 1.74316781250151, 0.779795362112678, 0.530944677996894, 0.210641817253805, 0.94733839696291, 0.523553073518207, 0.0849845411161313, -0.863604700315325, -0.245173792265207, -0.407789090796314, -0.380686541041129, -0.560548916689171, -0.93505687694263, -0.80200799632627, -0.6369288296356, -1.33666738695127, -1.40811956357858, 0.311660411795856, 0.102231618233067, -0.121980384287095, -0.102269439010598, -0.161402274840091, -0.289523419137327, -0.336336914169009, -0.68127845650772, -1.44507758597201, -1.04100320780381, -0.787224787368896, -0.533446366933987, -0.341264650488133, -0.469385794785369, -0.767513842092398, -1.13955793418629, -1.04100320780381, -1.20854624265404, -1.33666738695127, -1.54856004867362, -1.04593094412293, -0.76997771025196, -0.733019687858527, -0.23778218778652, 0.0603458595205091, -0.306770496254262, 0.427462215295281, 0.595005250145512, 0.59254138198595, 1.22575549899344, 1.32677409353549, 1.72345686722501, 2.73117894448596, 2.77306470319852, 2.13985058619103, 1.74809554882063, 1.50417260102397, 2.05607906876591, 1.5091003373431, 2.22854983993527, 2.13738671803146, 2.3049297528817, 2.00680170557467, 1.68649884483158, 2.33942390711557, 2.49464760116799, 2.41826768822156, 2.68436544945428, 2.57349138227398, 2.49957533748711, 2.63508808626303, 2.7090041310499, 2.5069669419658, 2.98988510123999, 2.8593000887832, 1.95506047422386, 1.79737291201188, 1.47707005126879, 1.45982297415185, 1.33170182985462, 0.452100896890903, -0.291987287296889, -0.363439463924194, 0.269774653083298, 0.0726652003183201, -0.0825584937341, -0.560548916689171, -0.257493133063018, -0.464458058466245, -0.466921926625807, -0.351120123126382, -1.04346707596337, -1.43768598149332, -0.885779513751385, 0.107159354552191, 0.577758173028576, 0.540800150635143, 0.380648720263598, -0.395469749998502, -0.397933618158065, -0.767513842092398, -1.02129226252731, -0.981870371974312, -0.91288206350657, -0.506343817178803, -0.895634986389634, -0.432427772391936, -0.32648144153076, -0.269812473860829, -0.429963904232373, -0.94737621774044, -1.12231085706936, -0.851285359517514, -0.942448481421316, -0.986798108293436, -1.14694953866498, -1.33173965063215, -1.44507758597201, -1.08781670283549, -0.799544128166707, -0.70345326994378, -0.654175906752536, -0.0431366031811044, 0.237744367008989, -0.131835856925344, 0.259919180445049, 0.284557862040672, 0.745301207878807, 0.720662526283185, 1.58794411844909, 1.74316781250151, 2.54146109619967, 2.08318161852109, 2.47986439221061, 2.72378734000727, 1.98462689213861, 2.62523261362478, 2.36159872055163, 2.49464760116799, 2.38130966582812, 2.61291327282697, 2.96771028780393, 2.5981300638696, 2.950463210687, 3.17713908136672, 3.06872888234599, 3.20670549928147, 3.27569380774921, 3.16728360872847, 3.40627882020601, 3.32989890725958, 2.72132347184771, 3.03177085995255, 2.54638883251879, 2.56609977779529, 1.66186016323595, 0.875886220335605, 0.269774653083298, 0.730517998921434, 0.400359665540096, 0.797042439229614, 0.92516358352685, 0.331371357072354, -0.213143506190898, -0.0677752847767265, -0.0973417026914733, -0.119516516127533, -0.183577088276151, -0.498952212700116, -1.18637142921798, -1.1912991655371, -0.385614277360254, -0.365903332083756, 0.503842128241709, 0.81428951634655, 0.215569553572929, 0.395431929220972, 0.114550959030878, -0.112124911648847, -0.37083106840288, -0.319089837052073, -0.247637660424769, -0.146619065882718, -0.114588779808409, -0.06038368029804, -0.092413966372349, -0.343728518647696, -0.269812473860829, -0.338800782328571, -0.563012784848734, -0.696061665465094, -0.73548355601809, -0.967087163016938, -1.11738312075023, -1.12723859338848, -1.25043200136659, -1.46232466308895, -1.27753455112178, -1.11491925259067, -0.972014899336063, -0.76997771025196, -0.469385794785369, -0.250101528584331, -0.0529920758193532, 0.0948400137543802, 0.151508981424311, 0.415142874497469, 0.476739578486525, 0.434853819773967, 0.85863914321867, 1.37358758856717, 1.51895580998135, 1.50170873286441, 1.42040108359886, 1.18633360844045, 1.23314710347213, 1.9525966060643, 2.44044250165762, 2.19898342202052, 2.26797173048826, 2.60305780018872, 3.20177776296234, 3.56643025057755, 4.02224586009657, 3.91876339739495, 2.97756576044218, 2.49957533748711, 2.87654716590013, 2.60798553650785, 2.6695822404969, 2.35174324791338, 2.40348447926418, 3.22888031271753, 2.15709766330796, 1.92549405630911, 1.45735910599229, 1.21836389451475, 1.4893893920666, 1.02371830990934, 1.0656040686219, 1.09024275021752, 0.0997677500735046, 0.693559976528001, 0.331371357072354, -0.17125774747834, -0.109661043489284, 0.171219926700809, -0.496488344540554, -0.71330874258203, -1.42783050885507, -1.60769288450312, -0.82418280976233, -0.245173792265207, 0.671385163091941, 1.03603765070715, 0.952266133282034, 0.627035536219821, 0.338762961551041, 0.604860722783761, 0.705879317325812, 0.930091319845974, 0.511233732720396, 0.314124279955418, 0.336299093391478, 0.158900585902998, 0.166292190381685, 0.146581245105187, -0.00864244894723313, -0.195896429073962, -0.257493133063018, -0.577795993806107, -0.94737621774044, -0.93505687694263, -1.09028057099505, -1.07056962571855, -1.11491925259067, -1.48696334468457, -1.50174655364194, -1.39087248646164, -1.17651595657973, -0.922737536144818, -0.976942635655187, -0.88085177743226, -0.688670060986407, -0.607362411720854, -0.385614277360254, -0.289523419137327, -0.205751901712211, 0.368329379465787, 0.16136445406256, 0.439781556093091, 0.237744367008989, 0.587613645666825, 0.353546170508414, 0.267310784923736, 0.917771979048163, 1.50663646918353, 1.80476451649056, 2.45522571061499, 1.77766196673538, 1.80969225280969, 2.21869436729702, 3.18453068584541, 3.05640954154817, 2.7287150763264, 3.56150251425843, 2.5981300638696, 1.81708385728837, 1.94027726526649, 1.84911414336268, 1.81215612096925, 1.96737981502167, 1.73577620802282, 2.81002272559195, 2.79277564847502, 1.96245207870255, 1.91071084735174, 2.16695313594621, 1.64214921795946, 1.89592763839437, 2.07579001404241, 1.20850842187651, 0.900524901931227, 1.18140587212132, 0.53833628247558, -0.0456004713406665, 0.262383048604611, -0.0677752847767265, -0.5260547624553, -0.696061665465094, -0.861140832155763, -1.22825718793053, -1.59537354370531, -0.316625968892511, 0.646746481496318, 1.29227993930162, 1.27010512586556, 0.92516358352685, 1.30459928009943, 1.73331233986326, 1.56823317317259, 1.30706314825899, 0.843855934261296, 0.575294304869014, 0.18353926749862, 0.363401643146663, -0.208215769871773, -0.112124911648847, 0.114550959030878, -0.388078145519816, -0.627073356997351, -0.538374103253111, -0.683742324667283, -0.848821491357952, -1.12477472522892, -1.06564188939943, -1.2307210560901, -1.31942030983434, -1.57566259842881, -1.42290277253595, -1.47957174020588, -1.32927578247259, -1.11738312075023, -0.91288206350657, -0.917809799825694, -0.851285359517514, -0.664031379390785, -0.686206192826845, -0.644320434114287, -0.565476653008296, -0.395469749998502, -0.412716827115438, -0.395469749998502, 0.466884105848276, 0.444709292412216, -0.0702391529362889, 0.875886220335605, 1.23807483979125, 1.07299567310058, 1.23561097163169, 1.85896961600093, 1.82693932992662, 1.69389044931026, 1.61751053636383, 2.26797173048826, 2.54638883251879, 1.70620979010808, 2.21376663097789, 2.50943081012536, 1.88114442943699, 1.27256899402512, 1.65446855875727, 2.01912104637248, 1.18633360844045, 1.43272042439667, 1.84911414336268, 2.81741433007064, 2.81741433007064, 3.01452378283562, 2.50203920564667, 2.08318161852109, 2.30000201656257, 1.71360139458676, 1.19126134475957, 1.49678099654529, 0.558047227752078, 1.07299567310058, 0.365865511306225, 0.331371357072354, 0.521089205358645, -0.306770496254262, 0.134261904307376, -0.257493133063018, -0.324017573371198, -0.794616391847583, -1.14202180234586, -1.35145059590865, -0.324017573371198, -0.0505282076597911, 0.834000461623047, 1.45489523783273, 1.73331233986326, 1.91563858367086, 1.52634741446003, 1.15430332236614, 1.34648503881199, 0.81428951634655, 0.656601954134567, 0.149045113264749, 0.336299093391478, 0.0529542550418224, -0.0160340534259199, -0.917809799825694, -0.774905446571085, -0.730555819698965, -0.895634986389634, -1.01882839436775, -1.01882839436775, -1.17405208842017, -1.2824622874409, -1.2307210560901, -1.28985389191959, -1.16912435210104, -0.888243381910947, -0.819255073443205, -0.959695558538252, -1.18883529737754, -1.07549736203768, -1.00650905356993, -0.964623294857376, -0.932593008783067, -0.811863468964518, -0.79215252368802, -0.696061665465094, -0.693597797305532, -0.617217884359103, -0.321553705211636, -0.0505282076597911, 0.151508981424311, 0.2500637078068, 0.976904814877656, 0.686168372049314, 1.32431022537593, 1.75302328513976, 1.76534262593757, 1.45243136967317, 1.6002634592469, 1.49185326022616, 1.48446165574747, 1.36865985224805, 1.83186706624575, 1.93781339710692, 2.07086227772328, 1.44257589703492, 1.38837079752455, 1.93781339710692, 1.38097919304586, 1.42286495175842, 1.841722538884, 2.08071775036153, 2.55131656883792, 1.99201849661729, 2.28275493944564, 2.70407639473078, 2.76320923056027, 2.30739362104126, 2.50203920564667, 1.3390934343333, 1.70620979010808, 1.30213541193987, 1.30459928009943, 0.558047227752078, 0.767476021314868, 0.328907488912791, 0.599932986464636, 0.518625337199083, 0.0381710460844491, -0.375758804722005, -1.10506377995242, -1.56580712579056, -1.60769288450312, -0.61475401619954, -1.1001360436333, 0.0973038819139425, -0.284595682818202, 0.27223852124286, 0.962121605920283, 1.87868056127743, 1.74316781250151, 1.38097919304586, 1.00154349647328, 0.518625337199083, 0.0775929366374445, 0.43731768793353, -0.232854451467396, -0.10473330717016, -0.508807685338365, -0.698525533624656, -1.16912435210104, -0.972014899336063, -1.02621999884643, -0.905490459027883, -0.994189712772123, -1.06564188939943, -1.11738312075023, -1.563343257631, -0.986798108293436, -1.01143678988906, -1.12231085706936, -0.68127845650772, -0.915345931666132, -0.750266764975463, -1.0089729217295, -1.03607547148468, -0.666495247550347, -0.353583991285945, -0.380686541041129, -0.0234256579046066, 0.0430987824035735, 0.193394740136869, 0.351082302348851, 0.0825206729565692, -0.0579198121384777, -0.427500036072811, -0.225462846988709, 0.321515884434105, 0.388040324742285, 0.668921294932379, 0.846319802420858, 1.63229374532121, 1.66678789955508, 1.14444784972789, 1.11980916813227, 1.34894890697155, 1.05082085966452, 1.55344996421522, 2.20637502649921, 1.9328856607878, 1.65200469059771, 1.19126134475957, 0.846319802420858, 1.12720077261095, 1.02125444174978, 1.47460618310923, 2.06593454140416, 1.90824697919218, 1.59287185476821, 1.91563858367086, 2.16941700410577, 2.35420711607294, 2.66711837233734, 2.03636812348941, 2.16448926778665, 2.16941700410577, 2.33449617079644, 1.09270661837708, 1.24300257611038, 1.63229374532121, 1.57808864581084, 0.981832551196781, 0.723126394442748, 0.254991444125925, -0.210679638031336, -0.415180695275, -1.25535973768572, -1.61015675266268, -0.316625968892511, -0.624609488837789, -0.0751668892554133, -0.696061665465094, -0.136763593244469, 0.585149777507263, 1.03110991438803, 1.85650574784137, 2.31478522551994, 1.53866675525784, 0.974440946718094, 0.476739578486525, 0.0652735958396336, -0.0702391529362889, -0.575332125646545, -0.582723730125231, -0.644320434114287, -0.752730633135025, -1.28492615560047, -1.09028057099505, -1.04100320780381, -1.31695644167477, -1.24550426504747, -1.17651595657973, -1.02129226252731, -0.937520745102192, -0.79215252368802, -0.863604700315325, -0.61475401619954, -0.294451155456451, -0.506343817178803, -0.595043070923043, -0.8586769639962, -0.565476653008296, -0.341264650488133, -0.0382088668619799, 0.447173160571778, 0.375720983944474, 0.686168372049314, 0.728054130761872, 0.794578571070052, 0.523553073518207, 0.070201332158758, 0.112087090871316, 0.380648720263598, 0.651674217815443, 0.890669429292979, 1.5608415686939, 1.44503976519448, 1.27749673034425, 0.962121605920283, 0.996615760154154, 1.10995369549402, 1.51156420550266, 1.13952011340876, 1.02864604622846, 1.74070394434195, 1.0261821780689, 0.452100896890903, 0.907916506409914, 1.45489523783273, 1.56823317317259, 1.80476451649056, 1.53373901893872, 1.2873522029825, 2.38870127030681, 1.66432403139552, 1.82693932992662, 2.28275493944564, 2.8198781982302, 2.89872197933619, 1.92549405630911, 1.7308484717037, 2.09796482747847, 2.34927937975382, 1.43518429255623, 1.75795102145888, 1.3588043796098, 0.981832551196781, -0.00371471262810869, -0.242709924105645, -0.700989401784218, -1.2110101108136, -1.60276514818399, -1.09767217547374, -1.30956483719609, -1.42043890437639, -1.59290967554574, -1.61754835714137, -1.54116844419494, -0.178649351957027, 0.555583359592516, 0.336299093391478, -0.23778218778652, 0.242672103328114, -0.247637660424769, 0.166292190381685, 1.09024275021752, 1.5805525139704, 1.97723528765992, 2.45029797429587, 1.62982987716165, 1.38344306120542, 0.691096108368439, 0.181075399339058, -0.400397486317627, -0.641856565954725, -0.604898543561291, -0.622145620678227, -0.878387909272698, -1.27014294664309, -1.58551807106706, -1.31449257351521, -1.17405208842017, -1.33420351879171, -1.24550426504747, -1.21593784713272, -1.09274443915461, -0.962159426697814, -0.811863468964518, -0.331409177849885, -0.144155197723156, -0.210679638031336, -0.523590894295738, -0.535910235093549, 0.0899122774352557, 0.218033421732491, 0.459492501369589, 0.841392066101734, 0.277166257561985, 0.686168372049314, 1.15923105868526, 1.14937558604701, 0.299341070998045, 0.885741692973854, 1.1764781358022, 1.79244517569275, 1.86389735232006, 1.86143348416049, 1.71852913090589, 1.61504666820427, 1.17894200396176, 0.602396854624198, 0.742837339719245, 0.654138085975005, 0.762548284995743, 0.915308110888601, 1.07545954126015, 0.676312899411065, 0.774867625793554, 0.861103011378232, 1.1370562452492, 1.39329853384367, 1.52388354630047, 1.12227303629183, 1.59287185476821, 1.28242446666337, 1.36373211592893, 1.83925867072443, 1.41054561096061, 1.98955462845773, 2.78784791215589, 2.83712527534714, 2.03636812348941, 1.60765506372559, 1.23807483979125, 1.12966464077051, 0.907916506409914, 0.296877202838483, -0.324017573371198, 0.1391896406265, -0.252565396743893, -1.43522211333376, -1.11491925259067, -0.484169003742742, -0.806935732645394, -0.740411292337214, -1.43768598149332, -1.36376993670646, -0.962159426697814, -0.565476653008296, -0.545765707731798, -1.04593094412293, -1.47957174020588, -1.60030128002443, -1.58798193922662, -0.429963904232373, 0.363401643146663, 0.535872414316018, 1.18879747660001, 0.358473906827538, 0.144117376945625, 0.700951581006687, 0.841392066101734, 1.07792340941971, 1.33170182985462, 1.94520500158561, 2.21623049913746, 2.71639573552859, 2.06100680508503, 1.73824007618238, 1.17894200396176, 0.641818745177194, 0.173683794860371, -0.0653114166171644, -0.535910235093549, -0.821718941602767, -1.03853933964424, -1.40565569541901, -1.05578641676118, -1.05578641676118, -0.939984613261754, -0.752730633135025, -0.93505687694263, -1.05578641676118, -0.752730633135025, -0.61475401619954, -0.811863468964518, -0.893171118230072, -0.405325222636751, -0.232854451467396, 0.0233878371270758, -0.230390583307833, -0.57040438932742, -0.378222672881567, -0.0357449987024176, 0.129334167988251, 0.188467003817745, 0.518625337199083, 1.54359449157697, 1.6199744045234, 1.13212850893008, 1.15923105868526, 1.87375282495831, 1.82447546176706, 1.47953391942835, 1.12720077261095, 1.1370562452492, 1.40808174280105, 1.52141967814091, 1.38590692936499, 0.885741692973854, 0.511233732720396, 0.466884105848276, 0.553119491432954, 0.562974964071203, 0.575294304869014, 0.277166257561985, 0.3609377749871, 0.868494615856919, 0.550655623273392, 0.595005250145512, 0.806897911867863, 1.24546644426994, 1.20358068555738, 0.920235847207725, 0.772403757633992, 1.3785153248863, 1.45982297415185, 1.34155730249287, 1.75302328513976, 1.71606526274632, 1.26024965322731, 1.10009822285577, 0.905452638250352, -0.0234256579046066, -0.984334240133874, -1.12231085706936, -0.915345931666132, -1.35145059590865, -1.54856004867362, -0.496488344540554, -0.351120123126382, -0.168793879318778, -0.220535110669585, -0.676350720188596, -0.733019687858527, -0.21560737435046, -0.272276342020391, -0.0998055708510354, -0.496488344540554, -0.986798108293436, -0.883315645591823, -0.826646677921892, -1.37608927750427, -1.61015675266268, -1.33913125511083, -1.22825718793053, -0.89070725007051, -0.767513842092398, -0.14908293404228, 0.390504192901847, 0.545727886954267, 1.13212850893008, 1.15430332236614, 0.663993558613254, 0.641818745177194, 1.23314710347213, 1.10009822285577, 0.627035536219821, 1.6199744045234, 1.83925867072443, 2.00680170557467, 2.37145419318988, 1.10995369549402, 1.16662266316395, 0.666457426772816, 0.0233878371270758, -0.405325222636751, -0.442283245030185, -0.747802896815901, -0.8586769639962, -1.23318492424966, -0.737947424177652, -0.533446366933987, -0.0628475484576021, -0.183577088276151, -0.210679638031336, -0.173721615637902, -0.247637660424769, -0.269812473860829, -0.434891640551498, -0.513735421657489, -0.567940521167858, -0.617217884359103, -0.375758804722005, -0.0431366031811044, 0.0628097276800712, -0.247637660424769, -0.139227461404031, 0.567902700390327, 0.718198658123623, 1.50417260102397, 1.00893510095197, 1.43272042439667, 1.30213541193987, 1.228219367153, 1.14691171788745, 0.700951581006687, 0.700951581006687, 0.585149777507263, 1.59287185476821, 1.96491594686211, 1.53373901893872, 1.61258280004471, 1.37112372040761, 0.602396854624198, 0.31658814811498, 0.326443620753229, 0.380648720263598, 0.328907488912791, 0.521089205358645, 0.0578819913609468, 0.213105685413367, -0.34865625496682, 0.114550959030878, 0.683704503889752, 0.434853819773967, 0.380648720263598, 0.370793247625349, 1.28981607114206, 0.971977078558532, 0.905452638250352, 0.651674217815443, 1.3588043796098, 0.942410660643785, -0.291987287296889, 0.434853819773967, -0.141691329563593, -1.44261371781245, -0.757658369454149, -1.08781670283549, -1.23564879240922, -0.811863468964518, 0.149045113264749, -0.235318319626958, 0.304268807317169, 0.0332433097653246, -0.37083106840288, -0.331409177849885, -0.188504824595276, 0.230352762530303, 0.0899122774352557, 0.0381710460844491, -0.287059550977764, -0.1934325609144, -0.232854451467396, -0.23778218778652, -0.464458058466245, -0.494024476380991, 0.0307794416057623, -0.279667946499078, -0.0431366031811044, -0.14908293404228, 0.0578819913609468, -0.0850223618936621, 0.432389951614405, 0.333835225231916, 0.96951321039897, 1.60272732740646, 1.40315400648192, 1.3390934343333, 0.895597165612103, 0.535872414316018, 0.464420237688714, 1.06806793678146, 1.43518429255623, 1.67910724035289, 1.66925176771464, 1.80969225280969, 0.851247538739983, 0.245135971487676, -0.491560608221429, -0.691133929145969, -1.01390065804862, -1.07303349387811, -1.0607141530803, -0.870996304794012, -0.784760919209334, -0.432427772391936, 0.0825206729565692, 0.31658814811498, 0.422534478976156, 0.0554181232013847, 0.0997677500735046, 0.20571408093468, -0.250101528584331, 0.0455626505631356, 0.168756058541247, -0.0184979215854822, -0.464458058466245, 0.0997677500735046, 0.43731768793353, 0.565438832230765, 0.296877202838483, 0.742837339719245, 0.718198658123623, 0.971977078558532, 0.489058919284336, 0.730517998921434, 0.553119491432954, 0.735445735240559, 0.29441333467892, 0.225425026211178, 0.767476021314868, 1.37358758856717, 1.86389735232006, 1.24300257611038, 1.36865985224805, 1.62736600900208, 1.0261821780689, 0.888205561133416, 0.949802265122472, 0.31658814811498, 0.388040324742285, 0.254991444125925, -0.12690812060622, -0.363439463924194, -0.710844874422467, 0.126870299828689, 0.269774653083298, 0.193394740136869, 0.144117376945625, 0.459492501369589, 0.74776507603837, 0.883277824814292, 0.720662526283185, 0.323979752593667, 0.78225923027224, 0.370793247625349, -0.39300588183894, -0.819255073443205, -1.12723859338848, -1.35145059590865, -0.949840085900003, 0.092376145594818, -0.0628475484576021, 0.190930871977307, 0.395431929220972, 0.0135323644888267, 0.392968061061409, -0.247637660424769, -0.277204078339516, 0.119478695350003, 0.331371357072354, 0.346154566029727, 0.328907488912791, 0.2500637078068, 0.4718118421674, 0.422534478976156, 0.545727886954267, 0.506305996401272, 0.274702389402423, 0.112087090871316, 0.171219926700809, 0.222961158051616, 0.78225923027224, 0.198322476455994, 0.599932986464636, 0.131798036147813, 0.99168802383503, 1.08531501389839, 1.35634051145024, 1.57316090949171, 1.46721457863054, 1.61011893188515, 1.33662956617374, 1.26271352138687, 0.491522787443898, 0.513697600879958, 0.824144988984798, 0.469347974007839, 1.22575549899344, 0.942410660643785, 0.732981867080996, 0.351082302348851, -0.461994190306682, -0.80200799632627, -1.09767217547374, -1.24304039688791, -1.04593094412293, -0.915345931666132, -0.336336914169009, -0.0628475484576021, 0.158900585902998, 0.447173160571778, 0.390504192901847, 0.0357071779248868, 0.528480809837332, 0.314124279955418, 0.230352762530303, 0.474275710326963, 0.422534478976156, 0.484131182965212, -0.245173792265207, 0.222961158051616, 0.415142874497469, 0.661529690453692, 0.585149777507263, 0.476739578486525, 0.612252327262447, 0.373257115784911, 0.269774653083298, 0.149045113264749, 0.380648720263598, -0.208215769871773, 0.567902700390327, 1.23068323531257, 1.6717156358742, 1.60765506372559, 1.08285114573883, 0.765012153155305, 1.76780649409713, 1.80969225280969, 1.44257589703492, 1.35141277513111, 1.22329163083388, 0.691096108368439, 0.843855934261296, -0.154010670361404, -0.0209617897450443, -0.723164215220278, -0.521127026136176, -0.417644563434562, -0.466921926625807, -0.21560737435046, 0.230352762530303, 0.0258517052866379, 0.530944677996894, 0.356010038667976, -0.368367200243318, -0.0332811305428555, -0.131835856925344, -0.853749227677076, -1.07796123019724, -0.50387994901924, -0.639392697795163, -0.402861354477189, -0.00371471262810869, 0.767476021314868, 0.79211470291049, 0.666457426772816, 0.287021730200234, 0.617180063581572, 0.631963272538945, 0.422534478976156, 0.651674217815443, 0.572830436709452, 0.861103011378232, 0.976904814877656, 1.12227303629183, 1.16169492684482, 1.22575549899344, 1.20850842187651, 0.762548284995743, 0.356010038667976, 0.29441333467892, 0.326443620753229, 0.585149777507263, 0.651674217815443, 0.498914391922585, 1.36126824776936, 0.61471619542201, 1.09024275021752, 1.62243827268296, 1.87868056127743, 1.68649884483158, 1.19372521291913, 0.868494615856919, 1.40315400648192, 0.730517998921434, 0.883277824814292, 0.0258517052866379, 0.0406349142440112, 0.562974964071203, 0.176147663019934, 0.252527575966363, 0.210641817253805, -0.351120123126382, -0.442283245030185, -0.66895911570991, -0.742875160496776, -0.853749227677076, -1.61262062082224, -0.920273667985256, -0.678814588348158, -0.388078145519816, 0.136725772466938, 0.0800568047970069, 0.284557862040672, -0.158938406680529, -0.365903332083756, 0.0357071779248868, 0.0357071779248868, 0.346154566029727, 0.296877202838483, 0.0332433097653246, 0.341226829710603, 0.422534478976156, 0.107159354552191, 0.331371357072354, 0.323979752593667, 0.590077513826387, 0.20571408093468, 0.629499404379383, 0.427462215295281, -0.299378891775576, -0.365903332083756, -0.262420869382142, 0.0652735958396336, 0.885741692973854, 1.12227303629183, 1.6717156358742, 0.661529690453692, 0.277166257561985, 1.21097229003607, 1.62243827268296, 1.45489523783273, 1.66186016323595, 1.38837079752455, 1.63722148164033, 1.51649194182178, 1.02864604622846, 0.920235847207725, 0.834000461623047, -0.0874862300532245, -0.60243467540173, -0.799544128166707, -0.806935732645394, -0.794616391847583, -0.585187598284794, -0.309234364413825, -0.06038368029804, -0.0998055708510354, -0.186040956435713, -1.09274443915461, -0.84635762319839, -0.59257920276348, 0.156436717743436, 0.385576456582723, 0.158900585902998, 0.540800150635143, 0.92516358352685, 1.15183945420657, 1.37358758856717, 0.661529690453692, 0.829072725303923, 0.767476021314868, 0.789650834750928, 1.12227303629183, 1.22082776267432, 1.31445475273768, 1.27996059850381, 1.68403497667201, 1.64954082243814, 1.70867365826764, 1.50417260102397, 1.25778578506775, 1.2873522029825, 0.644282613336756, 0.829072725303923, 0.952266133282034, 1.29967154378031, 1.02125444174978, 1.43025655623711, 1.58794411844909, 1.14444784972789, 1.64461308611902, 1.38590692936499, 1.29967154378031, 0.912844242729039, 0.962121605920283, 1.4893893920666, 0.434853819773967, 0.562974964071203, 0.193394740136869, 0.474275710326963, -0.314162100732949, -0.279667946499078, 0.27223852124286, -0.25995700122258, -0.360975595764631, -0.50387994901924, -0.402861354477189, -0.585187598284794, -0.821718941602767, -1.19622690185623, -1.26028747400484, -0.664031379390785, -0.787224787368896, -0.641856565954725, -0.474313531104494, -0.146619065882718, -0.390542013679378, -0.676350720188596, -0.257493133063018, -0.328945309690322, -0.587651466444356, -0.0874862300532245, -0.452138717668433, 0.0948400137543802, 0.457028633210027, 0.331371357072354, 1.03357378254759, 1.16169492684482, 0.937482924324661, -0.0899500982127866, 0.0209239689675135, 0.38311258842316, -0.257493133063018, -0.205751901712211, -0.363439463924194, -0.0184979215854822, 0.168756058541247, 0.678776767570627, 1.05082085966452, 1.12473690445139, -0.00617858078767102, 0.434853819773967, 1.18879747660001, 1.18386974028088, 1.51895580998135, 0.937482924324661, 1.50663646918353, 1.26517738954644, 1.45489523783273, 1.33170182985462, 0.824144988984798, 0.508769864560834, 0.287021730200234, -0.476777399264056, -0.691133929145969, -0.831574414241016, -0.942448481421316, -0.917809799825694, -0.819255073443205, -0.6369288296356, -0.8586769639962, -0.986798108293436, -0.262420869382142, -0.0357449987024176, -0.00864244894723313, 0.210641817253805, 0.392968061061409, 0.511233732720396, 0.974440946718094, 1.29227993930162, 1.5805525139704, 1.08038727757927, 1.07299567310058, 1.44750363335404, 1.267641257706, 1.40561787464148, 1.32677409353549, 0.875886220335605, 1.01632670543065, 1.01139896911153, 1.32923796169505, 1.0064712327924, 1.22329163083388, 1.87128895679874, 1.41547334727973, 1.02125444174978, 1.53866675525784, 1.39329853384367, 1.07053180494102, 1.14198398156833, 0.996615760154154, 1.33170182985462, 1.08038727757927, 1.31445475273768, 0.585149777507263, 0.735445735240559, 0.237744367008989, 0.668921294932379, 1.20111681739782, 0.476739578486525, -0.250101528584331, -0.0357449987024176, -0.3043066280947, -0.321553705211636, -0.176185483797464, -0.710844874422467, -0.461994190306682, 0.0406349142440112, -0.311698232573387, -0.627073356997351, -0.402861354477189, -1.2307210560901, -1.24550426504747, -0.90302659086832, -0.930129140623505, -0.720700347060716, -0.50387994901924, -0.21560737435046, -0.728091951539403, -0.811863468964518, -0.410252958955876, -0.905490459027883, -0.89070725007051, -0.489096740061867, -0.506343817178803, -0.0579198121384777, -0.0776307574149754, 0.168756058541247, 0.609788459102885, 0.811825648186987, 0.0973038819139425, -0.471849662944931, -0.3043066280947, -0.134299725084907, -0.799544128166707, -0.518663157976614, 0.225425026211178, -0.0579198121384777, 0.220497289892054, 0.356010038667976, 0.971977078558532, 0.0504903868822603, 0.466884105848276, 1.02125444174978, 0.937482924324661, 1.13212850893008, 0.311660411795856, 1.30459928009943, 0.560511095911641, 1.29227993930162, 1.66925176771464, 1.45982297415185, 0.70341544916625, -0.0456004713406665, 0.0529542550418224, 0.186003135658182, -0.154010670361404, -0.71330874258203, -0.907954327187445, -1.04839481228249, -1.06564188939943, -1.05578641676118, -1.10752764811199, -1.0089729217295, -0.755194501294587, -0.494024476380991, -0.37083106840288, -0.0998055708510354, 0.0775929366374445, 0.489058919284336, 0.718198658123623, 0.728054130761872, 0.708343185485374, 0.981832551196781, 1.21343615819563, 0.787186966591365, 0.816753384506112, 1.50417260102397, 1.44750363335404, 0.540800150635143, 1.10502595917489, 1.28242446666337, 0.61471619542201, 1.43025655623711, 1.83186706624575, 1.50417260102397, 1.7505594169802, 1.67664337219333, 1.7308484717037, 1.38344306120542, 1.36619598408849, 1.16169492684482, 0.74776507603837, 0.351082302348851, 0.683704503889752, 0.824144988984798, 0.498914391922585, -0.119516516127533, 0.762548284995743, 1.00154349647328, 0.341226829710603, -0.0554559439789156, -0.136763593244469, -0.513735421657489, -0.826646677921892, -0.907954327187445, -0.333873046009447, -0.538374103253111, -0.838966018719703, -0.356047859445507, -0.587651466444356, -1.05332254860162, -1.05085868044205, -0.461994190306682, -0.222998978829147, -0.272276342020391, -0.092413966372349, -0.639392697795163, -0.708381006262905, -1.13216632970761, -0.838966018719703, -1.10259991179286, -0.76997771025196, -0.856213095836638, -0.540837971412674, -0.518663157976614, -0.417644563434562, 0.585149777507263, 0.567902700390327, 0.819217252665674, 0.420070610816594, -0.094877834531911, -0.730555819698965, -0.353583991285945, -0.927665272463943, -0.301842759935138, -0.198360297233525, -0.373294936562442, -0.0973417026914733, 0.0652735958396336, 0.18353926749862, -0.400397486317627, 0.407751270018783, 0.732981867080996, 0.254991444125925, 0.996615760154154, 0.114550959030878, 0.834000461623047, 0.181075399339058, 1.29720767562075, 1.05082085966452, 1.25778578506775, 1.18140587212132, 0.927627451686412, 0.264846916764174, -0.454602585827996, -0.136763593244469, -0.513735421657489, -0.232854451467396, -0.454602585827996, -0.565476653008296, -0.843893755038827, -0.848821491357952, -1.00404518541037, -0.976942635655187, -0.927665272463943, -0.797080260007145, -0.639392697795163, -0.373294936562442, -0.250101528584331, -0.06038368029804, 0.0874484092756936, 0.370793247625349, 0.126870299828689, 0.51616146903952, 0.27223852124286, 0.388040324742285, 0.72559026260231, 0.856175275059107, 0.885741692973854, 0.444709292412216, 1.267641257706, 0.114550959030878, 1.54113062341741, 1.74563168066107, 1.7825897030545, 1.87621669311787, 1.98216302397904, 1.80722838465013, 1.41547334727973, 1.10995369549402, 1.1567671905257, 0.939946792484223, 0.718198658123623, 0.176147663019934, 0.415142874497469, 0.72559026260231, 0.20571408093468, 0.166292190381685, 0.479203446646087, 0.0751290684778824, -0.644320434114287, -0.356047859445507, -0.656639774912098, -1.13709406602673, -1.13709406602673, -1.40565569541901, -1.07056962571855, -1.21840171529229, -1.45739692676982, -0.609826279880416, 0.0628097276800712, -0.094877834531911, -0.762586105773274, -0.789688655528458, -1.20608237449447, -1.27260681480265, -1.15434114314367, -0.471849662944931, -0.0529920758193532, 0.0455626505631356, -0.117052647967971, -0.00371471262810869, -0.23778218778652, 0.0652735958396336, 0.432389951614405, 1.14937558604701, 0.402823533699658, -0.402861354477189, -0.491560608221429, -0.949840085900003, -1.00158131725081, -0.838966018719703, -0.461994190306682, -0.469385794785369, -0.14908293404228, 0.198322476455994, -0.262420869382142, -0.607362411720854, -0.161402274840091, -0.0357449987024176, 0.222961158051616, 0.0825206729565692, -0.230390583307833, 0.277166257561985, 0.476739578486525, 0.873422352176043, 0.696023844687563, 0.74776507603837, 0.79211470291049, 1.16415879500439, 0.240208235168551, 0.461956369529151, 0.363401643146663, 0.247599839647238, 0.43731768793353, 0.230352762530303, -0.0258895260641687, -0.0677752847767265, -0.486632871902305, -0.410252958955876, -0.550693444050923, -0.641856565954725, -0.710844874422467, -0.45953032214712, -0.693597797305532, -0.577795993806107, -0.535910235093549, -0.346192386807258, -0.449674849508871, -0.117052647967971, -0.181113220116589, 0.015996232648389, -0.0431366031811044, 0.18353926749862, 0.129334167988251, 0.65906582229413, 0.22788889437074, 0.513697600879958, -0.284595682818202, 0.691096108368439, 0.580222041188138, 1.10009822285577, 1.34155730249287, 1.26271352138687, 0.898061033771665, 0.912844242729039, 0.523553073518207, 0.242672103328114, 0.363401643146663, -0.121980384287095, 0.0480265187226979, -0.528518630614862, 0.434853819773967, 0.252527575966363, -0.553157312210485, 0.0209239689675135, -0.309234364413825, -0.6369288296356, -1.18144369289885, -1.55102391683319, -1.21840171529229, -0.476777399264056, -0.218071242510022, -1.06564188939943, -1.18637142921798, -1.39826409094033, -1.00158131725081, -0.688670060986407, -0.0160340534259199, -0.139227461404031, -0.299378891775576, -0.821718941602767, -0.291987287296889, 0.417606742657032, 0.163828322222122, 0.666457426772816, 1.14444784972789, 0.654138085975005, 0.380648720263598, -0.21560737435046, -0.48170513558318, -0.715772610741592, -1.16912435210104, -0.516199289817051, -0.737947424177652, -0.543301839572236, 0.134261904307376, -0.474313531104494, -0.540837971412674, -0.136763593244469, -0.208215769871773, 0.0529542550418224, 0.210641817253805, -0.412716827115438, -0.321553705211636, 0.53833628247558, 0.51616146903952, 0.38311258842316, 0.2500637078068, 0.498914391922585, 0.861103011378232, 1.10995369549402, 0.873422352176043, 0.619643931741134, 0.508769864560834, 0.220497289892054, 0.634427140698507, 0.622107799900696, 0.649210349655881, 0.358473906827538, 0.11701482719044, -0.0456004713406665, 0.0110684963292646, -0.235318319626958, 0.168756058541247, -0.245173792265207, -0.181113220116589, -0.0209617897450443, -0.264884737541704, -0.629537225156914, -0.826646677921892, -0.691133929145969, -0.405325222636751, -0.6369288296356, -0.54822957589136, -0.5260547624553, -0.407789090796314, -0.597506939082605, -0.232854451467396, -0.353583991285945, -0.476777399264056, -0.624609488837789, -0.617217884359103, -0.040672735021542, 0.230352762530303, 0.134261904307376, -0.733019687858527, -0.809399600804956, -0.528518630614862, 0.213105685413367, -0.575332125646545, -0.851285359517514, -0.740411292337214, -0.700989401784218, -0.245173792265207, -1.08535283467593, -0.50387994901924, -0.920273667985256, -1.42783050885507, -1.30463710087696, -0.95723169037869, -1.18144369289885, -1.48942721284413, -1.13709406602673, -0.88085177743226, -0.368367200243318, -0.715772610741592, -0.518663157976614, -0.799544128166707, -0.733019687858527, -0.782297051049772, -0.461994190306682, 0.407751270018783, 0.76993988947443, 1.52141967814091, 0.875886220335605, 0.508769864560834, 0.489058919284336, 0.4718118421674, 0.306732675476732, -1.13216632970761, -0.959695558538252, -0.71330874258203, -0.797080260007145, -0.489096740061867, -0.0850223618936621, -0.851285359517514, -0.45953032214712, -0.12690812060622, -0.107197175329722, -0.489096740061867, 0.015996232648389, -0.612290148039978, -0.25995700122258, -0.255029264903456, -0.279667946499078, -0.0800946255745377, 0.00860462816970227, 0.373257115784911, 1.05574859598365, 1.24300257611038, 0.806897911867863, 0.395431929220972, 0.31658814811498, 0.429926083454843, 0.651674217815443, 0.168756058541247, 0.291949466519358, 0.0480265187226979, 0.597469118305074, 0.63689100885807, 0.252527575966363, 0.629499404379383, 0.518625337199083, 0.683704503889752, 0.639354877017632, 0.439781556093091, -0.14908293404228, -0.676350720188596, -0.866068568474887, -0.984334240133874, -1.12970246154805, -1.18144369289885, -1.1912991655371, -1.18883529737754, -1.54116844419494, -1.1001360436333, -0.917809799825694, -0.227926715148271, -0.190968692754838, -0.784760919209334, -1.21593784713272, -1.1715882202606, -0.863604700315325, -0.686206192826845, -0.287059550977764, 0.242672103328114, 0.479203446646087, 2.09796482747847, 0.757620548676619, 0.59254138198595, 0.232816630689865, -0.540837971412674, -0.873460172953574, -1.19622690185623, -1.15926887946279, -1.21840171529229, -0.821718941602767, -0.5260547624553, -0.190968692754838, -0.654175906752536, -0.831574414241016, -0.417644563434562, -0.752730633135025, -0.321553705211636, -0.10473330717016, -0.10473330717016, -0.619681752518665, -0.622145620678227, -0.395469749998502, 0.0332433097653246, 0.489058919284336, 0.809361780027425, 1.41547334727973, 1.87128895679874, 0.989224155675468, 0.752692812357494, -0.156474538520967, 0.363401643146663, 0.619643931741134, -0.0209617897450443, -0.040672735021542, -0.530982498774425, 0.486595051124774, 0.092376145594818, -0.0184979215854822, 0.20571408093468, 0.984296419356343, 0.365865511306225, 0.528480809837332, 0.43731768793353, -0.341264650488133, -0.06038368029804, -0.66895911570991, -0.77983318289021, -1.18144369289885, -1.29970936455784, -0.740411292337214, -0.866068568474887, -0.296915023616013, -0.641856565954725, -1.23811266056878, -0.718236478901154, -0.54822957589136, -0.494024476380991, -0.432427772391936, -0.32648144153076, 0.585149777507263, 1.29720767562075, 0.341226829710603, -0.291987287296889, 0.306732675476732, -0.0800946255745377, -0.8586769639962, -1.18637142921798, -1.29970936455784, -0.676350720188596, -0.279667946499078, 0.168756058541247, 0.521089205358645, -0.609826279880416, -1.11738312075023, -0.644320434114287, -0.804471864485832, -0.545765707731798, -0.0160340534259199, -0.156474538520967, -0.932593008783067, -0.654175906752536, -0.274740210179954, 0.198322476455994, 0.979368683037219, 1.38590692936499, 1.48446165574747, 1.13952011340876, 0.341226829710603, 0.341226829710603, -0.257493133063018, -0.178649351957027, -0.0653114166171644, -0.750266764975463, -0.0998055708510354, -0.789688655528458, 0.328907488912791, -0.0751668892554133, -0.368367200243318, -0.232854451467396, 0.88081395665473, 0.0973038819139425, 0.27223852124286, 0.0233878371270758, 0.198322476455994, -0.255029264903456, -0.994189712772123, -1.22825718793053, -1.36869767302558, -0.799544128166707, -0.720700347060716, -0.981870371974312, -1.38348088198295, -1.12970246154805, -0.688670060986407, -0.678814588348158, -0.819255073443205, -0.794616391847583, -0.521127026136176, 0.1391896406265, 0.213105685413367, -0.700989401784218, 0.00121302369101574, 0.843855934261296, 0.299341070998045, -0.494024476380991, -1.40319182725945, -0.432427772391936, -0.407789090796314, -0.0677752847767265, -0.040672735021542, -0.494024476380991, -1.02621999884643, -1.03853933964424, -0.575332125646545, -0.425036167913249, -0.247637660424769, -0.728091951539403, -1.01143678988906, -0.37083106840288, 0.856175275059107, 1.11241756365358, 0.999079628313717, 0.577758173028576, 0.432389951614405, 0.353546170508414, 0.136725772466938, -0.0160340534259199, -0.439819376870623, -0.543301839572236, -0.915345931666132, -1.14448567050542, -0.91288206350657, -0.607362411720854, -0.64678430227385, 0.188467003817745, -0.750266764975463, 0.489058919284336, 0.420070610816594, -0.203288033552649, -0.6369288296356, -0.624609488837789, -1.22086558345185, -1.44014984965289, -1.06810575755899, -1.15187727498411, -1.4327582451742, -1.45000532229113, -1.38348088198295, -1.21840171529229, -1.13709406602673, -0.9695510311765, -1.11738312075023, -0.358511727605069, 0.153972849583874, -0.661567511231223, -0.45953032214712, -0.272276342020391, -0.728091951539403, -0.994189712772123, -1.33420351879171, -0.885779513751385, -0.124444252446658, -0.407789090796314, -0.71330874258203, -0.454602585827996, -0.917809799825694, -0.84635762319839, -0.550693444050923, -0.0258895260641687, 0.356010038667976, -0.173721615637902, -1.03114773516556, -0.225462846988709, 0.474275710326963, -0.146619065882718, -0.0579198121384777, -0.333873046009447, -0.363439463924194, -0.129371988765782, -0.644320434114287, -0.213143506190898, -0.405325222636751, -0.654175906752536, -0.183577088276151, -0.39300588183894, -1.19376303369666, -1.33173965063215, -1.01636452620818, -0.767513842092398, -0.8586769639962, -0.622145620678227, -0.336336914169009, -0.287059550977764, -0.898098854549196, -1.48449947652501, -1.58798193922662, -1.54609618051406, -1.29724549639828, -1.20608237449447, -0.873460172953574, -0.944912349580878, -0.422572299753687, -1.08535283467593, -0.95723169037869, -0.73548355601809, -1.10999151627155, -1.27014294664309, -0.772441578411523, 0.0603458595205091, 0.0258517052866379, -0.632001093316476, -0.666495247550347, -1.34405899142996, -1.11245538443111, -0.782297051049772, -0.390542013679378, -0.944912349580878, -1.04100320780381, -1.20608237449447, -0.567940521167858, -0.826646677921892, -0.673886852029034, -0.673886852029034, -0.794616391847583, -1.07056962571855, -0.986798108293436, -0.700989401784218, -0.533446366933987, -0.32648144153076, -0.210679638031336, 0.284557862040672, 0.121942563509565, -0.269812473860829, -1.26521521032397, -1.33666738695127, -0.567940521167858, -1.36869767302558, -0.898098854549196, -0.974478767495625, -1.52638523523756, -1.33420351879171, -1.05578641676118, -0.84635762319839, -1.15434114314367, -0.895634986389634, -0.875924041113136, -1.27999841928134, -1.27260681480265, -0.89070725007051, 0.163828322222122, 0.31658814811498, -0.0431366031811044, -0.9695510311765, -1.40565569541901, -1.2110101108136, -1.24550426504747, -0.905490459027883, -0.664031379390785, -1.15187727498411, -1.25289586952616, -1.3021732327174, -0.723164215220278, -1.11245538443111, -0.587651466444356, -1.1715882202606, -1.07549736203768, -0.71330874258203, -0.464458058466245, -0.252565396743893, 0.424998347135718, 0.385576456582723, -0.296915023616013, -0.498952212700116, -0.905490459027883, -1.18144369289885, -1.08535283467593, -1.13216632970761, -1.56580712579056, -1.3218841779939, -1.23811266056878, -0.996653580931685, -1.52638523523756, -0.838966018719703, -0.784760919209334, -1.50174655364194, -1.33173965063215, -0.86853243663445, -0.205751901712211, -0.338800782328571, -1.01882839436775, -1.25782360584528, -1.20854624265404, -1.46232466308895, -0.619681752518665, -0.225462846988709, -0.752730633135025, -1.40072795909989, -1.35884220038733, -1.17405208842017, -1.02129226252731, -0.782297051049772, -1.45986079492938, -1.16912435210104, -0.72562808337984, 0.264846916764174, -0.447210981349309, -0.309234364413825, 0.311660411795856, -0.213143506190898, -0.535910235093549, -0.930129140623505, -1.50174655364194, -1.15680501130323, -0.45953032214712, -0.82418280976233, -1.56087938947143, -0.90302659086832, -0.77983318289021, -0.83650215056014, -0.944912349580878, -0.565476653008296, -0.972014899336063, -1.47710787204632, -1.3218841779939, -0.634464961476038, -0.794616391847583, -1.04593094412293, -0.506343817178803, 0.171219926700809, -0.683742324667283, 0.121942563509565, -1.08288896651636, -0.851285359517514, -0.851285359517514, -0.93505687694263) gfor <- c(-0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.272882177730234, -0.272882177730234, -0.272882177730234, -0.199793375803889, -0.272882177730234, -0.199793375803889, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.0536157719511992, -0.199793375803889, -0.199793375803889, 0.0194730299751457, -0.199793375803889, -0.126704573877544, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.38491703960687, 0.311828237680525, 0.0925618319014905, -0.272882177730234, -0.419059781582923, 0.0925618319014905, 0.23873943575418, -0.272882177730234, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.199793375803889, 0.604183445385904, 0.458005841533215, -0.0536157719511992, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.126704573877544, -0.126704573877544, -0.492148583509268, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.604183445385904, 1.4081602665757, 1.84669307813377, 0.458005841533215, 0.458005841533215, 0.53109464345956, 0.677272247312249, 1.04271625694397, -0.126704573877544, 0.165650633827835, 0.165650633827835, -0.345970979656579, -0.492148583509268, -0.345970979656579, -0.199793375803889, -0.0536157719511992, -0.199793375803889, 0.0194730299751457, 1.26198266272301, 0.969627455017629, 0.677272247312249, 0.0925618319014905, -0.419059781582923, 0.23873943575418, 0.823449851164939, 0.969627455017629, 0.311828237680525, -0.0536157719511992, 0.165650633827835, 0.165650633827835, 0.0925618319014905, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.0925618319014905, 0.0925618319014905, -0.0536157719511992, 0.969627455017629, 1.99287068198646, 2.28522588969184, 2.13904828583915, 1.33507146464935, 0.750361049238594, 0.896538653091284, 0.458005841533215, 0.23873943575418, 0.677272247312249, 0.969627455017629, 0.458005841533215, -0.419059781582923, 0.0194730299751457, -0.199793375803889, 0.458005841533215, 0.0925618319014905, 0.23873943575418, 0.969627455017629, 0.53109464345956, 0.53109464345956, -0.126704573877544, 0.604183445385904, 1.48124906850204, 1.84669307813377, 1.4081602665757, 1.11580505887032, 1.11580505887032, 0.750361049238594, 0.823449851164939, 1.18889386079666, 0.0194730299751457, -0.272882177730234, 0.165650633827835, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.0925618319014905, 0.23873943575418, 0.53109464345956, 1.91978188006011, 3.08920271088163, 2.94302510702894, 2.0659594839128, 1.62742667235473, 1.70051547428108, 1.18889386079666, 0.458005841533215, 0.458005841533215, 0.823449851164939, 0.677272247312249, 0.311828237680525, -0.345970979656579, 0.604183445385904, 0.458005841533215, 0.53109464345956, 0.53109464345956, 0.165650633827835, 0.896538653091284, -0.199793375803889, 0.311828237680525, 0.0925618319014905, 0.677272247312249, 1.04271625694397, 1.26198266272301, 1.55433787042839, 1.26198266272301, 2.13904828583915, 1.70051547428108, 1.99287068198646, 1.55433787042839, 0.0925618319014905, 0.23873943575418, 0.677272247312249, -0.126704573877544, 0.0194730299751457, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.0194730299751457, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.199793375803889, 1.26198266272301, 2.79684750317625, 2.79684750317625, 2.43140349354453, 1.70051547428108, 1.4081602665757, 0.604183445385904, 0.0194730299751457, 1.04271625694397, 0.750361049238594, 1.04271625694397, 0.677272247312249, -0.419059781582923, 1.04271625694397, 0.969627455017629, 0.311828237680525, 0.23873943575418, 0.311828237680525, 0.823449851164939, 0.165650633827835, 0.0194730299751457, 0.823449851164939, 1.4081602665757, 0.969627455017629, 2.0659594839128, 2.28522588969184, 1.26198266272301, 1.18889386079666, 1.48124906850204, 0.823449851164939, 0.458005841533215, 0.604183445385904, 1.18889386079666, 0.677272247312249, -0.345970979656579, -0.492148583509268, -0.0536157719511992, 0.23873943575418, 0.311828237680525, 0.38491703960687, -0.199793375803889, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.199793375803889, 0.0194730299751457, 0.23873943575418, -0.126704573877544, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.23873943575418, 0.458005841533215, 0.677272247312249, 0.0925618319014905, 0.0194730299751457, 0.0194730299751457, 0.165650633827835, 0.38491703960687, 0.458005841533215, 1.91978188006011, 0.896538653091284, -0.272882177730234, 0.677272247312249, 1.33507146464935, 1.04271625694397, 1.33507146464935, 0.969627455017629, 0.969627455017629, 1.18889386079666, 0.458005841533215, 0.823449851164939, 2.0659594839128, 1.77360427620742, 2.0659594839128, 2.35831469161818, 0.458005841533215, 0.53109464345956, 0.750361049238594, 0.0194730299751457, 0.0925618319014905, 0.750361049238594, 1.26198266272301, 0.311828237680525, -0.419059781582923, 0.165650633827835, 0.0194730299751457, -0.199793375803889, 0.823449851164939, 1.62742667235473, 0.969627455017629, 2.57758109739721, 3.16229151280797, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.199793375803889, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.199793375803889, 0.0925618319014905, 0.0925618319014905, -0.0536157719511992, 1.18889386079666, 0.896538653091284, 0.38491703960687, 1.11580505887032, 2.21213708776549, 1.4081602665757, 1.55433787042839, 0.969627455017629, 0.604183445385904, 0.677272247312249, 0.23873943575418, 0.896538653091284, 2.50449229547087, 2.57758109739721, 2.28522588969184, 1.4081602665757, 0.165650633827835, 0.53109464345956, 1.18889386079666, 0.38491703960687, 0.677272247312249, 0.165650633827835, -0.199793375803889, -0.126704573877544, 0.23873943575418, 0.823449851164939, 0.38491703960687, -0.345970979656579, 0.823449851164939, 2.43140349354453, 2.86993630510259, 4.11244593785046, 5.86657718408273, 2.94302510702894, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.199793375803889, -0.345970979656579, -0.419059781582923, 1.04271625694397, 1.4081602665757, -0.126704573877544, 1.04271625694397, 2.21213708776549, 1.4081602665757, 1.48124906850204, 1.55433787042839, 0.38491703960687, 0.896538653091284, 0.823449851164939, 1.48124906850204, 2.79684750317625, 1.84669307813377, 1.26198266272301, 0.0925618319014905, 0.38491703960687, 1.77360427620742, 1.70051547428108, 0.823449851164939, 0.311828237680525, 0.0925618319014905, 0.38491703960687, 0.458005841533215, 0.604183445385904, 0.750361049238594, 0.23873943575418, 0.604183445385904, 1.04271625694397, 1.55433787042839, 2.65066989932356, 4.62406755133487, 6.45128759949349, 5.42804437252466, 1.84669307813377, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.23873943575418, -0.0536157719511992, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, 0.38491703960687, 1.04271625694397, 0.38491703960687, 0.458005841533215, 0.969627455017629, 1.48124906850204, 1.91978188006011, 2.28522588969184, 1.4081602665757, 1.99287068198646, 2.28522588969184, 1.4081602665757, 1.33507146464935, 0.677272247312249, 0.0194730299751457, -0.345970979656579, -0.272882177730234, 0.311828237680525, -0.126704573877544, -0.272882177730234, 0.0194730299751457, 1.04271625694397, 1.84669307813377, 0.53109464345956, -0.0536157719511992, 0.38491703960687, 0.23873943575418, 0.750361049238594, 1.11580505887032, -0.199793375803889, 1.18889386079666, 4.03935713592411, 6.15893239178811, 6.81673160912522, 4.33171234362949, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.199793375803889, 0.165650633827835, -0.199793375803889, 0.165650633827835, 0.165650633827835, 0.23873943575418, 0.165650633827835, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.0194730299751457, -0.345970979656579, -0.199793375803889, -0.345970979656579, -0.0536157719511992, 0.823449851164939, 0.823449851164939, 0.604183445385904, 0.969627455017629, 0.0194730299751457, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.126704573877544, 1.18889386079666, 2.21213708776549, 0.896538653091284, 0.23873943575418, -0.272882177730234, 0.23873943575418, 0.969627455017629, 0.750361049238594, -0.126704573877544, 0.165650633827835, 2.0659594839128, 4.8433339571139, 5.72039958023004, 4.9895115609666, 2.35831469161818, 0.0925618319014905, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.126704573877544, 0.23873943575418, 1.55433787042839, 1.33507146464935, 0.823449851164939, 0.604183445385904, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.0194730299751457, 0.23873943575418, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, 0.0194730299751457, 0.604183445385904, 0.23873943575418, -0.126704573877544, -0.419059781582923, 0.53109464345956, 0.896538653091284, 0.23873943575418, 0.165650633827835, 0.23873943575418, 0.823449851164939, 3.38155791858701, 4.11244593785046, 4.25862354170315, 3.60082432436604, 2.21213708776549, 2.13904828583915, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.311828237680525, 0.750361049238594, 0.604183445385904, 0.165650633827835, -0.0536157719511992, 0.0194730299751457, -0.199793375803889, 0.0194730299751457, 0.311828237680525, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, 0.311828237680525, -0.0536157719511992, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.126704573877544, -0.126704573877544, 0.0194730299751457, 0.38491703960687, 0.311828237680525, 0.604183445385904, 2.21213708776549, 3.30846911666066, 4.9895115609666, 4.33171234362949, 3.38155791858701, 4.40480114555584, 2.0659594839128, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.0194730299751457, -0.0536157719511992, -0.345970979656579, -0.345970979656579, -0.272882177730234, -0.272882177730234, -0.272882177730234, 0.311828237680525, 0.53109464345956, -0.126704573877544, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.0536157719511992, 0.311828237680525, 0.0925618319014905, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.126704573877544, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.272882177730234, -0.272882177730234, -0.345970979656579, -0.0536157719511992, -0.126704573877544, 1.48124906850204, 3.45464672051335, 4.55097874940853, 4.9895115609666, 4.11244593785046, 4.40480114555584, 3.38155791858701, 0.750361049238594, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.199793375803889, -0.199793375803889, -0.272882177730234, 0.0194730299751457, -0.126704573877544, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.199793375803889, -0.126704573877544, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.750361049238594, 1.55433787042839, 0.677272247312249, 0.165650633827835, 0.896538653091284, 1.4081602665757, 0.677272247312249, 0.311828237680525, 0.311828237680525, 0.38491703960687, 0.165650633827835, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.165650633827835, 1.77360427620742, 3.23538031473432, 3.23538031473432, 3.60082432436604, 3.96626833399777, 4.62406755133487, 4.11244593785046, 2.13904828583915, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.199793375803889, 0.23873943575418, -0.199793375803889, -0.419059781582923, -0.345970979656579, -0.272882177730234, 0.0194730299751457, -0.0536157719511992, -0.199793375803889, -0.345970979656579, -0.492148583509268, -0.419059781582923, -0.0536157719511992, 0.311828237680525, 0.0194730299751457, -0.345970979656579, -0.492148583509268, -0.419059781582923, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.492148583509268, -0.492148583509268, 0.0925618319014905, 0.53109464345956, 1.11580505887032, 0.969627455017629, 1.48124906850204, 3.01611390895528, 3.30846911666066, 3.01611390895528, 3.08920271088163, 3.01611390895528, 3.16229151280797, 3.08920271088163, 2.35831469161818, 1.18889386079666, -0.126704573877544, -0.199793375803889, 0.0194730299751457, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.0194730299751457, 0.23873943575418, 1.18889386079666, 1.4081602665757, 2.28522588969184, 2.57758109739721, 2.13904828583915, 1.33507146464935, 1.04271625694397, 1.33507146464935, 0.38491703960687, 0.750361049238594, 0.0194730299751457, -0.419059781582923, -0.492148583509268, 0.23873943575418, 0.38491703960687, -0.272882177730234, 0.823449851164939, 0.458005841533215, 0.750361049238594, 0.165650633827835, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.492148583509268, -0.345970979656579, -0.126704573877544, 0.0194730299751457, 0.23873943575418, -0.0536157719511992, -0.345970979656579, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.492148583509268, -0.345970979656579, -0.199793375803889, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.0925618319014905, 0.38491703960687, -0.199793375803889, 0.165650633827835, 1.4081602665757, 2.50449229547087, 2.7237587012499, 4.11244593785046, 4.9895115609666, 5.28186676867197, 4.25862354170315, 3.74700192821873, 4.8433339571139, 5.20877796674563, 3.96626833399777, 2.28522588969184, 0.311828237680525, -0.0536157719511992, 0.458005841533215, 0.165650633827835, -0.0536157719511992, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, 0.53109464345956, 0.311828237680525, 0.0925618319014905, 0.23873943575418, 0.0194730299751457, 0.165650633827835, 2.13904828583915, 1.99287068198646, 0.677272247312249, 1.04271625694397, 0.311828237680525, 0.0194730299751457, -0.0536157719511992, 0.0925618319014905, -0.126704573877544, -0.126704573877544, -0.126704573877544, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.23873943575418, 0.896538653091284, 0.0194730299751457, 2.13904828583915, 3.08920271088163, 1.11580505887032, -0.199793375803889, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.0536157719511992, 0.165650633827835, -0.0536157719511992, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.0536157719511992, -0.419059781582923, -0.199793375803889, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.458005841533215, 1.4081602665757, 1.33507146464935, 0.750361049238594, 0.165650633827835, 2.28522588969184, 4.55097874940853, 6.01275478793542, 5.57422197637735, 5.79348838215639, 5.06260036289294, 3.38155791858701, 2.35831469161818, 1.33507146464935, 0.53109464345956, -0.126704573877544, -0.492148583509268, -0.492148583509268, 0.165650633827835, 0.311828237680525, 0.23873943575418, -0.0536157719511992, -0.199793375803889, -0.345970979656579, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.311828237680525, 0.458005841533215, 0.53109464345956, 1.11580505887032, 1.26198266272301, 2.21213708776549, 2.7237587012499, 0.458005841533215, -0.419059781582923, -0.199793375803889, -0.419059781582923, -0.272882177730234, -0.272882177730234, 0.165650633827835, -0.199793375803889, -0.345970979656579, 0.38491703960687, 0.165650633827835, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.750361049238594, 1.4081602665757, 0.969627455017629, 1.84669307813377, 3.08920271088163, 1.48124906850204, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.199793375803889, 0.23873943575418, 0.458005841533215, 0.0194730299751457, -0.345970979656579, -0.199793375803889, -0.199793375803889, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.199793375803889, 0.23873943575418, 1.33507146464935, 0.38491703960687, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.165650633827835, 1.55433787042839, 2.86993630510259, 3.60082432436604, 4.40480114555584, 5.28186676867197, 5.50113317445101, 5.28186676867197, 5.50113317445101, 4.8433339571139, 3.08920271088163, 0.311828237680525, -0.492148583509268, -0.492148583509268, -0.199793375803889, -0.272882177730234, -0.199793375803889, -0.272882177730234, -0.345970979656579, -0.199793375803889, -0.199793375803889, 0.0925618319014905, 0.0925618319014905, -0.199793375803889, -0.419059781582923, -0.345970979656579, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.272882177730234, -0.492148583509268, -0.419059781582923, -0.199793375803889, -0.0536157719511992, 0.23873943575418, 1.70051547428108, 2.0659594839128, 3.45464672051335, 4.11244593785046, 2.13904828583915, 0.969627455017629, 0.0194730299751457, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.0536157719511992, -0.345970979656579, -0.492148583509268, -0.126704573877544, 0.0194730299751457, -0.419059781582923, -0.126704573877544, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.0925618319014905, 0.750361049238594, 0.969627455017629, 1.55433787042839, 0.896538653091284, 0.53109464345956, 0.0925618319014905, -0.126704573877544, 0.0925618319014905, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.0194730299751457, 0.23873943575418, 0.0925618319014905, -0.345970979656579, 0.311828237680525, 0.0925618319014905, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.0536157719511992, 0.896538653091284, -0.126704573877544, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.311828237680525, 1.62742667235473, 3.45464672051335, 3.82009073014508, 4.25862354170315, 4.47788994748218, 4.62406755133487, 4.40480114555584, 3.08920271088163, 1.48124906850204, -0.126704573877544, -0.492148583509268, 0.0194730299751457, 0.0925618319014905, 0.0194730299751457, -0.0536157719511992, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.126704573877544, 0.0194730299751457, -0.126704573877544, -0.199793375803889, -0.492148583509268, 0.0194730299751457, -0.272882177730234, -0.126704573877544, -0.126704573877544, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.126704573877544, 0.604183445385904, 0.823449851164939, 1.48124906850204, 1.04271625694397, 2.28522588969184, 1.84669307813377, 1.18889386079666, 1.11580505887032, 0.969627455017629, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.199793375803889, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.199793375803889, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.0925618319014905, -0.272882177730234, -0.0536157719511992, -0.199793375803889, -0.419059781582923, -0.492148583509268, -0.272882177730234, -0.126704573877544, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.0536157719511992, 0.165650633827835, -0.345970979656579, -0.126704573877544, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.604183445385904, 1.48124906850204, 1.99287068198646, 0.750361049238594, 0.969627455017629, 1.99287068198646, 2.35831469161818, 2.65066989932356, 2.79684750317625, 2.50449229547087, 0.750361049238594, -0.492148583509268, -0.419059781582923, -0.199793375803889, -0.199793375803889, -0.126704573877544, -0.126704573877544, -0.419059781582923, -0.419059781582923, -0.345970979656579, -0.199793375803889, -0.0536157719511992, -0.345970979656579, -0.419059781582923, -0.345970979656579, -0.199793375803889, -0.126704573877544, 0.0925618319014905, 0.0194730299751457, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.126704573877544, 0.38491703960687, 0.53109464345956, 0.823449851164939, 0.53109464345956, 0.458005841533215, -0.199793375803889, 0.0925618319014905, -0.126704573877544, -0.199793375803889, 0.38491703960687, 0.604183445385904, 0.311828237680525, -0.0536157719511992, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.0194730299751457, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.272882177730234, 0.53109464345956, 0.23873943575418, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 0.165650633827835, 0.0925618319014905, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.0925618319014905, 0.750361049238594, 2.43140349354453, 3.74700192821873, 4.62406755133487, 5.13568916481928, 3.30846911666066, 0.896538653091284, 0.896538653091284, 0.750361049238594, -0.272882177730234, -0.492148583509268, -0.126704573877544, -0.199793375803889, -0.345970979656579, -0.419059781582923, -0.272882177730234, -0.126704573877544, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.126704573877544, -0.126704573877544, -0.419059781582923, -0.492148583509268, -0.345970979656579, -0.126704573877544, -0.199793375803889, 0.165650633827835, 0.0194730299751457, -0.126704573877544, -0.345970979656579, -0.199793375803889, 0.458005841533215, 0.750361049238594, 0.38491703960687, 0.23873943575418, -0.272882177730234, -0.492148583509268, -0.345970979656579, -0.492148583509268, -0.345970979656579, -0.199793375803889, -0.199793375803889, -0.345970979656579, -0.345970979656579, 0.165650633827835, 0.0925618319014905, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.419059781582923, -0.126704573877544, 0.165650633827835, 0.165650633827835, 0.969627455017629, 0.823449851164939, -0.272882177730234, -0.492148583509268, -0.419059781582923, -0.199793375803889, -0.199793375803889, -0.199793375803889, 1.18889386079666, 1.26198266272301, -0.0536157719511992, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.311828237680525, 2.13904828583915, 3.08920271088163, 3.74700192821873, 2.35831469161818, 0.165650633827835, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.272882177730234, -0.272882177730234, -0.492148583509268, -0.126704573877544, -0.126704573877544, 0.23873943575418, 0.23873943575418, 0.458005841533215, 0.0925618319014905, 0.604183445385904, 1.4081602665757, 0.823449851164939, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.419059781582923, -0.419059781582923, -0.126704573877544, -0.199793375803889, 0.0194730299751457, 1.18889386079666, 0.823449851164939, -0.345970979656579, -0.345970979656579, 0.0194730299751457, 0.0925618319014905, -0.272882177730234, 0.0194730299751457, 0.969627455017629, 0.604183445385904, -0.272882177730234, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.165650633827835, 1.04271625694397, 1.04271625694397, 0.38491703960687, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.345970979656579, -0.419059781582923, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.199793375803889, 0.53109464345956, 0.750361049238594, 0.53109464345956, 0.896538653091284, 1.4081602665757, 0.165650633827835, -0.199793375803889, 0.23873943575418, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.0536157719511992, 0.0925618319014905, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.199793375803889, -0.345970979656579, -0.126704573877544, 0.604183445385904, 0.0925618319014905, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, 0.311828237680525, 1.26198266272301, 1.04271625694397, 0.604183445385904, -0.199793375803889, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.419059781582923, -0.272882177730234, -0.0536157719511992, -0.199793375803889, -0.272882177730234, 0.0194730299751457, -0.199793375803889, 0.38491703960687, 0.896538653091284, 0.896538653091284, 0.165650633827835, 0.23873943575418, 0.604183445385904, -0.126704573877544, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.126704573877544, 1.33507146464935, 0.969627455017629, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, 1.11580505887032, 1.4081602665757, 0.896538653091284, 1.11580505887032, 0.896538653091284, 0.0194730299751457, -0.345970979656579, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.0536157719511992, -0.199793375803889, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.199793375803889, 0.0194730299751457, -0.199793375803889, -0.345970979656579, -0.345970979656579, -0.0536157719511992, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, 0.165650633827835, 0.0194730299751457, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, 1.04271625694397, 1.99287068198646, 0.53109464345956, 0.458005841533215, 0.896538653091284, 0.0925618319014905, 0.0925618319014905, -0.126704573877544, -0.272882177730234, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.126704573877544, -0.199793375803889, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.199793375803889, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.0536157719511992, 0.0194730299751457, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, 0.311828237680525, 0.823449851164939, -0.126704573877544, -0.126704573877544, 0.0194730299751457, -0.345970979656579, -0.126704573877544, -0.419059781582923, -0.272882177730234, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.272882177730234, -0.272882177730234, -0.199793375803889, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.126704573877544, -0.126704573877544, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.0536157719511992, 0.53109464345956, 0.458005841533215, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.199793375803889, -0.345970979656579, -0.345970979656579, -0.126704573877544, -0.199793375803889, -0.419059781582923, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.126704573877544, 0.165650633827835, 0.0925618319014905, -0.199793375803889, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.345970979656579, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.126704573877544, -0.0536157719511992, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.345970979656579, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.272882177730234, -0.0536157719511992, -0.126704573877544, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.272882177730234, 0.0925618319014905, 0.0925618319014905, -0.126704573877544, -0.345970979656579, -0.492148583509268, -0.419059781582923, -0.272882177730234, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.199793375803889, -0.272882177730234, -0.272882177730234, -0.345970979656579, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.272882177730234, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.272882177730234, -0.199793375803889, -0.419059781582923, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.272882177730234, -0.345970979656579, -0.492148583509268, -0.126704573877544, 0.165650633827835, 0.0194730299751457, -0.419059781582923, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.419059781582923, -0.492148583509268, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.345970979656579, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.199793375803889, -0.345970979656579, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.492148583509268, -0.272882177730234, -0.199793375803889, -0.272882177730234, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.272882177730234, -0.199793375803889, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.199793375803889, -0.0536157719511992, -0.345970979656579, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.272882177730234, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.419059781582923, -0.345970979656579, -0.419059781582923, -0.419059781582923, -0.345970979656579, -0.345970979656579, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.419059781582923, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.345970979656579, -0.272882177730234, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.419059781582923, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268, -0.492148583509268) gchap <- c(-1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -1.11345776981734, -1.07069156057321, -1.02792535132908, -1.11345776981734, -1.15622397906146, -1.07069156057321, -0.985159142084955, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.985159142084955, -0.942392932840828, -0.77132809586432, -0.64302946813194, -1.02792535132908, -1.07069156057321, -0.600263258887813, 0.212294716750598, 0.682723018435993, 0.383359553727105, 0.169528507506471, -0.386432212667179, -0.557497049643686, -0.386432212667179, -0.129834957202417, -0.471964631155432, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.899626723596701, -0.215367375690671, 0.0412298797740903, -0.258133584934798, -0.514730840399559, -0.0443025387141636, 0.639956809191867, 1.19591752936552, 1.45251478483028, 1.3242161570979, 0.255060925994725, 0.554424390703613, 0.811021646168374, 1.40974857558615, 1.19591752936552, 0.768255436924247, -0.386432212667179, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.814094305108448, -0.728561886620194, -0.685795677376067, -0.77132809586432, -0.728561886620194, -0.600263258887813, -0.129834957202417, 0.59719059994774, 1.11038511087726, 0.426125762971232, 0.939320273900755, 1.23868373860964, 1.36698236634202, 0.982086483144882, 1.06761890163314, 0.468891972215359, -0.0870687479582905, -0.172601166446544, -1.15622397906146, -1.07069156057321, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.899626723596701, -0.814094305108448, -0.899626723596701, -1.11345776981734, -1.15622397906146, -0.814094305108448, -0.300899794178925, -0.215367375690671, 0.0412298797740903, 0.811021646168374, 0.59719059994774, 0.340593344482978, -0.0870687479582905, 0.383359553727105, -0.0443025387141636, 0.297827135238852, 1.06761890163314, -0.258133584934798, -0.557497049643686, -0.685795677376067, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -0.471964631155432, -0.0870687479582905, -0.471964631155432, -0.814094305108448, -1.07069156057321, -1.07069156057321, -0.600263258887813, -0.600263258887813, -0.172601166446544, 0.126762298262344, -0.172601166446544, -0.600263258887813, -1.02792535132908, -0.814094305108448, -1.11345776981734, -0.215367375690671, 0.297827135238852, 0.212294716750598, 0.426125762971232, 0.982086483144882, 0.212294716750598, -1.11345776981734, -1.11345776981734, -1.15622397906146, -1.11345776981734, -0.899626723596701, -0.728561886620194, -0.728561886620194, -0.77132809586432, -0.942392932840828, -1.07069156057321, -1.07069156057321, -0.514730840399559, -0.0443025387141636, -0.300899794178925, -0.64302946813194, -1.07069156057321, -1.07069156057321, -0.985159142084955, -0.942392932840828, -1.11345776981734, -0.514730840399559, -0.258133584934798, 0.212294716750598, 0.768255436924247, 0.383359553727105, -0.172601166446544, -0.258133584934798, -1.15622397906146, -0.985159142084955, -0.600263258887813, -0.856860514352574, -1.07069156057321, -0.899626723596701, -0.77132809586432, -0.856860514352574, -1.11345776981734, -0.985159142084955, -0.129834957202417, -0.0443025387141636, -0.899626723596701, -1.07069156057321, -0.77132809586432, -0.343666003423052, -0.77132809586432, -1.15622397906146, -1.15622397906146, -0.77132809586432, -0.172601166446544, -0.258133584934798, 0.0412298797740903, 0.853787855412501, 0.682723018435993, -0.00153632947003662, -1.11345776981734, -0.942392932840828, -0.77132809586432, -1.02792535132908, -1.11345776981734, -0.985159142084955, -0.600263258887813, -1.02792535132908, -0.942392932840828, -1.15622397906146, -0.985159142084955, -0.942392932840828, -1.11345776981734, -1.15622397906146, -0.77132809586432, -0.514730840399559, -0.942392932840828, -1.15622397906146, -0.942392932840828, -0.600263258887813, -0.985159142084955, -1.11345776981734, -1.02792535132908, -0.600263258887813, -0.429198421911306, -0.942392932840828, -0.600263258887813, -0.0870687479582905, 0.126762298262344, 0.682723018435993, -0.300899794178925, -1.02792535132908, -0.64302946813194, -0.985159142084955, -0.685795677376067, -0.471964631155432, -0.728561886620194, -0.899626723596701, -0.00153632947003662, 0.0412298797740903, -0.77132809586432, -0.557497049643686, -0.557497049643686, -0.514730840399559, -0.258133584934798, -1.02792535132908, -0.856860514352574, -0.685795677376067, -0.77132809586432, -0.77132809586432, -0.77132809586432, -1.02792535132908, -1.15622397906146, -0.985159142084955, -0.985159142084955, -1.02792535132908, -0.985159142084955, -1.07069156057321, -1.11345776981734, -1.15622397906146, -1.07069156057321, -0.985159142084955, -0.985159142084955, -1.07069156057321, -1.11345776981734, -1.02792535132908, -1.02792535132908, -0.471964631155432, 0.426125762971232, -0.00153632947003662, 0.554424390703613, 1.45251478483028, 0.896554064656628, -0.429198421911306, 0.0412298797740903, 0.083996089018217, -0.343666003423052, -0.728561886620194, -0.728561886620194, -0.343666003423052, -0.471964631155432, -0.343666003423052, 0.72548922768012, 0.426125762971232, -0.172601166446544, 0.0412298797740903, 0.340593344482978, 0.639956809191867, 1.28144994785377, 0.768255436924247, 0.511658181459486, -0.215367375690671, -0.942392932840828, -0.856860514352574, 0.0412298797740903, -0.343666003423052, -0.985159142084955, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.02792535132908, -1.02792535132908, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.11345776981734, -1.02792535132908, -1.07069156057321, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.899626723596701, -0.471964631155432, -0.386432212667179, 0.212294716750598, 0.72548922768012, 1.58081341256266, 0.59719059994774, 1.15315132012139, 0.554424390703613, -0.386432212667179, -0.685795677376067, -0.685795677376067, -0.172601166446544, -0.129834957202417, -0.64302946813194, -0.343666003423052, -0.215367375690671, 0.468891972215359, 0.682723018435993, 0.682723018435993, 0.72548922768012, 1.19591752936552, 1.53804720331853, 1.53804720331853, 0.639956809191867, -0.300899794178925, -0.728561886620194, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.64302946813194, 0.340593344482978, -0.386432212667179, -0.728561886620194, -0.600263258887813, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.02792535132908, -1.07069156057321, -0.985159142084955, -0.814094305108448, -1.11345776981734, -1.02792535132908, -0.557497049643686, -0.129834957202417, 0.169528507506471, -0.172601166446544, -0.129834957202417, 0.982086483144882, 0.426125762971232, 0.212294716750598, -0.343666003423052, -0.514730840399559, -0.429198421911306, -0.600263258887813, -0.172601166446544, -0.514730840399559, -0.429198421911306, -0.685795677376067, -0.0870687479582905, 0.639956809191867, 1.45251478483028, 0.982086483144882, 0.383359553727105, -0.172601166446544, 0.340593344482978, 0.768255436924247, 0.426125762971232, -0.514730840399559, -0.172601166446544, 0.511658181459486, 0.297827135238852, -0.215367375690671, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.728561886620194, -0.985159142084955, -0.942392932840828, -0.685795677376067, -0.899626723596701, -1.07069156057321, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -0.814094305108448, -1.07069156057321, -0.942392932840828, -0.64302946813194, -0.64302946813194, -0.215367375690671, -0.0443025387141636, -0.386432212667179, -0.300899794178925, 0.169528507506471, 0.126762298262344, -0.215367375690671, 0.169528507506471, 2.17954034198043, 1.06761890163314, -0.0870687479582905, -0.471964631155432, -1.02792535132908, -0.728561886620194, -0.557497049643686, -0.343666003423052, -0.685795677376067, -0.985159142084955, -0.64302946813194, 0.768255436924247, 0.982086483144882, 0.511658181459486, 0.939320273900755, 0.255060925994725, -0.258133584934798, -0.258133584934798, -0.215367375690671, 0.083996089018217, -0.300899794178925, 0.639956809191867, 1.66634583105091, 1.15315132012139, 0.383359553727105, 0.72548922768012, 0.896554064656628, 0.811021646168374, 0.083996089018217, -1.15622397906146, -1.02792535132908, -1.02792535132908, -1.15622397906146, -0.899626723596701, -0.856860514352574, -1.15622397906146, -1.15622397906146, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.11345776981734, -1.15622397906146, -1.02792535132908, -0.899626723596701, -0.985159142084955, -0.899626723596701, -0.856860514352574, -1.15622397906146, -1.15622397906146, -1.11345776981734, -0.685795677376067, -0.343666003423052, -1.02792535132908, -0.856860514352574, -0.172601166446544, 0.554424390703613, 1.15315132012139, 0.59719059994774, 0.340593344482978, -0.386432212667179, 0.468891972215359, 0.511658181459486, 0.0412298797740903, 1.06761890163314, 1.92294308651567, 1.62357962180679, 0.383359553727105, -0.514730840399559, -1.15622397906146, -1.15622397906146, -0.985159142084955, -0.814094305108448, -0.985159142084955, -1.15622397906146, -0.814094305108448, 0.340593344482978, 0.682723018435993, -0.0443025387141636, -0.215367375690671, -0.685795677376067, -0.985159142084955, -0.899626723596701, -0.557497049643686, -0.0870687479582905, -0.258133584934798, -0.00153632947003662, 0.511658181459486, 0.468891972215359, 0.083996089018217, 0.383359553727105, 0.982086483144882, 1.23868373860964, 0.72548922768012, -0.557497049643686, -0.814094305108448, -1.11345776981734, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.942392932840828, -0.899626723596701, -0.856860514352574, -0.856860514352574, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.11345776981734, -1.11345776981734, -1.15622397906146, -1.15622397906146, -0.942392932840828, -1.11345776981734, -1.07069156057321, -0.856860514352574, -1.15622397906146, -1.15622397906146, -1.02792535132908, -0.77132809586432, -0.685795677376067, -0.942392932840828, -1.15622397906146, -0.985159142084955, 0.169528507506471, 0.72548922768012, 0.682723018435993, -0.129834957202417, 0.297827135238852, 0.682723018435993, 0.72548922768012, 0.982086483144882, 1.28144994785377, 1.19591752936552, 0.982086483144882, 0.768255436924247, -0.172601166446544, -0.985159142084955, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.11345776981734, -0.64302946813194, -0.00153632947003662, -0.0870687479582905, -0.899626723596701, -1.15622397906146, -1.11345776981734, -0.728561886620194, -0.0870687479582905, -0.215367375690671, -0.471964631155432, -0.429198421911306, 0.083996089018217, 0.0412298797740903, 0.212294716750598, 0.853787855412501, 0.853787855412501, 0.426125762971232, -0.0870687479582905, -0.64302946813194, -0.942392932840828, -0.77132809586432, -1.11345776981734, -0.856860514352574, -0.64302946813194, -0.77132809586432, -0.64302946813194, -0.386432212667179, -0.258133584934798, -0.258133584934798, -0.814094305108448, -0.899626723596701, -0.856860514352574, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.728561886620194, -0.685795677376067, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -1.07069156057321, -0.172601166446544, 0.468891972215359, 1.06761890163314, 1.79464445878329, 1.79464445878329, 1.62357962180679, 1.23868373860964, 0.468891972215359, 0.682723018435993, 0.468891972215359, 0.896554064656628, 0.340593344482978, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.11345776981734, -1.11345776981734, -1.15622397906146, -1.15622397906146, -0.985159142084955, -0.685795677376067, -0.685795677376067, -1.07069156057321, -1.15622397906146, -0.856860514352574, -0.471964631155432, -0.215367375690671, -0.343666003423052, -0.600263258887813, -0.0443025387141636, 0.554424390703613, 0.0412298797740903, 0.212294716750598, 0.811021646168374, 1.02485269238901, 1.45251478483028, 0.682723018435993, -0.77132809586432, -1.15622397906146, -0.64302946813194, -0.129834957202417, 0.169528507506471, -0.215367375690671, -0.814094305108448, -0.685795677376067, -0.514730840399559, -0.514730840399559, 0.083996089018217, 0.72548922768012, 0.511658181459486, -0.172601166446544, -0.600263258887813, -0.899626723596701, -0.985159142084955, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -0.728561886620194, -0.64302946813194, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.856860514352574, -0.728561886620194, -0.814094305108448, -0.514730840399559, 0.297827135238852, 0.939320273900755, 0.59719059994774, 0.468891972215359, -0.00153632947003662, -0.64302946813194, -0.429198421911306, -0.300899794178925, -0.129834957202417, -0.258133584934798, -0.942392932840828, -1.15622397906146, -1.15622397906146, -0.728561886620194, -0.728561886620194, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.11345776981734, -0.856860514352574, -0.300899794178925, -0.856860514352574, -0.942392932840828, -0.429198421911306, -0.172601166446544, -0.300899794178925, -0.343666003423052, -0.0870687479582905, -0.0443025387141636, -0.215367375690671, -0.300899794178925, 0.212294716750598, 0.340593344482978, 1.06761890163314, 0.340593344482978, -0.899626723596701, -1.15622397906146, -1.15622397906146, -0.64302946813194, 0.126762298262344, 1.36698236634202, 0.340593344482978, -0.856860514352574, -0.814094305108448, -0.471964631155432, -0.600263258887813, -0.129834957202417, 0.255060925994725, 0.768255436924247, 0.0412298797740903, -0.386432212667179, -0.685795677376067, -0.985159142084955, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -0.985159142084955, -1.07069156057321, -1.07069156057321, -1.07069156057321, -1.11345776981734, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.899626723596701, -0.343666003423052, -0.514730840399559, -0.856860514352574, -0.985159142084955, -0.814094305108448, -0.899626723596701, -0.985159142084955, -0.300899794178925, -0.129834957202417, -0.514730840399559, -1.07069156057321, -1.02792535132908, -0.814094305108448, -0.856860514352574, -1.15622397906146, -1.07069156057321, -0.814094305108448, -0.856860514352574, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.77132809586432, 0.255060925994725, -0.172601166446544, -0.899626723596701, -0.685795677376067, -0.258133584934798, 0.0412298797740903, -0.514730840399559, -0.728561886620194, -0.258133584934798, -0.0870687479582905, -0.300899794178925, -0.429198421911306, -0.300899794178925, -0.386432212667179, -0.429198421911306, -1.02792535132908, -1.11345776981734, -0.685795677376067, -0.728561886620194, -0.899626723596701, -1.07069156057321, 0.511658181459486, -0.0443025387141636, -0.77132809586432, -0.814094305108448, -0.172601166446544, -0.0870687479582905, -0.0870687479582905, -0.471964631155432, -0.215367375690671, -0.557497049643686, -0.64302946813194, -0.471964631155432, -0.856860514352574, -0.557497049643686, -0.64302946813194, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.11345776981734, -0.856860514352574, -0.471964631155432, -0.557497049643686, -0.728561886620194, -0.728561886620194, -0.685795677376067, -0.471964631155432, -0.471964631155432, -0.899626723596701, -1.07069156057321, -1.02792535132908, -0.814094305108448, -1.02792535132908, -0.64302946813194, 0.126762298262344, -0.343666003423052, -0.300899794178925, 0.212294716750598, 0.59719059994774, 0.169528507506471, -0.471964631155432, -0.899626723596701, -0.557497049643686, -0.429198421911306, -0.985159142084955, -1.11345776981734, -0.899626723596701, -0.985159142084955, -1.15622397906146, -1.11345776981734, -0.942392932840828, -0.942392932840828, -0.985159142084955, -0.64302946813194, 0.383359553727105, 0.169528507506471, -0.514730840399559, -0.343666003423052, -0.0443025387141636, -0.00153632947003662, -0.514730840399559, -0.899626723596701, -0.77132809586432, -0.343666003423052, -0.172601166446544, -0.300899794178925, -0.64302946813194, -0.0870687479582905, -0.300899794178925, -0.814094305108448, -1.02792535132908, -0.728561886620194, -0.514730840399559, -0.985159142084955, -0.856860514352574, -0.942392932840828, -0.600263258887813, -0.685795677376067, -0.899626723596701, -0.129834957202417, 0.169528507506471, -0.429198421911306, -0.856860514352574, -0.985159142084955, -0.899626723596701, -0.429198421911306, 0.083996089018217, -0.300899794178925, -0.685795677376067, -0.856860514352574, -0.856860514352574, -0.814094305108448, -0.77132809586432, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -1.07069156057321, -0.129834957202417, 0.554424390703613, 0.297827135238852, -0.129834957202417, -0.429198421911306, -0.557497049643686, -0.300899794178925, -0.300899794178925, -0.600263258887813, -0.899626723596701, -0.942392932840828, -0.77132809586432, -0.386432212667179, 0.126762298262344, 0.0412298797740903, -0.557497049643686, -0.386432212667179, 0.083996089018217, -0.129834957202417, -0.64302946813194, -0.77132809586432, -0.942392932840828, -0.172601166446544, -0.557497049643686, -1.15622397906146, -1.15622397906146, -0.856860514352574, -0.77132809586432, -0.856860514352574, -0.985159142084955, -0.814094305108448, -0.685795677376067, -0.814094305108448, 0.212294716750598, 1.3242161570979, 0.468891972215359, -0.0443025387141636, -0.215367375690671, -0.215367375690671, -0.300899794178925, -0.172601166446544, -0.728561886620194, -1.02792535132908, -0.429198421911306, -0.0443025387141636, -0.0870687479582905, -0.0870687479582905, 0.682723018435993, 0.083996089018217, -0.471964631155432, -0.386432212667179, -0.514730840399559, -1.07069156057321, -1.11345776981734, -0.685795677376067, -0.856860514352574, -0.728561886620194, -1.15622397906146, -0.942392932840828, -1.02792535132908, -0.856860514352574, -0.429198421911306, -0.300899794178925, -0.343666003423052, 0.383359553727105, 0.426125762971232, -0.343666003423052, -0.300899794178925, -0.300899794178925, 0.212294716750598, -0.343666003423052, -0.77132809586432, -0.64302946813194, -0.0870687479582905, -0.343666003423052, -0.942392932840828, -1.15622397906146, -1.15622397906146, -1.02792535132908, -1.02792535132908, -1.15622397906146, -1.15622397906146, -0.942392932840828, 0.083996089018217, 0.468891972215359, 0.682723018435993, 0.811021646168374, 0.639956809191867, -0.215367375690671, -0.215367375690671, 0.297827135238852, 0.426125762971232, 0.255060925994725, 0.554424390703613, 0.853787855412501, 0.896554064656628, 1.02485269238901, 0.468891972215359, 0.126762298262344, -0.172601166446544, -0.64302946813194, -0.258133584934798, -0.00153632947003662, -0.728561886620194, -0.942392932840828, -0.600263258887813, -0.300899794178925, -0.856860514352574, -1.15622397906146, -1.07069156057321, -0.899626723596701, -0.685795677376067, -0.814094305108448, -1.07069156057321, -0.471964631155432, 0.0412298797740903, 0.426125762971232, 1.3242161570979, 1.19591752936552, 0.811021646168374, 0.0412298797740903, -0.471964631155432, -0.215367375690671, -0.514730840399559, -0.728561886620194, -1.07069156057321, -0.856860514352574, -0.514730840399559, -0.00153632947003662, -0.0443025387141636, 0.511658181459486, 0.768255436924247, 0.126762298262344, -0.00153632947003662, -0.172601166446544, -0.728561886620194, -0.814094305108448, -0.64302946813194, -0.942392932840828, -0.215367375690671, -0.172601166446544, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.856860514352574, -0.856860514352574, -0.899626723596701, -0.386432212667179, 0.59719059994774, 1.15315132012139, 0.340593344482978, 0.083996089018217, 0.59719059994774, 1.11038511087726, 1.15315132012139, 0.853787855412501, -0.00153632947003662, 0.083996089018217, -0.300899794178925, -1.15622397906146, -1.11345776981734, -0.77132809586432, -0.942392932840828, -1.11345776981734, -1.15622397906146, -1.15622397906146, -0.899626723596701, 0.126762298262344, -0.0443025387141636, -0.0870687479582905, 0.682723018435993, 1.02485269238901, 1.19591752936552, 1.15315132012139, 0.811021646168374, 1.23868373860964, 1.70911204029504, 1.75187824953917, 1.19591752936552, 0.939320273900755, 1.9657092957598, 2.22230655122456, 1.45251478483028, 0.426125762971232, 0.212294716750598, 0.554424390703613, 0.853787855412501, 0.083996089018217, -0.343666003423052, -0.386432212667179, -0.429198421911306, -0.64302946813194, -0.685795677376067, -0.899626723596701, -0.942392932840828, -0.64302946813194, -0.600263258887813, -0.899626723596701, -0.343666003423052, 0.939320273900755, 0.939320273900755, 0.554424390703613, 0.896554064656628, 0.682723018435993, 0.383359553727105, 0.169528507506471, 0.0412298797740903, -0.557497049643686, -0.557497049643686, -0.514730840399559, -0.429198421911306, 0.083996089018217, 0.340593344482978, -0.600263258887813, -0.386432212667179, 0.383359553727105, 0.0412298797740903, -0.685795677376067, -0.685795677376067, -0.0870687479582905, -0.0870687479582905, -0.64302946813194, -0.942392932840828, -0.856860514352574, -0.386432212667179, -1.11345776981734, -0.64302946813194, -0.0870687479582905, -0.600263258887813, -0.985159142084955, -0.942392932840828, -0.942392932840828, -1.11345776981734, -0.77132809586432, -0.129834957202417, 0.126762298262344, -0.429198421911306, -0.215367375690671, 0.59719059994774, 0.768255436924247, 0.853787855412501, 0.768255436924247, 0.297827135238852, -0.258133584934798, -0.685795677376067, -1.15622397906146, -0.985159142084955, -0.685795677376067, -1.15622397906146, -1.15622397906146, -0.942392932840828, -0.685795677376067, -0.600263258887813, -0.343666003423052, -0.258133584934798, 1.06761890163314, 1.92294308651567, 0.982086483144882, 0.939320273900755, 1.06761890163314, 0.896554064656628, 0.426125762971232, 0.768255436924247, 1.66634583105091, 1.75187824953917, 1.4952809940744, 0.811021646168374, 0.468891972215359, 0.426125762971232, 0.340593344482978, 0.554424390703613, 0.126762298262344, -0.514730840399559, -0.64302946813194, -0.300899794178925, 0.340593344482978, 0.297827135238852, -0.343666003423052, -0.557497049643686, -0.429198421911306, -0.386432212667179, -0.728561886620194, -0.129834957202417, 0.72548922768012, 0.639956809191867, -0.0443025387141636, -0.386432212667179, -0.129834957202417, -0.0870687479582905, -0.172601166446544, -0.258133584934798, -0.172601166446544, 0.383359553727105, 0.340593344482978, 0.297827135238852, 0.255060925994725, -0.64302946813194, -0.685795677376067, 0.126762298262344, 0.169528507506471, -0.343666003423052, -0.429198421911306, -0.215367375690671, 0.255060925994725, 0.554424390703613, -0.172601166446544, -0.343666003423052, 0.896554064656628, 0.255060925994725, -0.856860514352574, -0.258133584934798, -0.258133584934798, -0.64302946813194, -1.07069156057321, -1.02792535132908, -0.856860514352574, -0.343666003423052, -0.0870687479582905, 0.0412298797740903, -0.471964631155432, -0.0870687479582905, -0.215367375690671, -1.07069156057321, -1.15622397906146, -0.942392932840828, -0.557497049643686, -0.343666003423052, -0.172601166446544, 0.169528507506471, 0.126762298262344, 0.0412298797740903, 0.083996089018217, -0.172601166446544, -0.514730840399559, -0.77132809586432, -1.02792535132908, -1.02792535132908, -1.07069156057321, -1.15622397906146, -1.15622397906146, -0.514730840399559, 0.083996089018217, 0.383359553727105, 0.468891972215359, -0.0443025387141636, 0.511658181459486, 0.939320273900755, 0.72548922768012, 0.811021646168374, 0.169528507506471, 0.297827135238852, 0.340593344482978, 0.768255436924247, 0.939320273900755, 0.340593344482978, 0.853787855412501, 0.383359553727105, -0.258133584934798, -0.300899794178925, 0.255060925994725, 0.639956809191867, -0.129834957202417, -0.728561886620194, -0.514730840399559, -0.0870687479582905, 0.72548922768012, 1.92294308651567, 1.36698236634202, 0.853787855412501, 0.896554064656628, 0.896554064656628, -0.129834957202417, -0.728561886620194, -0.343666003423052, 0.255060925994725, 0.468891972215359, -0.0443025387141636, -0.300899794178925, -0.172601166446544, -0.343666003423052, -0.172601166446544, 0.426125762971232, 1.06761890163314, 0.811021646168374, 0.383359553727105, 1.19591752936552, 0.126762298262344, -0.856860514352574, -0.942392932840828, -0.64302946813194, -0.64302946813194, -0.64302946813194, -0.471964631155432, 0.554424390703613, 1.15315132012139, 0.297827135238852, -0.343666003423052, 0.768255436924247, -0.00153632947003662, -0.386432212667179, 0.72548922768012, 0.554424390703613, -0.386432212667179, -0.899626723596701, -1.15622397906146, -0.985159142084955, -0.856860514352574, -0.77132809586432, -0.942392932840828, -1.02792535132908, -1.15622397906146, -1.02792535132908, 0.426125762971232, 1.75187824953917, 1.4952809940744, 0.0412298797740903, -0.728561886620194, 0.169528507506471, 0.511658181459486, -0.471964631155432, -1.02792535132908, -1.15622397906146, -1.11345776981734, -1.02792535132908, -0.429198421911306, -0.172601166446544, -0.172601166446544, -0.514730840399559, -0.343666003423052, -0.0443025387141636, -0.300899794178925, -0.64302946813194, -0.814094305108448, -0.899626723596701, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.11345776981734, -0.0870687479582905, 1.06761890163314, 1.40974857558615, 1.70911204029504, 1.92294308651567, 1.3242161570979, 0.59719059994774, 0.468891972215359, 0.939320273900755, 0.126762298262344, -0.0870687479582905, 0.212294716750598, 0.768255436924247, 1.06761890163314, 0.511658181459486, -0.00153632947003662, -0.814094305108448, -0.942392932840828, -0.814094305108448, -0.215367375690671, 0.682723018435993, 0.468891972215359, -0.0443025387141636, 0.468891972215359, 0.59719059994774, 0.853787855412501, 2.22230655122456, 2.4361375974452, 2.39337138820107, 2.35060517895694, 2.26507276046869, 1.11038511087726, -0.0870687479582905, -1.02792535132908, -0.215367375690671, 0.896554064656628, 0.639956809191867, 0.169528507506471, 0.255060925994725, 0.340593344482978, 0.169528507506471, 0.255060925994725, 1.15315132012139, 0.982086483144882, 0.768255436924247, 0.682723018435993, 0.126762298262344, -0.172601166446544, -0.429198421911306, -0.77132809586432, -0.557497049643686, -0.300899794178925, 0.0412298797740903, 0.639956809191867, 0.340593344482978, -0.258133584934798, -0.514730840399559, -0.386432212667179, -0.471964631155432, -0.471964631155432, 0.212294716750598, 0.811021646168374, 0.340593344482978, -0.685795677376067, -0.985159142084955, -0.728561886620194, -0.386432212667179, -0.215367375690671, -0.343666003423052, -0.600263258887813, -0.514730840399559, -0.600263258887813, -0.215367375690671, -1.02792535132908, -1.15622397906146, -0.64302946813194, -0.0870687479582905, -0.600263258887813, 0.126762298262344, 1.36698236634202, 2.13677413273631, 1.36698236634202, 0.426125762971232, 0.896554064656628, 0.811021646168374, 0.768255436924247, 0.212294716750598, -1.07069156057321, -1.15622397906146, -1.07069156057321, -1.02792535132908, -1.07069156057321, -1.15622397906146, -1.07069156057321, -0.64302946813194, 0.169528507506471, 0.383359553727105, -0.172601166446544, -0.728561886620194, -0.899626723596701, -1.15622397906146, -1.15622397906146, -1.11345776981734, -0.514730840399559, 0.896554064656628, 0.811021646168374, 1.28144994785377, 1.79464445878329, 0.811021646168374, 0.768255436924247, 1.02485269238901, 1.19591752936552, 0.468891972215359, 0.126762298262344, -0.172601166446544, -0.386432212667179, -0.0870687479582905, -0.0870687479582905, -0.343666003423052, -0.77132809586432, -1.07069156057321, -1.11345776981734, -0.985159142084955, -0.215367375690671, 0.853787855412501, 0.383359553727105, 1.11038511087726, 1.79464445878329, 1.75187824953917, 1.70911204029504, 1.9657092957598, 2.47890380668932, 2.64996864366583, 2.69273485290996, 2.26507276046869, 1.45251478483028, 0.768255436924247, 0.639956809191867, 0.939320273900755, 1.06761890163314, 0.896554064656628, 1.06761890163314, 1.06761890163314, 0.72548922768012, 0.768255436924247, 1.28144994785377, 1.36698236634202, 1.02485269238901, 0.853787855412501, 0.255060925994725, 0.59719059994774, 0.468891972215359, -0.258133584934798, 0.212294716750598, 0.768255436924247, 0.426125762971232, 0.768255436924247, 0.511658181459486, 0.126762298262344, -0.258133584934798, -0.685795677376067, -0.429198421911306, -0.429198421911306, -0.0443025387141636, 0.297827135238852, 0.72548922768012, -0.258133584934798, -0.942392932840828, -0.557497049643686, 0.297827135238852, 1.02485269238901, 0.59719059994774, 0.255060925994725, -0.0443025387141636, -0.300899794178925, 0.169528507506471, 0.126762298262344, -0.300899794178925, 0.0412298797740903, -0.600263258887813, -0.129834957202417, 0.383359553727105, -0.258133584934798, -0.258133584934798, 0.426125762971232, 0.126762298262344, 0.426125762971232, 1.36698236634202, 1.40974857558615, 0.639956809191867, 1.36698236634202, 1.06761890163314, -0.814094305108448, -1.15622397906146, -1.07069156057321, -1.11345776981734, -1.15622397906146, -1.11345776981734, -1.02792535132908, -0.557497049643686, -0.215367375690671, -0.429198421911306, -0.728561886620194, -0.814094305108448, -1.15622397906146, -1.11345776981734, -1.15622397906146, -0.814094305108448, -0.728561886620194, -0.899626723596701, 0.083996089018217, 0.426125762971232, 0.126762298262344, 1.11038511087726, 0.939320273900755, 0.212294716750598, -0.215367375690671, -0.215367375690671, -0.215367375690671, -0.429198421911306, -0.258133584934798, -0.172601166446544, -0.00153632947003662, -0.129834957202417, -0.685795677376067, -1.15622397906146, -1.07069156057321, -0.471964631155432, 1.06761890163314, 1.02485269238901, 1.02485269238901, 1.66634583105091, 1.92294308651567, 0.982086483144882, 0.853787855412501, 1.70911204029504, 1.79464445878329, 2.4361375974452, 2.73550106215408, 2.86379968988646, 2.82103348064234, 2.64996864366583, 2.13677413273631, 1.92294308651567, 1.9657092957598, 1.79464445878329, 1.79464445878329, 1.4952809940744, 0.982086483144882, 1.53804720331853, 1.4952809940744, 1.02485269238901, 0.768255436924247, 0.212294716750598, 0.0412298797740903, 0.426125762971232, 0.169528507506471, 0.59719059994774, 0.982086483144882, 0.853787855412501, 1.19591752936552, 1.36698236634202, 1.11038511087726, 0.554424390703613, 1.06761890163314, 0.896554064656628, 0.383359553727105, 0.169528507506471, 0.126762298262344, 0.212294716750598, -0.814094305108448, -1.02792535132908, -1.07069156057321, -0.343666003423052, -0.0870687479582905, -0.514730840399559, -0.728561886620194, -0.172601166446544, 0.768255436924247, 0.939320273900755, 0.212294716750598, -0.0443025387141636, 0.811021646168374, 0.0412298797740903, -0.00153632947003662, -0.0443025387141636, -0.00153632947003662, -0.129834957202417, -0.0870687479582905, -0.0443025387141636, -0.557497049643686, 0.255060925994725, 0.853787855412501, 1.02485269238901, 2.00847550500393, 1.36698236634202, -0.386432212667179, -1.07069156057321, -0.899626723596701, -1.02792535132908, -1.15622397906146, -1.11345776981734, -1.02792535132908, -0.557497049643686, -0.343666003423052, -0.64302946813194, -0.77132809586432, -0.985159142084955, -0.942392932840828, -1.02792535132908, -1.11345776981734, -1.11345776981734, -1.15622397906146, -0.942392932840828, -0.64302946813194, -0.77132809586432, 0.0412298797740903, 0.083996089018217, -0.814094305108448, -1.15622397906146, -0.814094305108448, -0.77132809586432, -0.172601166446544, 0.896554064656628, 1.28144994785377, 1.06761890163314, 0.426125762971232, -0.215367375690671, -0.985159142084955, -0.685795677376067, -0.386432212667179, 0.939320273900755, 1.62357962180679, 1.9657092957598, 1.83741066802742, 1.40974857558615, 0.768255436924247, 0.511658181459486, 0.811021646168374, 1.3242161570979, 1.79464445878329, 2.13677413273631, 2.47890380668932, 2.69273485290996, 3.03486452686297, 2.64996864366583, 2.05124171424805, 2.00847550500393, 2.17954034198043, 2.09400792349218, 1.36698236634202, 0.896554064656628, 1.45251478483028, 1.75187824953917, 1.11038511087726, 1.02485269238901, 0.255060925994725, 0.511658181459486, 0.511658181459486, 0.169528507506471, 0.0412298797740903, 0.811021646168374, 1.19591752936552, 1.9657092957598, 2.05124171424805, 2.4361375974452, 2.17954034198043, 2.09400792349218, 1.9657092957598, 1.40974857558615, 0.768255436924247, 0.0412298797740903, -0.343666003423052, -1.15622397906146, -1.11345776981734, -0.985159142084955, -1.07069156057321, -0.985159142084955, -0.942392932840828, -1.07069156057321, -0.429198421911306, 0.59719059994774, 1.15315132012139, 0.682723018435993, 0.255060925994725, 0.853787855412501, 0.083996089018217, -0.429198421911306, -0.600263258887813, 0.59719059994774, 0.297827135238852, -0.386432212667179, 0.0412298797740903, -0.856860514352574, -0.685795677376067, -0.429198421911306, 0.083996089018217, 0.72548922768012, 1.06761890163314, 0.126762298262344, -1.02792535132908, -0.557497049643686, -0.600263258887813, -0.899626723596701, -0.728561886620194, -0.942392932840828, -0.600263258887813, -0.557497049643686, -0.856860514352574, -0.985159142084955, -1.07069156057321, -1.15622397906146, -0.985159142084955, -1.07069156057321, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.64302946813194, -0.172601166446544, -0.300899794178925, -0.514730840399559, -0.557497049643686, -0.471964631155432, -0.429198421911306, -0.600263258887813, -0.258133584934798, 0.0412298797740903, 0.554424390703613, 1.3242161570979, 1.23868373860964, 0.939320273900755, 0.340593344482978, 0.340593344482978, 1.3242161570979, 1.58081341256266, 1.15315132012139, 0.72548922768012, 1.45251478483028, 1.62357962180679, 2.17954034198043, 2.39337138820107, 2.22230655122456, 2.09400792349218, 2.64996864366583, 2.64996864366583, 2.77826727139821, 2.09400792349218, 1.40974857558615, 1.28144994785377, 1.02485269238901, 0.59719059994774, 0.982086483144882, 0.426125762971232, 0.939320273900755, 1.15315132012139, 1.02485269238901, 1.45251478483028, 1.79464445878329, 2.22230655122456, 2.13677413273631, 2.22230655122456, 2.17954034198043, 2.39337138820107, 1.79464445878329, 1.40974857558615, 2.09400792349218, 1.19591752936552, 0.212294716750598, -0.172601166446544, -1.11345776981734, -1.02792535132908, -0.685795677376067, -0.600263258887813, -0.899626723596701, -0.685795677376067, -0.814094305108448, -0.600263258887813, -0.471964631155432, -0.0443025387141636, -0.00153632947003662, 0.126762298262344, 1.11038511087726, 1.15315132012139, 0.59719059994774, 0.169528507506471, 0.896554064656628, 1.23868373860964, 1.19591752936552, 0.554424390703613, -0.0443025387141636, -0.814094305108448, -1.07069156057321, -1.11345776981734, -0.814094305108448, 0.169528507506471, 0.297827135238852, -0.77132809586432, -0.814094305108448, -0.728561886620194, -0.685795677376067, -0.514730840399559, -0.300899794178925, 0.0412298797740903, -0.514730840399559, -1.07069156057321, -1.11345776981734, -1.07069156057321, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.07069156057321, -1.07069156057321, -0.856860514352574, -0.814094305108448, -1.15622397906146, -1.11345776981734, -0.386432212667179, 1.06761890163314, 0.297827135238852, -1.07069156057321, -1.15622397906146, -0.856860514352574, -0.215367375690671, -0.514730840399559, -0.64302946813194, -0.0870687479582905, 0.72548922768012, 0.939320273900755, 0.426125762971232, 0.939320273900755, 1.02485269238901, 0.639956809191867, 1.79464445878329, 2.69273485290996, 2.26507276046869, 1.23868373860964, 0.682723018435993, 1.15315132012139, 1.83741066802742, 1.53804720331853, 1.88017687727155, 2.09400792349218, 2.47890380668932, 2.4361375974452, 2.39337138820107, 2.52167001593345, 2.4361375974452, 2.35060517895694, 1.75187824953917, 0.939320273900755, 0.340593344482978, 0.255060925994725, 0.383359553727105, 0.212294716750598, 0.768255436924247, 1.53804720331853, 1.75187824953917, 1.3242161570979, 1.3242161570979, 2.13677413273631, 1.92294308651567, 1.06761890163314, 0.511658181459486, 0.682723018435993, 1.88017687727155, 0.853787855412501, -0.429198421911306, -0.514730840399559, -0.685795677376067, -0.514730840399559, -0.64302946813194, -0.600263258887813, -0.300899794178925, 0.126762298262344, -0.215367375690671, 0.340593344482978, 0.468891972215359, -0.129834957202417, -0.386432212667179, -0.215367375690671, 0.768255436924247, 1.19591752936552, 0.682723018435993, 0.639956809191867, 0.639956809191867, 1.15315132012139, 1.66634583105091, 1.11038511087726, 0.340593344482978, -0.429198421911306, -0.942392932840828, -1.07069156057321, -0.386432212667179, 0.083996089018217, 0.0412298797740903, -0.685795677376067, -1.11345776981734, -0.899626723596701, -0.856860514352574, -0.728561886620194, -0.557497049643686, -0.0870687479582905, -0.600263258887813, -1.02792535132908, -1.15622397906146, -0.899626723596701, -0.942392932840828, -0.942392932840828, -0.728561886620194, -1.02792535132908, -1.15622397906146, -0.985159142084955, -0.942392932840828, -0.77132809586432, -0.471964631155432, -0.557497049643686, -0.856860514352574, -0.64302946813194, 1.11038511087726, 1.40974857558615, -0.814094305108448, -1.11345776981734, -0.856860514352574, -0.386432212667179, 0.0412298797740903, -0.258133584934798, -0.215367375690671, 0.811021646168374, 0.212294716750598, 0.169528507506471, 0.72548922768012, 1.15315132012139, 0.59719059994774, 1.23868373860964, 2.47890380668932, 2.77826727139821, 2.00847550500393, 0.255060925994725, 0.554424390703613, 1.62357962180679, 1.70911204029504, 1.9657092957598, 1.4952809940744, 1.4952809940744, 1.75187824953917, 2.17954034198043, 2.22230655122456, 2.47890380668932, 2.56443622517758, 2.35060517895694, 1.88017687727155, 0.554424390703613, 0.297827135238852, 0.126762298262344, -0.856860514352574, -0.942392932840828, -0.600263258887813, -0.343666003423052, -0.258133584934798, 0.59719059994774, 1.40974857558615, 1.9657092957598, 1.19591752936552, 0.639956809191867, 0.72548922768012, 1.40974857558615, 0.511658181459486, -0.77132809586432, -0.814094305108448, -0.471964631155432, 0.297827135238852, 0.169528507506471, -0.172601166446544, 0.383359553727105, 0.982086483144882, 0.212294716750598, 0.682723018435993, 0.768255436924247, 0.340593344482978, -0.0870687479582905, -0.00153632947003662, 1.02485269238901, 1.3242161570979, 0.896554064656628, 0.896554064656628, 0.768255436924247, -0.00153632947003662, 0.169528507506471, 1.19591752936552, 0.982086483144882, -0.172601166446544, -0.814094305108448, -0.514730840399559, -0.0870687479582905, -0.258133584934798, -0.514730840399559, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.02792535132908, -0.985159142084955, -0.899626723596701, -0.514730840399559, -0.685795677376067, -1.02792535132908, -1.02792535132908, -1.07069156057321, -1.07069156057321, -0.728561886620194, -1.11345776981734, -1.15622397906146, -1.07069156057321, -0.814094305108448, -0.129834957202417, 0.255060925994725, 0.811021646168374, 0.255060925994725, -0.0870687479582905, 1.06761890163314, 1.19591752936552, -0.685795677376067, -1.15622397906146, -0.985159142084955, -0.728561886620194, 0.811021646168374, 0.682723018435993, -0.215367375690671, -0.0870687479582905, -0.557497049643686, 0.083996089018217, 1.15315132012139, 0.939320273900755, 0.426125762971232, 0.59719059994774, 1.53804720331853, 1.66634583105091, 0.982086483144882, 0.212294716750598, 0.682723018435993, 1.19591752936552, 1.3242161570979, 1.36698236634202, 0.083996089018217, -0.258133584934798, 0.297827135238852, 1.53804720331853, 2.56443622517758, 2.4361375974452, 2.4361375974452, 2.22230655122456, 2.30783896971282, 1.83741066802742, 1.36698236634202, 1.15315132012139, 0.554424390703613, 0.0412298797740903, -0.77132809586432, -0.942392932840828, -0.942392932840828, -0.514730840399559, 0.340593344482978, 0.554424390703613, 0.72548922768012, 0.896554064656628, 0.768255436924247, 0.811021646168374, 0.768255436924247, -0.258133584934798, -0.429198421911306, -0.685795677376067, 0.169528507506471, 0.212294716750598, -0.258133584934798, -0.172601166446544, 0.340593344482978, 0.340593344482978, 0.468891972215359, 0.853787855412501, 0.59719059994774, 0.554424390703613, -0.0443025387141636, 0.768255436924247, 2.30783896971282, 2.26507276046869, 1.40974857558615, 1.02485269238901, 0.212294716750598, -0.172601166446544, 0.511658181459486, 1.11038511087726, 0.554424390703613, -0.557497049643686, -0.514730840399559, 0.083996089018217, 0.255060925994725, -0.471964631155432, -0.985159142084955, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.942392932840828, -0.429198421911306, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.899626723596701, -0.429198421911306, -0.00153632947003662, 0.0412298797740903, -0.557497049643686, -0.343666003423052, -0.300899794178925, 0.383359553727105, -0.0443025387141636, -0.899626723596701, -1.15622397906146, -1.15622397906146, -0.814094305108448, 0.169528507506471, 0.340593344482978, -0.00153632947003662, -0.129834957202417, -0.429198421911306, 0.126762298262344, 0.982086483144882, 0.682723018435993, 0.255060925994725, 0.72548922768012, 0.939320273900755, 0.468891972215359, 0.083996089018217, 0.554424390703613, 1.3242161570979, 1.66634583105091, 1.58081341256266, 0.682723018435993, -0.429198421911306, -0.300899794178925, -0.343666003423052, 0.169528507506471, 1.36698236634202, 2.52167001593345, 2.4361375974452, 2.35060517895694, 2.26507276046869, 1.9657092957598, 1.53804720331853, 1.62357962180679, 2.22230655122456, 2.35060517895694, 1.58081341256266, 1.11038511087726, 0.768255436924247, 1.19591752936552, 1.62357962180679, 1.28144994785377, 0.939320273900755, 0.72548922768012, -0.172601166446544, -0.514730840399559, -0.129834957202417, -0.386432212667179, -0.129834957202417, -0.129834957202417, -0.215367375690671, -0.471964631155432, -0.685795677376067, -0.64302946813194, -0.471964631155432, -0.172601166446544, -0.600263258887813, -0.343666003423052, 0.0412298797740903, 0.083996089018217, -0.728561886620194, -0.514730840399559, 0.639956809191867, 0.939320273900755, 0.212294716750598, -0.471964631155432, -0.856860514352574, -0.300899794178925, -0.258133584934798, 0.426125762971232, 1.23868373860964, -0.386432212667179, -1.02792535132908, -0.471964631155432, -0.300899794178925, -0.685795677376067, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.15622397906146, -0.728561886620194, -0.600263258887813, -0.899626723596701, -0.942392932840828, -1.11345776981734, -0.856860514352574, -0.429198421911306, -0.429198421911306, -0.215367375690671, -0.728561886620194, -0.942392932840828, -0.942392932840828, -1.07069156057321, -0.942392932840828, -0.600263258887813, -0.685795677376067, -0.300899794178925, -0.0443025387141636, 0.383359553727105, 0.426125762971232, 0.853787855412501, 0.511658181459486, 0.169528507506471, 0.853787855412501, 0.768255436924247, 0.083996089018217, 0.169528507506471, 0.297827135238852, 0.59719059994774, 1.40974857558615, 1.66634583105091, 0.297827135238852, -0.258133584934798, 0.255060925994725, 0.212294716750598, -0.0443025387141636, 0.511658181459486, 1.92294308651567, 2.39337138820107, 2.17954034198043, 2.35060517895694, 2.00847550500393, 1.62357962180679, 1.4952809940744, 1.53804720331853, 2.00847550500393, 2.47890380668932, 2.39337138820107, 2.86379968988646, 2.73550106215408, 2.77826727139821, 2.86379968988646, 2.77826727139821, 2.35060517895694, 1.06761890163314, -0.258133584934798, -0.728561886620194, -0.814094305108448, -0.557497049643686, -0.514730840399559, -0.514730840399559, -0.814094305108448, -0.856860514352574, -0.899626723596701, -1.02792535132908, -0.942392932840828, -1.11345776981734, -1.07069156057321, -1.11345776981734, -1.15622397906146, -1.11345776981734, -1.11345776981734, -1.07069156057321, -0.814094305108448, -0.942392932840828, -1.02792535132908, -1.07069156057321, -1.15622397906146, -0.899626723596701, -0.64302946813194, -0.00153632947003662, -0.728561886620194, -1.15622397906146, -1.07069156057321, -1.15622397906146, -1.07069156057321, -1.07069156057321, -0.514730840399559, 0.169528507506471, -0.300899794178925, -1.11345776981734, -0.856860514352574, -0.600263258887813, -0.728561886620194, -0.0443025387141636, 0.0412298797740903, -0.129834957202417, -0.386432212667179, -0.600263258887813, -1.02792535132908, -1.02792535132908, -0.856860514352574, -0.899626723596701, -0.942392932840828, -1.07069156057321, -0.899626723596701, 0.212294716750598, 0.982086483144882, 1.15315132012139, 0.72548922768012, 0.682723018435993, 0.768255436924247, 0.896554064656628, 0.169528507506471, 0.169528507506471, 0.72548922768012, 0.255060925994725, 0.939320273900755, 1.36698236634202, 0.896554064656628, 0.939320273900755, 1.3242161570979, 1.45251478483028, 1.4952809940744, 1.66634583105091, 1.92294308651567, 1.75187824953917, 1.79464445878329, 2.26507276046869, 1.70911204029504, 1.62357962180679, 1.40974857558615, 0.212294716750598, 0.255060925994725, 0.896554064656628, 1.40974857558615, 1.75187824953917, 2.13677413273631, 2.17954034198043, 2.35060517895694, 2.69273485290996, 2.22230655122456, 1.58081341256266, 0.853787855412501, 0.383359553727105, -0.00153632947003662, -0.429198421911306, -0.77132809586432, -0.985159142084955, -1.02792535132908, -1.15622397906146, -0.685795677376067, -0.300899794178925, -0.77132809586432, -1.11345776981734, -0.856860514352574, -0.429198421911306, -0.258133584934798, 0.083996089018217, -0.386432212667179, -0.685795677376067, -0.429198421911306, -0.814094305108448, -1.07069156057321, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.07069156057321, -0.728561886620194, -0.343666003423052, 0.682723018435993, 1.70911204029504, 1.23868373860964, 0.896554064656628, 0.811021646168374, 0.72548922768012, 0.811021646168374, 0.426125762971232, 0.554424390703613, 0.939320273900755, 0.853787855412501, 0.468891972215359, 1.02485269238901, 1.58081341256266, 1.40974857558615, 2.05124171424805, 2.13677413273631, 1.92294308651567, 2.05124171424805, 1.45251478483028, 1.06761890163314, 1.36698236634202, 1.15315132012139, 0.939320273900755, 0.511658181459486, 0.383359553727105, 0.0412298797740903, -0.172601166446544, 0.340593344482978, 0.896554064656628, 0.982086483144882, 1.23868373860964, 0.896554064656628, 0.896554064656628, 1.02485269238901, 0.639956809191867, 0.383359553727105, 0.72548922768012, 0.811021646168374, 0.297827135238852, -0.258133584934798, -0.77132809586432, -1.15622397906146, -1.11345776981734, -1.15622397906146, -1.15622397906146, -0.985159142084955, -0.300899794178925, -0.343666003423052, -0.77132809586432, -0.899626723596701, -0.942392932840828, -1.07069156057321, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.11345776981734, -1.02792535132908, -0.514730840399559, -0.00153632947003662, 0.853787855412501, 1.06761890163314, -0.172601166446544, -0.514730840399559, -0.600263258887813, -0.557497049643686, 0.083996089018217, -0.0870687479582905, 0.340593344482978, 1.02485269238901, 0.426125762971232, 0.255060925994725, 0.939320273900755, 1.06761890163314, 0.639956809191867, 1.3242161570979, 1.70911204029504, 0.853787855412501, 0.468891972215359, 0.0412298797740903, 0.426125762971232, 0.768255436924247, 0.768255436924247, 0.811021646168374, 0.383359553727105, 0.212294716750598, -0.129834957202417, -0.0443025387141636, 0.083996089018217, 0.169528507506471, 0.554424390703613, 0.59719059994774, 0.212294716750598, -0.258133584934798, -0.129834957202417, -0.64302946813194, -0.600263258887813, -0.0443025387141636, -0.172601166446544, -0.728561886620194, -1.11345776981734, -1.15622397906146, -1.15622397906146, -1.15622397906146, -1.11345776981734, -0.814094305108448, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.07069156057321, -1.07069156057321, -1.11345776981734, -1.11345776981734, -1.15622397906146, -1.07069156057321, -1.15622397906146, -0.942392932840828, -0.814094305108448, -0.215367375690671, 0.169528507506471, -1.02792535132908, -1.15622397906146, -1.15622397906146, -1.07069156057321, -0.600263258887813, -0.64302946813194, -0.215367375690671, 0.297827135238852, -0.129834957202417, 0.169528507506471, 0.853787855412501, 0.896554064656628, 0.126762298262344, 0.212294716750598, 0.383359553727105, -0.215367375690671, 0.126762298262344, 0.0412298797740903, -0.429198421911306, -0.343666003423052, 0.255060925994725, 0.896554064656628, 1.06761890163314, 1.3242161570979, 1.28144994785377, 0.212294716750598, -0.0870687479582905, -0.728561886620194, -0.00153632947003662, 0.982086483144882, 1.15315132012139, 0.0412298797740903, 0.169528507506471, 0.083996089018217, -0.386432212667179, -0.814094305108448, -1.15622397906146, -0.985159142084955, -0.64302946813194, -0.728561886620194, -1.07069156057321, -1.02792535132908, -0.856860514352574, -0.600263258887813, -0.814094305108448, -1.11345776981734, -1.11345776981734, -1.15622397906146, -1.02792535132908, -1.02792535132908, -1.02792535132908, -0.728561886620194, 0.083996089018217, 0.126762298262344, -0.728561886620194, -0.942392932840828, -1.02792535132908, -0.728561886620194, -0.386432212667179, -0.557497049643686, -0.471964631155432, -0.64302946813194, -0.899626723596701, -0.728561886620194, -0.215367375690671, 0.511658181459486, -0.258133584934798, -0.814094305108448, -0.557497049643686, -0.814094305108448, -0.215367375690671, 0.169528507506471, 0.426125762971232, 0.511658181459486, 0.426125762971232, 0.939320273900755, 1.4952809940744, 1.58081341256266, 1.88017687727155, 1.02485269238901, -0.0870687479582905, -0.300899794178925, 0.383359553727105, 1.88017687727155, 1.36698236634202, 0.126762298262344, 0.426125762971232, -0.129834957202417, -0.942392932840828, -0.685795677376067, -0.386432212667179, -0.514730840399559, -1.02792535132908, -1.07069156057321, -1.15622397906146, -1.07069156057321, -1.02792535132908, -1.11345776981734, -0.985159142084955, 0.0412298797740903, 0.169528507506471, -0.77132809586432, -0.899626723596701, -0.985159142084955, -0.600263258887813, -0.0870687479582905, -0.0870687479582905, 0.0412298797740903, -0.172601166446544, -0.600263258887813, -0.172601166446544, 0.340593344482978, 0.083996089018217, -0.258133584934798, -0.300899794178925, 0.0412298797740903, -0.00153632947003662, 1.02485269238901, 2.00847550500393, 1.88017687727155, 1.45251478483028, 0.72548922768012, 0.811021646168374, 0.59719059994774, 0.169528507506471, 0.340593344482978, 0.811021646168374, 0.297827135238852, -0.215367375690671, 0.511658181459486, 0.639956809191867, -0.429198421911306, -0.942392932840828, -0.985159142084955, -0.985159142084955, -1.15622397906146, -1.15622397906146, -1.11345776981734, -1.15622397906146, -1.15622397906146, -0.64302946813194, -0.429198421911306, -0.942392932840828, -0.985159142084955, -1.15622397906146, -1.02792535132908, -0.129834957202417, -0.0870687479582905, 0.383359553727105, 0.511658181459486, -0.386432212667179, -0.129834957202417, 0.768255436924247, 0.72548922768012, -0.0870687479582905, 0.426125762971232, 0.768255436924247, 0.939320273900755, 1.79464445878329, 2.00847550500393, 1.58081341256266, 0.682723018435993, -0.00153632947003662, -0.386432212667179, -0.471964631155432, -0.215367375690671, -0.00153632947003662, 0.169528507506471, -0.172601166446544, -0.471964631155432, -0.942392932840828, -1.02792535132908, -1.02792535132908, -1.02792535132908, -1.02792535132908, -1.15622397906146, -1.15622397906146, -0.985159142084955, -0.856860514352574, -0.685795677376067, -0.77132809586432, -1.15622397906146, -0.985159142084955, -0.471964631155432, -0.429198421911306, -0.129834957202417, 0.383359553727105, -0.300899794178925, -0.64302946813194, 0.083996089018217, 0.511658181459486, -0.429198421911306, -0.258133584934798, 0.255060925994725, 0.383359553727105, 1.4952809940744, 1.62357962180679, 0.59719059994774, -0.471964631155432, -0.856860514352574, -0.899626723596701, -0.985159142084955, -0.64302946813194, -0.386432212667179, -0.471964631155432, -1.15622397906146, -1.15622397906146, -1.07069156057321, -0.899626723596701, -0.942392932840828, -1.07069156057321, -1.02792535132908, -0.899626723596701, -0.985159142084955, -0.600263258887813, -0.942392932840828, -0.985159142084955, -0.0870687479582905, -0.728561886620194, -1.15622397906146, -1.07069156057321, -1.11345776981734, -1.02792535132908, -1.11345776981734, -0.942392932840828, -1.15622397906146, -1.15622397906146, -0.728561886620194, -0.77132809586432)
library(evmix) ### Name: fhpdcon ### Title: MLE Fitting of Hybrid Pareto Extreme Value Mixture Model with ### Single Continuity Constraint ### Aliases: fhpdcon lhpdcon nlhpdcon profluhpdcon nluhpdcon lhpdcon ### fhpdcon nlhpdcon profluhpdcon nluhpdcon nlhpdcon fhpdcon lhpdcon ### profluhpdcon nluhpdcon profluhpdcon fhpdcon lhpdcon nlhpdcon ### nluhpdcon nluhpdcon fhpdcon lhpdcon nlhpdcon profluhpdcon ### ** Examples ## Not run: ##D set.seed(1) ##D par(mfrow = c(2, 1)) ##D ##D x = rnorm(1000) ##D xx = seq(-4, 4, 0.01) ##D y = dnorm(xx) ##D ##D # Hybrid Pareto provides reasonable fit for some asymmetric heavy upper tailed distributions ##D # but not for cases such as the normal distribution ##D ##D # Continuity constraint ##D fit = fhpdcon(x) ##D hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4)) ##D lines(xx, y) ##D with(fit, lines(xx, dhpdcon(xx, nmean, nsd, u, xi), col="red")) ##D abline(v = fit$u, col = "red") ##D ##D # No continuity constraint ##D fit2 = fhpd(x) ##D with(fit2, lines(xx, dhpd(xx, nmean, nsd, xi), col="blue")) ##D abline(v = fit2$u, col = "blue") ##D legend("topleft", c("True Density","No continuity constraint","With continuty constraint"), ##D col=c("black", "blue", "red"), lty = 1) ##D ##D # Profile likelihood for initial value of threshold and fixed threshold approach ##D fitu = fhpdcon(x, useq = seq(-2, 2, length = 20)) ##D fitfix = fhpdcon(x, useq = seq(-2, 2, length = 20), fixedu = TRUE) ##D ##D hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4)) ##D lines(xx, y) ##D with(fit, lines(xx, dhpdcon(xx, nmean, nsd, u, xi), col="red")) ##D abline(v = fit$u, col = "red") ##D with(fitu, lines(xx, dhpdcon(xx, nmean, nsd, u, xi), col="purple")) ##D abline(v = fitu$u, col = "purple") ##D with(fitfix, lines(xx, dhpdcon(xx, nmean, nsd, u, xi), col="darkgreen")) ##D abline(v = fitfix$u, col = "darkgreen") ##D legend("topleft", c("True Density","Default initial value (90% quantile)", ##D "Prof. lik. for initial value", "Prof. lik. for fixed threshold"), ##D col=c("black", "red", "purple", "darkgreen"), lty = 1) ##D ##D # Notice that if tail fraction is included a better fit is obtained ##D fittailfrac = fnormgpdcon(x) ##D ##D par(mfrow = c(1, 1)) ##D hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4)) ##D lines(xx, y) ##D with(fit, lines(xx, dhpdcon(xx, nmean, nsd, u, xi), col="red")) ##D abline(v = fit$u, col = "red") ##D with(fittailfrac, lines(xx, dnormgpdcon(xx, nmean, nsd, u, xi), col="blue")) ##D abline(v = fittailfrac$u) ##D legend("topright", c("Standard Normal", "Hybrid Pareto Continuous", "Normal+GPD Continuous"), ##D col=c("black", "red", "blue"), lty = 1) ## End(Not run)
/data/genthat_extracted_code/evmix/examples/fhpdcon.Rd.R
no_license
surayaaramli/typeRrh
R
false
false
2,680
r
library(evmix) ### Name: fhpdcon ### Title: MLE Fitting of Hybrid Pareto Extreme Value Mixture Model with ### Single Continuity Constraint ### Aliases: fhpdcon lhpdcon nlhpdcon profluhpdcon nluhpdcon lhpdcon ### fhpdcon nlhpdcon profluhpdcon nluhpdcon nlhpdcon fhpdcon lhpdcon ### profluhpdcon nluhpdcon profluhpdcon fhpdcon lhpdcon nlhpdcon ### nluhpdcon nluhpdcon fhpdcon lhpdcon nlhpdcon profluhpdcon ### ** Examples ## Not run: ##D set.seed(1) ##D par(mfrow = c(2, 1)) ##D ##D x = rnorm(1000) ##D xx = seq(-4, 4, 0.01) ##D y = dnorm(xx) ##D ##D # Hybrid Pareto provides reasonable fit for some asymmetric heavy upper tailed distributions ##D # but not for cases such as the normal distribution ##D ##D # Continuity constraint ##D fit = fhpdcon(x) ##D hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4)) ##D lines(xx, y) ##D with(fit, lines(xx, dhpdcon(xx, nmean, nsd, u, xi), col="red")) ##D abline(v = fit$u, col = "red") ##D ##D # No continuity constraint ##D fit2 = fhpd(x) ##D with(fit2, lines(xx, dhpd(xx, nmean, nsd, xi), col="blue")) ##D abline(v = fit2$u, col = "blue") ##D legend("topleft", c("True Density","No continuity constraint","With continuty constraint"), ##D col=c("black", "blue", "red"), lty = 1) ##D ##D # Profile likelihood for initial value of threshold and fixed threshold approach ##D fitu = fhpdcon(x, useq = seq(-2, 2, length = 20)) ##D fitfix = fhpdcon(x, useq = seq(-2, 2, length = 20), fixedu = TRUE) ##D ##D hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4)) ##D lines(xx, y) ##D with(fit, lines(xx, dhpdcon(xx, nmean, nsd, u, xi), col="red")) ##D abline(v = fit$u, col = "red") ##D with(fitu, lines(xx, dhpdcon(xx, nmean, nsd, u, xi), col="purple")) ##D abline(v = fitu$u, col = "purple") ##D with(fitfix, lines(xx, dhpdcon(xx, nmean, nsd, u, xi), col="darkgreen")) ##D abline(v = fitfix$u, col = "darkgreen") ##D legend("topleft", c("True Density","Default initial value (90% quantile)", ##D "Prof. lik. for initial value", "Prof. lik. for fixed threshold"), ##D col=c("black", "red", "purple", "darkgreen"), lty = 1) ##D ##D # Notice that if tail fraction is included a better fit is obtained ##D fittailfrac = fnormgpdcon(x) ##D ##D par(mfrow = c(1, 1)) ##D hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4)) ##D lines(xx, y) ##D with(fit, lines(xx, dhpdcon(xx, nmean, nsd, u, xi), col="red")) ##D abline(v = fit$u, col = "red") ##D with(fittailfrac, lines(xx, dnormgpdcon(xx, nmean, nsd, u, xi), col="blue")) ##D abline(v = fittailfrac$u) ##D legend("topright", c("Standard Normal", "Hybrid Pareto Continuous", "Normal+GPD Continuous"), ##D col=c("black", "red", "blue"), lty = 1) ## End(Not run)
library(shiny) library(ggplot2) library(caret) data("iris") # Define server logic required to draw a histogram shinyServer(function(input, output) { set.seed(1233214) intrain<-createDataPartition(y=iris$Species,p=0.7,list=FALSE) training<-iris[intrain,] testing<-iris[-intrain,] fit_lda<-train(Species~.,data = training,method="lda", trainControl=trainControl(method="cv",number = 10)) fit_rf<-train(Species~.,data = training,method="rf", trainControl=trainControl(method="cv",number = 10)) fit_svm<-train(Species~.,data = training,method="svmRadial", trainControl=trainControl(method="cv",number = 10)) output$predicted_specie<-renderText({ if(input$models=="LDA"){ model_pred_lda<-reactive({ predict(fit_lda, newdata=data.frame("Sepal.Length"=input$sepal_length, "Sepal.Width"=input$sepal_width, "Petal.Length"=input$petal_length, "Petal.Width" =input$petal_width)) }) model_pred_lda()[1] } else if(input$models=="RF"){ model_pred_rf<-reactive({ predict(fit_rf, newdata=data.frame("Sepal.Length"=input$sepal_length, "Sepal.Width"=input$sepal_width, "Petal.Length"=input$petal_length, "Petal.Width" =input$petal_width)) }) model_pred_rf()[1] } else{ model_pred_svm<-reactive({ predict(fit_svm, newdata=data.frame("Sepal.Length"=input$sepal_length, "Sepal.Width"=input$sepal_width, "Petal.Length"=input$petal_length, "Petal.Width" =input$petal_width)) }) model_pred_svm()[1] } }) output$stats1<-renderPrint({ if(input$models=="LDA"){ (confusionMatrix(predict(fit_lda,newdata=testing[-5]),testing$Species))$overall }else if (input$models=="RF"){ confusionMatrix(predict(fit_rf,newdata=testing[-5]),testing$Species)$overall }else if (input$models=="SVM") { confusionMatrix(predict(fit_svm,newdata=testing[-5]),testing$Species)$overall} }) })
/predict_species/server.R
no_license
AhmedKharbech/iris_shinyapp
R
false
false
2,998
r
library(shiny) library(ggplot2) library(caret) data("iris") # Define server logic required to draw a histogram shinyServer(function(input, output) { set.seed(1233214) intrain<-createDataPartition(y=iris$Species,p=0.7,list=FALSE) training<-iris[intrain,] testing<-iris[-intrain,] fit_lda<-train(Species~.,data = training,method="lda", trainControl=trainControl(method="cv",number = 10)) fit_rf<-train(Species~.,data = training,method="rf", trainControl=trainControl(method="cv",number = 10)) fit_svm<-train(Species~.,data = training,method="svmRadial", trainControl=trainControl(method="cv",number = 10)) output$predicted_specie<-renderText({ if(input$models=="LDA"){ model_pred_lda<-reactive({ predict(fit_lda, newdata=data.frame("Sepal.Length"=input$sepal_length, "Sepal.Width"=input$sepal_width, "Petal.Length"=input$petal_length, "Petal.Width" =input$petal_width)) }) model_pred_lda()[1] } else if(input$models=="RF"){ model_pred_rf<-reactive({ predict(fit_rf, newdata=data.frame("Sepal.Length"=input$sepal_length, "Sepal.Width"=input$sepal_width, "Petal.Length"=input$petal_length, "Petal.Width" =input$petal_width)) }) model_pred_rf()[1] } else{ model_pred_svm<-reactive({ predict(fit_svm, newdata=data.frame("Sepal.Length"=input$sepal_length, "Sepal.Width"=input$sepal_width, "Petal.Length"=input$petal_length, "Petal.Width" =input$petal_width)) }) model_pred_svm()[1] } }) output$stats1<-renderPrint({ if(input$models=="LDA"){ (confusionMatrix(predict(fit_lda,newdata=testing[-5]),testing$Species))$overall }else if (input$models=="RF"){ confusionMatrix(predict(fit_rf,newdata=testing[-5]),testing$Species)$overall }else if (input$models=="SVM") { confusionMatrix(predict(fit_svm,newdata=testing[-5]),testing$Species)$overall} }) })
# Scatterplot matrix of DMC,DC,wind,rain,temp data_1 = read.csv("C:/Users/ENVY X360/Desktop/R/forestfires.csv") pairs(~DMC+DC+wind+rain+temp,data=data_1, main="Scatterplot Matrix") attach(data_1) dev.copy(pdf,"scatterplot.pdf") dev.off() dev.copy(png,"scatterplot.png") dev.off() # 3D Scatterplot of wind,rain,area library(scatterplot3d) scatterplot3d(wind,rain,area,main="3D Scatterplot") dev.copy(pdf,"3D_scatterplot.pdf") dev.off() # Interactive 3D Scatterplot of wind,rain,area library(rgl) plot3d(wind,rain,area, col="red", size=3) dev.copy(pdf,"3D_interactiveplot.pdf") dev.off() # Boxplot of X and Y boxplot(X~Y,data=data_1, main="Boxplot", xlab="X", ylab="Y") dev.copy(pdf,"Boxplot.pdf") dev.off() # Simple bar plot of temp, wind, rain [horizontal and vertical] #Horizantal counts =table(data_1$temp) barplot(counts, main="Temperature Distribution", horiz=TRUE) counts =table(data_1$wind) barplot(counts, main="Temperature Distribution", horiz=TRUE) counts =table(data_1$rain) barplot(counts, main="Temperature Distribution", horiz=TRUE) #Vertical counts =table(data_1$temp) barplot(counts, main="Temperature Distribution", xlab="Temp") counts =table(data_1$wind) barplot(counts, main="Temperature Distribution", xlab="Temp") counts =table(data_1$rain) barplot(counts, main="Temperature Distribution", xlab="Temp") # Grouped bar plot of X and Y counts <- table(data_1$X, data_1$Y) barplot(counts, main="Distribution by X and Y", xlab="X", col=c("darkblue","red"), legend = rownames(counts), beside=TRUE) dev.copy(pdf,"groundbar_plot.pdf") dev.off() dev.copy(png,"groundbar_plot.png") dev.off() # Histogram of probability distribution of X, Y, wind, temp, area along with line density hist(data_1$X, main="Histogram for X", xlab="X", border="blue", col="green", las=1, breaks=5, prob = TRUE) lines(density(data_1$X)) hist(data_1$Y, main="Histogram for Y", xlab="Y", border="blue", col="green", las=1, breaks=5, prob = TRUE) lines(density(data_1$Y)) hist(data_1$wind, main="Histogram for wind", xlab="wind", border="blue", col="green", las=1, breaks=5, prob = TRUE) lines(density(data_1$wind)) hist(data_1$temp, main="Histogram for temp", xlab="temp", border="blue", col="green", las=1, breaks=5, prob = TRUE) lines(density(data_1$temp)) hist(data_1$area, main="Histogram for area", xlab="area", border="blue", col="green", las=1, breaks=5, prob = TRUE) lines(density(data_1$area)) # Histogram of frequency distribution of X, Y, wind, temp, area hist(data_1$X,main="Histogram for X",xlab="X",col = "Blue") hist(data_1$Y,main="Histogram for Y",xlab="Y",col = "Blue") hist(data_1$wind,main="Histogram for wind",xlab="wind",col = "Blue") hist(data_1$temp,main="Histogram for temp",xlab="temp",col = "Blue") # Pie Chart of area, wind, rain, temp by month data_1$month data_1_pivot <- summarise(group_by(data_1,month),area=sum(area)) slices <- data_1_pivot[["area"]] pie(slices, labels=data_1[["month"]], main="Pie Chart of area") data_1_pivot <- summarise(group_by(data_1,month),wind=sum(wind)) slices <- data_1_pivot[["wind"]] pie(slices, labels=data_1[["month"]], main="Pie Chart of wind") data_1_pivot <- summarise(group_by(data_1,month),rain=sum(rain)) slices <- data_1_pivot[["rain"]] pie(slices, labels=data_1[["month"]], main="Pie Chart of rain") data_1_pivot <- summarise(group_by(data_1,month),temp=sum(temp)) slices <- data_1_pivot[["temp"]] pie(slices, labels=data_1[["month"]], main="Pie Chart of temp") # Pie Chart of area, wind, rain, temp by day library(dplyr) data_1_pivot <- summarize(group_by(data_1,day),area=sum(area)) slices <- data_1_pivot[["area"]] pie(slices, labels=data_1[["day"]], main="Pie Chart of area") data_1_pivot <- summarize(group_by(data_1,day),wind=sum(wind)) slices <- data_1_pivot[["wind"]] pie(slices, labels=data_1[["day"]], main="Pie Chart of wind") data_1_pivot <- summarize(group_by(data_1,day),rain=sum(rain)) slices <- data_1_pivot[["rain"]] pie(slices, labels=data_1[["day"]], main="Pie Chart of rain") data_1_pivot <- summarize(group_by(data_1,day),temp=sum(temp)) slices <- data_1_pivot[["temp"]] pie(slices, labels=data_1[["day"]], main="Pie Chart of temp") # Map Plot of sourceAirportID airports <- read.csv("C:/Users/ENVY X360/Desktop/R/airports.dat") head(airports) colnames(airports) <- c("ID", "name", "city", "country", "IATA_FAA", "ICAO", "lat", "lon", "altitude", "timezone", "DST") head(airports) routes <- read.csv("C:/Users/ENVY X360/Desktop/R/routes.dat") colnames(routes) <- c("airline", "airlineID", "sourceAirport", "sourceAirportID", "destinationAirport", "destinationAirportID", "codeshare", "stops", "equipment") head(routes) library(plyr) departures <- ddply(routes, .(sourceAirportID), "nrow") names(departures)[2] <- "flights" arrivals <- ddply(routes, .(destinationAirportID), "nrow") names(arrivals)[2] <- "flights" airportA <- merge(airports, departures, by.x = "ID", by.y = "sourceAirportID") # install.packages("ggmap") library(ggmap) map <- get_map(location = 'World', zoom = 4) mapPoints <- ggmap(map) + geom_point(aes(x = lon, y = lat, size = sqrt(flights)), data = airportA, alpha = .5) # Map Plot of destinationAirportID airportB <- merge(airports, arrivals, by.x = "ID", by.y = "destinationAirportID") library(ggmap) map <- get_map(location = 'World', zoom = 4) mapPoints <- ggmap(map) + geom_point(aes(x = lon, y = lat, size = sqrt(flights)), data = airportB, alpha = .5) mapPoints dev.copy(pdf,"map.pdf") dev.off()
/Assignment_plot 3 solution.R
no_license
Hegdesachin87/RLanguage
R
false
false
5,935
r
# Scatterplot matrix of DMC,DC,wind,rain,temp data_1 = read.csv("C:/Users/ENVY X360/Desktop/R/forestfires.csv") pairs(~DMC+DC+wind+rain+temp,data=data_1, main="Scatterplot Matrix") attach(data_1) dev.copy(pdf,"scatterplot.pdf") dev.off() dev.copy(png,"scatterplot.png") dev.off() # 3D Scatterplot of wind,rain,area library(scatterplot3d) scatterplot3d(wind,rain,area,main="3D Scatterplot") dev.copy(pdf,"3D_scatterplot.pdf") dev.off() # Interactive 3D Scatterplot of wind,rain,area library(rgl) plot3d(wind,rain,area, col="red", size=3) dev.copy(pdf,"3D_interactiveplot.pdf") dev.off() # Boxplot of X and Y boxplot(X~Y,data=data_1, main="Boxplot", xlab="X", ylab="Y") dev.copy(pdf,"Boxplot.pdf") dev.off() # Simple bar plot of temp, wind, rain [horizontal and vertical] #Horizantal counts =table(data_1$temp) barplot(counts, main="Temperature Distribution", horiz=TRUE) counts =table(data_1$wind) barplot(counts, main="Temperature Distribution", horiz=TRUE) counts =table(data_1$rain) barplot(counts, main="Temperature Distribution", horiz=TRUE) #Vertical counts =table(data_1$temp) barplot(counts, main="Temperature Distribution", xlab="Temp") counts =table(data_1$wind) barplot(counts, main="Temperature Distribution", xlab="Temp") counts =table(data_1$rain) barplot(counts, main="Temperature Distribution", xlab="Temp") # Grouped bar plot of X and Y counts <- table(data_1$X, data_1$Y) barplot(counts, main="Distribution by X and Y", xlab="X", col=c("darkblue","red"), legend = rownames(counts), beside=TRUE) dev.copy(pdf,"groundbar_plot.pdf") dev.off() dev.copy(png,"groundbar_plot.png") dev.off() # Histogram of probability distribution of X, Y, wind, temp, area along with line density hist(data_1$X, main="Histogram for X", xlab="X", border="blue", col="green", las=1, breaks=5, prob = TRUE) lines(density(data_1$X)) hist(data_1$Y, main="Histogram for Y", xlab="Y", border="blue", col="green", las=1, breaks=5, prob = TRUE) lines(density(data_1$Y)) hist(data_1$wind, main="Histogram for wind", xlab="wind", border="blue", col="green", las=1, breaks=5, prob = TRUE) lines(density(data_1$wind)) hist(data_1$temp, main="Histogram for temp", xlab="temp", border="blue", col="green", las=1, breaks=5, prob = TRUE) lines(density(data_1$temp)) hist(data_1$area, main="Histogram for area", xlab="area", border="blue", col="green", las=1, breaks=5, prob = TRUE) lines(density(data_1$area)) # Histogram of frequency distribution of X, Y, wind, temp, area hist(data_1$X,main="Histogram for X",xlab="X",col = "Blue") hist(data_1$Y,main="Histogram for Y",xlab="Y",col = "Blue") hist(data_1$wind,main="Histogram for wind",xlab="wind",col = "Blue") hist(data_1$temp,main="Histogram for temp",xlab="temp",col = "Blue") # Pie Chart of area, wind, rain, temp by month data_1$month data_1_pivot <- summarise(group_by(data_1,month),area=sum(area)) slices <- data_1_pivot[["area"]] pie(slices, labels=data_1[["month"]], main="Pie Chart of area") data_1_pivot <- summarise(group_by(data_1,month),wind=sum(wind)) slices <- data_1_pivot[["wind"]] pie(slices, labels=data_1[["month"]], main="Pie Chart of wind") data_1_pivot <- summarise(group_by(data_1,month),rain=sum(rain)) slices <- data_1_pivot[["rain"]] pie(slices, labels=data_1[["month"]], main="Pie Chart of rain") data_1_pivot <- summarise(group_by(data_1,month),temp=sum(temp)) slices <- data_1_pivot[["temp"]] pie(slices, labels=data_1[["month"]], main="Pie Chart of temp") # Pie Chart of area, wind, rain, temp by day library(dplyr) data_1_pivot <- summarize(group_by(data_1,day),area=sum(area)) slices <- data_1_pivot[["area"]] pie(slices, labels=data_1[["day"]], main="Pie Chart of area") data_1_pivot <- summarize(group_by(data_1,day),wind=sum(wind)) slices <- data_1_pivot[["wind"]] pie(slices, labels=data_1[["day"]], main="Pie Chart of wind") data_1_pivot <- summarize(group_by(data_1,day),rain=sum(rain)) slices <- data_1_pivot[["rain"]] pie(slices, labels=data_1[["day"]], main="Pie Chart of rain") data_1_pivot <- summarize(group_by(data_1,day),temp=sum(temp)) slices <- data_1_pivot[["temp"]] pie(slices, labels=data_1[["day"]], main="Pie Chart of temp") # Map Plot of sourceAirportID airports <- read.csv("C:/Users/ENVY X360/Desktop/R/airports.dat") head(airports) colnames(airports) <- c("ID", "name", "city", "country", "IATA_FAA", "ICAO", "lat", "lon", "altitude", "timezone", "DST") head(airports) routes <- read.csv("C:/Users/ENVY X360/Desktop/R/routes.dat") colnames(routes) <- c("airline", "airlineID", "sourceAirport", "sourceAirportID", "destinationAirport", "destinationAirportID", "codeshare", "stops", "equipment") head(routes) library(plyr) departures <- ddply(routes, .(sourceAirportID), "nrow") names(departures)[2] <- "flights" arrivals <- ddply(routes, .(destinationAirportID), "nrow") names(arrivals)[2] <- "flights" airportA <- merge(airports, departures, by.x = "ID", by.y = "sourceAirportID") # install.packages("ggmap") library(ggmap) map <- get_map(location = 'World', zoom = 4) mapPoints <- ggmap(map) + geom_point(aes(x = lon, y = lat, size = sqrt(flights)), data = airportA, alpha = .5) # Map Plot of destinationAirportID airportB <- merge(airports, arrivals, by.x = "ID", by.y = "destinationAirportID") library(ggmap) map <- get_map(location = 'World', zoom = 4) mapPoints <- ggmap(map) + geom_point(aes(x = lon, y = lat, size = sqrt(flights)), data = airportB, alpha = .5) mapPoints dev.copy(pdf,"map.pdf") dev.off()
## ----global_options, include = FALSE---------------------------------------------------------- try(source("../../../.Rprofile")) ## import platform as platform ## print(platform.release()) ## # This assums using an EC2 instance where amzn is in platform name ## if 'amzn' in platform.release(): ## s3_status = True ## else: ## s3_status = False ## print(s3_status) ## import boto3 ## s3 = boto3.client('s3') ## spn_local_path_file_name = "C:/Users/fan/pyfan/vig/aws/setup/_data/iris_s3.dta" ## str_bucket_name = "fans3testbucket" ## spn_remote_path_file_name = "_data/iris_s3.dta" ## s3.upload_file(spn_local_path_file_name, str_bucket_name, spn_remote_path_file_name)
/vig/aws/s3/htmlpdfr/fs_aws_s3.R
permissive
fagan2888/pyfan
R
false
false
696
r
## ----global_options, include = FALSE---------------------------------------------------------- try(source("../../../.Rprofile")) ## import platform as platform ## print(platform.release()) ## # This assums using an EC2 instance where amzn is in platform name ## if 'amzn' in platform.release(): ## s3_status = True ## else: ## s3_status = False ## print(s3_status) ## import boto3 ## s3 = boto3.client('s3') ## spn_local_path_file_name = "C:/Users/fan/pyfan/vig/aws/setup/_data/iris_s3.dta" ## str_bucket_name = "fans3testbucket" ## spn_remote_path_file_name = "_data/iris_s3.dta" ## s3.upload_file(spn_local_path_file_name, str_bucket_name, spn_remote_path_file_name)
context("poll multiple processes") test_that("single process", { cmd <- switch( os_type(), "unix" = "sleep 1; ls", paste0(sleep(1), " && dir /b") ) p <- process$new(commandline = cmd, stdout = "|") ## Timeout expect_equal( poll(list(p), 0), list(c(output = "timeout", error = "nopipe")) ) p$wait() expect_equal( poll(list(p), -1), list(c(output = "ready", error = "nopipe")) ) p$read_output_lines() expect_equal( poll(list(p), -1), list(c(output = "ready", error = "nopipe")) ) p$kill() expect_equal( poll(list(p), -1), list(c(output = "ready", error = "nopipe")) ) close(p$get_output_connection()) expect_equal( poll(list(p), -1), list(c(output = "closed", error = "nopipe")) ) }) test_that("multiple processes", { cmd1 <- switch( os_type(), "unix" = "sleep 1; ls", paste0(sleep(1), " && dir /b") ) cmd2 <- switch( os_type(), "unix" = "sleep 2; ls 1>&2", paste0(sleep(1), " && dir /b 1>&2") ) p1 <- process$new(commandline = cmd1, stdout = "|") p2 <- process$new(commandline = cmd2, stderr = "|") ## Timeout res <- poll(list(p1 = p1, p2 = p2), 0) expect_equal( res, list( p1 = c(output = "timeout", error = "nopipe"), p2 = c(output = "nopipe", error = "timeout") ) ) p1$wait() res <- poll(list(p1 = p1, p2 = p2), -1) expect_equal(res$p1, c(output = "ready", error = "nopipe")) expect_equal(res$p2[["output"]], "nopipe") expect_true(res$p2[["error"]] %in% c("silent", "ready")) close(p1$get_output_connection()) p2$wait() res <- poll(list(p1 = p1, p2 = p2), -1) expect_equal( res, list( p1 = c(output = "closed", error = "nopipe"), p2 = c(output = "nopipe", error = "ready") ) ) close(p2$get_error_connection()) res <- poll(list(p1 = p1, p2 = p2), 0) expect_equal( res, list( p1 = c(output = "closed", error = "nopipe"), p2 = c(output = "nopipe", error = "closed") ) ) })
/tests/testthat/test-poll2.R
permissive
wch/processx
R
false
false
2,018
r
context("poll multiple processes") test_that("single process", { cmd <- switch( os_type(), "unix" = "sleep 1; ls", paste0(sleep(1), " && dir /b") ) p <- process$new(commandline = cmd, stdout = "|") ## Timeout expect_equal( poll(list(p), 0), list(c(output = "timeout", error = "nopipe")) ) p$wait() expect_equal( poll(list(p), -1), list(c(output = "ready", error = "nopipe")) ) p$read_output_lines() expect_equal( poll(list(p), -1), list(c(output = "ready", error = "nopipe")) ) p$kill() expect_equal( poll(list(p), -1), list(c(output = "ready", error = "nopipe")) ) close(p$get_output_connection()) expect_equal( poll(list(p), -1), list(c(output = "closed", error = "nopipe")) ) }) test_that("multiple processes", { cmd1 <- switch( os_type(), "unix" = "sleep 1; ls", paste0(sleep(1), " && dir /b") ) cmd2 <- switch( os_type(), "unix" = "sleep 2; ls 1>&2", paste0(sleep(1), " && dir /b 1>&2") ) p1 <- process$new(commandline = cmd1, stdout = "|") p2 <- process$new(commandline = cmd2, stderr = "|") ## Timeout res <- poll(list(p1 = p1, p2 = p2), 0) expect_equal( res, list( p1 = c(output = "timeout", error = "nopipe"), p2 = c(output = "nopipe", error = "timeout") ) ) p1$wait() res <- poll(list(p1 = p1, p2 = p2), -1) expect_equal(res$p1, c(output = "ready", error = "nopipe")) expect_equal(res$p2[["output"]], "nopipe") expect_true(res$p2[["error"]] %in% c("silent", "ready")) close(p1$get_output_connection()) p2$wait() res <- poll(list(p1 = p1, p2 = p2), -1) expect_equal( res, list( p1 = c(output = "closed", error = "nopipe"), p2 = c(output = "nopipe", error = "ready") ) ) close(p2$get_error_connection()) res <- poll(list(p1 = p1, p2 = p2), 0) expect_equal( res, list( p1 = c(output = "closed", error = "nopipe"), p2 = c(output = "nopipe", error = "closed") ) ) })
#Calcualtes the AIC-Criteria for the estimated density. my.AIC <- function(penden.env,lambda0,opt.Likelihood=NULL) { if(!is.null(opt.Likelihood)) {val1 <- -opt.Likelihood} if(is.null(opt.Likelihood)) {val1 <- -pen.log.like(penden.env,lambda0=0)} df <- my.positive.definite.solve(get("Derv2.pen",penden.env))%*%get("Derv2.cal",penden.env) mytrace <- sum(diag(df)) return(list(myAIC=(val1+mytrace),mytrace=mytrace)) }
/R/my.AIC.R
no_license
cran/pendensity
R
false
false
426
r
#Calcualtes the AIC-Criteria for the estimated density. my.AIC <- function(penden.env,lambda0,opt.Likelihood=NULL) { if(!is.null(opt.Likelihood)) {val1 <- -opt.Likelihood} if(is.null(opt.Likelihood)) {val1 <- -pen.log.like(penden.env,lambda0=0)} df <- my.positive.definite.solve(get("Derv2.pen",penden.env))%*%get("Derv2.cal",penden.env) mytrace <- sum(diag(df)) return(list(myAIC=(val1+mytrace),mytrace=mytrace)) }
library(shiny) data(iris) shinyServer( function(input, output) { colm <- reactive({ as.numeric(input$var) }) output$text1 <- renderText({ paste("Dataset Variable/Coloumn name is", names(iris[colm()])) }) output$text2 <- renderText({ paste("Warna Histogram is", input$color) }) output$text3 <- renderText({ paste("Nomor dari Histogram Bins is", input$bins) }) output$sum <- renderPrint({ summary(iris) }) output$str <- renderPrint({ str(iris) }) output$data <- renderTable({ colm <- as.numeric(input$var) iris[colm] #head(iris) }) output$myhist <- renderPlot( { #colm <- as.numeric(input$var) hist(iris[,colm()], breaks = seq(0, max(iris[,colm()]), l = input$bins+1), col=input$color, xlim = c(0,max(iris[,colm()])), main = "Histogram dari Iris Dataset", xlab = names(iris[colm()])) } ) } )
/server.R
no_license
diditwbw/shyni-with-R
R
false
false
980
r
library(shiny) data(iris) shinyServer( function(input, output) { colm <- reactive({ as.numeric(input$var) }) output$text1 <- renderText({ paste("Dataset Variable/Coloumn name is", names(iris[colm()])) }) output$text2 <- renderText({ paste("Warna Histogram is", input$color) }) output$text3 <- renderText({ paste("Nomor dari Histogram Bins is", input$bins) }) output$sum <- renderPrint({ summary(iris) }) output$str <- renderPrint({ str(iris) }) output$data <- renderTable({ colm <- as.numeric(input$var) iris[colm] #head(iris) }) output$myhist <- renderPlot( { #colm <- as.numeric(input$var) hist(iris[,colm()], breaks = seq(0, max(iris[,colm()]), l = input$bins+1), col=input$color, xlim = c(0,max(iris[,colm()])), main = "Histogram dari Iris Dataset", xlab = names(iris[colm()])) } ) } )
# Exploratory Data Analysis - Assignment 2 # Question 4 # Across the United States, how have emissions from coal combustion-related sources changed from 1999–2008? # Yang Fong September 20, 2017 # Source code to plot4.png ibrary("data.table") library("ggplot2") setwd("~/Documents/courseradatascience/Exploratory_Data_Analysis/project2") path <- getwd() download.file(url = "https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2FNEI_data.zip" , destfile = paste(path, "dataFiles.zip", sep = "/")) unzip(zipfile = "dataFiles.zip") # Load the NEI & SCC data frames. NEI <- data.table::as.data.table(x = readRDS("summarySCC_PM25.rds")) SCC <- data.table::as.data.table(x = readRDS("Source_Classification_Code.rds")) # Subset coal combustion related NEI data combustionRelated <- grepl("comb", SCC[, SCC.Level.One], ignore.case=TRUE) coalRelated <- grepl("coal", SCC[, SCC.Level.Four], ignore.case=TRUE) combustionSCC <- SCC[combustionRelated & coalRelated, SCC] combustionNEI <- NEI[NEI[,SCC] %in% combustionSCC] png("plot4.png") ggplot(combustionNEI,aes(x = factor(year),y = Emissions/10^5)) + geom_bar(stat="identity", fill ="#FF9999", width=0.75) + labs(x="year", y=expression("Total PM"[2.5]*" Emission (10^5 Tons)")) + labs(title=expression("PM"[2.5]*" Coal Combustion Source Emissions Across US from 1999-2008")) dev.off()
/plot4.R
no_license
foamy1881/ExData_Plotting2
R
false
false
1,357
r
# Exploratory Data Analysis - Assignment 2 # Question 4 # Across the United States, how have emissions from coal combustion-related sources changed from 1999–2008? # Yang Fong September 20, 2017 # Source code to plot4.png ibrary("data.table") library("ggplot2") setwd("~/Documents/courseradatascience/Exploratory_Data_Analysis/project2") path <- getwd() download.file(url = "https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2FNEI_data.zip" , destfile = paste(path, "dataFiles.zip", sep = "/")) unzip(zipfile = "dataFiles.zip") # Load the NEI & SCC data frames. NEI <- data.table::as.data.table(x = readRDS("summarySCC_PM25.rds")) SCC <- data.table::as.data.table(x = readRDS("Source_Classification_Code.rds")) # Subset coal combustion related NEI data combustionRelated <- grepl("comb", SCC[, SCC.Level.One], ignore.case=TRUE) coalRelated <- grepl("coal", SCC[, SCC.Level.Four], ignore.case=TRUE) combustionSCC <- SCC[combustionRelated & coalRelated, SCC] combustionNEI <- NEI[NEI[,SCC] %in% combustionSCC] png("plot4.png") ggplot(combustionNEI,aes(x = factor(year),y = Emissions/10^5)) + geom_bar(stat="identity", fill ="#FF9999", width=0.75) + labs(x="year", y=expression("Total PM"[2.5]*" Emission (10^5 Tons)")) + labs(title=expression("PM"[2.5]*" Coal Combustion Source Emissions Across US from 1999-2008")) dev.off()
\name{jmap} \alias{jmap} \title{Retrieve jetset mapped probe sets} \description{This function retrieves probe sets corresponding to the queried genes} \usage{ jmap(chip, eg, symbol, alias, ensembl) } \arguments{ \item{chip}{ Chip name } \item{eg}{ A vector of Entrez GeneIDs (optional) } \item{symbol}{ A vector of gene symbols (optional) } \item{alias}{ A vector of gene aliases (optional) } \item{ensembl}{ A vector of Ensembl IDs (optional) } } \details{ Currently, \code{chip} can be \code{"hgu95av2"}, \code{"hgu133a"}, \code{"hgu133plus2"}, or \code{"u133x3p"}. Queried genes must be specified by either \code{eg}, \code{symbol}, \code{alias}, or \code{ensembl}. If the query is not recognized, or is ambiguous, or corresponds to a gene that is not detected by the array, \code{NA} will be returned. Details about the jetset algorithm are available in the vignette. } \value{A character vector of probe set IDs} \references{ Qiyuan Li, Nicolai J. Birkbak, Balazs Gyorffy, Zoltan Szallasi and Aron C. Eklund. (2011) Jetset: selecting the optimal microarray probe set to represent a gene. BMC Bioinformatics. 12:474. } \seealso{The underlying Entrez ID to probeset data is available in (e.g.) \code{\link{scores.hgu95av2}}. Symbol, alias, and ensembl lookups are generated from e.g. \code{\link[org.Hs.eg.db]{org.Hs.egSYMBOL2EG}}. } \examples{ genes <- c('MKI67', 'CHD5', 'ESR1', 'FGF19', 'ERBB2', 'NoSuchGene') # This generates several informative warnings jmap('hgu133a', symbol = genes) } \keyword{ misc }
/man/jmap.Rd
no_license
aroneklund/jetset
R
false
false
1,536
rd
\name{jmap} \alias{jmap} \title{Retrieve jetset mapped probe sets} \description{This function retrieves probe sets corresponding to the queried genes} \usage{ jmap(chip, eg, symbol, alias, ensembl) } \arguments{ \item{chip}{ Chip name } \item{eg}{ A vector of Entrez GeneIDs (optional) } \item{symbol}{ A vector of gene symbols (optional) } \item{alias}{ A vector of gene aliases (optional) } \item{ensembl}{ A vector of Ensembl IDs (optional) } } \details{ Currently, \code{chip} can be \code{"hgu95av2"}, \code{"hgu133a"}, \code{"hgu133plus2"}, or \code{"u133x3p"}. Queried genes must be specified by either \code{eg}, \code{symbol}, \code{alias}, or \code{ensembl}. If the query is not recognized, or is ambiguous, or corresponds to a gene that is not detected by the array, \code{NA} will be returned. Details about the jetset algorithm are available in the vignette. } \value{A character vector of probe set IDs} \references{ Qiyuan Li, Nicolai J. Birkbak, Balazs Gyorffy, Zoltan Szallasi and Aron C. Eklund. (2011) Jetset: selecting the optimal microarray probe set to represent a gene. BMC Bioinformatics. 12:474. } \seealso{The underlying Entrez ID to probeset data is available in (e.g.) \code{\link{scores.hgu95av2}}. Symbol, alias, and ensembl lookups are generated from e.g. \code{\link[org.Hs.eg.db]{org.Hs.egSYMBOL2EG}}. } \examples{ genes <- c('MKI67', 'CHD5', 'ESR1', 'FGF19', 'ERBB2', 'NoSuchGene') # This generates several informative warnings jmap('hgu133a', symbol = genes) } \keyword{ misc }
#' To Look for Area from Codes #' #' @param codes id codes #' @param data data after lookfor_area() function #' #' @return dataframe #' @export #' #' @examples #' \donttest{ #' df=get_data() #' codes=c(32999999,320324,320323,320381) #' lookfor_area(codes,df) #' } lookfor_area <-function(codes,data){ for (i in 1:length(codes)) { if (i==1) df=NULL code.i=codes[i] dd1=data[data[,4]==do::left(code.i,2),] if (nrow(dd1)==0){ message(code.i,tmcn::toUTF8(' \u6CA1\u6709\u67E5\u5230')) codes[i]=NA next(i) } dd2=dd1[dd1[,5]==do::mid(code.i,3,2),] if (nrow(dd2)==0){ df=plyr::rbind.fill(df,unique(dd1[,c(1,4)])) message(code.i,tmcn::toUTF8(' \u6CA1\u6709\u67E5\u5230 \u5E02')) next(i) } df.i=dd2[dd2[,6]==do::mid(code.i,5,2),] if (nrow(df.i)==0){ df=plyr::rbind.fill(df,unique(dd2[,-c(3,6)])) message(code.i,tmcn::toUTF8(' \u6CA1\u6709\u67E5\u5230 \u53BF')) next(i) }else{ df=plyr::rbind.fill(df,df.i) } } rownames(df)=NULL df=cbind(df[,!grepl(tmcn::toUTF8('\u7F16\u7801'),colnames(df))], df[,grepl(tmcn::toUTF8('\u7F16\u7801'),colnames(df))]) codes=codes[!is.na(codes)] df=cbind(code=codes,df) colnames(df)[1]=tmcn::toUTF8('\u6240\u67E5\u7F16\u7801') return(df) }
/R/lookfor_area.R
no_license
yikeshu0611/admin.number
R
false
false
1,464
r
#' To Look for Area from Codes #' #' @param codes id codes #' @param data data after lookfor_area() function #' #' @return dataframe #' @export #' #' @examples #' \donttest{ #' df=get_data() #' codes=c(32999999,320324,320323,320381) #' lookfor_area(codes,df) #' } lookfor_area <-function(codes,data){ for (i in 1:length(codes)) { if (i==1) df=NULL code.i=codes[i] dd1=data[data[,4]==do::left(code.i,2),] if (nrow(dd1)==0){ message(code.i,tmcn::toUTF8(' \u6CA1\u6709\u67E5\u5230')) codes[i]=NA next(i) } dd2=dd1[dd1[,5]==do::mid(code.i,3,2),] if (nrow(dd2)==0){ df=plyr::rbind.fill(df,unique(dd1[,c(1,4)])) message(code.i,tmcn::toUTF8(' \u6CA1\u6709\u67E5\u5230 \u5E02')) next(i) } df.i=dd2[dd2[,6]==do::mid(code.i,5,2),] if (nrow(df.i)==0){ df=plyr::rbind.fill(df,unique(dd2[,-c(3,6)])) message(code.i,tmcn::toUTF8(' \u6CA1\u6709\u67E5\u5230 \u53BF')) next(i) }else{ df=plyr::rbind.fill(df,df.i) } } rownames(df)=NULL df=cbind(df[,!grepl(tmcn::toUTF8('\u7F16\u7801'),colnames(df))], df[,grepl(tmcn::toUTF8('\u7F16\u7801'),colnames(df))]) codes=codes[!is.na(codes)] df=cbind(code=codes,df) colnames(df)[1]=tmcn::toUTF8('\u6240\u67E5\u7F16\u7801') return(df) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Npat.getNpat.R \name{Npat.getNpat} \alias{Npat.getNpat} \title{Get a candidate's most recently filled out NPAT/PCT (Political Courage Test)} \usage{ Npat.getNpat(candidateId) } \arguments{ \item{candidateId}{a character string or list of character strings with the candidate ID(s) (see references for details)} } \value{ A data frame with a row for each candidate and columns with the following variables describing the candidate:\cr bio.candidate.crpId (OpenSecrets ID),\cr bio.candidate.firstName,\cr bio.candidate.nickName,\cr bio.candidate.middleName,\cr bio.candidate.lastName,\cr bio.candidate.suffix,\cr bio.candidate.birthDate,\cr bio.candidate.birthPlace,\cr bio.candidate.pronunciation,\cr bio.candidate.gender,\cr bio.candidate.family,\cr bio.candidate.photo,\cr bio.candidate.homeCity,\cr bio.candidate.homeState,\cr bio.candidate.education,\cr bio.candidate.profession,\cr bio.candidate.political,\cr bio.candidate.religion,\cr bio.candidate.congMembership,\cr bio.candidate.orgMembership,\cr bio.candidate.specialMsg,\cr bio.office.parties,\cr bio.office.title,\cr bio.office.shortTitle,\cr bio.office.name,\cr bio.office.type,\cr bio.office.status,\cr bio.office.firstElect,\cr bio.office.lastElect,\cr bio.office.nextElect,\cr bio.office.termStart,\cr bio.office.termEnd,\cr bio.office.district,\cr bio.office.districtId,\cr bio.office.stateId,\cr bio.office.committee*.committeeId,\cr bio.office.committee*.committeeName,\cr bio.election*.office,\cr bio.election*.officeId,\cr bio.election*.officeType,\cr bio.election*.parties,\cr bio.election*.district,\cr bio.election*.districtId,\cr bio.election*.status,\cr bio.election*.ballotName. } \description{ This function is a wrapper for the Npat.getNpat() method of the PVS API Npat class which returns the candidate's most recently filled out NPAT/PCT. The function sends a request with this method to the PVS API for all candidate IDs given as a function input, extracts the XML values from the returned XML file(s) and returns them arranged in one data frame. } \examples{ # First, make sure your personal PVS API key is saved as an option # (options("pvs.key" = "yourkey")) or in the pvs.key variable: \dontrun{pvs.key <- "yourkey"} # get political courage tests of Barack Obama and John Sidney McCain III \dontrun{pcts <- Npat.getNpat(list(9490,53270))} \dontrun{head(pcts$survey)} \dontrun{head(pcts$candidate)} } \references{ http://api.votesmart.org/docs/CandidateBio.html\cr Use Candidates.getByOfficeState(), Candidates.getByOfficeTypeState(), Candidates.getByLastname(), Candidates.getByLevenshtein(), Candidates.getByElection(), Candidates.getByDistrict() or Candidates.getByZip() to get a list of candidate IDs.\cr See also: Matter U, Stutzer A (2015) pvsR: An Open Source Interface to Big Data on the American Political Sphere. PLoS ONE 10(7): e0130501. doi: 10.1371/journal.pone.0130501 } \author{ Ulrich Matter <ulrich.matter-at-unibas.ch> }
/man/Npat.getNpat.Rd
no_license
umatter/pvsR
R
false
true
3,003
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Npat.getNpat.R \name{Npat.getNpat} \alias{Npat.getNpat} \title{Get a candidate's most recently filled out NPAT/PCT (Political Courage Test)} \usage{ Npat.getNpat(candidateId) } \arguments{ \item{candidateId}{a character string or list of character strings with the candidate ID(s) (see references for details)} } \value{ A data frame with a row for each candidate and columns with the following variables describing the candidate:\cr bio.candidate.crpId (OpenSecrets ID),\cr bio.candidate.firstName,\cr bio.candidate.nickName,\cr bio.candidate.middleName,\cr bio.candidate.lastName,\cr bio.candidate.suffix,\cr bio.candidate.birthDate,\cr bio.candidate.birthPlace,\cr bio.candidate.pronunciation,\cr bio.candidate.gender,\cr bio.candidate.family,\cr bio.candidate.photo,\cr bio.candidate.homeCity,\cr bio.candidate.homeState,\cr bio.candidate.education,\cr bio.candidate.profession,\cr bio.candidate.political,\cr bio.candidate.religion,\cr bio.candidate.congMembership,\cr bio.candidate.orgMembership,\cr bio.candidate.specialMsg,\cr bio.office.parties,\cr bio.office.title,\cr bio.office.shortTitle,\cr bio.office.name,\cr bio.office.type,\cr bio.office.status,\cr bio.office.firstElect,\cr bio.office.lastElect,\cr bio.office.nextElect,\cr bio.office.termStart,\cr bio.office.termEnd,\cr bio.office.district,\cr bio.office.districtId,\cr bio.office.stateId,\cr bio.office.committee*.committeeId,\cr bio.office.committee*.committeeName,\cr bio.election*.office,\cr bio.election*.officeId,\cr bio.election*.officeType,\cr bio.election*.parties,\cr bio.election*.district,\cr bio.election*.districtId,\cr bio.election*.status,\cr bio.election*.ballotName. } \description{ This function is a wrapper for the Npat.getNpat() method of the PVS API Npat class which returns the candidate's most recently filled out NPAT/PCT. The function sends a request with this method to the PVS API for all candidate IDs given as a function input, extracts the XML values from the returned XML file(s) and returns them arranged in one data frame. } \examples{ # First, make sure your personal PVS API key is saved as an option # (options("pvs.key" = "yourkey")) or in the pvs.key variable: \dontrun{pvs.key <- "yourkey"} # get political courage tests of Barack Obama and John Sidney McCain III \dontrun{pcts <- Npat.getNpat(list(9490,53270))} \dontrun{head(pcts$survey)} \dontrun{head(pcts$candidate)} } \references{ http://api.votesmart.org/docs/CandidateBio.html\cr Use Candidates.getByOfficeState(), Candidates.getByOfficeTypeState(), Candidates.getByLastname(), Candidates.getByLevenshtein(), Candidates.getByElection(), Candidates.getByDistrict() or Candidates.getByZip() to get a list of candidate IDs.\cr See also: Matter U, Stutzer A (2015) pvsR: An Open Source Interface to Big Data on the American Political Sphere. PLoS ONE 10(7): e0130501. doi: 10.1371/journal.pone.0130501 } \author{ Ulrich Matter <ulrich.matter-at-unibas.ch> }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/smoothobs_mul.R \name{smoothobs_mul} \alias{smoothobs_mul} \title{Multiplicative De-biasing With Smoothed Observation Climatology} \usage{ smoothobs_mul(fcst, obs, fcst.out = fcst, span = min(1, 31/nrow(fcst)), ...) } \arguments{ \item{fcst}{n x m x k array of n lead times, m forecasts, of k ensemble members} \item{obs}{n x m matrix of veryfing observations} \item{fcst.out}{array of forecast values to which bias correction should be applied (defaults to \code{fcst})} \item{span}{the parameter which controls the degree of smoothing (see \code{\link{loess}})} \item{...}{additional arguments for compatibility with other bias correction methods} } \description{ Computes multiplicative de-biasing with loess smoothing (obs. only) } \details{ The bias corrected forecast is scaled by the lead-time dependent ratio of observed to forecast climatology, where the observed climatology is smoothed using a loess smoothing. } \examples{ ## initialise forcast observation pairs signal <- outer(1.5 + sin(seq(0,4,length=215)), rnorm(30)**2, '*') fcst <- array(rnorm(length(signal)*15)**2, c(dim(signal), 15)) * c(signal) obs <- rnorm(length(signal), mean=1.4)**2 * signal fcst.debias <- biascorrection:::smoothobs_mul(fcst[,1:20,], obs[,1:20], fcst.out=fcst, span=0.5) } \seealso{ smooth_mul smoothobs } \keyword{util}
/man/smoothobs_mul.Rd
no_license
arulalant/biascorrection
R
false
true
1,408
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/smoothobs_mul.R \name{smoothobs_mul} \alias{smoothobs_mul} \title{Multiplicative De-biasing With Smoothed Observation Climatology} \usage{ smoothobs_mul(fcst, obs, fcst.out = fcst, span = min(1, 31/nrow(fcst)), ...) } \arguments{ \item{fcst}{n x m x k array of n lead times, m forecasts, of k ensemble members} \item{obs}{n x m matrix of veryfing observations} \item{fcst.out}{array of forecast values to which bias correction should be applied (defaults to \code{fcst})} \item{span}{the parameter which controls the degree of smoothing (see \code{\link{loess}})} \item{...}{additional arguments for compatibility with other bias correction methods} } \description{ Computes multiplicative de-biasing with loess smoothing (obs. only) } \details{ The bias corrected forecast is scaled by the lead-time dependent ratio of observed to forecast climatology, where the observed climatology is smoothed using a loess smoothing. } \examples{ ## initialise forcast observation pairs signal <- outer(1.5 + sin(seq(0,4,length=215)), rnorm(30)**2, '*') fcst <- array(rnorm(length(signal)*15)**2, c(dim(signal), 15)) * c(signal) obs <- rnorm(length(signal), mean=1.4)**2 * signal fcst.debias <- biascorrection:::smoothobs_mul(fcst[,1:20,], obs[,1:20], fcst.out=fcst, span=0.5) } \seealso{ smooth_mul smoothobs } \keyword{util}
# The main demo file for quanteda str(uk2010immig) mycorpus <- corpus(uk2010immig, docvars=list(party=names(uk2010immig)), notes="Immigration-related sections from UK 2010 party manifestos.") encoding(mycorpus) <- "UTF-8" language(mycorpus) <- "english" summary(mycorpus, showmeta=TRUE) kwic(mycorpus, "deport", 3) mydfm <- dfm(mycorpus, stem=TRUE, stopwords=TRUE) docnames(mydfm) features(mydfm) # open a nicer quartz device on a mac if (Sys.info()[1]=="Darwin") quartz("BNP 2010 word cloud", 7,7) # this is necessary currently because no subset is yet implemented for dfm objects plot(dfm(subset(mycorpus, party=="BNP"), stem=TRUE, stopwords=TRUE)) # some examples of tokenization and string cleaning library(quantedaData) data(exampleString) tokenize(exampleString) clean(exampleString) wordstem(exampleString) # topic models library(topicmodels) prescorpus <- subset(inaugCorpus, Year>1900) presdfm <- dfm(prescorpus, stopwords=TRUE, stem=TRUE) presdfm <- trimdfm(presdfm, minCount=10, minDoc=5) presTriplet <- dfm2tmformat(presdfm) presLDA <- LDA(presTriplet, method="VEM", k=20) # which terms contribute most to each topic get_terms(presLDA, k=15) # which is the dominant topic for each document get_topics(presLDA) # the topic contribution of each topic to each document postTopics <- data.frame(posterior(presLDA)$topics) # dictionaries data(iebudgets) mydict <- list(christmas=c("Christmas", "Santa", "holiday"), opposition=c("Opposition", "reject", "notincorpus"), taxing="taxing", taxation="taxation", taxregex="tax*") dictDfm <- dfm(mycorpus, dictionary=mydict) dictDfm # simple lexical diversity measures data(iebudgets) finMins <- subset(iebudgets, no=="01") finDfm <- dfm(finMins) types <- rowSums(finDfm > 0) tokens <- rowSums(finDfm) ttrs <- types/tokens plot(2008:2012, ttrs, ylim=c(.18,.25), # set the y axis range type="b", # points connected by lines xlab="Budget Year", ylab="Type/Token Ratios")
/demo/quanteda.R
no_license
behrica/quanteda
R
false
false
2,058
r
# The main demo file for quanteda str(uk2010immig) mycorpus <- corpus(uk2010immig, docvars=list(party=names(uk2010immig)), notes="Immigration-related sections from UK 2010 party manifestos.") encoding(mycorpus) <- "UTF-8" language(mycorpus) <- "english" summary(mycorpus, showmeta=TRUE) kwic(mycorpus, "deport", 3) mydfm <- dfm(mycorpus, stem=TRUE, stopwords=TRUE) docnames(mydfm) features(mydfm) # open a nicer quartz device on a mac if (Sys.info()[1]=="Darwin") quartz("BNP 2010 word cloud", 7,7) # this is necessary currently because no subset is yet implemented for dfm objects plot(dfm(subset(mycorpus, party=="BNP"), stem=TRUE, stopwords=TRUE)) # some examples of tokenization and string cleaning library(quantedaData) data(exampleString) tokenize(exampleString) clean(exampleString) wordstem(exampleString) # topic models library(topicmodels) prescorpus <- subset(inaugCorpus, Year>1900) presdfm <- dfm(prescorpus, stopwords=TRUE, stem=TRUE) presdfm <- trimdfm(presdfm, minCount=10, minDoc=5) presTriplet <- dfm2tmformat(presdfm) presLDA <- LDA(presTriplet, method="VEM", k=20) # which terms contribute most to each topic get_terms(presLDA, k=15) # which is the dominant topic for each document get_topics(presLDA) # the topic contribution of each topic to each document postTopics <- data.frame(posterior(presLDA)$topics) # dictionaries data(iebudgets) mydict <- list(christmas=c("Christmas", "Santa", "holiday"), opposition=c("Opposition", "reject", "notincorpus"), taxing="taxing", taxation="taxation", taxregex="tax*") dictDfm <- dfm(mycorpus, dictionary=mydict) dictDfm # simple lexical diversity measures data(iebudgets) finMins <- subset(iebudgets, no=="01") finDfm <- dfm(finMins) types <- rowSums(finDfm > 0) tokens <- rowSums(finDfm) ttrs <- types/tokens plot(2008:2012, ttrs, ylim=c(.18,.25), # set the y axis range type="b", # points connected by lines xlab="Budget Year", ylab="Type/Token Ratios")
testlist <- list(AgeVector = c(-4.73074171454048e-167, 2.2262381097027e-76, -9.12990429452974e-204, 5.97087417427845e-79, 4.7390525269307e-300, 6.58361441690132e-121, 3.58611068565168e-154, -2.94504776827523e-186, 2.62380314702636e-116, -6.78950518864266e+23, 6.99695749856012e-167, 86485.676793021, 1.11271562183704e+230, 1.94114173595984e-186, 1.44833381226225e-178, -6.75217876587581e-69, 1.17166524186752e-15, -4.66902120192875e-64, -1.96807327384856e+304, 4.43806122192432e-53, 9.29588680224717e-276, -6.49633240047463e-239, -1.22140819059424e-138, 5.03155164774999e-80, -6.36956558303921e-38, 7.15714506860012e-155, -1.05546603899445e-274, -3.66720914317747e-169, -6.94681701552128e+38, 2.93126040859825e-33, 2.03804078100055e-84, 3.62794352816579e+190, 3.84224576683191e+202, 2.90661893502594e+44, -5.43046915655589e-132, -1.22315376742253e-152), ExpressionMatrix = structure(c(4.80597147865938e+96, 6.97343932706536e+155, 1.3267342810479e+281, 1.34663897260867e+171, 1.76430141680543e+158, 1.20021255064002e-241, 1.72046093489436e+274, 4.64807629890539e-66, 3.23566990107388e-38, 3.70896378162114e-42, 1.09474740380531e+92, 7.49155705745727e-308, 3.26639180474928e+224, 3.21841801500177e-79, 4.26435540037564e-295, 1.40002857639358e+82, 47573397570345336, 2.00517157311369e-187, 2.74035572944044e+70, 2.89262435086883e-308, 6.65942057982148e-198, 1.10979548758712e-208, 1.40208057226312e-220, 6.25978904299555e-111, 1.06191688875218e+167, 1.1857452172049, 7.01135380962132e-157, 4.49610615342627e-308, 8.04053421408348e+261, 6.23220855980985e+275, 1.91601752509744e+141, 2.27737212344351e-244, 1.6315101795754e+126, 3.83196182917788e+160, 1.53445011275161e-192), .Dim = c(5L, 7L)), permutations = 415362983L) result <- do.call(myTAI:::cpp_bootMatrix,testlist) str(result)
/myTAI/inst/testfiles/cpp_bootMatrix/AFL_cpp_bootMatrix/cpp_bootMatrix_valgrind_files/1615767014-test.R
no_license
akhikolla/updatedatatype-list3
R
false
false
1,803
r
testlist <- list(AgeVector = c(-4.73074171454048e-167, 2.2262381097027e-76, -9.12990429452974e-204, 5.97087417427845e-79, 4.7390525269307e-300, 6.58361441690132e-121, 3.58611068565168e-154, -2.94504776827523e-186, 2.62380314702636e-116, -6.78950518864266e+23, 6.99695749856012e-167, 86485.676793021, 1.11271562183704e+230, 1.94114173595984e-186, 1.44833381226225e-178, -6.75217876587581e-69, 1.17166524186752e-15, -4.66902120192875e-64, -1.96807327384856e+304, 4.43806122192432e-53, 9.29588680224717e-276, -6.49633240047463e-239, -1.22140819059424e-138, 5.03155164774999e-80, -6.36956558303921e-38, 7.15714506860012e-155, -1.05546603899445e-274, -3.66720914317747e-169, -6.94681701552128e+38, 2.93126040859825e-33, 2.03804078100055e-84, 3.62794352816579e+190, 3.84224576683191e+202, 2.90661893502594e+44, -5.43046915655589e-132, -1.22315376742253e-152), ExpressionMatrix = structure(c(4.80597147865938e+96, 6.97343932706536e+155, 1.3267342810479e+281, 1.34663897260867e+171, 1.76430141680543e+158, 1.20021255064002e-241, 1.72046093489436e+274, 4.64807629890539e-66, 3.23566990107388e-38, 3.70896378162114e-42, 1.09474740380531e+92, 7.49155705745727e-308, 3.26639180474928e+224, 3.21841801500177e-79, 4.26435540037564e-295, 1.40002857639358e+82, 47573397570345336, 2.00517157311369e-187, 2.74035572944044e+70, 2.89262435086883e-308, 6.65942057982148e-198, 1.10979548758712e-208, 1.40208057226312e-220, 6.25978904299555e-111, 1.06191688875218e+167, 1.1857452172049, 7.01135380962132e-157, 4.49610615342627e-308, 8.04053421408348e+261, 6.23220855980985e+275, 1.91601752509744e+141, 2.27737212344351e-244, 1.6315101795754e+126, 3.83196182917788e+160, 1.53445011275161e-192), .Dim = c(5L, 7L)), permutations = 415362983L) result <- do.call(myTAI:::cpp_bootMatrix,testlist) str(result)
library(readr) library(reshape2) library(ggplot2) library(data.table) lib <- fread("~/Desktop/ROP299/phase2/phase2.2_data_analysis/library_sort.csv") lib[,c(3,4)] <- NULL lib <- na.omit(lib) colnames(lib) <-c('cis', 'barcode') lib <- lib[, .N, by = .(cis, barcode)] colnames(lib) <-c('cis', 'barcode', 'count') separable <- function(bar_seq, lib) { df <- lib[barcode == bar_seq][1:2,] return ((df$count[1] >= 10 * df$count[2]) && df[2,]$count < 10 ) } lib_50 <- lib[count > 30] lib_separable <- lib_50[sapply(lib_50$barcode, separable, lib),] write.csv()
/Script/Analyser/lib_filter.R
no_license
floraliu1011/ROP299
R
false
false
563
r
library(readr) library(reshape2) library(ggplot2) library(data.table) lib <- fread("~/Desktop/ROP299/phase2/phase2.2_data_analysis/library_sort.csv") lib[,c(3,4)] <- NULL lib <- na.omit(lib) colnames(lib) <-c('cis', 'barcode') lib <- lib[, .N, by = .(cis, barcode)] colnames(lib) <-c('cis', 'barcode', 'count') separable <- function(bar_seq, lib) { df <- lib[barcode == bar_seq][1:2,] return ((df$count[1] >= 10 * df$count[2]) && df[2,]$count < 10 ) } lib_50 <- lib[count > 30] lib_separable <- lib_50[sapply(lib_50$barcode, separable, lib),] write.csv()
## this R file contains 2 functions written to compute, store, and return the inverse of any square matrix (assuming it is invertible) ## you can test the functions by creating a random matrix, such as by ## x<-matrix(rexp(n^2, rate=.1), ncol=n) ## when n is any integer ## cacheSolve(makeCacheMatrix(x)) %*% x should return an identity matrix ## alternatively store the makeCacheMatrix(x) in y first, then try cacheSolve(y) %*% x ## makeCacheMatrix defines a few functions, converting the input matrix into a list which can store its inverse makeCacheMatrix <- function(x = matrix()) { m <- NULL set <- function(y) { x <<- y m <<- NULL } get <- function() x setinv <- function(inv) m <<- inv getinv <- function() m list(set = set, get = get, setinv = setinv, getinv = getinv) } ## cacheSolve searches the transformed matrix for its inverse, if the inverse already exists, it is retrieved, otherwise it is computed. cacheSolve <- function(x, ...) { m <- x$getinv() if(!is.null(m)) { message("getting cached data") return(m) } data <- x$get() m <- solve(data, ...) x$setinv(m) m }
/cachematrix.R
no_license
paulxiep/ProgrammingAssignment2
R
false
false
1,141
r
## this R file contains 2 functions written to compute, store, and return the inverse of any square matrix (assuming it is invertible) ## you can test the functions by creating a random matrix, such as by ## x<-matrix(rexp(n^2, rate=.1), ncol=n) ## when n is any integer ## cacheSolve(makeCacheMatrix(x)) %*% x should return an identity matrix ## alternatively store the makeCacheMatrix(x) in y first, then try cacheSolve(y) %*% x ## makeCacheMatrix defines a few functions, converting the input matrix into a list which can store its inverse makeCacheMatrix <- function(x = matrix()) { m <- NULL set <- function(y) { x <<- y m <<- NULL } get <- function() x setinv <- function(inv) m <<- inv getinv <- function() m list(set = set, get = get, setinv = setinv, getinv = getinv) } ## cacheSolve searches the transformed matrix for its inverse, if the inverse already exists, it is retrieved, otherwise it is computed. cacheSolve <- function(x, ...) { m <- x$getinv() if(!is.null(m)) { message("getting cached data") return(m) } data <- x$get() m <- solve(data, ...) x$setinv(m) m }
context('toolExtractSortScaleQuitte()') test_that( 'Test toolExtractSortScaleQuitte() results', { expect_equal( object = toolExtractSortScaleQuitte( x = quitte_example_data, scen = 'r7552c_1p5C_Def-rem-5', vars = c('Consumption', 'PE'), regi = c('EUR', 'LAM'), prd = c(2005, 2030, 2050)), expected = quitte_example_data %>% filter('r7552c_1p5C_Def-rem-5' == scenario, variable %in% c('Consumption', 'PE'), region %in% c('EUR', 'LAM'), period %in% c(2005, 2030, 2050)) %>% droplevels() %>% mutate(variable = factor(variable, levels = c('Consumption', 'PE'), ordered = TRUE)) ) })
/tests/testthat/test-toolExtractSortScaleQuitte.R
no_license
pik-piam/quitte
R
false
false
748
r
context('toolExtractSortScaleQuitte()') test_that( 'Test toolExtractSortScaleQuitte() results', { expect_equal( object = toolExtractSortScaleQuitte( x = quitte_example_data, scen = 'r7552c_1p5C_Def-rem-5', vars = c('Consumption', 'PE'), regi = c('EUR', 'LAM'), prd = c(2005, 2030, 2050)), expected = quitte_example_data %>% filter('r7552c_1p5C_Def-rem-5' == scenario, variable %in% c('Consumption', 'PE'), region %in% c('EUR', 'LAM'), period %in% c(2005, 2030, 2050)) %>% droplevels() %>% mutate(variable = factor(variable, levels = c('Consumption', 'PE'), ordered = TRUE)) ) })
suppressPackageStartupMessages(library("optparse")) # Make option list option_list <- list( make_option(c("-i", "--subdist"), type="character", default=NULL, help="Input subject distances descriptor (*.desc) file (required)", metavar="file"), make_option(c("-m", "--mask"), type="character", default=NULL, help="Brain mask file (required)", metavar="file"), make_option(c("-l", "--labels"), type="character", default=NULL, help="File with labels/responses where # of rows correspond to # of subjects in the subject distances matrices (required)", metavar="file"), make_option(c("-c", "--forks"), type="integer", default=1, help="Number of computer processors to use in parallel by forking the complete processing stream [default: %default]", metavar="number"), make_option(c("-t", "--threads"), type="integer", default=1, help="Number of computer processors to use in parallel by multi-threading matrix algebra operations [default: %default]", metavar="number"), make_option("--cross", type="integer", default=10, help="Number of folds for cross-validation (default: %default)", metavar="option"), make_option("--type", type="character", default=NULL, help="Type of classification: 'C-classification', 'nu-classification', 'one-classification', 'eps-regression', 'nu-regression' (default is to auto-select between C-classification or eps-regression)", metavar="option"), make_option("--kernel", type="character", default="linear", help="Kernel used to create the support vectors: 'linear', 'polynomial', 'radial', 'sigmoid' (default: %default)", metavar="option"), make_option("--memlimit", type="double", default=1, dest="memlimit", help="Maximum amount of RAM to use. It is preferable to keep this number as small as possible for speed reasons (this rule of thumb just applies to this script and connectir_kmeans_cross). [default: %default]", metavar="RAM"), make_option("--overwrite", action="store_true", default=FALSE, help="Overwrite output if it already exists (default is not to overwrite already existing output)"), make_option(c("-v", "--verbose"), action="store_true", default=TRUE, help="Print extra output [default]"), make_option(c("-q", "--quiet"), action="store_false", dest="verbose", help="Print little output") ) # Make class/usage parser <- OptionParser(usage = "%prog [options] outfile", option_list=option_list, add_help_option=TRUE) # Parse parser_out <- parse_args(parser, positional_arguments = TRUE) args <- parser_out$args opts <- parser_out$options # Check options/arguments if (length(args) != 1) { print_help(parser) quit(save="no", status=1) } saved_opts <- list(args=args, opts=opts) tryCatch({ # load connectir suppressWarnings(suppressPackageStartupMessages(library("connectir"))) # parallel processing setup set_parallel_procs(opts$forks, opts$threads, opts$verbose) # use foreach parallelization and shared memory? parallel_forks <- ifelse(opts$forks == 1, FALSE, TRUE) ### # Check Inputs ### vcat(opts$verbose, "Checking options") if (is.null(opts$subdist)) stop("Must specify -i/--subdist") if (is.null(opts$mask)) stop("Must specify -m/--mask") if (is.null(opts$labels)) stop("Must specify -l/--labels") if (getext(opts$subdist) != "desc") stop("Subject distances file (-i/--subdist) must have a '.desc' extension") opts$output <- args[1] ### # Compute Baby Compute ### start.time <- Sys.time() wrap_svm_subdist_cross(opts$subdist, opts$mask, opts$labels, out_file=opts$output, overwrite=opts$overwrite, kernel=opts$kernel, type=opts$type, cross=opts$cross, memlimit=opts$memlimit, parallel=parallel_forks, verbose=opts$verbose) end.time <- Sys.time() vcat(opts$verbose, "SVM is done! It took: %.2f minutes\n", as.numeric(end.time-start.time, units="mins")) }, warning = function(ex) { cat("\nA warning was detected: \n") cat(ex$message, "\n\n") cat("Called by: \n") print(ex$call) cat("\nSaving options...\n") save(saved_opts, file="called_options.rda") }, error = function(ex) { cat("\nAn error was detected: \n") cat(ex$message, "\n\n") cat("Called by: \n") print(ex$call) cat("\nSaving options...\n") save(saved_opts, file="called_options.rda") }, interrupt = function(ex) { cat("\nSaving options...\n") save(saved_opts, file="called_options.rda") cat("\nKill signal sent. Trying to clean up...\n") rm(list=ls()) gc(FALSE) cat("...success\n") }, finally = { cat("\nRemoving everything from memory\n") rm(list=ls()) gc(FALSE) cat("...sucesss\n") })
/inst/scripts/connectir_svm_cross_worker.R
no_license
onebacha/connectir
R
false
false
4,746
r
suppressPackageStartupMessages(library("optparse")) # Make option list option_list <- list( make_option(c("-i", "--subdist"), type="character", default=NULL, help="Input subject distances descriptor (*.desc) file (required)", metavar="file"), make_option(c("-m", "--mask"), type="character", default=NULL, help="Brain mask file (required)", metavar="file"), make_option(c("-l", "--labels"), type="character", default=NULL, help="File with labels/responses where # of rows correspond to # of subjects in the subject distances matrices (required)", metavar="file"), make_option(c("-c", "--forks"), type="integer", default=1, help="Number of computer processors to use in parallel by forking the complete processing stream [default: %default]", metavar="number"), make_option(c("-t", "--threads"), type="integer", default=1, help="Number of computer processors to use in parallel by multi-threading matrix algebra operations [default: %default]", metavar="number"), make_option("--cross", type="integer", default=10, help="Number of folds for cross-validation (default: %default)", metavar="option"), make_option("--type", type="character", default=NULL, help="Type of classification: 'C-classification', 'nu-classification', 'one-classification', 'eps-regression', 'nu-regression' (default is to auto-select between C-classification or eps-regression)", metavar="option"), make_option("--kernel", type="character", default="linear", help="Kernel used to create the support vectors: 'linear', 'polynomial', 'radial', 'sigmoid' (default: %default)", metavar="option"), make_option("--memlimit", type="double", default=1, dest="memlimit", help="Maximum amount of RAM to use. It is preferable to keep this number as small as possible for speed reasons (this rule of thumb just applies to this script and connectir_kmeans_cross). [default: %default]", metavar="RAM"), make_option("--overwrite", action="store_true", default=FALSE, help="Overwrite output if it already exists (default is not to overwrite already existing output)"), make_option(c("-v", "--verbose"), action="store_true", default=TRUE, help="Print extra output [default]"), make_option(c("-q", "--quiet"), action="store_false", dest="verbose", help="Print little output") ) # Make class/usage parser <- OptionParser(usage = "%prog [options] outfile", option_list=option_list, add_help_option=TRUE) # Parse parser_out <- parse_args(parser, positional_arguments = TRUE) args <- parser_out$args opts <- parser_out$options # Check options/arguments if (length(args) != 1) { print_help(parser) quit(save="no", status=1) } saved_opts <- list(args=args, opts=opts) tryCatch({ # load connectir suppressWarnings(suppressPackageStartupMessages(library("connectir"))) # parallel processing setup set_parallel_procs(opts$forks, opts$threads, opts$verbose) # use foreach parallelization and shared memory? parallel_forks <- ifelse(opts$forks == 1, FALSE, TRUE) ### # Check Inputs ### vcat(opts$verbose, "Checking options") if (is.null(opts$subdist)) stop("Must specify -i/--subdist") if (is.null(opts$mask)) stop("Must specify -m/--mask") if (is.null(opts$labels)) stop("Must specify -l/--labels") if (getext(opts$subdist) != "desc") stop("Subject distances file (-i/--subdist) must have a '.desc' extension") opts$output <- args[1] ### # Compute Baby Compute ### start.time <- Sys.time() wrap_svm_subdist_cross(opts$subdist, opts$mask, opts$labels, out_file=opts$output, overwrite=opts$overwrite, kernel=opts$kernel, type=opts$type, cross=opts$cross, memlimit=opts$memlimit, parallel=parallel_forks, verbose=opts$verbose) end.time <- Sys.time() vcat(opts$verbose, "SVM is done! It took: %.2f minutes\n", as.numeric(end.time-start.time, units="mins")) }, warning = function(ex) { cat("\nA warning was detected: \n") cat(ex$message, "\n\n") cat("Called by: \n") print(ex$call) cat("\nSaving options...\n") save(saved_opts, file="called_options.rda") }, error = function(ex) { cat("\nAn error was detected: \n") cat(ex$message, "\n\n") cat("Called by: \n") print(ex$call) cat("\nSaving options...\n") save(saved_opts, file="called_options.rda") }, interrupt = function(ex) { cat("\nSaving options...\n") save(saved_opts, file="called_options.rda") cat("\nKill signal sent. Trying to clean up...\n") rm(list=ls()) gc(FALSE) cat("...success\n") }, finally = { cat("\nRemoving everything from memory\n") rm(list=ls()) gc(FALSE) cat("...sucesss\n") })
gini_impurity_red_Sim <- function(Daten, index_set, vari_index, Varis, cutoff){ # Betrachtete Variable variable<- Varis[which(Varis[,1]==vari_index), 2] # Linke und Rechte Teilmenge der Beobachtungen berechnen left_index_set <- intersect(index_set, which(Daten[, variable]<=cutoff)) right_index_set<- intersect(index_set, which(Daten[, variable]>cutoff)) # Tochterknoten class <- Daten[index_set,1] class_left <- Daten[left_index_set,1] class_right<- Daten[right_index_set,1] # impurity reduction N_class <- length(class) n_classL <- length(class_left)/N_class n_classR <- length(class_right)/N_class imp_reduction<- gini_index(class) - n_classL*gini_index(class_left) - n_classR*gini_index(class_right) # Ausgabe: return(imp_reduction) }
/NHEMOtree/R/gini_impurity_red_Sim.R
no_license
ingted/R-Examples
R
false
false
850
r
gini_impurity_red_Sim <- function(Daten, index_set, vari_index, Varis, cutoff){ # Betrachtete Variable variable<- Varis[which(Varis[,1]==vari_index), 2] # Linke und Rechte Teilmenge der Beobachtungen berechnen left_index_set <- intersect(index_set, which(Daten[, variable]<=cutoff)) right_index_set<- intersect(index_set, which(Daten[, variable]>cutoff)) # Tochterknoten class <- Daten[index_set,1] class_left <- Daten[left_index_set,1] class_right<- Daten[right_index_set,1] # impurity reduction N_class <- length(class) n_classL <- length(class_left)/N_class n_classR <- length(class_right)/N_class imp_reduction<- gini_index(class) - n_classL*gini_index(class_left) - n_classR*gini_index(class_right) # Ausgabe: return(imp_reduction) }
# Comparison of logicals TRUE == FALSE # Comparison of numerics -6*14 != 17 - 101 # Comparison of character strings "useR" == "user" # Compare a logical with a numeric TRUE == 1
/Tutorials/R Intermediate/Chapter 1/Equality.R
no_license
Lingesh2311/R
R
false
false
190
r
# Comparison of logicals TRUE == FALSE # Comparison of numerics -6*14 != 17 - 101 # Comparison of character strings "useR" == "user" # Compare a logical with a numeric TRUE == 1
#' 01305 Detergent Suds (Severity) #' #' A table containing the USGS Detergent Suds (Severity) parameter codes. #' #' @format A data frame with 5 rows and 3 variables: #' \describe{ #' \item{Parameter Code}{USGS Parameter Code} #' \item{Fixed Value}{Fixed Value} #' \item{Fixed Text}{Fixed Text} #' } #' #' #' @references #' This data is from Table 26. Parameter codes with fixed values (USGS Water Quality Samples for USA: Sample Data). See \url{https://help.waterdata.usgs.gov/codes-and-parameters/}. #' #' #' #' "pmcode_01305" #> [1] "pmcode_01305"
/R/pmcode_01305.R
permissive
cran/ie2miscdata
R
false
false
552
r
#' 01305 Detergent Suds (Severity) #' #' A table containing the USGS Detergent Suds (Severity) parameter codes. #' #' @format A data frame with 5 rows and 3 variables: #' \describe{ #' \item{Parameter Code}{USGS Parameter Code} #' \item{Fixed Value}{Fixed Value} #' \item{Fixed Text}{Fixed Text} #' } #' #' #' @references #' This data is from Table 26. Parameter codes with fixed values (USGS Water Quality Samples for USA: Sample Data). See \url{https://help.waterdata.usgs.gov/codes-and-parameters/}. #' #' #' #' "pmcode_01305" #> [1] "pmcode_01305"
#' --- #' title: "Bayesian data analysis demo 10.1" #' author: "Aki Vehtari, Markus Paasiniemi" #' date: "`r format(Sys.Date())`" #' output: #' html_document: #' theme: readable #' code_download: true #' --- #' ## Rejection sampling example #' #' ggplot2 is used for plotting, tidyr for manipulating data frames #+ setup, message=FALSE, error=FALSE, warning=FALSE library(ggplot2) theme_set(theme_minimal()) library(tidyr) #' Fake interesting distribution x <- seq(-4, 4, length.out = 200) r <- c(1.1, 1.3, -0.1, -0.7, 0.2, -0.4, 0.06, -1.7, 1.7, 0.3, 0.7, 1.6, -2.06, -0.74, 0.2, 0.5) #' Compute unnormalized target density (named q, to emphesize that it #' does not need to be normalized). q <- density(r, bw = 0.5, n = 200, from = -4, to = 4)$y #' Gaussian proposal distribution g_mean <- 0 g_sd <- 1.1 g <- dnorm(x, g_mean, g_sd) #' M is computed by discrete approximation M <- max(q/g) g <- g*M #' One draw at -0.8 r1 = -0.8 zi = which.min(abs(x - r1)) # find the closest grid point r21 = 0.3 * g[zi] r22 = 0.8 * g[zi] #' Visualize one accepted and one rejected draw: df1 <- data.frame(x, q, g) %>% pivot_longer(cols = !x, names_to = "grp", values_to = "p") # subset with only target distribution dfq <- subset(df1 , grp == "q") # labels labs1 <- c('Mg(theta)','q(theta|y)') ggplot() + geom_line(data = df1, aes(x, p, color = grp, linetype = grp)) + geom_area(data = dfq, aes(x, p), fill = 'lightblue', alpha = 0.3) + geom_point(aes(x[zi], r21), col = 'forestgreen', size = 2) + geom_point(aes(x[zi], r22), col = 'red', size = 2) + geom_segment(aes(x = x[zi], xend = x[zi], y = 0, yend = q[zi])) + geom_segment(aes(x = x[zi], xend = x[zi], y = q[zi], yend = g[zi]), linetype = 'dashed') + scale_y_continuous(breaks = NULL) + labs(y = '') + theme(legend.position = 'bottom', legend.title = element_blank()) + scale_linetype_manual(values = c('dashed', 'solid'), labels = labs1) + scale_color_discrete(labels = labs1) + annotate('text', x = x[zi] + 0.1, y = c(r21, r22), label = c('accepted', 'rejected'), hjust = 0) #' 200 draws from the proposal distribution nsamp <- 200 r1s <- rnorm(nsamp, g_mean, g_sd) zis <- sapply(r1s, function(r) which.min(abs(x - r))) r2s <- runif(nsamp) * g[zis] acc <- ifelse(r2s < q[zis], 'a', 'r') #' Visualize 200 draws, only some of which are accepted df2 <- data.frame(r1s, r2s, acc) # labels labs2 <- c('Accepted', 'Rejected', 'Mg(theta)', 'q(theta|y)') ggplot() + geom_line(data = df1, aes(x, p, color = grp, linetype = grp)) + geom_area(data = dfq, aes(x, p), fill = 'lightblue', alpha = 0.3) + geom_point(data = df2, aes(r1s, r2s, color = acc), size = 2) + geom_rug(data = subset(df2, acc== 'a'), aes(x = r1s, r2s), col = 'forestgreen', sides = 'b') + labs(y = '') + scale_y_continuous(breaks = NULL) + scale_linetype_manual(values = c(2, 1, 0, 0), labels = labs2) + scale_color_manual(values=c('forestgreen','red','#00BFC4','red'), labels = labs2) + guides(color=guide_legend(override.aes=list( shape = c(16, 16, NA, NA), linetype = c(0, 0, 2, 1), color=c('forestgreen', 'red', 'red', '#00BFC4'), labels = labs2)), linetype="none") + theme(legend.position = 'bottom', legend.title = element_blank()) #' Rejection sampling for truncated distribution q <- g q[x < -1.5] <- 0 df1 <- data.frame(x, q, g) %>% pivot_longer(cols = !x, names_to = "grp", values_to = "p") acc <- ifelse(r1s > -1.5, 'a', 'r') df2 <- data.frame(r1s, r2s, acc) dfq <- subset(df1 , grp == "q") # labels labs2 <- c('Accepted', 'Rejected', 'Mg(theta)', 'q(theta|y)') ggplot() + geom_line(data = df1, aes(x, p, color = grp, linetype = grp)) + geom_area(data = dfq, aes(x, p), fill = 'lightblue', alpha = 0.3) + geom_point(data = df2, aes(r1s, r2s, color = acc), size = 2) + geom_rug(data = subset(df2, acc== 'a'), aes(x = r1s, r2s), col = 'forestgreen', sides = 'b') + labs(y = '') + scale_y_continuous(breaks = NULL) + scale_linetype_manual(values = c(2, 1, 0, 0), labels = labs2) + scale_color_manual(values=c('forestgreen','red','#00BFC4','red'), labels = labs2) + guides(color=guide_legend(override.aes=list( shape = c(16, 16, NA, NA), linetype = c(0, 0, 2, 1), color=c('forestgreen', 'red', 'red', '#00BFC4'), labels = labs2)), linetype="none") + theme(legend.position = 'bottom', legend.title = element_blank())
/demos_ch10/demo10_1.R
permissive
avehtari/BDA_R_demos
R
false
false
4,401
r
#' --- #' title: "Bayesian data analysis demo 10.1" #' author: "Aki Vehtari, Markus Paasiniemi" #' date: "`r format(Sys.Date())`" #' output: #' html_document: #' theme: readable #' code_download: true #' --- #' ## Rejection sampling example #' #' ggplot2 is used for plotting, tidyr for manipulating data frames #+ setup, message=FALSE, error=FALSE, warning=FALSE library(ggplot2) theme_set(theme_minimal()) library(tidyr) #' Fake interesting distribution x <- seq(-4, 4, length.out = 200) r <- c(1.1, 1.3, -0.1, -0.7, 0.2, -0.4, 0.06, -1.7, 1.7, 0.3, 0.7, 1.6, -2.06, -0.74, 0.2, 0.5) #' Compute unnormalized target density (named q, to emphesize that it #' does not need to be normalized). q <- density(r, bw = 0.5, n = 200, from = -4, to = 4)$y #' Gaussian proposal distribution g_mean <- 0 g_sd <- 1.1 g <- dnorm(x, g_mean, g_sd) #' M is computed by discrete approximation M <- max(q/g) g <- g*M #' One draw at -0.8 r1 = -0.8 zi = which.min(abs(x - r1)) # find the closest grid point r21 = 0.3 * g[zi] r22 = 0.8 * g[zi] #' Visualize one accepted and one rejected draw: df1 <- data.frame(x, q, g) %>% pivot_longer(cols = !x, names_to = "grp", values_to = "p") # subset with only target distribution dfq <- subset(df1 , grp == "q") # labels labs1 <- c('Mg(theta)','q(theta|y)') ggplot() + geom_line(data = df1, aes(x, p, color = grp, linetype = grp)) + geom_area(data = dfq, aes(x, p), fill = 'lightblue', alpha = 0.3) + geom_point(aes(x[zi], r21), col = 'forestgreen', size = 2) + geom_point(aes(x[zi], r22), col = 'red', size = 2) + geom_segment(aes(x = x[zi], xend = x[zi], y = 0, yend = q[zi])) + geom_segment(aes(x = x[zi], xend = x[zi], y = q[zi], yend = g[zi]), linetype = 'dashed') + scale_y_continuous(breaks = NULL) + labs(y = '') + theme(legend.position = 'bottom', legend.title = element_blank()) + scale_linetype_manual(values = c('dashed', 'solid'), labels = labs1) + scale_color_discrete(labels = labs1) + annotate('text', x = x[zi] + 0.1, y = c(r21, r22), label = c('accepted', 'rejected'), hjust = 0) #' 200 draws from the proposal distribution nsamp <- 200 r1s <- rnorm(nsamp, g_mean, g_sd) zis <- sapply(r1s, function(r) which.min(abs(x - r))) r2s <- runif(nsamp) * g[zis] acc <- ifelse(r2s < q[zis], 'a', 'r') #' Visualize 200 draws, only some of which are accepted df2 <- data.frame(r1s, r2s, acc) # labels labs2 <- c('Accepted', 'Rejected', 'Mg(theta)', 'q(theta|y)') ggplot() + geom_line(data = df1, aes(x, p, color = grp, linetype = grp)) + geom_area(data = dfq, aes(x, p), fill = 'lightblue', alpha = 0.3) + geom_point(data = df2, aes(r1s, r2s, color = acc), size = 2) + geom_rug(data = subset(df2, acc== 'a'), aes(x = r1s, r2s), col = 'forestgreen', sides = 'b') + labs(y = '') + scale_y_continuous(breaks = NULL) + scale_linetype_manual(values = c(2, 1, 0, 0), labels = labs2) + scale_color_manual(values=c('forestgreen','red','#00BFC4','red'), labels = labs2) + guides(color=guide_legend(override.aes=list( shape = c(16, 16, NA, NA), linetype = c(0, 0, 2, 1), color=c('forestgreen', 'red', 'red', '#00BFC4'), labels = labs2)), linetype="none") + theme(legend.position = 'bottom', legend.title = element_blank()) #' Rejection sampling for truncated distribution q <- g q[x < -1.5] <- 0 df1 <- data.frame(x, q, g) %>% pivot_longer(cols = !x, names_to = "grp", values_to = "p") acc <- ifelse(r1s > -1.5, 'a', 'r') df2 <- data.frame(r1s, r2s, acc) dfq <- subset(df1 , grp == "q") # labels labs2 <- c('Accepted', 'Rejected', 'Mg(theta)', 'q(theta|y)') ggplot() + geom_line(data = df1, aes(x, p, color = grp, linetype = grp)) + geom_area(data = dfq, aes(x, p), fill = 'lightblue', alpha = 0.3) + geom_point(data = df2, aes(r1s, r2s, color = acc), size = 2) + geom_rug(data = subset(df2, acc== 'a'), aes(x = r1s, r2s), col = 'forestgreen', sides = 'b') + labs(y = '') + scale_y_continuous(breaks = NULL) + scale_linetype_manual(values = c(2, 1, 0, 0), labels = labs2) + scale_color_manual(values=c('forestgreen','red','#00BFC4','red'), labels = labs2) + guides(color=guide_legend(override.aes=list( shape = c(16, 16, NA, NA), linetype = c(0, 0, 2, 1), color=c('forestgreen', 'red', 'red', '#00BFC4'), labels = labs2)), linetype="none") + theme(legend.position = 'bottom', legend.title = element_blank())
dotR <- file.path(Sys.getenv("HOME"), ".R") if (!file.exists(dotR)) dir.create(dotR) M <- file.path(dotR, ifelse(.Platform$OS.type == "windows", "Makevars.win", "Makevars")) if (!file.exists(M)) file.create(M) cat("\nCXX14FLAGS=-O3 -march=native -mtune=native", if( grepl("^darwin", R.version$os)) "CXX14FLAGS += -arch x86_64 -ftemplate-depth-256" else if (.Platform$OS.type == "windows") "CXX11FLAGS=-O3 -march=native -mtune=native" else "CXX14FLAGS += -fPIC", file = M, sep = "\n", append = TRUE) require(lobstr) require(ggridges) require(loo) require(rethinking) require(tidyr) require(tidyverse) require(dplyr) require(ggplot2) require(tidyr) require(tidybayes) require(bayesplot) require(brms) require(broom) library(lubridate) require(imputeTS) require(smooth) require(Mcomp) require(hash) require(rlist) require(feather) require(modelr) require(gridExtra) require(scales) require(ggrepel) require(posterior) require(cmdstanr) options(warnPartialMatchDollar = TRUE) Sys.setenv("_R_CHECK_LENGTH_1_CONDITION_" = "true") options(mc.cores = parallel::detectCores()) rstan_options(auto_write = TRUE) options(stringsAsFactors = FALSE)
/init_settings.R
no_license
svats2k/BayesianAnalysis
R
false
false
1,161
r
dotR <- file.path(Sys.getenv("HOME"), ".R") if (!file.exists(dotR)) dir.create(dotR) M <- file.path(dotR, ifelse(.Platform$OS.type == "windows", "Makevars.win", "Makevars")) if (!file.exists(M)) file.create(M) cat("\nCXX14FLAGS=-O3 -march=native -mtune=native", if( grepl("^darwin", R.version$os)) "CXX14FLAGS += -arch x86_64 -ftemplate-depth-256" else if (.Platform$OS.type == "windows") "CXX11FLAGS=-O3 -march=native -mtune=native" else "CXX14FLAGS += -fPIC", file = M, sep = "\n", append = TRUE) require(lobstr) require(ggridges) require(loo) require(rethinking) require(tidyr) require(tidyverse) require(dplyr) require(ggplot2) require(tidyr) require(tidybayes) require(bayesplot) require(brms) require(broom) library(lubridate) require(imputeTS) require(smooth) require(Mcomp) require(hash) require(rlist) require(feather) require(modelr) require(gridExtra) require(scales) require(ggrepel) require(posterior) require(cmdstanr) options(warnPartialMatchDollar = TRUE) Sys.setenv("_R_CHECK_LENGTH_1_CONDITION_" = "true") options(mc.cores = parallel::detectCores()) rstan_options(auto_write = TRUE) options(stringsAsFactors = FALSE)
install.packages("tidyverse") library(tidyverse) murders <- read.csv("data/murders.csv") murders <- murders %>% mutate(region = factor(region), rate = total / population * 10^5) save(murders, file = "rda/murders.rda")
/wrangle-data.R
no_license
ajherrick19/murders
R
false
false
217
r
install.packages("tidyverse") library(tidyverse) murders <- read.csv("data/murders.csv") murders <- murders %>% mutate(region = factor(region), rate = total / population * 10^5) save(murders, file = "rda/murders.rda")
#' Perform a microsimulation of tax changes using the 2016-17 two per cent #' sample of Australian taxpayers. #' #' @description #' #' The analysis year is 2019-20. The assumptions for employment growth and wages #' are from the 2018-19 Budget and are as follows. #' #' Wages 2.25%, 2.75%, 3.25%, 3.5% #' Employment 2.75%, 1.5%, 1.5%, 1.25% #' #' @param keep_df Whether to keep the amended tax file, mainly useful for #' debugging. #' @param ... Parameters for the `calculate_tax` function #' @param employment_growth A vector containing forecasts for employment growth #' @param wages_growth A vector containing forecasts for wages growth #' @param parallel Should this compute using the parallel package #' #' @return A microsim object #' @export #' #' @examples #' microsim(base_tax_brackets = c(18200, 37000, 80000, 1.8e5, Inf), #' change_tax_brackets = c(18200, 37000, 87000, 1.8e5, Inf)) #' #' @import dplyr #' @import ozTaxData #' @import parallel microsim <- function(keep_df = FALSE, employment_growth = c(.0275, .015, .015, .0125), wages_growth = c(.0225, .0275, .0325, .035), parallel = FALSE, ...) { tax_file <- uprate_data(ozTaxData::sample_16_17, wages_growth) if (parallel == TRUE) { n_cores <- detectCores() - 1 cl <- makeCluster(n_cores) tax_file$difference <- parSapply(cl, tax_file$Taxable_Income, function(x) calculate_tax(x, ...)$difference) } else { tax_file$difference <- sapply(tax_file$Taxable_Income, function(x) calculate_tax(x, ...)$difference) } tax_file <- tax_file %>% mutate(decile = ntile(Taxable_Income, 10)) %>% select(Gender, decile, Partner_status, Tot_inc_amt, Taxable_Income, difference) distribution <- tax_file %>% group_by(decile) %>% summarise( revenue = sum(variable_compound(difference, employment_growth)) * 50 / 1e6, income_from = round(min(Taxable_Income), -2), income_to = round(max(Taxable_Income), -2), avg_change = mean(difference), avg_change_share = mean(difference) / mean(Taxable_Income) ) gender <- tax_file %>% group_by(Gender) %>% summarise( revenue = sum(variable_compound(difference, employment_growth)) * 50 / 1e6, avg_change = mean(difference), avg_change_share = mean(difference) / mean(Taxable_Income) ) revenue <- sum(variable_compound(tax_file$difference, employment_growth)) * 50 / 1e6 n_tax_cut <- variable_compound(sum(tax_file$difference < 0), employment_growth) * 50 n_tax_increase <- variable_compound(sum(tax_file$difference > 0), employment_growth) * 50 n_no_difference <- variable_compound(sum(tax_file$difference == 0), employment_growth) * 50 summary_tbl <- average_tax_table(...) input_params <- as.list(match.call()[-1]) if (keep_df == FALSE) { tax_file <- NULL } output <- list(tax_file = tax_file, revenue = revenue, n_affected = list(n_tax_cut = n_tax_cut, n_tax_increase = n_tax_increase, n_no_difference = n_no_difference), distribution = distribution, gender = gender, input_params = input_params, summary_tbl = summary_tbl) class(output) <- "microsim" return(output) }
/R/microsim.R
no_license
thmcmahon/microsim
R
false
false
3,403
r
#' Perform a microsimulation of tax changes using the 2016-17 two per cent #' sample of Australian taxpayers. #' #' @description #' #' The analysis year is 2019-20. The assumptions for employment growth and wages #' are from the 2018-19 Budget and are as follows. #' #' Wages 2.25%, 2.75%, 3.25%, 3.5% #' Employment 2.75%, 1.5%, 1.5%, 1.25% #' #' @param keep_df Whether to keep the amended tax file, mainly useful for #' debugging. #' @param ... Parameters for the `calculate_tax` function #' @param employment_growth A vector containing forecasts for employment growth #' @param wages_growth A vector containing forecasts for wages growth #' @param parallel Should this compute using the parallel package #' #' @return A microsim object #' @export #' #' @examples #' microsim(base_tax_brackets = c(18200, 37000, 80000, 1.8e5, Inf), #' change_tax_brackets = c(18200, 37000, 87000, 1.8e5, Inf)) #' #' @import dplyr #' @import ozTaxData #' @import parallel microsim <- function(keep_df = FALSE, employment_growth = c(.0275, .015, .015, .0125), wages_growth = c(.0225, .0275, .0325, .035), parallel = FALSE, ...) { tax_file <- uprate_data(ozTaxData::sample_16_17, wages_growth) if (parallel == TRUE) { n_cores <- detectCores() - 1 cl <- makeCluster(n_cores) tax_file$difference <- parSapply(cl, tax_file$Taxable_Income, function(x) calculate_tax(x, ...)$difference) } else { tax_file$difference <- sapply(tax_file$Taxable_Income, function(x) calculate_tax(x, ...)$difference) } tax_file <- tax_file %>% mutate(decile = ntile(Taxable_Income, 10)) %>% select(Gender, decile, Partner_status, Tot_inc_amt, Taxable_Income, difference) distribution <- tax_file %>% group_by(decile) %>% summarise( revenue = sum(variable_compound(difference, employment_growth)) * 50 / 1e6, income_from = round(min(Taxable_Income), -2), income_to = round(max(Taxable_Income), -2), avg_change = mean(difference), avg_change_share = mean(difference) / mean(Taxable_Income) ) gender <- tax_file %>% group_by(Gender) %>% summarise( revenue = sum(variable_compound(difference, employment_growth)) * 50 / 1e6, avg_change = mean(difference), avg_change_share = mean(difference) / mean(Taxable_Income) ) revenue <- sum(variable_compound(tax_file$difference, employment_growth)) * 50 / 1e6 n_tax_cut <- variable_compound(sum(tax_file$difference < 0), employment_growth) * 50 n_tax_increase <- variable_compound(sum(tax_file$difference > 0), employment_growth) * 50 n_no_difference <- variable_compound(sum(tax_file$difference == 0), employment_growth) * 50 summary_tbl <- average_tax_table(...) input_params <- as.list(match.call()[-1]) if (keep_df == FALSE) { tax_file <- NULL } output <- list(tax_file = tax_file, revenue = revenue, n_affected = list(n_tax_cut = n_tax_cut, n_tax_increase = n_tax_increase, n_no_difference = n_no_difference), distribution = distribution, gender = gender, input_params = input_params, summary_tbl = summary_tbl) class(output) <- "microsim" return(output) }
source("prep.R") doPlot4 <- function() { tbl <- prepareData() png(filename = "plot4.png", width = 480, height = 480, units = "px") par (mfrow = c(2,2), mar = c(4,4,2,1), oma = c(0,0,2,0)) with(tbl, { plot(DateTime, Global_active_power, xlab="", ylab="Global Active Power", type="l") plot(DateTime, Voltage, xlab="datetime", ylab="Voltage", type="l") cols = c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3") plot(DateTime, Sub_metering_1, type="l", xlab="", ylab="Energy sub metering") lines(DateTime, Sub_metering_2, type="l", col="red") lines(DateTime, Sub_metering_3, type="l", col="blue") legend("topright", lty=1, lwd=1, col=c("black","blue","red"), legend=cols, bty="n") plot(DateTime, Global_reactive_power, xlab="datetime", ylab="Global_reactive_power", type="l") }) dev.off() } doPlot4()
/plot4.R
no_license
pRcoding/ExData_Plotting1
R
false
false
872
r
source("prep.R") doPlot4 <- function() { tbl <- prepareData() png(filename = "plot4.png", width = 480, height = 480, units = "px") par (mfrow = c(2,2), mar = c(4,4,2,1), oma = c(0,0,2,0)) with(tbl, { plot(DateTime, Global_active_power, xlab="", ylab="Global Active Power", type="l") plot(DateTime, Voltage, xlab="datetime", ylab="Voltage", type="l") cols = c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3") plot(DateTime, Sub_metering_1, type="l", xlab="", ylab="Energy sub metering") lines(DateTime, Sub_metering_2, type="l", col="red") lines(DateTime, Sub_metering_3, type="l", col="blue") legend("topright", lty=1, lwd=1, col=c("black","blue","red"), legend=cols, bty="n") plot(DateTime, Global_reactive_power, xlab="datetime", ylab="Global_reactive_power", type="l") }) dev.off() } doPlot4()
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/FTG-random.R \name{rFTG} \alias{rFTG} \title{FTG Random Sample Generation} \usage{ rFTG(n, threshold, scale, shape) } \arguments{ \item{n}{Sample size.} \item{threshold}{Minimum value of the tail.} \item{scale}{Scale parameter.} \item{shape}{Shape parameter.} } \value{ Gives random deviates of the FTG. The length of the result is determined by n. } \description{ This function computes n random variates from full-tail gamma with a rejection method. } \examples{ x <- rFTG(100, 1, 1, 1) hist(x, breaks = "FD") } \references{ del Castillo, Joan & Daoudi, Jalila & Serra, Isabel. (2012). The full-tails gamma distribution applied to model extreme values. ASTIN Bulletin. <doi:10.1017/asb.2017.9>. } \keyword{FTG}
/man/rFTG.Rd
no_license
SergiVilardell/distTails
R
false
true
794
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/FTG-random.R \name{rFTG} \alias{rFTG} \title{FTG Random Sample Generation} \usage{ rFTG(n, threshold, scale, shape) } \arguments{ \item{n}{Sample size.} \item{threshold}{Minimum value of the tail.} \item{scale}{Scale parameter.} \item{shape}{Shape parameter.} } \value{ Gives random deviates of the FTG. The length of the result is determined by n. } \description{ This function computes n random variates from full-tail gamma with a rejection method. } \examples{ x <- rFTG(100, 1, 1, 1) hist(x, breaks = "FD") } \references{ del Castillo, Joan & Daoudi, Jalila & Serra, Isabel. (2012). The full-tails gamma distribution applied to model extreme values. ASTIN Bulletin. <doi:10.1017/asb.2017.9>. } \keyword{FTG}
# Create a shortened version of `mtcars` mtcars_short <- mtcars[1:5, ] test_that("the `cols_move()` function works correctly", { # Create a `tbl_latex` object with `gt()`; the `mpg`, # `cyl`, and `drat` columns placed after `drat` tbl_latex <- gt(mtcars_short) %>% cols_move(columns = c(mpg, cyl, disp), after = drat) # Expect a characteristic pattern grepl( paste0( ".*hp & drat & mpg & cyl & disp & wt & qsec & vs & am & gear & carb.*"), tbl_latex %>% as_latex() %>% as.character()) %>% expect_true() # Create a `tbl_latex` object with `gt()`; the `mpg`, # `cyl`, and `drat` columns placed after `drat` using vectors tbl_latex <- gt(mtcars_short) %>% cols_move(columns = c("mpg", "cyl", "disp"), after = c("drat")) # Expect a characteristic pattern grepl( paste0( ".*hp & drat & mpg & cyl & disp & wt & qsec & vs & am & gear & carb.*"), tbl_latex %>% as_latex() %>% as.character()) %>% expect_true() # Create a `tbl_latex` object with `gt()`; the `mpg`, # `cyl`, and `drat` columns placed after `carb` (the end of the series) tbl_latex <- gt(mtcars_short) %>% cols_move(columns = c(mpg, cyl, disp), after = carb) # Expect a characteristic pattern grepl( paste0( ".*hp & drat & wt & qsec & vs & am & gear & carb & mpg & cyl & disp.*"), tbl_latex %>% as_latex() %>% as.character()) %>% expect_true() }) test_that("the `cols_move_to_start()` function works correctly", { # Create a `tbl_latex` object with `gt()`; the `gear`, # and `carb` columns placed at the start tbl_latex <- gt(mtcars_short) %>% cols_move_to_start(columns = c(gear, carb)) # Expect a characteristic pattern grepl( paste0( ".*gear & carb & mpg & cyl & disp & hp & drat & wt & qsec & vs & am.*"), tbl_latex %>% as_latex() %>% as.character()) %>% expect_true() # Create a `tbl_latex` object with `gt()`; the `gear`, # and `carb` columns placed at the start using vectors tbl_latex <- gt(mtcars_short) %>% cols_move_to_start(columns = c("gear", "carb")) # Expect a characteristic pattern grepl( paste0( ".*gear & carb & mpg & cyl & disp & hp & drat & wt & qsec & vs & am.*"), tbl_latex %>% as_latex() %>% as.character()) %>% expect_true() }) test_that("the `cols_move_to_end()` function works correctly", { # Create a `tbl_latex` object with `gt()`; the `gear`, # and `carb` columns placed at the end tbl_latex <- gt(mtcars_short) %>% cols_move_to_end(columns = c(gear, carb)) # Expect a characteristic pattern grepl( paste0( ".*mpg & cyl & disp & hp & drat & wt & qsec & vs & am & gear & carb.*"), tbl_latex %>% as_latex() %>% as.character()) %>% expect_true() # Create a `tbl_latex` object with `gt()`; the `gear`, # and `carb` columns placed at the end using vectors tbl_latex <- gt(mtcars_short) %>% cols_move_to_end(columns = c("gear", "carb")) # Expect a characteristic pattern grepl( paste0( ".*mpg & cyl & disp & hp & drat & wt & qsec & vs & am & gear & carb.*"), tbl_latex %>% as_latex() %>% as.character()) %>% expect_true() })
/tests/testthat/test-l_cols_move.R
permissive
steveputman/gt
R
false
false
3,216
r
# Create a shortened version of `mtcars` mtcars_short <- mtcars[1:5, ] test_that("the `cols_move()` function works correctly", { # Create a `tbl_latex` object with `gt()`; the `mpg`, # `cyl`, and `drat` columns placed after `drat` tbl_latex <- gt(mtcars_short) %>% cols_move(columns = c(mpg, cyl, disp), after = drat) # Expect a characteristic pattern grepl( paste0( ".*hp & drat & mpg & cyl & disp & wt & qsec & vs & am & gear & carb.*"), tbl_latex %>% as_latex() %>% as.character()) %>% expect_true() # Create a `tbl_latex` object with `gt()`; the `mpg`, # `cyl`, and `drat` columns placed after `drat` using vectors tbl_latex <- gt(mtcars_short) %>% cols_move(columns = c("mpg", "cyl", "disp"), after = c("drat")) # Expect a characteristic pattern grepl( paste0( ".*hp & drat & mpg & cyl & disp & wt & qsec & vs & am & gear & carb.*"), tbl_latex %>% as_latex() %>% as.character()) %>% expect_true() # Create a `tbl_latex` object with `gt()`; the `mpg`, # `cyl`, and `drat` columns placed after `carb` (the end of the series) tbl_latex <- gt(mtcars_short) %>% cols_move(columns = c(mpg, cyl, disp), after = carb) # Expect a characteristic pattern grepl( paste0( ".*hp & drat & wt & qsec & vs & am & gear & carb & mpg & cyl & disp.*"), tbl_latex %>% as_latex() %>% as.character()) %>% expect_true() }) test_that("the `cols_move_to_start()` function works correctly", { # Create a `tbl_latex` object with `gt()`; the `gear`, # and `carb` columns placed at the start tbl_latex <- gt(mtcars_short) %>% cols_move_to_start(columns = c(gear, carb)) # Expect a characteristic pattern grepl( paste0( ".*gear & carb & mpg & cyl & disp & hp & drat & wt & qsec & vs & am.*"), tbl_latex %>% as_latex() %>% as.character()) %>% expect_true() # Create a `tbl_latex` object with `gt()`; the `gear`, # and `carb` columns placed at the start using vectors tbl_latex <- gt(mtcars_short) %>% cols_move_to_start(columns = c("gear", "carb")) # Expect a characteristic pattern grepl( paste0( ".*gear & carb & mpg & cyl & disp & hp & drat & wt & qsec & vs & am.*"), tbl_latex %>% as_latex() %>% as.character()) %>% expect_true() }) test_that("the `cols_move_to_end()` function works correctly", { # Create a `tbl_latex` object with `gt()`; the `gear`, # and `carb` columns placed at the end tbl_latex <- gt(mtcars_short) %>% cols_move_to_end(columns = c(gear, carb)) # Expect a characteristic pattern grepl( paste0( ".*mpg & cyl & disp & hp & drat & wt & qsec & vs & am & gear & carb.*"), tbl_latex %>% as_latex() %>% as.character()) %>% expect_true() # Create a `tbl_latex` object with `gt()`; the `gear`, # and `carb` columns placed at the end using vectors tbl_latex <- gt(mtcars_short) %>% cols_move_to_end(columns = c("gear", "carb")) # Expect a characteristic pattern grepl( paste0( ".*mpg & cyl & disp & hp & drat & wt & qsec & vs & am & gear & carb.*"), tbl_latex %>% as_latex() %>% as.character()) %>% expect_true() })
\name{mpr_templates-package} \alias{mpr_templates-package} \alias{mpr_templates} \docType{package} \title{ \packageTitle{mpr_templates} } \description{ \packageDescription{mpr_templates} } \details{ The DESCRIPTION file: \packageDESCRIPTION{mpr_templates} \packageIndices{mpr_templates} ~~ An overview of how to use the package, including the most ~~ ~~ important functions ~~ } \author{ \packageAuthor{mpr_templates} Maintainer: \packageMaintainer{mpr_templates} } \references{ ~~ Literature or other references for background information ~~ } ~~ Optionally other standard keywords, one per line, from file ~~ ~~ KEYWORDS in the R documentation directory ~~ \keyword{ package } \seealso{ ~~ Optional links to other man pages, e.g. ~~ ~~ \code{\link[<pkg>:<pkg>-package]{<pkg>}} ~~ } \examples{ ~~ simple examples of the most important functions ~~ }
/man/mpr_templates-package.Rd
no_license
Huihua2015/mpr_templates
R
false
false
853
rd
\name{mpr_templates-package} \alias{mpr_templates-package} \alias{mpr_templates} \docType{package} \title{ \packageTitle{mpr_templates} } \description{ \packageDescription{mpr_templates} } \details{ The DESCRIPTION file: \packageDESCRIPTION{mpr_templates} \packageIndices{mpr_templates} ~~ An overview of how to use the package, including the most ~~ ~~ important functions ~~ } \author{ \packageAuthor{mpr_templates} Maintainer: \packageMaintainer{mpr_templates} } \references{ ~~ Literature or other references for background information ~~ } ~~ Optionally other standard keywords, one per line, from file ~~ ~~ KEYWORDS in the R documentation directory ~~ \keyword{ package } \seealso{ ~~ Optional links to other man pages, e.g. ~~ ~~ \code{\link[<pkg>:<pkg>-package]{<pkg>}} ~~ } \examples{ ~~ simple examples of the most important functions ~~ }
#rm(list = ls()) setwd(dirname(parent.frame(2)$ofile)) library(ggplot2) library(xtable) library(plyr) library(dplyr) library(tidyr) library(readr) library(kableExtra) source('./_function_task_expand_name.r') eps = 0.2 median_range = 100 xtabs.data.first = function (data, formular, ...) { return(xtabs(formular, data, ...)) } dat = expand.name(read_csv('../results/function_task_static.csv')) dat.ggplot = subset(dat, dat$model %in% c('NMU', 'NALU', '$\\mathrm{NAC}_{\\bullet}$') & dat$operation == '${a \\cdot b}$' & dat$seed == 1) %>% mutate( model=droplevels(model), iteration=step, sparse.error = sparse.error.max, interpolation.error = interpolation, extrapolation.error = extrapolation ) %>% select(model, operation, iteration, interpolation.error, extrapolation.error, sparse.error) %>% gather('measurement', 'error', interpolation.error, extrapolation.error, sparse.error) dat.eps = data.frame( measurement=c('interpolation.error', 'extrapolation.error', 'sparse.error'), epsilon=c(NA, 0.2, NA) ) p = ggplot(dat.ggplot, aes(x=iteration, y=error, colour=model)) + geom_line(alpha=0.7) + geom_hline(aes(yintercept = epsilon), dat.eps, colour='black') + scale_y_continuous(trans="log10", name = element_blank()) + scale_color_discrete(labels = model.to.exp(levels(dat.ggplot$model))) + xlab('Iteration') + facet_wrap(~ measurement, scale='free_y', labeller = labeller( measurement = c( extrapolation.error = "Extrapolation error [MSE]", interpolation.error = "Interpolation error [MSE]", sparse.error = "Sparsity error" ) )) + theme(legend.position="bottom") + theme(plot.margin=unit(c(5.5, 10.5, 5.5, 5.5), "points")) print(p) ggsave('../paper/results/function-task-static-example.pdf', p, device="pdf", width = 13.968, height = 5, scale=1.4, units = "cm")
/export/function_task_static_plot_example.r
permissive
AndreasMadsen/stable-nalu
R
false
false
1,847
r
#rm(list = ls()) setwd(dirname(parent.frame(2)$ofile)) library(ggplot2) library(xtable) library(plyr) library(dplyr) library(tidyr) library(readr) library(kableExtra) source('./_function_task_expand_name.r') eps = 0.2 median_range = 100 xtabs.data.first = function (data, formular, ...) { return(xtabs(formular, data, ...)) } dat = expand.name(read_csv('../results/function_task_static.csv')) dat.ggplot = subset(dat, dat$model %in% c('NMU', 'NALU', '$\\mathrm{NAC}_{\\bullet}$') & dat$operation == '${a \\cdot b}$' & dat$seed == 1) %>% mutate( model=droplevels(model), iteration=step, sparse.error = sparse.error.max, interpolation.error = interpolation, extrapolation.error = extrapolation ) %>% select(model, operation, iteration, interpolation.error, extrapolation.error, sparse.error) %>% gather('measurement', 'error', interpolation.error, extrapolation.error, sparse.error) dat.eps = data.frame( measurement=c('interpolation.error', 'extrapolation.error', 'sparse.error'), epsilon=c(NA, 0.2, NA) ) p = ggplot(dat.ggplot, aes(x=iteration, y=error, colour=model)) + geom_line(alpha=0.7) + geom_hline(aes(yintercept = epsilon), dat.eps, colour='black') + scale_y_continuous(trans="log10", name = element_blank()) + scale_color_discrete(labels = model.to.exp(levels(dat.ggplot$model))) + xlab('Iteration') + facet_wrap(~ measurement, scale='free_y', labeller = labeller( measurement = c( extrapolation.error = "Extrapolation error [MSE]", interpolation.error = "Interpolation error [MSE]", sparse.error = "Sparsity error" ) )) + theme(legend.position="bottom") + theme(plot.margin=unit(c(5.5, 10.5, 5.5, 5.5), "points")) print(p) ggsave('../paper/results/function-task-static-example.pdf', p, device="pdf", width = 13.968, height = 5, scale=1.4, units = "cm")
############### #### model ### ############### ##### some definitions MAE=c() bias=c() SSresults=c() difference.best.worst=c() difference.best.reference=c() sd.best.worst=c() sd.best.ref=c() coverage=c() jags.m2=list() ##################### model2=function() { for(i in 1:NS){ dm[i]<-d[t2[i]]-d[t1[i]] prec[i]<-1/(SE[i]*SE[i]) y[i]~dnorm(dm[i],prec[i])} d[1]<-0 for(i in 2:NT){ d[i]~dnorm(md,sd)} md~dnorm(0,0.1) sd<-1/(td*td) td~dunif(0,2) for (i in 1:NT){ for (j in i:NT){ D[j,i]<-d[j]-d[i]}} #TreatmeNT hierarchy order[1:NT]<- NT+1- rank(d[1:NT]) for(k in 1:NT) { # this is when the outcome is positive - omit 'NT+1-' when the outcome is negative most.effective[k]<-equals(order[k],1) for(j in 1:NT) { effectiveness[k,j]<- equals(order[k],j)}} for(k in 1:NT) { for(j in 1:NT) { cumeffectiveness[k,j]<- sum(effectiveness[k,1:j])}} #SUCRAS# for(k in 1:NT) { SUCRA[k]<- sum(cumeffectiveness[k,1:(NT-1)]) /(NT-1)}} ################## params=c() for (i in 1:(N.treat-1)){ for (j in (i+1):N.treat){ params=c(params, paste("D[",j,",",i,"]",sep="")) }} for (i in 2:(N.treat)){ params=c(params, paste("d[",i,"]",sep="")) } for (i in 1:(N.treat)){ params=c(params, paste("SUCRA[",i,"]",sep="")) } #number of D parameters no.D=N.treat*(N.treat-1)/2 for (i in 1:N.sim){ initialval = NULL data2 <- list(y = data1[[i]]$TE,SE=data1[[i]]$seTE, NS=length(data1[[i]]$studlab), t1=data1[[i]]$t1,t2=data1[[i]]$t2, NT=N.treat) jags.m2[[i]] <- jags.parallel(data=data2,initialval,parameters.to.save = params, n.chains = 2, n.iter = 15000, n.thin=1, n.burnin = 5000, DIC=F, model.file = model2) print(i) coverage[i]=(mean(jags.m2[[i]]$BUGSoutput$summary[(no.D+N.treat+1):(no.D+2*N.treat-1),3]<0&jags.m2[[i]]$BUGSoutput$summary[(no.D+N.treat+1):(no.D+2*N.treat-1),7]>0)) bias[i]=(mean(jags.m2[[i]]$BUGSoutput$summary[(no.D+N.treat+1):(no.D+2*N.treat-1),1])) MAE[i]=mean(abs(jags.m2[[i]]$BUGSoutput$summary[(no.D+N.treat+1):(no.D+2*N.treat-1),1])) SSresults[i]=sum(jags.m2[[i]]$BUGSoutput$summary[1:no.D,3]>0|jags.m2[[i]]$BUGSoutput$summary[1:no.D,7]<0) ### 95% CrI does not include 0 difference.best.worst[i]=abs(jags.m2[[i]]$BUGSoutput$summary[1,1]) sd.best.worst[i]=abs(jags.m2[[i]]$BUGSoutput$summary[1,2]) jags.m2[[i]]=NULL }
/simulation study 1/Model II - Fixed Effect (Scenario C).R
no_license
esm-ispm-unibe-ch-REPRODUCIBLE/the_dark_side_of_the_force
R
false
false
2,279
r
############### #### model ### ############### ##### some definitions MAE=c() bias=c() SSresults=c() difference.best.worst=c() difference.best.reference=c() sd.best.worst=c() sd.best.ref=c() coverage=c() jags.m2=list() ##################### model2=function() { for(i in 1:NS){ dm[i]<-d[t2[i]]-d[t1[i]] prec[i]<-1/(SE[i]*SE[i]) y[i]~dnorm(dm[i],prec[i])} d[1]<-0 for(i in 2:NT){ d[i]~dnorm(md,sd)} md~dnorm(0,0.1) sd<-1/(td*td) td~dunif(0,2) for (i in 1:NT){ for (j in i:NT){ D[j,i]<-d[j]-d[i]}} #TreatmeNT hierarchy order[1:NT]<- NT+1- rank(d[1:NT]) for(k in 1:NT) { # this is when the outcome is positive - omit 'NT+1-' when the outcome is negative most.effective[k]<-equals(order[k],1) for(j in 1:NT) { effectiveness[k,j]<- equals(order[k],j)}} for(k in 1:NT) { for(j in 1:NT) { cumeffectiveness[k,j]<- sum(effectiveness[k,1:j])}} #SUCRAS# for(k in 1:NT) { SUCRA[k]<- sum(cumeffectiveness[k,1:(NT-1)]) /(NT-1)}} ################## params=c() for (i in 1:(N.treat-1)){ for (j in (i+1):N.treat){ params=c(params, paste("D[",j,",",i,"]",sep="")) }} for (i in 2:(N.treat)){ params=c(params, paste("d[",i,"]",sep="")) } for (i in 1:(N.treat)){ params=c(params, paste("SUCRA[",i,"]",sep="")) } #number of D parameters no.D=N.treat*(N.treat-1)/2 for (i in 1:N.sim){ initialval = NULL data2 <- list(y = data1[[i]]$TE,SE=data1[[i]]$seTE, NS=length(data1[[i]]$studlab), t1=data1[[i]]$t1,t2=data1[[i]]$t2, NT=N.treat) jags.m2[[i]] <- jags.parallel(data=data2,initialval,parameters.to.save = params, n.chains = 2, n.iter = 15000, n.thin=1, n.burnin = 5000, DIC=F, model.file = model2) print(i) coverage[i]=(mean(jags.m2[[i]]$BUGSoutput$summary[(no.D+N.treat+1):(no.D+2*N.treat-1),3]<0&jags.m2[[i]]$BUGSoutput$summary[(no.D+N.treat+1):(no.D+2*N.treat-1),7]>0)) bias[i]=(mean(jags.m2[[i]]$BUGSoutput$summary[(no.D+N.treat+1):(no.D+2*N.treat-1),1])) MAE[i]=mean(abs(jags.m2[[i]]$BUGSoutput$summary[(no.D+N.treat+1):(no.D+2*N.treat-1),1])) SSresults[i]=sum(jags.m2[[i]]$BUGSoutput$summary[1:no.D,3]>0|jags.m2[[i]]$BUGSoutput$summary[1:no.D,7]<0) ### 95% CrI does not include 0 difference.best.worst[i]=abs(jags.m2[[i]]$BUGSoutput$summary[1,1]) sd.best.worst[i]=abs(jags.m2[[i]]$BUGSoutput$summary[1,2]) jags.m2[[i]]=NULL }
setwd("~/summer-tranning-project/r code") mat <- read.csv("/home/sudip/summer-tranning-project/r code/LL-ALL-selected-transpose.csv") factor(mat[,101]) #[1] LL LL LL LL LL LL LL LL LL ALL ALL ALL ALL ALL ALL ALL ALL ALL[19] ALL #Levels: ALL LL library("e1071") #Breaking the data into train and test data trainData = sample(1:19,15) testData = setdiff(1:19,trainData) trainData <- mat[trainData,] testData <- mat[testData,] #mat <- as.matrix(mat) x <- subset(mat, select=-class) y <- subset(mat, select=class) svm_model <- svm(class ~ ., data=mat) summary(svm_model) svm_model1 <- svm(as.matrix(x),ifelse(mat[,101] == "ALL",1,0)) summary(svm_model1)
/Svm.R
no_license
Sudipsamanta1/summer-traning
R
false
false
664
r
setwd("~/summer-tranning-project/r code") mat <- read.csv("/home/sudip/summer-tranning-project/r code/LL-ALL-selected-transpose.csv") factor(mat[,101]) #[1] LL LL LL LL LL LL LL LL LL ALL ALL ALL ALL ALL ALL ALL ALL ALL[19] ALL #Levels: ALL LL library("e1071") #Breaking the data into train and test data trainData = sample(1:19,15) testData = setdiff(1:19,trainData) trainData <- mat[trainData,] testData <- mat[testData,] #mat <- as.matrix(mat) x <- subset(mat, select=-class) y <- subset(mat, select=class) svm_model <- svm(class ~ ., data=mat) summary(svm_model) svm_model1 <- svm(as.matrix(x),ifelse(mat[,101] == "ALL",1,0)) summary(svm_model1)
install.packages("leaflet") library(leaflet) m <- leaflet() %>% addTiles() %>% # Add default OpenStreetMap map tiles addMarkers(lng=-49.255954, lat=-25.450428, popup="Compwire") m
/lab02/packages/R/package.R
no_license
lopesdiego12/CDSW-Trainning
R
false
false
185
r
install.packages("leaflet") library(leaflet) m <- leaflet() %>% addTiles() %>% # Add default OpenStreetMap map tiles addMarkers(lng=-49.255954, lat=-25.450428, popup="Compwire") m
library(data.table) library(dplyr) # load additional code to perform variable names clean up source('clean_variable_names.R') # will check to ensure required directory with raw data exists in working directory if( !file.exists('UCI HAR Dataset')){ stop("Invalid script working environment. This script requires 'UCI HAR Dataset' directory in the working directory.") } # change work directory to directory containing raw data setwd('UCI HAR Dataset') # load raw data into memory train_set <- cbind(read.table('./train/X_train.txt'), read.table('./train/y_train.txt'), read.table('./train/subject_train.txt')) test_set <- cbind(read.table('./test/X_test.txt'), read.table("./test/y_test.txt"), read.table('./test/subject_test.txt')) activity_labels <- read.table('./activity_labels.txt', col.names = c('levels', 'labels')) # make combined set of train and test data combined_set <- rbind(train_set, test_set) features <- read.table("features.txt") # build subset of variables we only will use to perform futture analysis stdVariables <- features[grep("-std\\(\\)", features$V2),]$V1 meanVariables <- features[grep("-mean\\(\\)", features$V2),]$V1 variables <- c(stdVariables, meanVariables) # will get variable names from features vector variableNames <- as.character(features[variables, ]$V2) # perform some clean ups on variable names(remove dashes, parenthesis etc) variableNames <- cleanVariableNames(variableNames) # add Subject and Activity variables to final datatset variables <- c(563, 562, variables) variableNames <- c("Subject", "Activity", variableNames) # subset all selected variables to new dataset and assign varibles names tidyResult <- data.table(combined_set[, variables]) setnames(tidyResult, old = colnames(tidyResult), new = variableNames) tidyResult$Activity <- factor(tidyResult$Activity, activity_labels$levels, activity_labels$labels) # calculate averaged values for all selected variables grouped by Subject and Activity averagedTideyResult <- tidyResult[, lapply(.SD, mean), by=list(Subject, Activity)][order(Subject,Activity)] # save tidy results to file write.table(averagedTideyResult, "../tidy_dataset.txt", row.name=FALSE)
/run_analysis.R
no_license
ok-datascience/CleaningData
R
false
false
2,249
r
library(data.table) library(dplyr) # load additional code to perform variable names clean up source('clean_variable_names.R') # will check to ensure required directory with raw data exists in working directory if( !file.exists('UCI HAR Dataset')){ stop("Invalid script working environment. This script requires 'UCI HAR Dataset' directory in the working directory.") } # change work directory to directory containing raw data setwd('UCI HAR Dataset') # load raw data into memory train_set <- cbind(read.table('./train/X_train.txt'), read.table('./train/y_train.txt'), read.table('./train/subject_train.txt')) test_set <- cbind(read.table('./test/X_test.txt'), read.table("./test/y_test.txt"), read.table('./test/subject_test.txt')) activity_labels <- read.table('./activity_labels.txt', col.names = c('levels', 'labels')) # make combined set of train and test data combined_set <- rbind(train_set, test_set) features <- read.table("features.txt") # build subset of variables we only will use to perform futture analysis stdVariables <- features[grep("-std\\(\\)", features$V2),]$V1 meanVariables <- features[grep("-mean\\(\\)", features$V2),]$V1 variables <- c(stdVariables, meanVariables) # will get variable names from features vector variableNames <- as.character(features[variables, ]$V2) # perform some clean ups on variable names(remove dashes, parenthesis etc) variableNames <- cleanVariableNames(variableNames) # add Subject and Activity variables to final datatset variables <- c(563, 562, variables) variableNames <- c("Subject", "Activity", variableNames) # subset all selected variables to new dataset and assign varibles names tidyResult <- data.table(combined_set[, variables]) setnames(tidyResult, old = colnames(tidyResult), new = variableNames) tidyResult$Activity <- factor(tidyResult$Activity, activity_labels$levels, activity_labels$labels) # calculate averaged values for all selected variables grouped by Subject and Activity averagedTideyResult <- tidyResult[, lapply(.SD, mean), by=list(Subject, Activity)][order(Subject,Activity)] # save tidy results to file write.table(averagedTideyResult, "../tidy_dataset.txt", row.name=FALSE)
################################################### ########## Population Module ######## ################################################### population_path <- "Population/" # Data preprocessing source(str_c(population_path, "data-preprocessing.R"), local = TRUE) # UI population_ui <- function(id) { ns <- NS(id) tabPanel( title = "Population", column(width = 2, class = "sidebar", box(width = 12, h4(class = "accent-color", "Options"), h5("General"), HTML("<label>Select country: </label>"), selectizeInput(ns('country'), NULL, choices = countries, selected = NULL, multiple = FALSE, options = list(placeholder = 'Type a country name, e.g. Spain')), HTML("<label>Years: </label>"), actionButton(ns("years_reset"), class = "button-option btn btn-link", "Reset"), actionButton(ns("years_select_all"), class = "button-option btn btn-link", "Select all"), selectizeInput(ns('years'), NULL, choices = years, selected = NULL, multiple = TRUE, options = list(placeholder = 'Type a year, e.g. 2001', maxItems = 15)))), column(width = 10, class = "content", box(width = 12, h4("Population per country and year"), plotOutput(ns("plot.histogram.population"))))) } # Server population_server <- function(input, output, session) { # years observe({ req(input$years_reset) values$years_selected <<- isolate(values$years[1]) }) observe({ req(input$years_select_all) values$years_selected <<- isolate(values$years) }) observe({ req(values$years_selected) if (length(isolate(input$years)) != length(values$years_selected)) { updateSelectizeInput(session, 'years', choices = isolate(values$years), selected = values$years_selected, server = TRUE) } }) observe({ req(input$years) if (length(input$years) != length(isolate(values$years_selected))) { values$years_selected <<- input$years } }) # plots # histogram output$plot.histogram.population <- renderPlot({ req(values$europe_stats) req(values$years_selected) req(input$country) data <- values$europe_stats()[values$europe_stats()$year %in% values$years_selected,] data <- data[data$country.name == input$country,] data$year <- as.factor(data$year) ggplot(data = data, aes(x = year, y = population)) + geom_histogram(stat = "identity", fill = "blue", alpha = .8) }) }
/exercise2/Population/module.R
no_license
javierdlrm/Data-Visualization-and-Exploration-Tool
R
false
false
2,624
r
################################################### ########## Population Module ######## ################################################### population_path <- "Population/" # Data preprocessing source(str_c(population_path, "data-preprocessing.R"), local = TRUE) # UI population_ui <- function(id) { ns <- NS(id) tabPanel( title = "Population", column(width = 2, class = "sidebar", box(width = 12, h4(class = "accent-color", "Options"), h5("General"), HTML("<label>Select country: </label>"), selectizeInput(ns('country'), NULL, choices = countries, selected = NULL, multiple = FALSE, options = list(placeholder = 'Type a country name, e.g. Spain')), HTML("<label>Years: </label>"), actionButton(ns("years_reset"), class = "button-option btn btn-link", "Reset"), actionButton(ns("years_select_all"), class = "button-option btn btn-link", "Select all"), selectizeInput(ns('years'), NULL, choices = years, selected = NULL, multiple = TRUE, options = list(placeholder = 'Type a year, e.g. 2001', maxItems = 15)))), column(width = 10, class = "content", box(width = 12, h4("Population per country and year"), plotOutput(ns("plot.histogram.population"))))) } # Server population_server <- function(input, output, session) { # years observe({ req(input$years_reset) values$years_selected <<- isolate(values$years[1]) }) observe({ req(input$years_select_all) values$years_selected <<- isolate(values$years) }) observe({ req(values$years_selected) if (length(isolate(input$years)) != length(values$years_selected)) { updateSelectizeInput(session, 'years', choices = isolate(values$years), selected = values$years_selected, server = TRUE) } }) observe({ req(input$years) if (length(input$years) != length(isolate(values$years_selected))) { values$years_selected <<- input$years } }) # plots # histogram output$plot.histogram.population <- renderPlot({ req(values$europe_stats) req(values$years_selected) req(input$country) data <- values$europe_stats()[values$europe_stats()$year %in% values$years_selected,] data <- data[data$country.name == input$country,] data$year <- as.factor(data$year) ggplot(data = data, aes(x = year, y = population)) + geom_histogram(stat = "identity", fill = "blue", alpha = .8) }) }
% Generated by roxygen2 (4.1.0): do not edit by hand % Please edit documentation in R/functions.R \name{makeGRMmatrix} \alias{makeGRMmatrix} \title{Convert long GRM format to matrix format} \usage{ makeGRMmatrix(grm) } \arguments{ \item{grm}{Result from readGRM} } \value{ Matrix of n x n } \description{ Convert long GRM format to matrix format }
/man/makeGRMmatrix.Rd
no_license
explodecomputer/explodecomputr
R
false
false
349
rd
% Generated by roxygen2 (4.1.0): do not edit by hand % Please edit documentation in R/functions.R \name{makeGRMmatrix} \alias{makeGRMmatrix} \title{Convert long GRM format to matrix format} \usage{ makeGRMmatrix(grm) } \arguments{ \item{grm}{Result from readGRM} } \value{ Matrix of n x n } \description{ Convert long GRM format to matrix format }
#------------------------------------------------------------------------------- # Copyright (c) 2012 University of Illinois, NCSA. # All rights reserved. This program and the accompanying materials # are made available under the terms of the # University of Illinois/NCSA Open Source License # which accompanies this distribution, and is available at # http://opensource.ncsa.illinois.edu/license.html #------------------------------------------------------------------------------- ##' Individual Meta-analysis ##' ##' Individual meta-analysis for a specific trait and PFT is run by the function ##' single.MA. This will allow power analysis to run repeated MA outside of the ##' full loop over traits and PFTs. ##' @title Single MA ##' @param data data frame generated by jagify function ##' with indexed values for greenhouse, treatment, and site (ghs, trt, site) ##' as well as Y, SE, and n for each observation or summary statistic. ##' @param j.chains number of chains in meta-analysis ##' @param j.iter number of mcmc samples ##' @param tauA prior on variance parameters ##' @param tauB prior on variance parameters ##' @param prior data.frame with columns named 'distn', 'parama', 'paramb' ##' e.g. \code{prior <- data.frame(distn = 'weibull', parama = 0.5, paramb = 10, n = 1)} ##' @param jag.model.file file to which model will be written ##' @param overdispersed if TRUE (default), chains start at overdispersed locations in parameter space (recommended) ##' @export ##' @return jags.out, an mcmc.object with results of meta-analysis ##' @author David LeBauer, Michael C. Dietze single.MA <- function(data, j.chains, j.iter, tauA, tauB, prior, jag.model.file, overdispersed = TRUE) { ## Convert R distributions to JAGS distributions jagsprior <- PEcAn.utils::r2bugs.distributions(prior) jagsprior <- jagsprior[, c("distn", "parama", "paramb", "n")] colnames(jagsprior) <- c("distn", "a", "b", "n") colnames(prior) <- c("distn", "a", "b", "n") # determine what factors to include in meta-analysis model.parms <- list(ghs = length(unique(data$ghs)), site = length(unique(data$site)), trt = length(unique(data$trt))) # define regression model reg.parms <- list(ghs = "beta.ghs[ghs[k]]", # beta.o will be included by default site = "beta.site[site[k]]", trt = "beta.trt[trt[k]]") # making sure ghs and trt are factor data$ghs <- as.factor(data$ghs) data$trt <- as.factor(data$trt) if (sum(model.parms > 1) == 0) { reg.model <- "" } else { reg.model <- paste("+", reg.parms[model.parms > 1], collapse = " ") } ## generate list of parameters for jags to follow and produce mcmc output for vars <- c("beta.o", "sd.y") for (x in c("ghs", "site", "trt")) { if (model.parms[[x]] == 1) { data <- data[, which(names(data) != x)] } else { data <- data if (x != "ghs") { vars <- c(vars, paste0("sd.", x)) } # m <- min(model.parms[[x]], 5) m <- model.parms[[x]] for (i in seq_len(m)) { if (i == 1 && x == "site") { vars <- c(vars, "beta.site[1]") } if (i > 1) { vars <- c(vars, paste0("beta.", x, "[", i, "]")) } } } } ### Import defaul JAGS model file modelfile <- system.file("ma.model.template.bug", package = "PEcAn.MA") ### Write JAGS bug file based on user settings and default bug file write.ma.model (modelfile = ### paste(settings$pecanDir,'rscripts/ma.model.template.bug',sep=''), write.ma.model(modelfile = modelfile, outfile = jag.model.file, reg.model = reg.model, jagsprior$distn, jagsprior$a, jagsprior$b, n = length(data$Y), trt.n = model.parms[["trt"]], site.n = model.parms[["site"]], ghs.n = model.parms[["ghs"]], tauA = tauA, tauB = tauB) if (overdispersed == TRUE) { ## overdispersed chains j.inits <- function(chain) { list(beta.o = do.call(paste("q", prior$dist, sep = ""), list(chain * 1 / (j.chains + 1), prior$a, prior$b)), .RNG.seed = chain, .RNG.name = "base::Mersenne-Twister") } } else if (overdispersed == FALSE) { ## chains fixed at data mean - used if above code does not converge ## invalidates assumptions about convergence, e.g. Gelman-Rubin diagnostic j.inits <- function(chain) { list(beta.o = mean(data$Y)) } } j.model <- rjags::jags.model( file = jag.model.file, data = data, inits = j.inits, n.chains = j.chains ) jags.out <- rjags::coda.samples( model = j.model, variable.names = vars, n.iter = j.iter, thin = max(c(2, j.iter / (5000 * 2))) ) ## I would have done a while loop, but it could take forever ## So just give one chance to try again if (coda::gelman.diag(jags.out)$mpsrf > 1.2) { PEcAn.logger::logger.warn("model did not converge; re-running with j.iter * 10") jags.out <- rjags::coda.samples( model = j.model, variable.names = vars, n.iter = j.iter * 10, thin = max(c(2, j.iter / (500 * 2))) ) } return(jags.out) } # single.MA
/modules/meta.analysis/R/single.MA.R
permissive
PecanProject/pecan
R
false
false
5,312
r
#------------------------------------------------------------------------------- # Copyright (c) 2012 University of Illinois, NCSA. # All rights reserved. This program and the accompanying materials # are made available under the terms of the # University of Illinois/NCSA Open Source License # which accompanies this distribution, and is available at # http://opensource.ncsa.illinois.edu/license.html #------------------------------------------------------------------------------- ##' Individual Meta-analysis ##' ##' Individual meta-analysis for a specific trait and PFT is run by the function ##' single.MA. This will allow power analysis to run repeated MA outside of the ##' full loop over traits and PFTs. ##' @title Single MA ##' @param data data frame generated by jagify function ##' with indexed values for greenhouse, treatment, and site (ghs, trt, site) ##' as well as Y, SE, and n for each observation or summary statistic. ##' @param j.chains number of chains in meta-analysis ##' @param j.iter number of mcmc samples ##' @param tauA prior on variance parameters ##' @param tauB prior on variance parameters ##' @param prior data.frame with columns named 'distn', 'parama', 'paramb' ##' e.g. \code{prior <- data.frame(distn = 'weibull', parama = 0.5, paramb = 10, n = 1)} ##' @param jag.model.file file to which model will be written ##' @param overdispersed if TRUE (default), chains start at overdispersed locations in parameter space (recommended) ##' @export ##' @return jags.out, an mcmc.object with results of meta-analysis ##' @author David LeBauer, Michael C. Dietze single.MA <- function(data, j.chains, j.iter, tauA, tauB, prior, jag.model.file, overdispersed = TRUE) { ## Convert R distributions to JAGS distributions jagsprior <- PEcAn.utils::r2bugs.distributions(prior) jagsprior <- jagsprior[, c("distn", "parama", "paramb", "n")] colnames(jagsprior) <- c("distn", "a", "b", "n") colnames(prior) <- c("distn", "a", "b", "n") # determine what factors to include in meta-analysis model.parms <- list(ghs = length(unique(data$ghs)), site = length(unique(data$site)), trt = length(unique(data$trt))) # define regression model reg.parms <- list(ghs = "beta.ghs[ghs[k]]", # beta.o will be included by default site = "beta.site[site[k]]", trt = "beta.trt[trt[k]]") # making sure ghs and trt are factor data$ghs <- as.factor(data$ghs) data$trt <- as.factor(data$trt) if (sum(model.parms > 1) == 0) { reg.model <- "" } else { reg.model <- paste("+", reg.parms[model.parms > 1], collapse = " ") } ## generate list of parameters for jags to follow and produce mcmc output for vars <- c("beta.o", "sd.y") for (x in c("ghs", "site", "trt")) { if (model.parms[[x]] == 1) { data <- data[, which(names(data) != x)] } else { data <- data if (x != "ghs") { vars <- c(vars, paste0("sd.", x)) } # m <- min(model.parms[[x]], 5) m <- model.parms[[x]] for (i in seq_len(m)) { if (i == 1 && x == "site") { vars <- c(vars, "beta.site[1]") } if (i > 1) { vars <- c(vars, paste0("beta.", x, "[", i, "]")) } } } } ### Import defaul JAGS model file modelfile <- system.file("ma.model.template.bug", package = "PEcAn.MA") ### Write JAGS bug file based on user settings and default bug file write.ma.model (modelfile = ### paste(settings$pecanDir,'rscripts/ma.model.template.bug',sep=''), write.ma.model(modelfile = modelfile, outfile = jag.model.file, reg.model = reg.model, jagsprior$distn, jagsprior$a, jagsprior$b, n = length(data$Y), trt.n = model.parms[["trt"]], site.n = model.parms[["site"]], ghs.n = model.parms[["ghs"]], tauA = tauA, tauB = tauB) if (overdispersed == TRUE) { ## overdispersed chains j.inits <- function(chain) { list(beta.o = do.call(paste("q", prior$dist, sep = ""), list(chain * 1 / (j.chains + 1), prior$a, prior$b)), .RNG.seed = chain, .RNG.name = "base::Mersenne-Twister") } } else if (overdispersed == FALSE) { ## chains fixed at data mean - used if above code does not converge ## invalidates assumptions about convergence, e.g. Gelman-Rubin diagnostic j.inits <- function(chain) { list(beta.o = mean(data$Y)) } } j.model <- rjags::jags.model( file = jag.model.file, data = data, inits = j.inits, n.chains = j.chains ) jags.out <- rjags::coda.samples( model = j.model, variable.names = vars, n.iter = j.iter, thin = max(c(2, j.iter / (5000 * 2))) ) ## I would have done a while loop, but it could take forever ## So just give one chance to try again if (coda::gelman.diag(jags.out)$mpsrf > 1.2) { PEcAn.logger::logger.warn("model did not converge; re-running with j.iter * 10") jags.out <- rjags::coda.samples( model = j.model, variable.names = vars, n.iter = j.iter * 10, thin = max(c(2, j.iter / (500 * 2))) ) } return(jags.out) } # single.MA
# Make figure 4 # RIL effect on all polymorphs fig4 <- caco3_comp %>% modelr::data_grid(log_weight = mean(log_weight), log_ril = modelr::seq_range(log_ril, n = 101), mean_T = mean(mean_T), sqrt_asp_ratio = mean(sqrt_asp_ratio), method = "double") %>% tidybayes::add_epred_draws(m3_caco3_comp, resp = resp, re_formula = NA) %>% mutate(mineral = factor(.category, levels = paste0(c("L", "AR", "H", "M", "AC"), "umolh"), labels = c("LMC", "Aragonite", "HMC", "MHC", "ACMC") ) ) %>% ggplot(aes(x = exp(log_ril))) + tidybayes::stat_lineribbon(aes(y = .epred, color = mineral), size = 0.5, .width = c(0.5, 0.8, 0.95)) + scale_color_viridis_d(option = "C", end = 0.95, guide = "none") + scale_fill_brewer("CI", palette = "Greys") + facet_grid(rows = "mineral", scales = "free_y") + ylab("Excretion rate (&mu;mol h<sup>-1</sup>)") + xlab("Relative intestinal length") + theme(axis.title.y = ggtext::element_markdown(), legend.position = "bottom", legend.title = element_text(size = 11), legend.text = element_text(size = 10), legend.key.size = unit(4, "mm"), strip.background = element_blank(), strip.text = element_text(face = "bold", size = 12)) ggsave(here::here("outputs", "figures", "fig4.png"), fig4, width = 10, height = 24, units = "cm", dpi = 600, type = "cairo") ggsave(here::here("outputs", "figures", "fig4.pdf"), fig4, width = 10, height = 24, units = "cm", device = cairo_pdf)
/analysis/figure4.R
permissive
mattiaghilardi/FishCaCO3Model
R
false
false
1,639
r
# Make figure 4 # RIL effect on all polymorphs fig4 <- caco3_comp %>% modelr::data_grid(log_weight = mean(log_weight), log_ril = modelr::seq_range(log_ril, n = 101), mean_T = mean(mean_T), sqrt_asp_ratio = mean(sqrt_asp_ratio), method = "double") %>% tidybayes::add_epred_draws(m3_caco3_comp, resp = resp, re_formula = NA) %>% mutate(mineral = factor(.category, levels = paste0(c("L", "AR", "H", "M", "AC"), "umolh"), labels = c("LMC", "Aragonite", "HMC", "MHC", "ACMC") ) ) %>% ggplot(aes(x = exp(log_ril))) + tidybayes::stat_lineribbon(aes(y = .epred, color = mineral), size = 0.5, .width = c(0.5, 0.8, 0.95)) + scale_color_viridis_d(option = "C", end = 0.95, guide = "none") + scale_fill_brewer("CI", palette = "Greys") + facet_grid(rows = "mineral", scales = "free_y") + ylab("Excretion rate (&mu;mol h<sup>-1</sup>)") + xlab("Relative intestinal length") + theme(axis.title.y = ggtext::element_markdown(), legend.position = "bottom", legend.title = element_text(size = 11), legend.text = element_text(size = 10), legend.key.size = unit(4, "mm"), strip.background = element_blank(), strip.text = element_text(face = "bold", size = 12)) ggsave(here::here("outputs", "figures", "fig4.png"), fig4, width = 10, height = 24, units = "cm", dpi = 600, type = "cairo") ggsave(here::here("outputs", "figures", "fig4.pdf"), fig4, width = 10, height = 24, units = "cm", device = cairo_pdf)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ConstraintTaxo2newick.R \name{ConstraintTaxo2newick} \alias{ConstraintTaxo2newick} \title{Build a multifurcating topological constraint tree for RAxML} \usage{ ConstraintTaxo2newick(inputTaxo = NULL, Taxo.Hier = "Phylum2Genus", inputConst = NULL, outputNewick = NULL) } \arguments{ \item{inputTaxo}{a classification table, the first column is the species name (or the name used as tip.label by the phylogenetic tree), followed by the different hierarchical levels of the Linnaean classification in the subsequent columns.} \item{Taxo.Hier}{order of entry for the different hierarchical levels of the Linnaean classification. "Phylum2Genus" is used by default, where the second column is the highest level (e.g. Phylum) and the last column is the lowest classification level (e.g. Genus). The reverse can also be used, using "Genus2Phylum" (i.e. the second column contains the lowest level and the last column contains the highest).} \item{inputConst}{a two column table: the first column refers to the hierarchical level of the topological constraints (e.g. 'Family', or 'Order', or 'Subdivision'; note that the names of the hierarchical levels must be the same as the headers of the classification table); the second column contains the name of the taxa to be constrained as monophyletic (e.g. 'Aplodactylidae', Aulopiformes', 'Percomorphaceae').} \item{outputNewick}{name of the output multifurcating newick tree that will be exported in a .txt file (can also include the path to the folder).} } \value{ This function exports into the R environment a list of two objects. The first object is the taxonomic table modified to include the constraints, and the second object is the multifurcating tree converted into a 'phylo' object. The function also exports a newick tree as a txt document that can be used to constrain the topology in RAxML. } \description{ This function builds a multifurcating phylogenetic tree from a classification table and a table of phylogenetic constraints ready to be used by RAxML as a constraint tree (option -g in RAxML) to guide the reconstruction of the molecular phylogenetic tree. } \details{ Warning: branch lengths of the multifurcating tree are misleading, only the topology matters. } \examples{ # Load the table listing the topological constraints (first object of the list) # and the classification table (second object of the list). \dontrun{ data(TopoConstraints) # The table details 22 topological constraints overall, # including constraints at the Family, Order, Series, Subdivision, Division, # Subsection, Subcohort, Cohort, Supercohort, Infraclass, and Subclass. # # The classification table includes 16 species from the New Zealand marine # ray-finned fish species list. # Create a temporary folder to store the outputs of the function. dir.create("TempDir.TopoConstraints") # Run the function considering all the constraints. BackBoneTreeAll = ConstraintTaxo2newick(inputTaxo = TopoConstraints[[2]], inputConst = TopoConstraints[[1]], outputNewick = "TempDir.TopoConstraints/BackboneTreeAll") # Plot the constraining tree (the branch length do not matter, only the topology matters). plot(BackBoneTreeAll[[2]], cex=0.8) # Use only the constraints at the Family level. FamilyConst=TopoConstraints[[1]][TopoConstraints[[1]][,1]=="Family",] # Run the function considering only the constraints at the family level. BackBoneTreeFamily = ConstraintTaxo2newick(inputTaxo = TopoConstraints[[2]], inputConst = FamilyConst, outputNewick = "TempDir.TopoConstraints/BackboneTreeFamily") # Plot the constraining tree (the branch length does not matter, # only the topology matters), notice that only constrained taxa # are present on the guiding tree, the other (unconstrained) taxa will # be positioned on the tree based on their molecular affinities. plot(BackBoneTreeFamily[[2]], cex=0.8) # Use only the constraints at the Family and Series levels. FamilySeriesConst=TopoConstraints[[1]][c(which(TopoConstraints[[1]][,1] == "Family"), which(TopoConstraints[[1]][,1] == "Series")),] # Run the function considering only the constraints at the Family and Order levels. BackBoneTreeFamilySeries = ConstraintTaxo2newick(inputTaxo = TopoConstraints[[2]], inputConst = FamilySeriesConst, outputNewick = "TempDir.TopoConstraints/BackboneTreeFamilySeries") # Plot the constraining tree (the branch length does not matter, # only the topology matters). Notice that only constrained taxa # are present on the guiding tree, the other (unconstrained) taxa will # be positioned on the tree based on their molecular affinities. plot(BackBoneTreeFamilySeries[[2]], cex=0.8) # To remove the files created while running the example do the following: unlink("TempDir.TopoConstraints", recursive = TRUE) } }
/man/ConstraintTaxo2newick.Rd
no_license
ignacio3437/regPhylo
R
false
true
4,821
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ConstraintTaxo2newick.R \name{ConstraintTaxo2newick} \alias{ConstraintTaxo2newick} \title{Build a multifurcating topological constraint tree for RAxML} \usage{ ConstraintTaxo2newick(inputTaxo = NULL, Taxo.Hier = "Phylum2Genus", inputConst = NULL, outputNewick = NULL) } \arguments{ \item{inputTaxo}{a classification table, the first column is the species name (or the name used as tip.label by the phylogenetic tree), followed by the different hierarchical levels of the Linnaean classification in the subsequent columns.} \item{Taxo.Hier}{order of entry for the different hierarchical levels of the Linnaean classification. "Phylum2Genus" is used by default, where the second column is the highest level (e.g. Phylum) and the last column is the lowest classification level (e.g. Genus). The reverse can also be used, using "Genus2Phylum" (i.e. the second column contains the lowest level and the last column contains the highest).} \item{inputConst}{a two column table: the first column refers to the hierarchical level of the topological constraints (e.g. 'Family', or 'Order', or 'Subdivision'; note that the names of the hierarchical levels must be the same as the headers of the classification table); the second column contains the name of the taxa to be constrained as monophyletic (e.g. 'Aplodactylidae', Aulopiformes', 'Percomorphaceae').} \item{outputNewick}{name of the output multifurcating newick tree that will be exported in a .txt file (can also include the path to the folder).} } \value{ This function exports into the R environment a list of two objects. The first object is the taxonomic table modified to include the constraints, and the second object is the multifurcating tree converted into a 'phylo' object. The function also exports a newick tree as a txt document that can be used to constrain the topology in RAxML. } \description{ This function builds a multifurcating phylogenetic tree from a classification table and a table of phylogenetic constraints ready to be used by RAxML as a constraint tree (option -g in RAxML) to guide the reconstruction of the molecular phylogenetic tree. } \details{ Warning: branch lengths of the multifurcating tree are misleading, only the topology matters. } \examples{ # Load the table listing the topological constraints (first object of the list) # and the classification table (second object of the list). \dontrun{ data(TopoConstraints) # The table details 22 topological constraints overall, # including constraints at the Family, Order, Series, Subdivision, Division, # Subsection, Subcohort, Cohort, Supercohort, Infraclass, and Subclass. # # The classification table includes 16 species from the New Zealand marine # ray-finned fish species list. # Create a temporary folder to store the outputs of the function. dir.create("TempDir.TopoConstraints") # Run the function considering all the constraints. BackBoneTreeAll = ConstraintTaxo2newick(inputTaxo = TopoConstraints[[2]], inputConst = TopoConstraints[[1]], outputNewick = "TempDir.TopoConstraints/BackboneTreeAll") # Plot the constraining tree (the branch length do not matter, only the topology matters). plot(BackBoneTreeAll[[2]], cex=0.8) # Use only the constraints at the Family level. FamilyConst=TopoConstraints[[1]][TopoConstraints[[1]][,1]=="Family",] # Run the function considering only the constraints at the family level. BackBoneTreeFamily = ConstraintTaxo2newick(inputTaxo = TopoConstraints[[2]], inputConst = FamilyConst, outputNewick = "TempDir.TopoConstraints/BackboneTreeFamily") # Plot the constraining tree (the branch length does not matter, # only the topology matters), notice that only constrained taxa # are present on the guiding tree, the other (unconstrained) taxa will # be positioned on the tree based on their molecular affinities. plot(BackBoneTreeFamily[[2]], cex=0.8) # Use only the constraints at the Family and Series levels. FamilySeriesConst=TopoConstraints[[1]][c(which(TopoConstraints[[1]][,1] == "Family"), which(TopoConstraints[[1]][,1] == "Series")),] # Run the function considering only the constraints at the Family and Order levels. BackBoneTreeFamilySeries = ConstraintTaxo2newick(inputTaxo = TopoConstraints[[2]], inputConst = FamilySeriesConst, outputNewick = "TempDir.TopoConstraints/BackboneTreeFamilySeries") # Plot the constraining tree (the branch length does not matter, # only the topology matters). Notice that only constrained taxa # are present on the guiding tree, the other (unconstrained) taxa will # be positioned on the tree based on their molecular affinities. plot(BackBoneTreeFamilySeries[[2]], cex=0.8) # To remove the files created while running the example do the following: unlink("TempDir.TopoConstraints", recursive = TRUE) } }
# Reading JSON ## Reading JSON files library(jsonlite) jsonData <- fromJSON("https://api.github.com/users/jtleek/repos") names(jsonData) names(jsonData$owner) jsonData$owner$login ## Writing data frames to JSON myjson <- toJSON(iris, pretty = TRUE) cat(myjson) ## Convert back to JSON iris2 <- fromJSON(myjson) head(iris2)
/3_GettingAndCleaningData/week1/Reading JSON.R
no_license
artickavenger/datasciencecoursera
R
false
false
328
r
# Reading JSON ## Reading JSON files library(jsonlite) jsonData <- fromJSON("https://api.github.com/users/jtleek/repos") names(jsonData) names(jsonData$owner) jsonData$owner$login ## Writing data frames to JSON myjson <- toJSON(iris, pretty = TRUE) cat(myjson) ## Convert back to JSON iris2 <- fromJSON(myjson) head(iris2)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/driver_redis_api.R \name{storr_redis_api} \alias{driver_redis_api} \alias{storr_redis_api} \title{Redis object cache driver} \usage{ storr_redis_api(prefix, con, default_namespace = "objects") driver_redis_api(prefix, con) } \arguments{ \item{prefix}{Prefix for keys. We'll generate a number of keys that start with this string. Probably terminating the string with a punctuation character (e.g., ":") will make created strings nicer to deal with.} \item{con}{A \code{redis_api} connection object, as created by the RedisAPI package. This package does not actually provide the tools to create a connection; you need to provide one that is good to go.} \item{default_namespace}{Default namespace (see \code{\link{storr}}).} } \description{ Redis object cache driver } \author{ Rich FitzJohn }
/man/storr_redis_api.Rd
no_license
mcdelaney/storr
R
false
true
877
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/driver_redis_api.R \name{storr_redis_api} \alias{driver_redis_api} \alias{storr_redis_api} \title{Redis object cache driver} \usage{ storr_redis_api(prefix, con, default_namespace = "objects") driver_redis_api(prefix, con) } \arguments{ \item{prefix}{Prefix for keys. We'll generate a number of keys that start with this string. Probably terminating the string with a punctuation character (e.g., ":") will make created strings nicer to deal with.} \item{con}{A \code{redis_api} connection object, as created by the RedisAPI package. This package does not actually provide the tools to create a connection; you need to provide one that is good to go.} \item{default_namespace}{Default namespace (see \code{\link{storr}}).} } \description{ Redis object cache driver } \author{ Rich FitzJohn }
library(iosmooth) ### Name: bwplot.ts ### Title: Bandwidth plot for spectral density estimation ### Aliases: bwplot.ts ### Keywords: Spectral Density Flat-top kernel Smoothing parameter ### ** Examples set.seed(123) x <- arima.sim(list(ar=.7, ma=-.3), 100) bwplot(x) bwadap(x) # Choose a smoothing parameter of 3 plot(iospecden(x, l=3), type="l")
/data/genthat_extracted_code/iosmooth/examples/bwplot.ts.Rd.R
no_license
surayaaramli/typeRrh
R
false
false
354
r
library(iosmooth) ### Name: bwplot.ts ### Title: Bandwidth plot for spectral density estimation ### Aliases: bwplot.ts ### Keywords: Spectral Density Flat-top kernel Smoothing parameter ### ** Examples set.seed(123) x <- arima.sim(list(ar=.7, ma=-.3), 100) bwplot(x) bwadap(x) # Choose a smoothing parameter of 3 plot(iospecden(x, l=3), type="l")
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/expressionAnalysis.R \name{plotExpression} \alias{plotExpression} \title{Overlap with expression data} \usage{ plotExpression(hmm, expression, combinations = NULL, return.marks = FALSE) } \arguments{ \item{hmm}{A \code{\link{multiHMM}} or \code{\link{combinedMultiHMM}} object or file that contains such an object.} \item{expression}{A \code{\link{GRanges-class}} object with metadata column 'expression', containing the expression value for each range.} \item{combinations}{A vector with combinations for which the expression overlap will be calculated. If \code{NULL} all combinations will be considered.} \item{return.marks}{Set to \code{TRUE} if expression values for marks instead of combinations should be returned.} } \value{ A \code{\link{ggplot2}} object if a \code{\link{multiHMM}} was given or a named list with \code{\link{ggplot2}} objects if a \code{\link{combinedMultiHMM}} was given. } \description{ Get the expression values that overlap with each combinatorial state. } \examples{ ## Load an example multiHMM file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData", package="chromstaR") model <- get(load(file)) ## Obtain expression data data(expression_lv) head(expression_lv) ## We need to get coordinates for each of the genes library(biomaRt) ensembl <- useMart('ENSEMBL_MART_ENSEMBL', host='may2012.archive.ensembl.org', dataset='rnorvegicus_gene_ensembl') genes <- getBM(attributes=c('ensembl_gene_id', 'chromosome_name', 'start_position', 'end_position', 'strand', 'external_gene_id', 'gene_biotype'), mart=ensembl) expr <- merge(genes, expression_lv, by='ensembl_gene_id') # Transform to GRanges expression.SHR <- GRanges(seqnames=paste0('chr',expr$chromosome_name), ranges=IRanges(start=expr$start, end=expr$end), strand=expr$strand, name=expr$external_gene_id, biotype=expr$gene_biotype, expression=expr$expression_SHR) # We apply an asinh transformation to reduce the effect of outliers expression.SHR$expression <- asinh(expression.SHR$expression) ## Plot plotExpression(model, expression.SHR) + theme(axis.text.x=element_text(angle=0, hjust=0.5)) + ggtitle('Expression of genes overlapping combinatorial states') plotExpression(model, expression.SHR, return.marks=TRUE) + ggtitle('Expression of marks overlapping combinatorial states') } \seealso{ \code{\link{plotting}} } \author{ Aaron Taudt }
/man/plotExpression.Rd
no_license
zorrodong/chromstaR
R
false
true
2,646
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/expressionAnalysis.R \name{plotExpression} \alias{plotExpression} \title{Overlap with expression data} \usage{ plotExpression(hmm, expression, combinations = NULL, return.marks = FALSE) } \arguments{ \item{hmm}{A \code{\link{multiHMM}} or \code{\link{combinedMultiHMM}} object or file that contains such an object.} \item{expression}{A \code{\link{GRanges-class}} object with metadata column 'expression', containing the expression value for each range.} \item{combinations}{A vector with combinations for which the expression overlap will be calculated. If \code{NULL} all combinations will be considered.} \item{return.marks}{Set to \code{TRUE} if expression values for marks instead of combinations should be returned.} } \value{ A \code{\link{ggplot2}} object if a \code{\link{multiHMM}} was given or a named list with \code{\link{ggplot2}} objects if a \code{\link{combinedMultiHMM}} was given. } \description{ Get the expression values that overlap with each combinatorial state. } \examples{ ## Load an example multiHMM file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData", package="chromstaR") model <- get(load(file)) ## Obtain expression data data(expression_lv) head(expression_lv) ## We need to get coordinates for each of the genes library(biomaRt) ensembl <- useMart('ENSEMBL_MART_ENSEMBL', host='may2012.archive.ensembl.org', dataset='rnorvegicus_gene_ensembl') genes <- getBM(attributes=c('ensembl_gene_id', 'chromosome_name', 'start_position', 'end_position', 'strand', 'external_gene_id', 'gene_biotype'), mart=ensembl) expr <- merge(genes, expression_lv, by='ensembl_gene_id') # Transform to GRanges expression.SHR <- GRanges(seqnames=paste0('chr',expr$chromosome_name), ranges=IRanges(start=expr$start, end=expr$end), strand=expr$strand, name=expr$external_gene_id, biotype=expr$gene_biotype, expression=expr$expression_SHR) # We apply an asinh transformation to reduce the effect of outliers expression.SHR$expression <- asinh(expression.SHR$expression) ## Plot plotExpression(model, expression.SHR) + theme(axis.text.x=element_text(angle=0, hjust=0.5)) + ggtitle('Expression of genes overlapping combinatorial states') plotExpression(model, expression.SHR, return.marks=TRUE) + ggtitle('Expression of marks overlapping combinatorial states') } \seealso{ \code{\link{plotting}} } \author{ Aaron Taudt }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/capitais.R \name{capitais} \alias{capitais} \title{Current weather conditions of capitals} \usage{ capitais() } \value{ The function returns a data frame } \description{ This function allows the user to retrieve data from CPTEC/INPE current weather conditions of capitals. The data frame returned contain actual temperature, atmospheric pressure, humidity, direction and wind intensity } \examples{ capitais() } \seealso{ \code{\link{prev4dias}} } \author{ Renato Prado Siqueira \email{rpradosiqueira@gmail.com} } \keyword{brazil} \keyword{forecast} \keyword{weather}
/man/capitais.Rd
no_license
rpradosiqueira/cptec
R
false
true
647
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/capitais.R \name{capitais} \alias{capitais} \title{Current weather conditions of capitals} \usage{ capitais() } \value{ The function returns a data frame } \description{ This function allows the user to retrieve data from CPTEC/INPE current weather conditions of capitals. The data frame returned contain actual temperature, atmospheric pressure, humidity, direction and wind intensity } \examples{ capitais() } \seealso{ \code{\link{prev4dias}} } \author{ Renato Prado Siqueira \email{rpradosiqueira@gmail.com} } \keyword{brazil} \keyword{forecast} \keyword{weather}
## Script to unlist big stan fit objects and save as ggs files library(rstan) library(ggmcmc) bigstan <- readRDS("recruitment_stanfits.RDS") spp_list <- c("BOGR", "HECO", "PASM", "POSE") for(spp in spp_list){ tmp <- bigstan[[spp]] long <- ggs(tmp) file <- paste("recruitment_stanmcmc_", spp, ".RDS", sep="") saveRDS(long, file) } ggs_caterpillar(long, family="b2")
/analysis/ipm/vitalRateRegs/cache/recruitment_cache/stan2ggs.R
no_license
atredennick/MicroMesoForecast
R
false
false
378
r
## Script to unlist big stan fit objects and save as ggs files library(rstan) library(ggmcmc) bigstan <- readRDS("recruitment_stanfits.RDS") spp_list <- c("BOGR", "HECO", "PASM", "POSE") for(spp in spp_list){ tmp <- bigstan[[spp]] long <- ggs(tmp) file <- paste("recruitment_stanmcmc_", spp, ".RDS", sep="") saveRDS(long, file) } ggs_caterpillar(long, family="b2")
testlist <- list(ends = c(-1125300777L, 765849512L, -1760774663L, 791623263L, 1358782356L, -128659642L, -14914341L, 1092032927L, 1837701012L, 1632068659L), pts = c(1758370433L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), starts = c(16777216L, 0L, 738263040L, 682962941L, 1612840977L, 150997320L, 747898999L, -1195392662L, 2024571419L, 808515032L, 1373469055L, -282236997L, -207881465L, -237801926L, -168118689L, -1090227888L, 235129118L, 949454105L, 1651285440L, -1119277666L, 1892621188L), members = NULL, total_members = 0L) result <- do.call(IntervalSurgeon:::rcpp_pile,testlist) str(result)
/IntervalSurgeon/inst/testfiles/rcpp_pile/AFL_rcpp_pile/rcpp_pile_valgrind_files/1609874958-test.R
no_license
akhikolla/updated-only-Issues
R
false
false
728
r
testlist <- list(ends = c(-1125300777L, 765849512L, -1760774663L, 791623263L, 1358782356L, -128659642L, -14914341L, 1092032927L, 1837701012L, 1632068659L), pts = c(1758370433L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), starts = c(16777216L, 0L, 738263040L, 682962941L, 1612840977L, 150997320L, 747898999L, -1195392662L, 2024571419L, 808515032L, 1373469055L, -282236997L, -207881465L, -237801926L, -168118689L, -1090227888L, 235129118L, 949454105L, 1651285440L, -1119277666L, 1892621188L), members = NULL, total_members = 0L) result <- do.call(IntervalSurgeon:::rcpp_pile,testlist) str(result)
RawAccel <- read.csv('OnlyCalibratedAccelFlowData.csv') # Calculate Gproj_XY, the magnitude of the projection of the direction vector, # H, in the XY plane. RawAccel$Gproj_XY <- sqrt(RawAccel$Xcal^2 + RawAccel$Ycal^2) # Calculate tilt angle RawAccel$tiltAngle <- atan2(RawAccel$Gproj_XY, RawAccel$Zcal) * 180 / pi # Examining where the accel data has non-negative signs # > sum(RawAccel$Xcal > 0 | RawAccel$Ycal > 0) # [1] 95 (out of 25,442 data points)
/Scripts/ExaminingAccel.R
no_license
abby-lammers/LSM303-Data-Processing
R
false
false
460
r
RawAccel <- read.csv('OnlyCalibratedAccelFlowData.csv') # Calculate Gproj_XY, the magnitude of the projection of the direction vector, # H, in the XY plane. RawAccel$Gproj_XY <- sqrt(RawAccel$Xcal^2 + RawAccel$Ycal^2) # Calculate tilt angle RawAccel$tiltAngle <- atan2(RawAccel$Gproj_XY, RawAccel$Zcal) * 180 / pi # Examining where the accel data has non-negative signs # > sum(RawAccel$Xcal > 0 | RawAccel$Ycal > 0) # [1] 95 (out of 25,442 data points)
# Get and Set date and time components # affiliate: https://linkedin-learning.pxf.io/rdatesGetSetLubridate library(lubridate) # see how easy! PabloPicassoBday <- mdy_hm("October 25, 1881, 11:15 PM") # add year(PabloPicassoBday) + 3 # adding three years with Base R PPB_lt <- as.POSIXlt(PabloPicassoBday) PPB_lt$year # year is offset from 1900 PPB_lt$year <- PPB_lt$year + 3 PPB_lt$year + 3 # PPB_lt$year is -19 +3 = -16 PPB_lt # retrieving parts of a date date(PabloPicassoBday) year(PabloPicassoBday) month(PabloPicassoBday) # sometimes lubridate is more configurable weekdays(PabloPicassoBday) # base R wday(PabloPicassoBday, label = TRUE, abbr = FALSE) # lubridate is a bit more complex # Change Pablo's birthday to February PPB_feb <- as.POSIXlt(PabloPicassoBday) # make a copy PPB_feb$mon <- 1 # month: Jan = 0 PPB_feb # with lubridate PPB_feb <- PabloPicassoBday #make a copy month(PPB_feb) <- 2 PPB_feb # Lubridate provides semester, am/pm, dst, leap_year semester(PabloPicassoBday) am(PabloPicassoBday) dst(PabloPicassoBday) leap_year(PabloPicassoBday)
/chapter 03/03_03 get and set.R
no_license
mnr/R-for-Data-Science-dates-and-times
R
false
false
1,074
r
# Get and Set date and time components # affiliate: https://linkedin-learning.pxf.io/rdatesGetSetLubridate library(lubridate) # see how easy! PabloPicassoBday <- mdy_hm("October 25, 1881, 11:15 PM") # add year(PabloPicassoBday) + 3 # adding three years with Base R PPB_lt <- as.POSIXlt(PabloPicassoBday) PPB_lt$year # year is offset from 1900 PPB_lt$year <- PPB_lt$year + 3 PPB_lt$year + 3 # PPB_lt$year is -19 +3 = -16 PPB_lt # retrieving parts of a date date(PabloPicassoBday) year(PabloPicassoBday) month(PabloPicassoBday) # sometimes lubridate is more configurable weekdays(PabloPicassoBday) # base R wday(PabloPicassoBday, label = TRUE, abbr = FALSE) # lubridate is a bit more complex # Change Pablo's birthday to February PPB_feb <- as.POSIXlt(PabloPicassoBday) # make a copy PPB_feb$mon <- 1 # month: Jan = 0 PPB_feb # with lubridate PPB_feb <- PabloPicassoBday #make a copy month(PPB_feb) <- 2 PPB_feb # Lubridate provides semester, am/pm, dst, leap_year semester(PabloPicassoBday) am(PabloPicassoBday) dst(PabloPicassoBday) leap_year(PabloPicassoBday)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/confint-methods.R \name{confint.fderiv} \alias{confint.fderiv} \title{Point-wise and simultaneous confidence intervals for derivatives of smooths} \usage{ \method{confint}{fderiv}(object, parm, level = 0.95, type = c("confidence", "simultaneous"), nsim = 10000, ncores = 1, ...) } \arguments{ \item{object}{an object of class \code{"fderiv"} containing the estimated derivatives.} \item{parm}{which parameters (smooth terms) are to be given intervals as a vector of terms. If missing, all parameters are considered.} \item{level}{numeric, \code{0 < level < 1}; the confidence level of the point-wise or simultaneous interval. The default is \code{0.95} for a 95% interval.} \item{type}{character; the type of interval to compute. One of \code{"confidence"} for point-wise intervals, or \code{"simultaneous"} for simultaneous intervals.} \item{nsim}{integer; the number of simulations used in computing the simultaneous intervals.} \item{ncores}{number of cores for generating random variables from a multivariate normal distribution. Passed to \code{mvnfast::rmvn}. Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current \code{R}).} \item{...}{additional arguments for methods} } \value{ a data frame with components: \enumerate{ \item \code{term}; factor indicating to which term each row relates, \item \code{lower}; lower limit of the confidence or simultaneous interval, \item \code{est}; estimated derivative \item \code{upper}; upper limit of the confidence or simultaneous interval. } } \description{ Calculates point-wise confidence or simultaneous intervals for the first derivatives of smooth terms in a fitted GAM. } \examples{ suppressPackageStartupMessages(library("mgcv")) \dontshow{ set.seed(2) op <- options(digits = 5) } dat <- gamSim(1, n = 400, dist = "normal", scale = 2) mod <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML") ## first derivatives of all smooths... fd <- fderiv(mod) ## point-wise interval ci <- confint(fd, type = "confidence") head(ci) ## simultaneous interval for smooth term of x1 set.seed(42) x1.sint <- confint(fd, parm = "x1", type = "simultaneous", nsim = 1000) head(x1.sint) \dontshow{options(op)} } \author{ Gavin L. Simpson }
/man/confint.fderiv.Rd
permissive
singmann/gratia
R
false
true
2,335
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/confint-methods.R \name{confint.fderiv} \alias{confint.fderiv} \title{Point-wise and simultaneous confidence intervals for derivatives of smooths} \usage{ \method{confint}{fderiv}(object, parm, level = 0.95, type = c("confidence", "simultaneous"), nsim = 10000, ncores = 1, ...) } \arguments{ \item{object}{an object of class \code{"fderiv"} containing the estimated derivatives.} \item{parm}{which parameters (smooth terms) are to be given intervals as a vector of terms. If missing, all parameters are considered.} \item{level}{numeric, \code{0 < level < 1}; the confidence level of the point-wise or simultaneous interval. The default is \code{0.95} for a 95% interval.} \item{type}{character; the type of interval to compute. One of \code{"confidence"} for point-wise intervals, or \code{"simultaneous"} for simultaneous intervals.} \item{nsim}{integer; the number of simulations used in computing the simultaneous intervals.} \item{ncores}{number of cores for generating random variables from a multivariate normal distribution. Passed to \code{mvnfast::rmvn}. Parallelization will take place only if OpenMP is supported (but appears to work on Windows with current \code{R}).} \item{...}{additional arguments for methods} } \value{ a data frame with components: \enumerate{ \item \code{term}; factor indicating to which term each row relates, \item \code{lower}; lower limit of the confidence or simultaneous interval, \item \code{est}; estimated derivative \item \code{upper}; upper limit of the confidence or simultaneous interval. } } \description{ Calculates point-wise confidence or simultaneous intervals for the first derivatives of smooth terms in a fitted GAM. } \examples{ suppressPackageStartupMessages(library("mgcv")) \dontshow{ set.seed(2) op <- options(digits = 5) } dat <- gamSim(1, n = 400, dist = "normal", scale = 2) mod <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat, method = "REML") ## first derivatives of all smooths... fd <- fderiv(mod) ## point-wise interval ci <- confint(fd, type = "confidence") head(ci) ## simultaneous interval for smooth term of x1 set.seed(42) x1.sint <- confint(fd, parm = "x1", type = "simultaneous", nsim = 1000) head(x1.sint) \dontshow{options(op)} } \author{ Gavin L. Simpson }
# -------------------------------------- # purpose: create ensemble members of downscaling noise # Creator: Laura Puckett, December 21 2018 # contact: plaura1@vt.edu # -------------------------------------- # summary: creates ensemble members with noise addition (random sample from normal distribution with standard deviation equal to saved standard deviation of residuals from downscaling process.) For all variables except Shortwave, this is the standard deviaiton of the residuals after downscaling to the hourly resolution. For Shortwave, is is the value after downscaling to the daily resolution to artificually high values that result from noise in observational data from hour to hour. # -------------------------------------- add_noise <- function(debiased, coeff.df, nmembers) debiased.with.noise <- debiased %>% group_by(timestamp, NOAA.member, AirTemp, RelHum, WindSpeed, ShortWave, LongWave) %>% expand(dscale.member = 1:nmembers) %>% ungroup() %>% group_by(dscale.member, NOAA.member) %>% dplyr::mutate(AirTemp = AirTemp + rnorm(mean = 0, sd = coeff.df$AirTemp[5], n = 1), RelHum = RelHum + rnorm(mean = 0, sd = coeff.df$RelHum[5], n = 1), WindSpeed = WindSpeed + rnorm(mean = 0, sd = coeff.df$WindSpeed[5], n = 1), ShortWave = ifelse(ShortWave == 0, # not adding noise to night-time values 0, ShortWave + rnorm(mean = 0, sd = coeff.df$ShortWave[3], n = 1)), LongWave = LongWave + rnorm(mean = 0, sd = coeff.df$LongWave[5], n = 1)) %>% ungroup() %>% select(timestamp, dscale.member, NOAA.member, AirTemp, RelHum, WindSpeed, ShortWave, LongWave)
/add_noise.R
no_license
EcoDynForecast/NOAA_download_downscale
R
false
false
1,709
r
# -------------------------------------- # purpose: create ensemble members of downscaling noise # Creator: Laura Puckett, December 21 2018 # contact: plaura1@vt.edu # -------------------------------------- # summary: creates ensemble members with noise addition (random sample from normal distribution with standard deviation equal to saved standard deviation of residuals from downscaling process.) For all variables except Shortwave, this is the standard deviaiton of the residuals after downscaling to the hourly resolution. For Shortwave, is is the value after downscaling to the daily resolution to artificually high values that result from noise in observational data from hour to hour. # -------------------------------------- add_noise <- function(debiased, coeff.df, nmembers) debiased.with.noise <- debiased %>% group_by(timestamp, NOAA.member, AirTemp, RelHum, WindSpeed, ShortWave, LongWave) %>% expand(dscale.member = 1:nmembers) %>% ungroup() %>% group_by(dscale.member, NOAA.member) %>% dplyr::mutate(AirTemp = AirTemp + rnorm(mean = 0, sd = coeff.df$AirTemp[5], n = 1), RelHum = RelHum + rnorm(mean = 0, sd = coeff.df$RelHum[5], n = 1), WindSpeed = WindSpeed + rnorm(mean = 0, sd = coeff.df$WindSpeed[5], n = 1), ShortWave = ifelse(ShortWave == 0, # not adding noise to night-time values 0, ShortWave + rnorm(mean = 0, sd = coeff.df$ShortWave[3], n = 1)), LongWave = LongWave + rnorm(mean = 0, sd = coeff.df$LongWave[5], n = 1)) %>% ungroup() %>% select(timestamp, dscale.member, NOAA.member, AirTemp, RelHum, WindSpeed, ShortWave, LongWave)
# yamadaが遊び用に使うファイル
/personal/hanako_yamada/calc_sold_count.R
no_license
takahiro-umeda/file_share_practice
R
false
false
42
r
# yamadaが遊び用に使うファイル
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/nf_to_annual.R \name{nf_to_annual} \alias{nf_to_annual} \alias{nf_to_annual.xts} \alias{nf_to_annual.nfd} \alias{nf_to_annual.crss_nf} \alias{nf_to_annual.crssi} \title{Sum monthly natural flow data to annual data} \usage{ nf_to_annual(x, ...) \method{nf_to_annual}{xts}(x, ..., year = "cy", full_year = TRUE) \method{nf_to_annual}{nfd}(x, ..., full_year = TRUE, recompute = FALSE, keep_monthly = TRUE) \method{nf_to_annual}{crss_nf}(x, ..., full_year = TRUE, recompute = FALSE, keep_monthly = TRUE) \method{nf_to_annual}{crssi}(x, ..., recompute = FALSE) } \arguments{ \item{x}{An object inheriting from \code{xts}.} \item{...}{Other parameters passed to methods.} \item{year}{"cy" or "wy" to sum over the calendar or water year, respectively. For \code{nfd} like objects, this must either match the year attribute of \code{x} or \code{keep_monthly} must be \code{FALSE}.} \item{full_year}{Only return sums for full years when \code{TRUE}. Otherwise, will sum all months in a year, even if that's a partial year.} \item{recompute}{If \code{nfd} object already has annual data, should the annual data be recomputed. An error will post if it has annual data and \code{recompute} is \code{FALSE}.} \item{keep_monthly}{If \code{TRUE} the monthly data are kept in the returned object, otherwise they are dropped.} } \description{ \code{nf_to_annual()} sums \code{nfd}, and \code{xts} data from monthly data to annual data. } \examples{ # can sum monthly data to annual and get the existing stored annual data library(CoRiverNF) ann <- nf_to_annual(monthlyTot) all.equal(ann, cyAnnTot, check.attributes = FALSE) # for nfd objects, annual data will be added to object and the monthly # data are kept by default nf <- nfd( monthlyTot["2000/2002"], flow_space = "total", time_step = "monthly" ) nf2 <- nf_to_annual(nf) # nf2 now has annual data, and monthly data nf2 <- nf_to_annual(nf, keep_monthly = FALSE) # nf2 no longer has monthly data } \seealso{ \code{\link[=nf_to_intervening]{nf_to_intervening()}}, \code{\link[=nf_to_total]{nf_to_total()}} }
/man/nf_to_annual.Rd
no_license
BoulderCodeHub/CRSSIO
R
false
true
2,146
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/nf_to_annual.R \name{nf_to_annual} \alias{nf_to_annual} \alias{nf_to_annual.xts} \alias{nf_to_annual.nfd} \alias{nf_to_annual.crss_nf} \alias{nf_to_annual.crssi} \title{Sum monthly natural flow data to annual data} \usage{ nf_to_annual(x, ...) \method{nf_to_annual}{xts}(x, ..., year = "cy", full_year = TRUE) \method{nf_to_annual}{nfd}(x, ..., full_year = TRUE, recompute = FALSE, keep_monthly = TRUE) \method{nf_to_annual}{crss_nf}(x, ..., full_year = TRUE, recompute = FALSE, keep_monthly = TRUE) \method{nf_to_annual}{crssi}(x, ..., recompute = FALSE) } \arguments{ \item{x}{An object inheriting from \code{xts}.} \item{...}{Other parameters passed to methods.} \item{year}{"cy" or "wy" to sum over the calendar or water year, respectively. For \code{nfd} like objects, this must either match the year attribute of \code{x} or \code{keep_monthly} must be \code{FALSE}.} \item{full_year}{Only return sums for full years when \code{TRUE}. Otherwise, will sum all months in a year, even if that's a partial year.} \item{recompute}{If \code{nfd} object already has annual data, should the annual data be recomputed. An error will post if it has annual data and \code{recompute} is \code{FALSE}.} \item{keep_monthly}{If \code{TRUE} the monthly data are kept in the returned object, otherwise they are dropped.} } \description{ \code{nf_to_annual()} sums \code{nfd}, and \code{xts} data from monthly data to annual data. } \examples{ # can sum monthly data to annual and get the existing stored annual data library(CoRiverNF) ann <- nf_to_annual(monthlyTot) all.equal(ann, cyAnnTot, check.attributes = FALSE) # for nfd objects, annual data will be added to object and the monthly # data are kept by default nf <- nfd( monthlyTot["2000/2002"], flow_space = "total", time_step = "monthly" ) nf2 <- nf_to_annual(nf) # nf2 now has annual data, and monthly data nf2 <- nf_to_annual(nf, keep_monthly = FALSE) # nf2 no longer has monthly data } \seealso{ \code{\link[=nf_to_intervening]{nf_to_intervening()}}, \code{\link[=nf_to_total]{nf_to_total()}} }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/generics.R \name{fitted.bife} \alias{fitted.bife} \title{Extract \code{bife} fitted values} \usage{ \method{fitted}{bife}(object, ...) } \arguments{ \item{object}{an object of class \code{"bife"}.} \item{...}{other arguments.} } \value{ The function \code{\link{fitted.bife}} returns a vector of fitted values. } \description{ \code{\link{fitted.bife}} is a generic function which extracts fitted values from an object returned by \code{\link{bife}}. } \seealso{ \code{\link{bife}} }
/man/fitted.bife.Rd
no_license
amrei-stammann/bife
R
false
true
564
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/generics.R \name{fitted.bife} \alias{fitted.bife} \title{Extract \code{bife} fitted values} \usage{ \method{fitted}{bife}(object, ...) } \arguments{ \item{object}{an object of class \code{"bife"}.} \item{...}{other arguments.} } \value{ The function \code{\link{fitted.bife}} returns a vector of fitted values. } \description{ \code{\link{fitted.bife}} is a generic function which extracts fitted values from an object returned by \code{\link{bife}}. } \seealso{ \code{\link{bife}} }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/compute_objects.R \name{CustomerEncryptionKeyProtectedDisk} \alias{CustomerEncryptionKeyProtectedDisk} \title{CustomerEncryptionKeyProtectedDisk Object} \usage{ CustomerEncryptionKeyProtectedDisk(diskEncryptionKey = NULL, source = NULL) } \arguments{ \item{diskEncryptionKey}{Decrypts data associated with the disk with a customer-supplied encryption key} \item{source}{Specifies a valid partial or full URL to an existing Persistent Disk resource} } \value{ CustomerEncryptionKeyProtectedDisk object } \description{ CustomerEncryptionKeyProtectedDisk Object } \details{ Autogenerated via \code{\link[googleAuthR]{gar_create_api_objects}} No description }
/googlecomputev1.auto/man/CustomerEncryptionKeyProtectedDisk.Rd
permissive
GVersteeg/autoGoogleAPI
R
false
true
735
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/compute_objects.R \name{CustomerEncryptionKeyProtectedDisk} \alias{CustomerEncryptionKeyProtectedDisk} \title{CustomerEncryptionKeyProtectedDisk Object} \usage{ CustomerEncryptionKeyProtectedDisk(diskEncryptionKey = NULL, source = NULL) } \arguments{ \item{diskEncryptionKey}{Decrypts data associated with the disk with a customer-supplied encryption key} \item{source}{Specifies a valid partial or full URL to an existing Persistent Disk resource} } \value{ CustomerEncryptionKeyProtectedDisk object } \description{ CustomerEncryptionKeyProtectedDisk Object } \details{ Autogenerated via \code{\link[googleAuthR]{gar_create_api_objects}} No description }
## 1. read the household_power_consumption.txt file ## household_power_consumption.txt file located in the main working directory data <- read.table("./household_power_consumption.txt", stringsAsFactors = FALSE, header = TRUE, sep =";" ) ## Correct the data class data$Date <- as.Date(data$Date, format="%d/%m/%Y") data$Time <- format(data$Time, format="%H:%M:%S") data$Global_active_power <- as.numeric(data$Global_active_power) data$Global_reactive_power <- as.numeric(data$Global_reactive_power) data$Voltage <- as.numeric(data$Voltage) data$Global_intensity <- as.numeric(data$Global_intensity) data$Sub_metering_1 <- as.numeric(data$Sub_metering_1) data$Sub_metering_2 <- as.numeric(data$Sub_metering_2) data$Sub_metering_3 <- as.numeric(data$Sub_metering_3) ## subset data date from 2007-02-01 to 2007-02-02 subsetdata <- subset(data, Date == "2007-02-01" | Date =="2007-02-02") ## plot histogram of global active power for 2 days ##dev.set dev.set(which=2) png("plot1.png", width=480, height=480) hist(subsetdata$Global_active_power, col="red", border="black", main ="Global Active Power", xlab="Global Active Power (kilowatts)", ylab="Frequency") dev.off()
/Plot 1.R
no_license
Maguerra94/ExData_Plotting1
R
false
false
1,178
r
## 1. read the household_power_consumption.txt file ## household_power_consumption.txt file located in the main working directory data <- read.table("./household_power_consumption.txt", stringsAsFactors = FALSE, header = TRUE, sep =";" ) ## Correct the data class data$Date <- as.Date(data$Date, format="%d/%m/%Y") data$Time <- format(data$Time, format="%H:%M:%S") data$Global_active_power <- as.numeric(data$Global_active_power) data$Global_reactive_power <- as.numeric(data$Global_reactive_power) data$Voltage <- as.numeric(data$Voltage) data$Global_intensity <- as.numeric(data$Global_intensity) data$Sub_metering_1 <- as.numeric(data$Sub_metering_1) data$Sub_metering_2 <- as.numeric(data$Sub_metering_2) data$Sub_metering_3 <- as.numeric(data$Sub_metering_3) ## subset data date from 2007-02-01 to 2007-02-02 subsetdata <- subset(data, Date == "2007-02-01" | Date =="2007-02-02") ## plot histogram of global active power for 2 days ##dev.set dev.set(which=2) png("plot1.png", width=480, height=480) hist(subsetdata$Global_active_power, col="red", border="black", main ="Global Active Power", xlab="Global Active Power (kilowatts)", ylab="Frequency") dev.off()
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{plotFragLen} \alias{plotFragLen} \title{Plot fragment length distribution over samples} \usage{ plotFragLen(fitpar, col, lty) } \arguments{ \item{fitpar}{a list of the output of \link{fitBiasModels} over samples} \item{col}{a vector of colors} \item{lty}{a vector of line types} } \description{ Plots the fragment length distribution. }
/man/plotFragLen.Rd
no_license
thomasgilgenast/alpine
R
false
true
432
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plots.R \name{plotFragLen} \alias{plotFragLen} \title{Plot fragment length distribution over samples} \usage{ plotFragLen(fitpar, col, lty) } \arguments{ \item{fitpar}{a list of the output of \link{fitBiasModels} over samples} \item{col}{a vector of colors} \item{lty}{a vector of line types} } \description{ Plots the fragment length distribution. }
#### # Compare the efficiency of different weights #### 0 Simulation set up#### library(parallel) library(scales) library(xtable) library(tidyr) library(ggplot2) ## 0.1 Generate the seed for the simulation #### set.seed(2018) seed_i <- sample(1000000,1000) ## 0.2 Global Parameters #### ncores <- 30 ProjectName <- "Simulation_INS9" nsample <- 1000 ## 0.3 Functions #### ## 0.3.1 Original Functions #### GEE_UI <- function(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e){ # cat(theta, " \n") return(GEE_UfuncIns(Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, theta[1:3], theta[4:6], sigma = theta[7], xi = theta[8], gamma1, gamma, alpha1=alpha1, alpha0=alpha0, sigma_e)) } GEE_SIGMA <- function(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e){ return(GEE_SIGMAIns(Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, theta[1:3], theta[4:6], sigma = theta[7], xi = theta[8], gamma1, gamma, alpha1, alpha0, sigma_e)) } GEE_GAMMA <- function(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2){ GAMMA <- GEE_GAMMAIns(Y1star, Y2star, DesignMatrix1, DesignMatrix2, beta1=theta[1:3], beta2=theta[4:6], xi=theta[8], sigma = theta[7]) return(GAMMA) } GEE_GAMMA.inv <- function(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2){ GAMMA <- GEE_GAMMAIns(Y1star, Y2star, DesignMatrix1, DesignMatrix2, beta1=theta[1:3], beta2=theta[4:6], xi=theta[8], sigma = theta[7]) GAMMA.inv <- solve(GAMMA,tol=1e-200) return(GAMMA.inv) } GEE_cov <- function(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e){ GAMMA <- GEE_GAMMA(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2) GAMMA.inv <- GEE_GAMMA.inv(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2) SIGMA <- GEE_SIGMA(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e) covmatrix <- GAMMA.inv %*% SIGMA %*% t(as.matrix(GAMMA.inv)) return(covmatrix) # return(list(GAMMA=GAMMA,SIGMA=SIGMA,covmatrix)) } ## 0.3.1 Functions with Internal Validation #### GEE_UI_IV <- function(theta, data.validation, data.mismeasure, gamma1, gamma, alpha1, alpha0, sigma_e, Weight){ # cat(theta, " \n") return(GEE_UfuncInsIVWeight(Y1star=data.mismeasure$Y1star, Y2star=data.mismeasure$Y2star, Y1 = data.validation$Y1, Y2 = data.validation$Y2, DesignMatrix1 = as.matrix(data.mismeasure[,3:5]), DesignMatrix2 = as.matrix(data.mismeasure[,3:5]), ValidationMatrix1 = as.matrix(data.validation[,5:7]), ValidationMatrix2 = as.matrix(data.validation[,5:7]), CovMis1 = as.matrix(data.mismeasure[,6:7]), CovMis2 = as.matrix(data.mismeasure[,8]), Weight = Weight, beta1=theta[1:3], beta2=theta[4:6], sigma = theta[7], xi = theta[8], gamma1=gamma1, gamma=gamma, alpha1=alpha1, alpha0=alpha0, sigma_e=sigma_e )) } GEE_GAMMA_IV0 <- function(theta, Y1star, Y2star, Y1, Y2, ValidationMatrix1, ValidationMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0){ return(GEE_GAMMAInsIV0(Y1star, Y2star, Y1, Y2, CovMis1, CovMis2, ValidationMatrix1, ValidationMatrix2, beta1=theta[1:3], beta2=theta[4:6], xi=theta[8], sigma=theta[7], gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1=fixgamma1, fixgamma=fixgamma, fixsigma_e=fixsigma_e, fixalpha1=fixalpha1, fixalpha0=fixalpha0) ) } GEE_GAMMA_IVI <- function(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0){ return(GEE_GAMMAInsIVI(Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, beta1=theta[1:3], beta2=theta[4:6], xi=theta[8], sigma=theta[7], gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1=fixgamma1, fixgamma=fixgamma, fixsigma_e=fixsigma_e, fixalpha1=fixalpha1, fixalpha0=fixalpha0) ) } GEE_SIGMA_IV0 <- function(theta, Y1star, Y2star, Y1, Y2, ValidationMatrix1, ValidationMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0){ return(GEE_GAMMAInsIV0(Y1star, Y2star, Y1, Y2, CovMis1, CovMis2, ValidationMatrix1, ValidationMatrix2, beta1=theta[1:3], beta2=theta[4:6], xi=theta[8], sigma=theta[7], gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1=fixgamma1, fixgamma=fixgamma, fixsigma_e=fixsigma_e, fixalpha1=fixalpha1, fixalpha0=fixalpha0) ) } GEE_SIGMA_IV0 <- function(theta, Y1star, Y2star, Y1, Y2, ValidationMatrix1, ValidationMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0){ return(GEE_SIGMAInsIV0(Y1star, Y2star, Y1, Y2, ValidationMatrix1, ValidationMatrix2, CovMis1, CovMis2, beta1=theta[1:3], beta2=theta[4:6], xi=theta[8], sigma=theta[7], gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1=fixgamma1, fixgamma=fixgamma, fixsigma_e=fixsigma_e, fixalpha1=fixalpha1, fixalpha0=fixalpha0) ) } GEE_SIGMA_IVI <- function(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0){ return(GEE_SIGMAInsIVI(Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, beta1=theta[1:3], beta2=theta[4:6], xi=theta[8], sigma=theta[7], gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1=fixgamma1, fixgamma=fixgamma, fixsigma_e=fixsigma_e, fixalpha1=fixalpha1, fixalpha0=fixalpha0) ) } GEE_covIV <- function(theta, data.validation, data.mismeasure, Weight, gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0){ nvalidation <- dim(data.validation)[1] nsample <- dim(data.mismeasure)[1] + nvalidation Omega <- diag(Weight) I_Omega <- diag(1-Weight) M0 <- GEE_GAMMA_IV0(theta, Y1star=data.validation$Y1star, Y2star=data.validation$Y2star, Y1 = data.validation$Y1, Y2 = data.validation$Y2, ValidationMatrix1 = as.matrix(data.validation[,5:7]), ValidationMatrix2 = as.matrix(data.validation[,5:7]), CovMis1 = as.matrix(data.validation[,8:9]), CovMis2 = as.matrix(data.validation[,10]), gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0) M1 <- GEE_GAMMA_IVI(theta, Y1star=data.mismeasure$Y1star, Y2star=data.mismeasure$Y2star, DesignMatrix1 = as.matrix(data.mismeasure[,3:5]), DesignMatrix2 = as.matrix(data.mismeasure[,3:5]), CovMis1 = as.matrix(data.mismeasure[,6:7]), CovMis2 = as.matrix(data.mismeasure[,8]), gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0) GAMMA_IV <- Omega %*% M1 + I_Omega %*% M0 B0 <- GEE_SIGMA_IV0(theta, Y1star=data.validation$Y1star, Y2star=data.validation$Y2star, Y1 = data.validation$Y1, Y2 = data.validation$Y2, ValidationMatrix1 = as.matrix(data.validation[,5:7]), ValidationMatrix2 = as.matrix(data.validation[,5:7]), CovMis1 = as.matrix(data.validation[,8:9]), CovMis2 = as.matrix(data.validation[,10]), gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0) B1 <- GEE_SIGMA_IVI(theta, Y1star=data.mismeasure$Y1star, Y2star=data.mismeasure$Y2star, DesignMatrix1 = as.matrix(data.mismeasure[,3:5]), DesignMatrix2 = as.matrix(data.mismeasure[,3:5]), CovMis1 = as.matrix(data.mismeasure[,6:7]), CovMis2 = as.matrix(data.mismeasure[,8]), gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0) SIGMA_IV <- Omega %*% B1 %*% Omega + I_Omega %*% B0 %*% I_Omega GAMMA.inv <- solve(GAMMA_IV,tol=1e-200) covmatrix <- GAMMA.inv %*% SIGMA_IV %*% t(as.matrix(GAMMA.inv)) # return(covmatrix) return(list(M1=M1,M0=M0,B1=B1,B0=B0,GAMMA_IV=GAMMA.inv,SIGMA_IV=SIGMA_IV,covmatrix=covmatrix)) # return(list(M1=M1,M0=M0,B1=B1,B0=B0,covmatrix=covmatrix)) } Cov01matrix <- function(cov1,cov0,nomegas,nsco){ Gammaomega1 <- cov0$M0 Gammaomega1 <- cbind(Gammaomega1,matrix(rep(0,nomegas*(nomegas+nsco)),ncol=nomegas)) Gammaomega2 <- matrix(rep(0,nomegas*nomegas),ncol=nomegas) Gammaomega2 <- cbind(Gammaomega2,cov1$M1[1:nomegas,(nomegas+1):(nomegas+nsco)]) Gammaomega2 <- cbind(Gammaomega2,cov1$M1[1:nomegas,1:nomegas]) Gammaomega <- rbind(Gammaomega1,Gammaomega2) Sigmaomega1 <- cov0$B0 Sigmaomega1 <- cbind(Sigmaomega1,matrix(rep(0,nomegas*(nomegas+nsco)),ncol=nomegas)) Sigmaomega2 <- matrix(rep(0,nomegas*(nomegas+nsco)),nrow=nomegas) Sigmaomega2 <- cbind(Sigmaomega2,cov1$B1[1:nomegas,1:nomegas]) Sigmaomega <- rbind(Sigmaomega1,Sigmaomega2) GAMMAOMG.inv <- solve(Gammaomega,tol=1e-200) covmatrix <- GAMMAOMG.inv %*% Sigmaomega %*% t(as.matrix(GAMMAOMG.inv)) return(list(Var0 = covmatrix[1:(nomegas+nsco),1:(nomegas+nsco)], Var1 = covmatrix[c((nomegas+nsco+1):(2*nomegas+nsco),(nomegas+1):(nomegas+nsco)), c((nomegas+nsco+1):(2*nomegas+nsco),(nomegas+1):(nomegas+nsco))], Cov01 = covmatrix[1:(nomegas+nsco),c((nomegas+nsco+1):(2*nomegas+nsco),(nomegas+1):(nomegas+nsco))])) } Weightestimate<- function(intial4, omegas, data.validation, data.mismeasure, gamma1, gamma, alpha1, alpha0,sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0, optimal= FALSE){ nomegas <- length(omegas) nsco <- length(c(fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0))-sum(c(fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0)) NR1 <- nleqslv(intial4, GEE_UI_IV, jacobian=T, control=list(maxit=2000), data.validation = data.validation, data.mismeasure = data.mismeasure, Weight = c(rep(1,nomegas),rep(0,nsco)), gamma1 = gamma1, gamma = gamma, alpha1= alpha1, alpha0= alpha0, sigma_e = sigma_e) betahat1 <- ifelse(abs(NR1$x)<10,NR1$x,NA) ### variance estimation with validation data if (!any(is.na(betahat))) { cov1 <- GEE_covIV (betahat1, data.validation, data.mismeasure, Weight = c(rep(1,nomegas),rep(0,nsco)), gamma1 = gamma1, gamma = gamma, alpha1, alpha0, sigma_e, fixgamma1=fixgamma1, fixgamma=fixgamma, fixsigma_e=fixsigma_e, fixalpha1=fixalpha1, fixalpha0=fixalpha0)} NR0 <- nleqslv(intial4, GEE_UI_IV, jacobian=T, control=list(maxit=2000), data.validation = data.validation, data.mismeasure = data.mismeasure, Weight = c(rep(0,nomegas),rep(0,nsco)), gamma1 = gamma1, gamma=gamma, alpha1= alpha1, alpha0= alpha0, sigma_e = sigma_e) betahat0 <- ifelse(abs(NR0$x)<10,NR0$x,NA) ### variance estimation with validation data if (!any(is.na(betahat))) { cov0 <- GEE_covIV (betahat0, data.validation, data.mismeasure, Weight = c(rep(0,nomegas),rep(0,nsco)), gamma1=gamma1, gamma = gamma, alpha1=alpha1, alpha0=alpha0, sigma_e=sigma_e, fixgamma1=fixgamma1, fixgamma=fixgamma, fixsigma_e=fixsigma_e, fixalpha1=fixalpha1, fixalpha0=fixalpha0)} Cov01matrices <- Cov01matrix(cov1,cov0,nomegas,nsco) if (optimal) { weiopttop <- diag(Cov01matrices$Var0) - diag(Cov01matrices$Cov01) weioptbot <- diag(Cov01matrices$Var1) + diag(Cov01matrices$Var0) - 2* diag(Cov01matrices$Cov01) weiopt <- weiopttop/weioptbot weiopt <- ifelse(weiopt<0, 0, weiopt) weiopt <- ifelse(weiopt>1, 1, weiopt) omegas <- weiopt[1:nomegas] } betahat <- omegas * betahat1 + (1-omegas) * betahat0 Omega <- diag(c(omegas,rep(0,nsco))) I_Omega <- diag(1-c(omegas,rep(0,nsco))) Covomega <- Omega %*% Cov01matrices$Var1 %*% Omega + I_Omega %*% Cov01matrices$Var0 %*% I_Omega + Omega %*% Cov01matrices$Cov01 %*% I_Omega return(list(betahat=betahat, Covomega = Covomega)) } ##### 1 Implementation Function #### ### A example in deguging i <- 1 nsample <- 1500 nvalidation <- 500 omega_j <- -1 INS_int <- function(i, nsample, nvalidation, omega_j){ ## 1.1 Set up #### set.seed(2019) seed_i <- sample(1000000,1000) set.seed(seed_i[i]) library(GeneErrorMis) library(nleqslv) ## 1.2 Data Generation #### ## true parameters beta1 <- c(0.7,1.5,-1) beta2 <- c(0.7,-1.5,1) omegas <- rep(omega_j,6+2) optimal <- ifelse (omega_j == -1,T,F) # theta <- c(beta1, beta2, sigma, xi) sigma <- 1 rho <- 0 sigma_e <- 0.1 gamma <- 0.8 alpha <- -2.197 # gamma <- 0.8 ### Generate the true data sets # nsample <- 1000 # nvalidation <- 500 X <- runif(nsample,-3,4) W <- rnorm(nsample,0,sd=1) mu1 <- beta1[1] + beta1[2] * X + beta1[3] * W mu2 <- beta2[1] + beta2[2] * X + beta2[3] * W expit <- function(x){ value <- exp(x)/(1+exp(x)) ifelse(is.na(value),1,value) } ## Response epsilon <- rnorm(nsample,0,1) U <- runif(nsample,0,1) mu2expit <- expit(mu2) Y1 <- mu1 + epsilon Y2 <- ifelse(U < mu2expit,1,0) ## obtain the actuall correlation rho <- cor(Y1-mu1,Y2-mu2expit) ## measurement error and misclassification e <- rnorm(nsample,0,sigma_e) U2 <- runif(nsample,0,1) Y1star <- Y1 + gamma * Y2 + e Y2star <- ifelse(U2 > expit(alpha),Y2,1-Y2) ## Naive model naive.model1 <- lm(Y1star ~ X + W) true.model1 <- lm(Y1 ~ X + W) naive.model2 <- glm(Y2star ~ X + W, family = binomial(link = logit)) true.model2 <- glm(Y2 ~ X + W, family = binomial(link = logit)) ## 1.3 Implementation Generation ### ## 1.3.1 Preperation ### DesignMatrix1 <- DesignMatrix2 <- cbind(rep(1,length(X)),X,W) CovMis1 <- cbind(rep(0,length(X)),rep(1,length(X))) CovMis2 <- c(rep(1,length(X))) DesignMatrix1 <- as.matrix(DesignMatrix1) DesignMatrix2 <- as.matrix(DesignMatrix2) CovMis1 <- as.matrix(CovMis1) CovMis2 <- as.matrix (CovMis2) ## Create the mismeasured data and the validation data data.mismeasure <- data.frame(Y1star=Y1star[1:(nsample - nvalidation)],Y2star=Y2star[1:(nsample - nvalidation)], DesignMatrix1[1:(nsample - nvalidation),],CovMis1[1:(nsample - nvalidation),],CovMis2[1:(nsample - nvalidation),]) data.validation <- data.frame(Y1=Y1[(nsample - nvalidation+1):nsample],Y2=Y2[(nsample - nvalidation+1):nsample], Y1star=Y1star[(nsample - nvalidation+1):nsample],Y2star=Y2star[(nsample - nvalidation+1):nsample], DesignMatrix1[(nsample - nvalidation+1):nsample,],CovMis1[(nsample - nvalidation+1):nsample,],CovMis2[(nsample - nvalidation+1):nsample,]) ## 1.3.2 Prepare different choices of initial variables ### beta_Y1_0 <- mean(Y1star) beta_Y2_0 <- log(mean(Y2star)/(1-mean(Y2star))) intial3 <- c(beta_Y1_0,0,0,beta_Y2_0,0,0,1,0.001) intial4 <- c(naive.model1$coefficients,naive.model2$coefficients,1,0) ## 1.4 Estimating Procedure ## 1.4.1 Measurement Error and Misclassification Parameters model.measure <- lm(Y1star ~ -1 + offset(Y1) + Y2,data = data.validation) model.class1 <- glm((1-Y2star) ~ 1, data = data.validation[data.validation$Y2==1,],family = binomial(link="logit")) model.class0 <- glm(Y2star ~ 1, data = data.validation[data.validation$Y2==0,],family = binomial(link="logit")) gamma2 <- model.measure$coefficients sigma_e <- sigma(model.measure) alpha1 <- model.class1$coefficients alpha0 <- model.class0$coefficients tryCatch({ # 1.4.2 The proposed method #### NR <- Weightestimate(intial4, omegas = omegas, data.validation = data.validation, data.mismeasure = data.mismeasure, gamma1=1, gamma=c(0,gamma2), alpha1=alpha1, alpha0=alpha0, sigma_e=sigma_e, fixgamma1=1,fixgamma=c(1,0),fixsigma_e=0,fixalpha1=0,fixalpha0=0, optimal = optimal) betahat <- NR$betahat ### variance estimation with validation data if (!any(is.na(betahat))) { cov <- NR$Covomega sd <- sqrt(diag(cov))} else { sd <- rep(NA,length(betahat)) } # 2.3.3 Naive Model of only consider the measurement error ### measonly <- Weightestimate(intial4, omegas = omegas, data.validation = data.validation, data.mismeasure = data.mismeasure, gamma1=1, gamma=c(0,gamma2), alpha1= -Inf, alpha0= -Inf, sigma_e=sigma_e, fixgamma1=1,fixgamma=c(1,0),fixsigma_e=0,fixalpha1=1,fixalpha0=1, optimal = optimal) betahat_measonly <- measonly$betahat if (!any(is.na(betahat_measonly))) { cov <- measonly$Covomega sd_measonly <- sqrt(diag(cov))} else { sd_measonly <- rep(NA,length(betahat_measonly)) } # 2.3.4 Naive Model of only consider the misclassification error ### misconly <- Weightestimate(intial4, omegas = omegas, data.validation = data.validation, data.mismeasure = data.mismeasure, gamma1=1, gamma=c(0,0), alpha1= alpha1, alpha0= alpha0, sigma_e=0, fixgamma1=1,fixgamma=c(1,1),fixsigma_e=1,fixalpha1=0,fixalpha0=0, optimal = optimal) betahat_misconly <- misconly$betahat if (!any(is.na(betahat_misconly))) { cov <- misconly$Covomega sd_misconly <- sqrt(diag(cov))} else { sd_misconly <- rep(NA,length(betahat_misconly)) } return(list(seed = seed_i[i], naive1coef = naive.model1$coefficients, naive1vcov = vcov(naive.model1), naive2coef = naive.model2$coefficients, naive2vcov = vcov(naive.model2), betameasonly = c(betahat_measonly,gamma2,sigma_e,0,0), sdmeasonly = c(sd_measonly,0,0), betamisconly = c(betahat_misconly,0,0,alpha1,alpha0), sdmisconly = c(sd_misconly[1:8],0,0,sd_misconly[9:10]), betahat = c(betahat,gamma2,sigma_e,alpha1,alpha0), sd = sd)) }, error = function(e) return(NULL)) } ### 4.3 Simulation 1: under different level of interation - Small Sample Size #### results_3 <- lapply(c(0,1,0.5,-1), FUN= function(x){ results_x <- lapply(1:1000, FUN = INS_int, nsample = 1500, nvalidation = 500, omega_j = x) return(results_x) }) # re1 <- INS_int(1,nsample=nsample, nvalidation=nvalidation, omega_j= omega_j) omega <- round(c(0,1,0.5,-1),3) truebeta <- c(0.7,1.5,-1,0.7,-1.5,1,1,0) save(results_3,file="WINV_R3.RData") Results <- NULL for (k in 1:4) { results <- results_3[[k]] truebeta <- c(0.7,1.5,-1,0.7,-1.5,1,1,0,0.8,0.1,-2.197,-2.197) naive1coef <- NULL naive1sd <- NULL naive2coef <- NULL naive2sd <- NULL CI1naive <- NULL CI2naive <- NULL measonlycoef <- NULL measonlysd <- NULL CImeasonly <- NULL misconlycoef <- NULL misconlysd <- NULL CImisconly <- NULL betas <- NULL sds <- NULL CIs <- NULL for (i in 1:1000){ if (is.null(results[[i]])) { next} naive1coef <- rbind(naive1coef, results[[i]]$naive1coef) naive1sd <- rbind(naive1sd,sqrt(diag( results[[i]]$naive1vcov))) naive2coef <- rbind(naive2coef, results[[i]]$naive2coef) naive2sd <- rbind(naive2sd,sqrt(diag( results[[i]]$naive2vcov))) if ((!is.null(results[[i]]$betameasonly)) & (!is.null(results[[i]]$sdmeasonly))) { measonlycoef <- rbind(measonlycoef,as.vector(results[[i]]$betameasonly)) measonlysd_i <- results[[i]]$sdmeasonly measonlysd_i <- ifelse(abs(measonlysd_i)<10,measonlysd_i,NA) measonlysd <- rbind(measonlysd,measonlysd_i) CILBmeasonly <- results[[i]]$betameasonly - 1.96 *(measonlysd_i) CIUBmeasonly <- results[[i]]$betameasonly + 1.96 *(measonlysd_i) CImeasonly <- rbind(CImeasonly,ifelse((truebeta<as.vector(CIUBmeasonly)) & (truebeta>as.vector(CILBmeasonly)),1,0)) } if ((!is.null(results[[i]]$betamisconly)) & (!is.null(results[[i]]$sdmisconly))) { misconlycoef <- rbind(misconlycoef,as.vector(results[[i]]$betamisconly)) misconlysd_i <- (results[[i]]$sdmisconly) misconlysd_i <- ifelse(abs(misconlysd_i)<10,misconlysd_i,NA) misconlysd <- rbind(misconlysd, misconlysd_i) CILBmisconly <- results[[i]]$betamisconly - 1.96 *(misconlysd_i) CIUBmisconly <- results[[i]]$betamisconly + 1.96 *(misconlysd_i) CImisconly <- rbind(CImisconly,ifelse((truebeta<as.vector(CIUBmisconly)) & (truebeta>as.vector(CILBmisconly)),1,0)) } betahat0 <- results[[i]]$betahat sd0 <- results[[i]]$sd sd0 <- ifelse(abs(sd0)<5,sd0,NA) betas <- rbind(betas, betahat0) sds <- rbind(sds, sd0) CILBnaive1 <- results[[i]]$naive1coef - 1.96 *(sqrt(diag(results[[i]]$naive1vcov))) CIUBnaive1 <- results[[i]]$naive1coef + 1.96 *(sqrt(diag(results[[i]]$naive1vcov))) CI1naive <- rbind(CI1naive,ifelse((truebeta[1:3]<CIUBnaive1) & (truebeta[1:3]>CILBnaive1),1,0)) CILBnaive2 <- results[[i]]$naive2coef - 1.96 *(sqrt(diag(results[[i]]$naive2vcov))) CIUBnaive2 <- results[[i]]$naive2coef + 1.96 *(sqrt(diag(results[[i]]$naive2vcov))) CI2naive <- rbind(CI2naive,ifelse((truebeta[4:6]<CIUBnaive2) & (truebeta[4:6]>CILBnaive2),1,0)) CILB <- betahat0 - 1.96 *(sd0) CIUB <- betahat0 + 1.96 *(sd0) CIs <- rbind(CIs,ifelse((truebeta<as.vector(CIUB)) & (truebeta>as.vector(CILB)),1,0)) } biasnaive1 <- colMeans(naive1coef,na.rm=T)-truebeta[1:3] biasnaive2 <- colMeans(naive2coef,na.rm=T)-truebeta[4:6] naive_esd <- apply(cbind(naive1coef,naive2coef), MARGIN = 2 , FUN=sd, na.rm=T) sdnaive1 <- colMeans(naive1sd,na.rm=T) sdnaive2 <- colMeans(naive2sd,na.rm=T) CInaive1 <- colMeans(CI1naive,na.rm=T) CInaive2 <- colMeans(CI2naive,na.rm=T) naivebias <- c(biasnaive1,biasnaive2,rep(0,6)) naive_esd <- c(naive_esd,rep(0,6)) naivesd <- c(sdnaive1,sdnaive2,rep(0,6)) naiveCI <- c(CInaive1,CInaive2,rep(0,6)) bias_measonly <- colMeans(na.omit(measonlycoef),na.rm = T) - truebeta sd_emp_measonly <- apply(na.omit(measonlycoef),MARGIN = 2, FUN = sd) sd_mod_measonly <- colMeans(na.omit(measonlysd),na.rm = T) CI_measonly <- colMeans(na.omit(CImeasonly),na.rm = T) bias_misconly <- colMeans(na.omit(misconlycoef),na.rm = T) - truebeta sd_emp_misconly <- apply(na.omit(misconlycoef),MARGIN = 2, FUN = sd) sd_mod_misconly <- colMeans(na.omit(misconlysd),na.rm = T) CI_misconly <- colMeans(na.omit(CImisconly),na.rm = T) bias1 <- colMeans(na.omit(betas),na.rm = T) - truebeta sd_emp <- apply(na.omit(betas),MARGIN = 2, FUN = sd) sd_mod <- colMeans(na.omit(sds),na.rm = T) CIrate <- colMeans(na.omit(CIs),na.rm = T) Results0 <- data.frame(omega = omega[k], naivebias=round(naivebias,3),naive_esd=round(naive_esd,3),naivesd=round(naivesd,3),naiveCI=percent(round(naiveCI,3)),naiveARE=percent(round(naive_esd/naive_esd,3)), biasprop=round(bias1,3),propose_esd=round(sd_emp,3),sdpropose=round(sd_mod,3),CI_propose=percent(round(CIrate,3)),ARE_propose=percent(round((naive_esd/sd_mod)^2,3))) Results <- rbind(Results,Results0) } parnames <- c("beta10","beta11","beta12","beta20","beta21","beta22", "sigma","xi", "gamma_2","sigma_e","alpha_1","alpha_0") betanames <- c("beta10","beta11","beta12","beta20","beta21","beta22") Results <- data.frame(Parameters = parnames,Results) Results <- Results[Results$Parameters %in% betanames,] Results <- Results[order(Results$Parameters),] Results1 <- Results[1:6*4-3,c(1:7)] Results1$omega <- -99 Results2 <- Results[,c(1:2,8:12)] colnames(Results1) <- c("Parameters","omega","bias","esd","MSD","CR","ARE") colnames(Results2) <- c("Parameters","omega","bias","esd","MSD","CR","ARE") Results <- rbind(Results1,Results2) Results <- Results[order(Results$Parameters),] save(Results,file="WINV_RTable31.RData") library(xtable) xtable(Results,digits = 3) ### 4.3 Simulation 1: under different level of interation - Small Sample Size #### results_3 <- lapply(c(0,1,0.5,-1), FUN= function(x){ results_x <- lapply(1:1000, FUN = INS_int, nsample = 3000, nvalidation = 1500, omega_j = x) return(results_x) }) # re1 <- INS_int(1,nsample=nsample, nvalidation=nvalidation, omega_j= omega_j) omega <- round(c(0,1,0.5,-1),3) truebeta <- c(0.7,1.5,-1,0.7,-1.5,1,1,0) save(results_3,file="WINV_R3.RData") Results <- NULL for (k in 1:4) { results <- results_3[[k]] truebeta <- c(0.7,1.5,-1,0.7,-1.5,1,1,0,0.8,0.1,-2.197,-2.197) naive1coef <- NULL naive1sd <- NULL naive2coef <- NULL naive2sd <- NULL CI1naive <- NULL CI2naive <- NULL measonlycoef <- NULL measonlysd <- NULL CImeasonly <- NULL misconlycoef <- NULL misconlysd <- NULL CImisconly <- NULL betas <- NULL sds <- NULL CIs <- NULL for (i in 1:1000){ if (is.null(results[[i]])) { next} naive1coef <- rbind(naive1coef, results[[i]]$naive1coef) naive1sd <- rbind(naive1sd,sqrt(diag( results[[i]]$naive1vcov))) naive2coef <- rbind(naive2coef, results[[i]]$naive2coef) naive2sd <- rbind(naive2sd,sqrt(diag( results[[i]]$naive2vcov))) if ((!is.null(results[[i]]$betameasonly)) & (!is.null(results[[i]]$sdmeasonly))) { measonlycoef <- rbind(measonlycoef,as.vector(results[[i]]$betameasonly)) measonlysd_i <- results[[i]]$sdmeasonly measonlysd_i <- ifelse(abs(measonlysd_i)<10,measonlysd_i,NA) measonlysd <- rbind(measonlysd,measonlysd_i) CILBmeasonly <- results[[i]]$betameasonly - 1.96 *(measonlysd_i) CIUBmeasonly <- results[[i]]$betameasonly + 1.96 *(measonlysd_i) CImeasonly <- rbind(CImeasonly,ifelse((truebeta<as.vector(CIUBmeasonly)) & (truebeta>as.vector(CILBmeasonly)),1,0)) } if ((!is.null(results[[i]]$betamisconly)) & (!is.null(results[[i]]$sdmisconly))) { misconlycoef <- rbind(misconlycoef,as.vector(results[[i]]$betamisconly)) misconlysd_i <- (results[[i]]$sdmisconly) misconlysd_i <- ifelse(abs(misconlysd_i)<10,misconlysd_i,NA) misconlysd <- rbind(misconlysd, misconlysd_i) CILBmisconly <- results[[i]]$betamisconly - 1.96 *(misconlysd_i) CIUBmisconly <- results[[i]]$betamisconly + 1.96 *(misconlysd_i) CImisconly <- rbind(CImisconly,ifelse((truebeta<as.vector(CIUBmisconly)) & (truebeta>as.vector(CILBmisconly)),1,0)) } betahat0 <- results[[i]]$betahat sd0 <- results[[i]]$sd sd0 <- ifelse(abs(sd0)<5,sd0,NA) betas <- rbind(betas, betahat0) sds <- rbind(sds, sd0) CILBnaive1 <- results[[i]]$naive1coef - 1.96 *(sqrt(diag(results[[i]]$naive1vcov))) CIUBnaive1 <- results[[i]]$naive1coef + 1.96 *(sqrt(diag(results[[i]]$naive1vcov))) CI1naive <- rbind(CI1naive,ifelse((truebeta[1:3]<CIUBnaive1) & (truebeta[1:3]>CILBnaive1),1,0)) CILBnaive2 <- results[[i]]$naive2coef - 1.96 *(sqrt(diag(results[[i]]$naive2vcov))) CIUBnaive2 <- results[[i]]$naive2coef + 1.96 *(sqrt(diag(results[[i]]$naive2vcov))) CI2naive <- rbind(CI2naive,ifelse((truebeta[4:6]<CIUBnaive2) & (truebeta[4:6]>CILBnaive2),1,0)) CILB <- betahat0 - 1.96 *(sd0) CIUB <- betahat0 + 1.96 *(sd0) CIs <- rbind(CIs,ifelse((truebeta<as.vector(CIUB)) & (truebeta>as.vector(CILB)),1,0)) } biasnaive1 <- colMeans(naive1coef,na.rm=T)-truebeta[1:3] biasnaive2 <- colMeans(naive2coef,na.rm=T)-truebeta[4:6] naive_esd <- apply(cbind(naive1coef,naive2coef), MARGIN = 2 , FUN=sd, na.rm=T) sdnaive1 <- colMeans(naive1sd,na.rm=T) sdnaive2 <- colMeans(naive2sd,na.rm=T) CInaive1 <- colMeans(CI1naive,na.rm=T) CInaive2 <- colMeans(CI2naive,na.rm=T) naivebias <- c(biasnaive1,biasnaive2,rep(0,6)) naive_esd <- c(naive_esd,rep(0,6)) naivesd <- c(sdnaive1,sdnaive2,rep(0,6)) naiveCI <- c(CInaive1,CInaive2,rep(0,6)) bias_measonly <- colMeans(na.omit(measonlycoef),na.rm = T) - truebeta sd_emp_measonly <- apply(na.omit(measonlycoef),MARGIN = 2, FUN = sd) sd_mod_measonly <- colMeans(na.omit(measonlysd),na.rm = T) CI_measonly <- colMeans(na.omit(CImeasonly),na.rm = T) bias_misconly <- colMeans(na.omit(misconlycoef),na.rm = T) - truebeta sd_emp_misconly <- apply(na.omit(misconlycoef),MARGIN = 2, FUN = sd) sd_mod_misconly <- colMeans(na.omit(misconlysd),na.rm = T) CI_misconly <- colMeans(na.omit(CImisconly),na.rm = T) bias1 <- colMeans(na.omit(betas),na.rm = T) - truebeta sd_emp <- apply(na.omit(betas),MARGIN = 2, FUN = sd) sd_mod <- colMeans(na.omit(sds),na.rm = T) CIrate <- colMeans(na.omit(CIs),na.rm = T) Results0 <- data.frame(omega = omega[k], naivebias=round(naivebias,3),naive_esd=round(naive_esd,3),naivesd=round(naivesd,3),naiveCI=percent(round(naiveCI,3)),naiveARE=percent(round(naive_esd/naive_esd,3)), biasprop=round(bias1,3),propose_esd=round(sd_emp,3),sdpropose=round(sd_mod,3),CI_propose=percent(round(CIrate,3)),ARE_propose=percent(round((naive_esd/sd_mod)^2,3))) Results <- rbind(Results,Results0) } parnames <- c("beta10","beta11","beta12","beta20","beta21","beta22", "sigma","xi", "gamma_2","sigma_e","alpha_1","alpha_0") betanames <- c("beta10","beta11","beta12","beta20","beta21","beta22") Results <- data.frame(Parameters = parnames,Results) Results <- Results[Results$Parameters %in% betanames,] Results <- Results[order(Results$Parameters),] Results1 <- Results[1:6*4-3,c(1:7)] Results1$omega <- -99 Results2 <- Results[,c(1:2,8:12)] colnames(Results1) <- c("Parameters","omega","bias","esd","MSD","CR","ARE") colnames(Results2) <- c("Parameters","omega","bias","esd","MSD","CR","ARE") Results <- rbind(Results1,Results2) Results <- Results[order(Results$Parameters),] save(Results,file="WINV_RTable32.RData") library(xtable) xtable(Results,digits = 3) xtable(Results,digits = 4)
/code/Simulation/Simulation_INS9.R
no_license
QihuangZhang/GEEmix
R
false
false
31,958
r
#### # Compare the efficiency of different weights #### 0 Simulation set up#### library(parallel) library(scales) library(xtable) library(tidyr) library(ggplot2) ## 0.1 Generate the seed for the simulation #### set.seed(2018) seed_i <- sample(1000000,1000) ## 0.2 Global Parameters #### ncores <- 30 ProjectName <- "Simulation_INS9" nsample <- 1000 ## 0.3 Functions #### ## 0.3.1 Original Functions #### GEE_UI <- function(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e){ # cat(theta, " \n") return(GEE_UfuncIns(Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, theta[1:3], theta[4:6], sigma = theta[7], xi = theta[8], gamma1, gamma, alpha1=alpha1, alpha0=alpha0, sigma_e)) } GEE_SIGMA <- function(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e){ return(GEE_SIGMAIns(Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, theta[1:3], theta[4:6], sigma = theta[7], xi = theta[8], gamma1, gamma, alpha1, alpha0, sigma_e)) } GEE_GAMMA <- function(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2){ GAMMA <- GEE_GAMMAIns(Y1star, Y2star, DesignMatrix1, DesignMatrix2, beta1=theta[1:3], beta2=theta[4:6], xi=theta[8], sigma = theta[7]) return(GAMMA) } GEE_GAMMA.inv <- function(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2){ GAMMA <- GEE_GAMMAIns(Y1star, Y2star, DesignMatrix1, DesignMatrix2, beta1=theta[1:3], beta2=theta[4:6], xi=theta[8], sigma = theta[7]) GAMMA.inv <- solve(GAMMA,tol=1e-200) return(GAMMA.inv) } GEE_cov <- function(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e){ GAMMA <- GEE_GAMMA(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2) GAMMA.inv <- GEE_GAMMA.inv(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2) SIGMA <- GEE_SIGMA(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e) covmatrix <- GAMMA.inv %*% SIGMA %*% t(as.matrix(GAMMA.inv)) return(covmatrix) # return(list(GAMMA=GAMMA,SIGMA=SIGMA,covmatrix)) } ## 0.3.1 Functions with Internal Validation #### GEE_UI_IV <- function(theta, data.validation, data.mismeasure, gamma1, gamma, alpha1, alpha0, sigma_e, Weight){ # cat(theta, " \n") return(GEE_UfuncInsIVWeight(Y1star=data.mismeasure$Y1star, Y2star=data.mismeasure$Y2star, Y1 = data.validation$Y1, Y2 = data.validation$Y2, DesignMatrix1 = as.matrix(data.mismeasure[,3:5]), DesignMatrix2 = as.matrix(data.mismeasure[,3:5]), ValidationMatrix1 = as.matrix(data.validation[,5:7]), ValidationMatrix2 = as.matrix(data.validation[,5:7]), CovMis1 = as.matrix(data.mismeasure[,6:7]), CovMis2 = as.matrix(data.mismeasure[,8]), Weight = Weight, beta1=theta[1:3], beta2=theta[4:6], sigma = theta[7], xi = theta[8], gamma1=gamma1, gamma=gamma, alpha1=alpha1, alpha0=alpha0, sigma_e=sigma_e )) } GEE_GAMMA_IV0 <- function(theta, Y1star, Y2star, Y1, Y2, ValidationMatrix1, ValidationMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0){ return(GEE_GAMMAInsIV0(Y1star, Y2star, Y1, Y2, CovMis1, CovMis2, ValidationMatrix1, ValidationMatrix2, beta1=theta[1:3], beta2=theta[4:6], xi=theta[8], sigma=theta[7], gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1=fixgamma1, fixgamma=fixgamma, fixsigma_e=fixsigma_e, fixalpha1=fixalpha1, fixalpha0=fixalpha0) ) } GEE_GAMMA_IVI <- function(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0){ return(GEE_GAMMAInsIVI(Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, beta1=theta[1:3], beta2=theta[4:6], xi=theta[8], sigma=theta[7], gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1=fixgamma1, fixgamma=fixgamma, fixsigma_e=fixsigma_e, fixalpha1=fixalpha1, fixalpha0=fixalpha0) ) } GEE_SIGMA_IV0 <- function(theta, Y1star, Y2star, Y1, Y2, ValidationMatrix1, ValidationMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0){ return(GEE_GAMMAInsIV0(Y1star, Y2star, Y1, Y2, CovMis1, CovMis2, ValidationMatrix1, ValidationMatrix2, beta1=theta[1:3], beta2=theta[4:6], xi=theta[8], sigma=theta[7], gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1=fixgamma1, fixgamma=fixgamma, fixsigma_e=fixsigma_e, fixalpha1=fixalpha1, fixalpha0=fixalpha0) ) } GEE_SIGMA_IV0 <- function(theta, Y1star, Y2star, Y1, Y2, ValidationMatrix1, ValidationMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0){ return(GEE_SIGMAInsIV0(Y1star, Y2star, Y1, Y2, ValidationMatrix1, ValidationMatrix2, CovMis1, CovMis2, beta1=theta[1:3], beta2=theta[4:6], xi=theta[8], sigma=theta[7], gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1=fixgamma1, fixgamma=fixgamma, fixsigma_e=fixsigma_e, fixalpha1=fixalpha1, fixalpha0=fixalpha0) ) } GEE_SIGMA_IVI <- function(theta, Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0){ return(GEE_SIGMAInsIVI(Y1star, Y2star, DesignMatrix1, DesignMatrix2, CovMis1, CovMis2, beta1=theta[1:3], beta2=theta[4:6], xi=theta[8], sigma=theta[7], gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1=fixgamma1, fixgamma=fixgamma, fixsigma_e=fixsigma_e, fixalpha1=fixalpha1, fixalpha0=fixalpha0) ) } GEE_covIV <- function(theta, data.validation, data.mismeasure, Weight, gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0){ nvalidation <- dim(data.validation)[1] nsample <- dim(data.mismeasure)[1] + nvalidation Omega <- diag(Weight) I_Omega <- diag(1-Weight) M0 <- GEE_GAMMA_IV0(theta, Y1star=data.validation$Y1star, Y2star=data.validation$Y2star, Y1 = data.validation$Y1, Y2 = data.validation$Y2, ValidationMatrix1 = as.matrix(data.validation[,5:7]), ValidationMatrix2 = as.matrix(data.validation[,5:7]), CovMis1 = as.matrix(data.validation[,8:9]), CovMis2 = as.matrix(data.validation[,10]), gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0) M1 <- GEE_GAMMA_IVI(theta, Y1star=data.mismeasure$Y1star, Y2star=data.mismeasure$Y2star, DesignMatrix1 = as.matrix(data.mismeasure[,3:5]), DesignMatrix2 = as.matrix(data.mismeasure[,3:5]), CovMis1 = as.matrix(data.mismeasure[,6:7]), CovMis2 = as.matrix(data.mismeasure[,8]), gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0) GAMMA_IV <- Omega %*% M1 + I_Omega %*% M0 B0 <- GEE_SIGMA_IV0(theta, Y1star=data.validation$Y1star, Y2star=data.validation$Y2star, Y1 = data.validation$Y1, Y2 = data.validation$Y2, ValidationMatrix1 = as.matrix(data.validation[,5:7]), ValidationMatrix2 = as.matrix(data.validation[,5:7]), CovMis1 = as.matrix(data.validation[,8:9]), CovMis2 = as.matrix(data.validation[,10]), gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0) B1 <- GEE_SIGMA_IVI(theta, Y1star=data.mismeasure$Y1star, Y2star=data.mismeasure$Y2star, DesignMatrix1 = as.matrix(data.mismeasure[,3:5]), DesignMatrix2 = as.matrix(data.mismeasure[,3:5]), CovMis1 = as.matrix(data.mismeasure[,6:7]), CovMis2 = as.matrix(data.mismeasure[,8]), gamma1, gamma, alpha1, alpha0, sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0) SIGMA_IV <- Omega %*% B1 %*% Omega + I_Omega %*% B0 %*% I_Omega GAMMA.inv <- solve(GAMMA_IV,tol=1e-200) covmatrix <- GAMMA.inv %*% SIGMA_IV %*% t(as.matrix(GAMMA.inv)) # return(covmatrix) return(list(M1=M1,M0=M0,B1=B1,B0=B0,GAMMA_IV=GAMMA.inv,SIGMA_IV=SIGMA_IV,covmatrix=covmatrix)) # return(list(M1=M1,M0=M0,B1=B1,B0=B0,covmatrix=covmatrix)) } Cov01matrix <- function(cov1,cov0,nomegas,nsco){ Gammaomega1 <- cov0$M0 Gammaomega1 <- cbind(Gammaomega1,matrix(rep(0,nomegas*(nomegas+nsco)),ncol=nomegas)) Gammaomega2 <- matrix(rep(0,nomegas*nomegas),ncol=nomegas) Gammaomega2 <- cbind(Gammaomega2,cov1$M1[1:nomegas,(nomegas+1):(nomegas+nsco)]) Gammaomega2 <- cbind(Gammaomega2,cov1$M1[1:nomegas,1:nomegas]) Gammaomega <- rbind(Gammaomega1,Gammaomega2) Sigmaomega1 <- cov0$B0 Sigmaomega1 <- cbind(Sigmaomega1,matrix(rep(0,nomegas*(nomegas+nsco)),ncol=nomegas)) Sigmaomega2 <- matrix(rep(0,nomegas*(nomegas+nsco)),nrow=nomegas) Sigmaomega2 <- cbind(Sigmaomega2,cov1$B1[1:nomegas,1:nomegas]) Sigmaomega <- rbind(Sigmaomega1,Sigmaomega2) GAMMAOMG.inv <- solve(Gammaomega,tol=1e-200) covmatrix <- GAMMAOMG.inv %*% Sigmaomega %*% t(as.matrix(GAMMAOMG.inv)) return(list(Var0 = covmatrix[1:(nomegas+nsco),1:(nomegas+nsco)], Var1 = covmatrix[c((nomegas+nsco+1):(2*nomegas+nsco),(nomegas+1):(nomegas+nsco)), c((nomegas+nsco+1):(2*nomegas+nsco),(nomegas+1):(nomegas+nsco))], Cov01 = covmatrix[1:(nomegas+nsco),c((nomegas+nsco+1):(2*nomegas+nsco),(nomegas+1):(nomegas+nsco))])) } Weightestimate<- function(intial4, omegas, data.validation, data.mismeasure, gamma1, gamma, alpha1, alpha0,sigma_e, fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0, optimal= FALSE){ nomegas <- length(omegas) nsco <- length(c(fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0))-sum(c(fixgamma1,fixgamma,fixsigma_e,fixalpha1,fixalpha0)) NR1 <- nleqslv(intial4, GEE_UI_IV, jacobian=T, control=list(maxit=2000), data.validation = data.validation, data.mismeasure = data.mismeasure, Weight = c(rep(1,nomegas),rep(0,nsco)), gamma1 = gamma1, gamma = gamma, alpha1= alpha1, alpha0= alpha0, sigma_e = sigma_e) betahat1 <- ifelse(abs(NR1$x)<10,NR1$x,NA) ### variance estimation with validation data if (!any(is.na(betahat))) { cov1 <- GEE_covIV (betahat1, data.validation, data.mismeasure, Weight = c(rep(1,nomegas),rep(0,nsco)), gamma1 = gamma1, gamma = gamma, alpha1, alpha0, sigma_e, fixgamma1=fixgamma1, fixgamma=fixgamma, fixsigma_e=fixsigma_e, fixalpha1=fixalpha1, fixalpha0=fixalpha0)} NR0 <- nleqslv(intial4, GEE_UI_IV, jacobian=T, control=list(maxit=2000), data.validation = data.validation, data.mismeasure = data.mismeasure, Weight = c(rep(0,nomegas),rep(0,nsco)), gamma1 = gamma1, gamma=gamma, alpha1= alpha1, alpha0= alpha0, sigma_e = sigma_e) betahat0 <- ifelse(abs(NR0$x)<10,NR0$x,NA) ### variance estimation with validation data if (!any(is.na(betahat))) { cov0 <- GEE_covIV (betahat0, data.validation, data.mismeasure, Weight = c(rep(0,nomegas),rep(0,nsco)), gamma1=gamma1, gamma = gamma, alpha1=alpha1, alpha0=alpha0, sigma_e=sigma_e, fixgamma1=fixgamma1, fixgamma=fixgamma, fixsigma_e=fixsigma_e, fixalpha1=fixalpha1, fixalpha0=fixalpha0)} Cov01matrices <- Cov01matrix(cov1,cov0,nomegas,nsco) if (optimal) { weiopttop <- diag(Cov01matrices$Var0) - diag(Cov01matrices$Cov01) weioptbot <- diag(Cov01matrices$Var1) + diag(Cov01matrices$Var0) - 2* diag(Cov01matrices$Cov01) weiopt <- weiopttop/weioptbot weiopt <- ifelse(weiopt<0, 0, weiopt) weiopt <- ifelse(weiopt>1, 1, weiopt) omegas <- weiopt[1:nomegas] } betahat <- omegas * betahat1 + (1-omegas) * betahat0 Omega <- diag(c(omegas,rep(0,nsco))) I_Omega <- diag(1-c(omegas,rep(0,nsco))) Covomega <- Omega %*% Cov01matrices$Var1 %*% Omega + I_Omega %*% Cov01matrices$Var0 %*% I_Omega + Omega %*% Cov01matrices$Cov01 %*% I_Omega return(list(betahat=betahat, Covomega = Covomega)) } ##### 1 Implementation Function #### ### A example in deguging i <- 1 nsample <- 1500 nvalidation <- 500 omega_j <- -1 INS_int <- function(i, nsample, nvalidation, omega_j){ ## 1.1 Set up #### set.seed(2019) seed_i <- sample(1000000,1000) set.seed(seed_i[i]) library(GeneErrorMis) library(nleqslv) ## 1.2 Data Generation #### ## true parameters beta1 <- c(0.7,1.5,-1) beta2 <- c(0.7,-1.5,1) omegas <- rep(omega_j,6+2) optimal <- ifelse (omega_j == -1,T,F) # theta <- c(beta1, beta2, sigma, xi) sigma <- 1 rho <- 0 sigma_e <- 0.1 gamma <- 0.8 alpha <- -2.197 # gamma <- 0.8 ### Generate the true data sets # nsample <- 1000 # nvalidation <- 500 X <- runif(nsample,-3,4) W <- rnorm(nsample,0,sd=1) mu1 <- beta1[1] + beta1[2] * X + beta1[3] * W mu2 <- beta2[1] + beta2[2] * X + beta2[3] * W expit <- function(x){ value <- exp(x)/(1+exp(x)) ifelse(is.na(value),1,value) } ## Response epsilon <- rnorm(nsample,0,1) U <- runif(nsample,0,1) mu2expit <- expit(mu2) Y1 <- mu1 + epsilon Y2 <- ifelse(U < mu2expit,1,0) ## obtain the actuall correlation rho <- cor(Y1-mu1,Y2-mu2expit) ## measurement error and misclassification e <- rnorm(nsample,0,sigma_e) U2 <- runif(nsample,0,1) Y1star <- Y1 + gamma * Y2 + e Y2star <- ifelse(U2 > expit(alpha),Y2,1-Y2) ## Naive model naive.model1 <- lm(Y1star ~ X + W) true.model1 <- lm(Y1 ~ X + W) naive.model2 <- glm(Y2star ~ X + W, family = binomial(link = logit)) true.model2 <- glm(Y2 ~ X + W, family = binomial(link = logit)) ## 1.3 Implementation Generation ### ## 1.3.1 Preperation ### DesignMatrix1 <- DesignMatrix2 <- cbind(rep(1,length(X)),X,W) CovMis1 <- cbind(rep(0,length(X)),rep(1,length(X))) CovMis2 <- c(rep(1,length(X))) DesignMatrix1 <- as.matrix(DesignMatrix1) DesignMatrix2 <- as.matrix(DesignMatrix2) CovMis1 <- as.matrix(CovMis1) CovMis2 <- as.matrix (CovMis2) ## Create the mismeasured data and the validation data data.mismeasure <- data.frame(Y1star=Y1star[1:(nsample - nvalidation)],Y2star=Y2star[1:(nsample - nvalidation)], DesignMatrix1[1:(nsample - nvalidation),],CovMis1[1:(nsample - nvalidation),],CovMis2[1:(nsample - nvalidation),]) data.validation <- data.frame(Y1=Y1[(nsample - nvalidation+1):nsample],Y2=Y2[(nsample - nvalidation+1):nsample], Y1star=Y1star[(nsample - nvalidation+1):nsample],Y2star=Y2star[(nsample - nvalidation+1):nsample], DesignMatrix1[(nsample - nvalidation+1):nsample,],CovMis1[(nsample - nvalidation+1):nsample,],CovMis2[(nsample - nvalidation+1):nsample,]) ## 1.3.2 Prepare different choices of initial variables ### beta_Y1_0 <- mean(Y1star) beta_Y2_0 <- log(mean(Y2star)/(1-mean(Y2star))) intial3 <- c(beta_Y1_0,0,0,beta_Y2_0,0,0,1,0.001) intial4 <- c(naive.model1$coefficients,naive.model2$coefficients,1,0) ## 1.4 Estimating Procedure ## 1.4.1 Measurement Error and Misclassification Parameters model.measure <- lm(Y1star ~ -1 + offset(Y1) + Y2,data = data.validation) model.class1 <- glm((1-Y2star) ~ 1, data = data.validation[data.validation$Y2==1,],family = binomial(link="logit")) model.class0 <- glm(Y2star ~ 1, data = data.validation[data.validation$Y2==0,],family = binomial(link="logit")) gamma2 <- model.measure$coefficients sigma_e <- sigma(model.measure) alpha1 <- model.class1$coefficients alpha0 <- model.class0$coefficients tryCatch({ # 1.4.2 The proposed method #### NR <- Weightestimate(intial4, omegas = omegas, data.validation = data.validation, data.mismeasure = data.mismeasure, gamma1=1, gamma=c(0,gamma2), alpha1=alpha1, alpha0=alpha0, sigma_e=sigma_e, fixgamma1=1,fixgamma=c(1,0),fixsigma_e=0,fixalpha1=0,fixalpha0=0, optimal = optimal) betahat <- NR$betahat ### variance estimation with validation data if (!any(is.na(betahat))) { cov <- NR$Covomega sd <- sqrt(diag(cov))} else { sd <- rep(NA,length(betahat)) } # 2.3.3 Naive Model of only consider the measurement error ### measonly <- Weightestimate(intial4, omegas = omegas, data.validation = data.validation, data.mismeasure = data.mismeasure, gamma1=1, gamma=c(0,gamma2), alpha1= -Inf, alpha0= -Inf, sigma_e=sigma_e, fixgamma1=1,fixgamma=c(1,0),fixsigma_e=0,fixalpha1=1,fixalpha0=1, optimal = optimal) betahat_measonly <- measonly$betahat if (!any(is.na(betahat_measonly))) { cov <- measonly$Covomega sd_measonly <- sqrt(diag(cov))} else { sd_measonly <- rep(NA,length(betahat_measonly)) } # 2.3.4 Naive Model of only consider the misclassification error ### misconly <- Weightestimate(intial4, omegas = omegas, data.validation = data.validation, data.mismeasure = data.mismeasure, gamma1=1, gamma=c(0,0), alpha1= alpha1, alpha0= alpha0, sigma_e=0, fixgamma1=1,fixgamma=c(1,1),fixsigma_e=1,fixalpha1=0,fixalpha0=0, optimal = optimal) betahat_misconly <- misconly$betahat if (!any(is.na(betahat_misconly))) { cov <- misconly$Covomega sd_misconly <- sqrt(diag(cov))} else { sd_misconly <- rep(NA,length(betahat_misconly)) } return(list(seed = seed_i[i], naive1coef = naive.model1$coefficients, naive1vcov = vcov(naive.model1), naive2coef = naive.model2$coefficients, naive2vcov = vcov(naive.model2), betameasonly = c(betahat_measonly,gamma2,sigma_e,0,0), sdmeasonly = c(sd_measonly,0,0), betamisconly = c(betahat_misconly,0,0,alpha1,alpha0), sdmisconly = c(sd_misconly[1:8],0,0,sd_misconly[9:10]), betahat = c(betahat,gamma2,sigma_e,alpha1,alpha0), sd = sd)) }, error = function(e) return(NULL)) } ### 4.3 Simulation 1: under different level of interation - Small Sample Size #### results_3 <- lapply(c(0,1,0.5,-1), FUN= function(x){ results_x <- lapply(1:1000, FUN = INS_int, nsample = 1500, nvalidation = 500, omega_j = x) return(results_x) }) # re1 <- INS_int(1,nsample=nsample, nvalidation=nvalidation, omega_j= omega_j) omega <- round(c(0,1,0.5,-1),3) truebeta <- c(0.7,1.5,-1,0.7,-1.5,1,1,0) save(results_3,file="WINV_R3.RData") Results <- NULL for (k in 1:4) { results <- results_3[[k]] truebeta <- c(0.7,1.5,-1,0.7,-1.5,1,1,0,0.8,0.1,-2.197,-2.197) naive1coef <- NULL naive1sd <- NULL naive2coef <- NULL naive2sd <- NULL CI1naive <- NULL CI2naive <- NULL measonlycoef <- NULL measonlysd <- NULL CImeasonly <- NULL misconlycoef <- NULL misconlysd <- NULL CImisconly <- NULL betas <- NULL sds <- NULL CIs <- NULL for (i in 1:1000){ if (is.null(results[[i]])) { next} naive1coef <- rbind(naive1coef, results[[i]]$naive1coef) naive1sd <- rbind(naive1sd,sqrt(diag( results[[i]]$naive1vcov))) naive2coef <- rbind(naive2coef, results[[i]]$naive2coef) naive2sd <- rbind(naive2sd,sqrt(diag( results[[i]]$naive2vcov))) if ((!is.null(results[[i]]$betameasonly)) & (!is.null(results[[i]]$sdmeasonly))) { measonlycoef <- rbind(measonlycoef,as.vector(results[[i]]$betameasonly)) measonlysd_i <- results[[i]]$sdmeasonly measonlysd_i <- ifelse(abs(measonlysd_i)<10,measonlysd_i,NA) measonlysd <- rbind(measonlysd,measonlysd_i) CILBmeasonly <- results[[i]]$betameasonly - 1.96 *(measonlysd_i) CIUBmeasonly <- results[[i]]$betameasonly + 1.96 *(measonlysd_i) CImeasonly <- rbind(CImeasonly,ifelse((truebeta<as.vector(CIUBmeasonly)) & (truebeta>as.vector(CILBmeasonly)),1,0)) } if ((!is.null(results[[i]]$betamisconly)) & (!is.null(results[[i]]$sdmisconly))) { misconlycoef <- rbind(misconlycoef,as.vector(results[[i]]$betamisconly)) misconlysd_i <- (results[[i]]$sdmisconly) misconlysd_i <- ifelse(abs(misconlysd_i)<10,misconlysd_i,NA) misconlysd <- rbind(misconlysd, misconlysd_i) CILBmisconly <- results[[i]]$betamisconly - 1.96 *(misconlysd_i) CIUBmisconly <- results[[i]]$betamisconly + 1.96 *(misconlysd_i) CImisconly <- rbind(CImisconly,ifelse((truebeta<as.vector(CIUBmisconly)) & (truebeta>as.vector(CILBmisconly)),1,0)) } betahat0 <- results[[i]]$betahat sd0 <- results[[i]]$sd sd0 <- ifelse(abs(sd0)<5,sd0,NA) betas <- rbind(betas, betahat0) sds <- rbind(sds, sd0) CILBnaive1 <- results[[i]]$naive1coef - 1.96 *(sqrt(diag(results[[i]]$naive1vcov))) CIUBnaive1 <- results[[i]]$naive1coef + 1.96 *(sqrt(diag(results[[i]]$naive1vcov))) CI1naive <- rbind(CI1naive,ifelse((truebeta[1:3]<CIUBnaive1) & (truebeta[1:3]>CILBnaive1),1,0)) CILBnaive2 <- results[[i]]$naive2coef - 1.96 *(sqrt(diag(results[[i]]$naive2vcov))) CIUBnaive2 <- results[[i]]$naive2coef + 1.96 *(sqrt(diag(results[[i]]$naive2vcov))) CI2naive <- rbind(CI2naive,ifelse((truebeta[4:6]<CIUBnaive2) & (truebeta[4:6]>CILBnaive2),1,0)) CILB <- betahat0 - 1.96 *(sd0) CIUB <- betahat0 + 1.96 *(sd0) CIs <- rbind(CIs,ifelse((truebeta<as.vector(CIUB)) & (truebeta>as.vector(CILB)),1,0)) } biasnaive1 <- colMeans(naive1coef,na.rm=T)-truebeta[1:3] biasnaive2 <- colMeans(naive2coef,na.rm=T)-truebeta[4:6] naive_esd <- apply(cbind(naive1coef,naive2coef), MARGIN = 2 , FUN=sd, na.rm=T) sdnaive1 <- colMeans(naive1sd,na.rm=T) sdnaive2 <- colMeans(naive2sd,na.rm=T) CInaive1 <- colMeans(CI1naive,na.rm=T) CInaive2 <- colMeans(CI2naive,na.rm=T) naivebias <- c(biasnaive1,biasnaive2,rep(0,6)) naive_esd <- c(naive_esd,rep(0,6)) naivesd <- c(sdnaive1,sdnaive2,rep(0,6)) naiveCI <- c(CInaive1,CInaive2,rep(0,6)) bias_measonly <- colMeans(na.omit(measonlycoef),na.rm = T) - truebeta sd_emp_measonly <- apply(na.omit(measonlycoef),MARGIN = 2, FUN = sd) sd_mod_measonly <- colMeans(na.omit(measonlysd),na.rm = T) CI_measonly <- colMeans(na.omit(CImeasonly),na.rm = T) bias_misconly <- colMeans(na.omit(misconlycoef),na.rm = T) - truebeta sd_emp_misconly <- apply(na.omit(misconlycoef),MARGIN = 2, FUN = sd) sd_mod_misconly <- colMeans(na.omit(misconlysd),na.rm = T) CI_misconly <- colMeans(na.omit(CImisconly),na.rm = T) bias1 <- colMeans(na.omit(betas),na.rm = T) - truebeta sd_emp <- apply(na.omit(betas),MARGIN = 2, FUN = sd) sd_mod <- colMeans(na.omit(sds),na.rm = T) CIrate <- colMeans(na.omit(CIs),na.rm = T) Results0 <- data.frame(omega = omega[k], naivebias=round(naivebias,3),naive_esd=round(naive_esd,3),naivesd=round(naivesd,3),naiveCI=percent(round(naiveCI,3)),naiveARE=percent(round(naive_esd/naive_esd,3)), biasprop=round(bias1,3),propose_esd=round(sd_emp,3),sdpropose=round(sd_mod,3),CI_propose=percent(round(CIrate,3)),ARE_propose=percent(round((naive_esd/sd_mod)^2,3))) Results <- rbind(Results,Results0) } parnames <- c("beta10","beta11","beta12","beta20","beta21","beta22", "sigma","xi", "gamma_2","sigma_e","alpha_1","alpha_0") betanames <- c("beta10","beta11","beta12","beta20","beta21","beta22") Results <- data.frame(Parameters = parnames,Results) Results <- Results[Results$Parameters %in% betanames,] Results <- Results[order(Results$Parameters),] Results1 <- Results[1:6*4-3,c(1:7)] Results1$omega <- -99 Results2 <- Results[,c(1:2,8:12)] colnames(Results1) <- c("Parameters","omega","bias","esd","MSD","CR","ARE") colnames(Results2) <- c("Parameters","omega","bias","esd","MSD","CR","ARE") Results <- rbind(Results1,Results2) Results <- Results[order(Results$Parameters),] save(Results,file="WINV_RTable31.RData") library(xtable) xtable(Results,digits = 3) ### 4.3 Simulation 1: under different level of interation - Small Sample Size #### results_3 <- lapply(c(0,1,0.5,-1), FUN= function(x){ results_x <- lapply(1:1000, FUN = INS_int, nsample = 3000, nvalidation = 1500, omega_j = x) return(results_x) }) # re1 <- INS_int(1,nsample=nsample, nvalidation=nvalidation, omega_j= omega_j) omega <- round(c(0,1,0.5,-1),3) truebeta <- c(0.7,1.5,-1,0.7,-1.5,1,1,0) save(results_3,file="WINV_R3.RData") Results <- NULL for (k in 1:4) { results <- results_3[[k]] truebeta <- c(0.7,1.5,-1,0.7,-1.5,1,1,0,0.8,0.1,-2.197,-2.197) naive1coef <- NULL naive1sd <- NULL naive2coef <- NULL naive2sd <- NULL CI1naive <- NULL CI2naive <- NULL measonlycoef <- NULL measonlysd <- NULL CImeasonly <- NULL misconlycoef <- NULL misconlysd <- NULL CImisconly <- NULL betas <- NULL sds <- NULL CIs <- NULL for (i in 1:1000){ if (is.null(results[[i]])) { next} naive1coef <- rbind(naive1coef, results[[i]]$naive1coef) naive1sd <- rbind(naive1sd,sqrt(diag( results[[i]]$naive1vcov))) naive2coef <- rbind(naive2coef, results[[i]]$naive2coef) naive2sd <- rbind(naive2sd,sqrt(diag( results[[i]]$naive2vcov))) if ((!is.null(results[[i]]$betameasonly)) & (!is.null(results[[i]]$sdmeasonly))) { measonlycoef <- rbind(measonlycoef,as.vector(results[[i]]$betameasonly)) measonlysd_i <- results[[i]]$sdmeasonly measonlysd_i <- ifelse(abs(measonlysd_i)<10,measonlysd_i,NA) measonlysd <- rbind(measonlysd,measonlysd_i) CILBmeasonly <- results[[i]]$betameasonly - 1.96 *(measonlysd_i) CIUBmeasonly <- results[[i]]$betameasonly + 1.96 *(measonlysd_i) CImeasonly <- rbind(CImeasonly,ifelse((truebeta<as.vector(CIUBmeasonly)) & (truebeta>as.vector(CILBmeasonly)),1,0)) } if ((!is.null(results[[i]]$betamisconly)) & (!is.null(results[[i]]$sdmisconly))) { misconlycoef <- rbind(misconlycoef,as.vector(results[[i]]$betamisconly)) misconlysd_i <- (results[[i]]$sdmisconly) misconlysd_i <- ifelse(abs(misconlysd_i)<10,misconlysd_i,NA) misconlysd <- rbind(misconlysd, misconlysd_i) CILBmisconly <- results[[i]]$betamisconly - 1.96 *(misconlysd_i) CIUBmisconly <- results[[i]]$betamisconly + 1.96 *(misconlysd_i) CImisconly <- rbind(CImisconly,ifelse((truebeta<as.vector(CIUBmisconly)) & (truebeta>as.vector(CILBmisconly)),1,0)) } betahat0 <- results[[i]]$betahat sd0 <- results[[i]]$sd sd0 <- ifelse(abs(sd0)<5,sd0,NA) betas <- rbind(betas, betahat0) sds <- rbind(sds, sd0) CILBnaive1 <- results[[i]]$naive1coef - 1.96 *(sqrt(diag(results[[i]]$naive1vcov))) CIUBnaive1 <- results[[i]]$naive1coef + 1.96 *(sqrt(diag(results[[i]]$naive1vcov))) CI1naive <- rbind(CI1naive,ifelse((truebeta[1:3]<CIUBnaive1) & (truebeta[1:3]>CILBnaive1),1,0)) CILBnaive2 <- results[[i]]$naive2coef - 1.96 *(sqrt(diag(results[[i]]$naive2vcov))) CIUBnaive2 <- results[[i]]$naive2coef + 1.96 *(sqrt(diag(results[[i]]$naive2vcov))) CI2naive <- rbind(CI2naive,ifelse((truebeta[4:6]<CIUBnaive2) & (truebeta[4:6]>CILBnaive2),1,0)) CILB <- betahat0 - 1.96 *(sd0) CIUB <- betahat0 + 1.96 *(sd0) CIs <- rbind(CIs,ifelse((truebeta<as.vector(CIUB)) & (truebeta>as.vector(CILB)),1,0)) } biasnaive1 <- colMeans(naive1coef,na.rm=T)-truebeta[1:3] biasnaive2 <- colMeans(naive2coef,na.rm=T)-truebeta[4:6] naive_esd <- apply(cbind(naive1coef,naive2coef), MARGIN = 2 , FUN=sd, na.rm=T) sdnaive1 <- colMeans(naive1sd,na.rm=T) sdnaive2 <- colMeans(naive2sd,na.rm=T) CInaive1 <- colMeans(CI1naive,na.rm=T) CInaive2 <- colMeans(CI2naive,na.rm=T) naivebias <- c(biasnaive1,biasnaive2,rep(0,6)) naive_esd <- c(naive_esd,rep(0,6)) naivesd <- c(sdnaive1,sdnaive2,rep(0,6)) naiveCI <- c(CInaive1,CInaive2,rep(0,6)) bias_measonly <- colMeans(na.omit(measonlycoef),na.rm = T) - truebeta sd_emp_measonly <- apply(na.omit(measonlycoef),MARGIN = 2, FUN = sd) sd_mod_measonly <- colMeans(na.omit(measonlysd),na.rm = T) CI_measonly <- colMeans(na.omit(CImeasonly),na.rm = T) bias_misconly <- colMeans(na.omit(misconlycoef),na.rm = T) - truebeta sd_emp_misconly <- apply(na.omit(misconlycoef),MARGIN = 2, FUN = sd) sd_mod_misconly <- colMeans(na.omit(misconlysd),na.rm = T) CI_misconly <- colMeans(na.omit(CImisconly),na.rm = T) bias1 <- colMeans(na.omit(betas),na.rm = T) - truebeta sd_emp <- apply(na.omit(betas),MARGIN = 2, FUN = sd) sd_mod <- colMeans(na.omit(sds),na.rm = T) CIrate <- colMeans(na.omit(CIs),na.rm = T) Results0 <- data.frame(omega = omega[k], naivebias=round(naivebias,3),naive_esd=round(naive_esd,3),naivesd=round(naivesd,3),naiveCI=percent(round(naiveCI,3)),naiveARE=percent(round(naive_esd/naive_esd,3)), biasprop=round(bias1,3),propose_esd=round(sd_emp,3),sdpropose=round(sd_mod,3),CI_propose=percent(round(CIrate,3)),ARE_propose=percent(round((naive_esd/sd_mod)^2,3))) Results <- rbind(Results,Results0) } parnames <- c("beta10","beta11","beta12","beta20","beta21","beta22", "sigma","xi", "gamma_2","sigma_e","alpha_1","alpha_0") betanames <- c("beta10","beta11","beta12","beta20","beta21","beta22") Results <- data.frame(Parameters = parnames,Results) Results <- Results[Results$Parameters %in% betanames,] Results <- Results[order(Results$Parameters),] Results1 <- Results[1:6*4-3,c(1:7)] Results1$omega <- -99 Results2 <- Results[,c(1:2,8:12)] colnames(Results1) <- c("Parameters","omega","bias","esd","MSD","CR","ARE") colnames(Results2) <- c("Parameters","omega","bias","esd","MSD","CR","ARE") Results <- rbind(Results1,Results2) Results <- Results[order(Results$Parameters),] save(Results,file="WINV_RTable32.RData") library(xtable) xtable(Results,digits = 3) xtable(Results,digits = 4)
# http://www-bcf.usc.edu/~gareth/ISL/code.html #------ basic commands x = 3 y = 5 x * y x <- c(1, 2, 4, 6, 9) x x = c(1, 2, 4, 6, 9) x y <- c(3, 5, 2, 1) y length(x) length(y) x + y ls() rm(x,y) ls() x = seq(1,10) x x=1:10 x ?matrix x = matrix(data=c(1,2,3,4), nrow=2, ncol=2) x y = matrix(data=c(1,2,3,4), byrow=TRUE, nrow=2, ncol=2) y sqrt(x) y^2 SIZE = 30 set.seed(1303) rnorm(SIZE) runif(SIZE ,-2, 2) #------ basic stats ----- x=rnorm(SIZE) y=x+rnorm(SIZE ,mean=20,sd=.1)+runif(SIZE ,-1,1) x y cor(x,y) set.seed(3) z=rnorm(100) mean(z) var(z) sqrt(var(z)) sd(z) #------ plot ----- plot(x,y) plot(x, y, type='b', col='green', main='plot y against x', xlab='x name', ylab='y name') hist(z, breaks=30) x=seq(-pi, pi, length=50) y=sin(x) plot(x,y,col='red', pch=4) #------ indexing data ----- A=matrix(1:16,4,4) A dim(A) A[2,3] A[c(1,3),c(2,4)] A[1:3,2:4] A[1:2,] A[,1:2] A[1,] A[-c(1,3),] A[-c(1,3),-c(1,3,4)] #------- loading data -------- Auto = read.table('Auto.data', header=TRUE) head(Auto) dim(Auto) names(Auto) plot(Auto$weight, Auto$mpg, col='red') hist(Auto$mpg, breaks=20, col=2) pairs(~ mpg + horsepower + weight + acceleration, Auto) summary(Auto) summary(Auto$mpg)
/r1.R
no_license
cocobaco/r_basics1
R
false
false
1,185
r
# http://www-bcf.usc.edu/~gareth/ISL/code.html #------ basic commands x = 3 y = 5 x * y x <- c(1, 2, 4, 6, 9) x x = c(1, 2, 4, 6, 9) x y <- c(3, 5, 2, 1) y length(x) length(y) x + y ls() rm(x,y) ls() x = seq(1,10) x x=1:10 x ?matrix x = matrix(data=c(1,2,3,4), nrow=2, ncol=2) x y = matrix(data=c(1,2,3,4), byrow=TRUE, nrow=2, ncol=2) y sqrt(x) y^2 SIZE = 30 set.seed(1303) rnorm(SIZE) runif(SIZE ,-2, 2) #------ basic stats ----- x=rnorm(SIZE) y=x+rnorm(SIZE ,mean=20,sd=.1)+runif(SIZE ,-1,1) x y cor(x,y) set.seed(3) z=rnorm(100) mean(z) var(z) sqrt(var(z)) sd(z) #------ plot ----- plot(x,y) plot(x, y, type='b', col='green', main='plot y against x', xlab='x name', ylab='y name') hist(z, breaks=30) x=seq(-pi, pi, length=50) y=sin(x) plot(x,y,col='red', pch=4) #------ indexing data ----- A=matrix(1:16,4,4) A dim(A) A[2,3] A[c(1,3),c(2,4)] A[1:3,2:4] A[1:2,] A[,1:2] A[1,] A[-c(1,3),] A[-c(1,3),-c(1,3,4)] #------- loading data -------- Auto = read.table('Auto.data', header=TRUE) head(Auto) dim(Auto) names(Auto) plot(Auto$weight, Auto$mpg, col='red') hist(Auto$mpg, breaks=20, col=2) pairs(~ mpg + horsepower + weight + acceleration, Auto) summary(Auto) summary(Auto$mpg)
# Coursera Exploratory Data Analysis - Course Project 1 # ## Plot 2 ## # I downloaded the data (in my working directory) using: # $ wget https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip # $ mv exdata%2Fdata%2Fhousehold_power_consumption.zip exdata_data_household_power_consumption.zip # $ unzip exdata_data_household_power_consumption.zip # I created a subset of the data using: # $ awk '/^[1|2]\/2\/2007;/' household_power_consumption.txt > Feb2007subset.txt # This subset contains 2880 rows and no header # for plot background transparency: see comments in the other plots # This script uses 2 libraries: library(dplyr) # for subsetting data library(lubridate) # for coercing date and time values # Read in the data in R feb07 <- tbl_df(read.table("Feb2007subset.txt", sep = ";", col.names = c("Date", "Time", "Global_active_power", "Global_reactive_power", "Voltage", "Global_intensity", "Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), colClasses = c("character", "character", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric"))) # Subset the data using dplyr methods plot_data <- feb07 %>% mutate(datetime = dmy_hms(paste(Date, Time))) %>% select(-Global_intensity) # open png device png(filename = "plot4.png") # adjust mfrow parameter to create 2 rows, 2 columns par(mfrow = c(2, 2)) # create plots and annotations # top left plot(plot_data$datetime, plot_data$Global_active_power, type = "l", xlab = "", ylab = "Global Active Power") # top right plot(plot_data$datetime, plot_data$Voltage, type = "l", xlab = "datetime", ylab = "Voltage") # bottom left plot( plot_data$datetime, plot_data$Sub_metering_1, type = "l", xlab = "", ylab = "Energy sub metering") lines(plot_data$datetime, plot_data$Sub_metering_2, type = "l", col = "red") lines(plot_data$datetime, plot_data$Sub_metering_3, type = "l", col = "blue") legend("topright", legend = colnames(plot_data)[6:8], col = c("black", "red", "blue"), lty = 1, bty = "n") # bottom right plot(plot_data$datetime, plot_data$Global_reactive_power, type = "l", xlab = "datetime", ylab = "Global_reactive_power") # always device off dev.off()
/ExData-plotting1/plot4.R
no_license
wbkoetsier/Coursera
R
false
false
2,326
r
# Coursera Exploratory Data Analysis - Course Project 1 # ## Plot 2 ## # I downloaded the data (in my working directory) using: # $ wget https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip # $ mv exdata%2Fdata%2Fhousehold_power_consumption.zip exdata_data_household_power_consumption.zip # $ unzip exdata_data_household_power_consumption.zip # I created a subset of the data using: # $ awk '/^[1|2]\/2\/2007;/' household_power_consumption.txt > Feb2007subset.txt # This subset contains 2880 rows and no header # for plot background transparency: see comments in the other plots # This script uses 2 libraries: library(dplyr) # for subsetting data library(lubridate) # for coercing date and time values # Read in the data in R feb07 <- tbl_df(read.table("Feb2007subset.txt", sep = ";", col.names = c("Date", "Time", "Global_active_power", "Global_reactive_power", "Voltage", "Global_intensity", "Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), colClasses = c("character", "character", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric"))) # Subset the data using dplyr methods plot_data <- feb07 %>% mutate(datetime = dmy_hms(paste(Date, Time))) %>% select(-Global_intensity) # open png device png(filename = "plot4.png") # adjust mfrow parameter to create 2 rows, 2 columns par(mfrow = c(2, 2)) # create plots and annotations # top left plot(plot_data$datetime, plot_data$Global_active_power, type = "l", xlab = "", ylab = "Global Active Power") # top right plot(plot_data$datetime, plot_data$Voltage, type = "l", xlab = "datetime", ylab = "Voltage") # bottom left plot( plot_data$datetime, plot_data$Sub_metering_1, type = "l", xlab = "", ylab = "Energy sub metering") lines(plot_data$datetime, plot_data$Sub_metering_2, type = "l", col = "red") lines(plot_data$datetime, plot_data$Sub_metering_3, type = "l", col = "blue") legend("topright", legend = colnames(plot_data)[6:8], col = c("black", "red", "blue"), lty = 1, bty = "n") # bottom right plot(plot_data$datetime, plot_data$Global_reactive_power, type = "l", xlab = "datetime", ylab = "Global_reactive_power") # always device off dev.off()
gmse_paras$land_type = "equal" gmse_paras$yield_value = 0.8 gmse_paras$ytb_type = "beta1" years = gmse_paras$years sims = gmse_paras$sims yield_value = gmse_paras$yield_value ytb_type = gmse_paras$ytb_type
/sims/nullModel-YTB2/paras_nullModel-YTB2.R
no_license
jejoenje/gmse_vary
R
false
false
208
r
gmse_paras$land_type = "equal" gmse_paras$yield_value = 0.8 gmse_paras$ytb_type = "beta1" years = gmse_paras$years sims = gmse_paras$sims yield_value = gmse_paras$yield_value ytb_type = gmse_paras$ytb_type
library(tm) library(NLP) library(e1071) library(Rstem) library(ggplot2) library(RCurl) library(ggmap) library(xml2) library(sentiment) library(RTextTools) library(RColorBrewer) library(class) library(gmodels) library(MASS) data<-read.csv("test.csv") matrix= create_matrix(data$review, language="english", removeStopwords=TRUE, removeNumbers=TRUE, stemWords=TRUE) container = create_container(matrix, as.numeric(as.factor(data[,1])), trainSize=1:1300, testSize=1301:1513,virgin=FALSE) models = train_models(container, algorithms="SVM") results = classify_models(container, models) results table(as.numeric(as.factor(data[1301:1513, 2])), results[,"SVM_LABEL"]) plot(results) recall_accuracy(as.numeric(as.factor(data[1301:1513, 2])), results[,"SVM_LABEL"]) analytics = create_analytics(container, results) summary(analytics) head(analytics@document_summary) N=4 set.seed(2014) cross_validate(container,N,"SVM")
/projeTest/svm2.R
no_license
praneethsaiii/Opinion-mining-for-Mcdonalds-services-using-machine-learning
R
false
false
991
r
library(tm) library(NLP) library(e1071) library(Rstem) library(ggplot2) library(RCurl) library(ggmap) library(xml2) library(sentiment) library(RTextTools) library(RColorBrewer) library(class) library(gmodels) library(MASS) data<-read.csv("test.csv") matrix= create_matrix(data$review, language="english", removeStopwords=TRUE, removeNumbers=TRUE, stemWords=TRUE) container = create_container(matrix, as.numeric(as.factor(data[,1])), trainSize=1:1300, testSize=1301:1513,virgin=FALSE) models = train_models(container, algorithms="SVM") results = classify_models(container, models) results table(as.numeric(as.factor(data[1301:1513, 2])), results[,"SVM_LABEL"]) plot(results) recall_accuracy(as.numeric(as.factor(data[1301:1513, 2])), results[,"SVM_LABEL"]) analytics = create_analytics(container, results) summary(analytics) head(analytics@document_summary) N=4 set.seed(2014) cross_validate(container,N,"SVM")
library(RNAseqNet) ### Name: GLMnetwork ### Title: Infer a network from RNA-seq expression. ### Aliases: GLMnetwork ### ** Examples data(lung) lambdas <- 4 * 10^(seq(0, -2, length = 10)) ref_lung <- GLMnetwork(lung, lambdas = lambdas)
/data/genthat_extracted_code/RNAseqNet/examples/GLMnetwork.Rd.R
no_license
surayaaramli/typeRrh
R
false
false
243
r
library(RNAseqNet) ### Name: GLMnetwork ### Title: Infer a network from RNA-seq expression. ### Aliases: GLMnetwork ### ** Examples data(lung) lambdas <- 4 * 10^(seq(0, -2, length = 10)) ref_lung <- GLMnetwork(lung, lambdas = lambdas)
#' @title Destroy all or part of the data store. #' @export #' @family clean #' @description Destroy all or part of the data store written #' by [tar_make()] and similar functions. #' @return Nothing. #' @inheritParams tar_validate #' @param destroy Character of length 1, what to destroy. Choices: #' * `"all"`: destroy the entire data store (default: `_targets/`) #' * `"meta"`: just delete the metadata file at `meta/meta` in the #' data store, which invalidates all the targets but keeps the data. #' * `"process"`: just delete the progress data file at #' `meta/process` in the data store, which resets the metadata #' of the main process. #' * `"progress"`: just delete the progress data file at #' `meta/progress` in the data store, #' which resets the progress tracking info. #' * `"objects"`: delete all the target #' return values in `objects/` in the data #' store but keep progress and metadata. #' Dynamic files are not deleted this way. #' * `"scratch"`: temporary files saved during [tar_make()] that should #' automatically get deleted except if R crashed. #' * `"workspaces"`: compressed files in `workspaces/` in the data store with #' the saved workspaces of targets. See [tar_workspace()] for details. #' @param ask Logical of length 1, whether to pause with a menu prompt #' before deleting files. To disable this menu, set the `TAR_ASK` #' environment variable to `"false"`. `usethis::edit_r_environ()` #' can help set environment variables. #' @examples #' if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { #' tar_dir({ # tar_dir() runs code from a temporary directory. #' tar_script(list(tar_target(x, 1 + 1)), ask = FALSE) #' tar_make() # Creates the _targets/ data store. #' tar_destroy() #' print(file.exists("_targets")) # Should be FALSE. #' }) #' } tar_destroy <- function( destroy = c( "all", "meta", "process", "progress", "objects", "scratch", "workspaces" ), ask = NULL, store = targets::tar_config_get("store") ) { path <- switch( match.arg(destroy), all = store, meta = path_meta(store), process = path_process(store), progress = path_progress(store), objects = path_objects_dir(store), scratch = path_scratch_dir(store), workspaces = path_workspaces_dir(store) ) if (tar_should_delete(path = path, ask = ask)) { unlink(path, recursive = TRUE) } invisible() }
/R/tar_destroy.R
permissive
billdenney/targets
R
false
false
2,443
r
#' @title Destroy all or part of the data store. #' @export #' @family clean #' @description Destroy all or part of the data store written #' by [tar_make()] and similar functions. #' @return Nothing. #' @inheritParams tar_validate #' @param destroy Character of length 1, what to destroy. Choices: #' * `"all"`: destroy the entire data store (default: `_targets/`) #' * `"meta"`: just delete the metadata file at `meta/meta` in the #' data store, which invalidates all the targets but keeps the data. #' * `"process"`: just delete the progress data file at #' `meta/process` in the data store, which resets the metadata #' of the main process. #' * `"progress"`: just delete the progress data file at #' `meta/progress` in the data store, #' which resets the progress tracking info. #' * `"objects"`: delete all the target #' return values in `objects/` in the data #' store but keep progress and metadata. #' Dynamic files are not deleted this way. #' * `"scratch"`: temporary files saved during [tar_make()] that should #' automatically get deleted except if R crashed. #' * `"workspaces"`: compressed files in `workspaces/` in the data store with #' the saved workspaces of targets. See [tar_workspace()] for details. #' @param ask Logical of length 1, whether to pause with a menu prompt #' before deleting files. To disable this menu, set the `TAR_ASK` #' environment variable to `"false"`. `usethis::edit_r_environ()` #' can help set environment variables. #' @examples #' if (identical(Sys.getenv("TAR_EXAMPLES"), "true")) { #' tar_dir({ # tar_dir() runs code from a temporary directory. #' tar_script(list(tar_target(x, 1 + 1)), ask = FALSE) #' tar_make() # Creates the _targets/ data store. #' tar_destroy() #' print(file.exists("_targets")) # Should be FALSE. #' }) #' } tar_destroy <- function( destroy = c( "all", "meta", "process", "progress", "objects", "scratch", "workspaces" ), ask = NULL, store = targets::tar_config_get("store") ) { path <- switch( match.arg(destroy), all = store, meta = path_meta(store), process = path_process(store), progress = path_progress(store), objects = path_objects_dir(store), scratch = path_scratch_dir(store), workspaces = path_workspaces_dir(store) ) if (tar_should_delete(path = path, ask = ask)) { unlink(path, recursive = TRUE) } invisible() }
x1<-readline(prompt = "Enter your x1 point value : "); x1<-as.double(x1) y1<-readline(prompt = "Enter your y1 point value : "); y1<-as.double(y1) x2<-readline(prompt = "Enter your x2 point value : "); x2<-as.double(x2) y2<-readline(prompt = "Enter your y2 point value : "); y2<-as.double(y2) X<-(x2-x1)**2 Y<-(y2-y1)**2 z<-X+Y M<-sqrt(z) print(paste(M))
/distance between two points.R
no_license
lakhyaraj/DA_LAB_ASSIGNMENT
R
false
false
367
r
x1<-readline(prompt = "Enter your x1 point value : "); x1<-as.double(x1) y1<-readline(prompt = "Enter your y1 point value : "); y1<-as.double(y1) x2<-readline(prompt = "Enter your x2 point value : "); x2<-as.double(x2) y2<-readline(prompt = "Enter your y2 point value : "); y2<-as.double(y2) X<-(x2-x1)**2 Y<-(y2-y1)**2 z<-X+Y M<-sqrt(z) print(paste(M))
library(dplyr) ## Log scales ===================== test_that("Log scales", { # Log scales (#161) p <- data.frame(x = c(1.5, 2, 3, 4, 4.5, 5, 6, 7, 8, 9), y = c(11, 20, 40, 90, 11, 14, 90, 15, 15, 16)) %>% arphitgg(agg_aes(x = x, y = y), log_scale = "xy") + agg_line() + agg_ylim(10, 90, 5) + agg_xlim(1, 10) expect_true(check_graph(p, "misc-log-scale-both")) p <- data.frame(x = 1:10, y = c(11, 20, 40, 90, 11, 14, 90, 15, 15, 16)) %>% arphitgg(agg_aes(x = x, y = y), log_scale = "y") + agg_line() + agg_ylim(10, 90, 5) expect_true(check_graph(p, "misc-log-scale-y")) p <- data.frame(x = c(10, 100, 60), y = c(11, 20, 40)) %>% arphitgg(agg_aes(x = x, y = y), log_scale = "xy") + agg_line() + agg_ylim(10, 90, 5) + agg_xlim(10, 100) expect_true(check_graph(p, "misc-log-scale-both-larger-scale")) p <- data.frame(x = c(10, 100, 60), y = c(11, 20, 40)) %>% arphitgg(agg_aes(x = x, y = y), log_scale = "x") + agg_line() + agg_xlim(10, 100) expect_true(check_graph(p, "misc-log-scale-x")) p <- data.frame(x = c(1, 2, 3), y = c(-1, 2, 3)) %>% arphitgg(agg_aes(x, y), log_scale = "y") + agg_col() + agg_ylim(1, 2, 3) expect_error(print(p), "y log scale plots cannot have negative data") }) test_that("Log scale limit requirement", { expect_error({ p <- data.frame(x = c(10, 100, 60), y = c(11, 20, 40)) %>% arphitgg(agg_aes(x = x, y = y), log_scale = "x") + agg_line() print(p) }, "You must manually set x axis limits for log scale plots.") expect_error({ p <- data.frame(x = c(10, 100, 60), y = c(11, 20, 40)) %>% arphitgg(agg_aes(x = x, y = y), log_scale = "y") + agg_line() print(p) }, "You must manually set y axis limits for log scale plots.") }) ## joined (#101) ================== test_that("Joined", { foo <- data.frame(x = 1:10, y = 1:10) foo$y[4] <- NA p <- arphitgg(foo, agg_aes(x = x, y = y), joined = FALSE) + agg_line() expect_true(check_graph(p, "misc-joined")) }) ## SRT ================ test_that("srt", { foo <- data.frame(x = c("a very long label", "another very long label"), y = c(1, 2)) p <- arphitgg(foo, agg_aes(x = x, y = y), srt = 90) + agg_col() expect_true(check_graph(p, "misc-long-rotated-x-labels-90")) p <- arphitgg(foo, agg_aes(x = x, y = y), srt = 45) + agg_col() expect_true(check_graph(p, "misc-long-rotated-x-labels-45")) })
/tests/testthat/test-misc.R
permissive
angusmoore/arphit
R
false
false
2,440
r
library(dplyr) ## Log scales ===================== test_that("Log scales", { # Log scales (#161) p <- data.frame(x = c(1.5, 2, 3, 4, 4.5, 5, 6, 7, 8, 9), y = c(11, 20, 40, 90, 11, 14, 90, 15, 15, 16)) %>% arphitgg(agg_aes(x = x, y = y), log_scale = "xy") + agg_line() + agg_ylim(10, 90, 5) + agg_xlim(1, 10) expect_true(check_graph(p, "misc-log-scale-both")) p <- data.frame(x = 1:10, y = c(11, 20, 40, 90, 11, 14, 90, 15, 15, 16)) %>% arphitgg(agg_aes(x = x, y = y), log_scale = "y") + agg_line() + agg_ylim(10, 90, 5) expect_true(check_graph(p, "misc-log-scale-y")) p <- data.frame(x = c(10, 100, 60), y = c(11, 20, 40)) %>% arphitgg(agg_aes(x = x, y = y), log_scale = "xy") + agg_line() + agg_ylim(10, 90, 5) + agg_xlim(10, 100) expect_true(check_graph(p, "misc-log-scale-both-larger-scale")) p <- data.frame(x = c(10, 100, 60), y = c(11, 20, 40)) %>% arphitgg(agg_aes(x = x, y = y), log_scale = "x") + agg_line() + agg_xlim(10, 100) expect_true(check_graph(p, "misc-log-scale-x")) p <- data.frame(x = c(1, 2, 3), y = c(-1, 2, 3)) %>% arphitgg(agg_aes(x, y), log_scale = "y") + agg_col() + agg_ylim(1, 2, 3) expect_error(print(p), "y log scale plots cannot have negative data") }) test_that("Log scale limit requirement", { expect_error({ p <- data.frame(x = c(10, 100, 60), y = c(11, 20, 40)) %>% arphitgg(agg_aes(x = x, y = y), log_scale = "x") + agg_line() print(p) }, "You must manually set x axis limits for log scale plots.") expect_error({ p <- data.frame(x = c(10, 100, 60), y = c(11, 20, 40)) %>% arphitgg(agg_aes(x = x, y = y), log_scale = "y") + agg_line() print(p) }, "You must manually set y axis limits for log scale plots.") }) ## joined (#101) ================== test_that("Joined", { foo <- data.frame(x = 1:10, y = 1:10) foo$y[4] <- NA p <- arphitgg(foo, agg_aes(x = x, y = y), joined = FALSE) + agg_line() expect_true(check_graph(p, "misc-joined")) }) ## SRT ================ test_that("srt", { foo <- data.frame(x = c("a very long label", "another very long label"), y = c(1, 2)) p <- arphitgg(foo, agg_aes(x = x, y = y), srt = 90) + agg_col() expect_true(check_graph(p, "misc-long-rotated-x-labels-90")) p <- arphitgg(foo, agg_aes(x = x, y = y), srt = 45) + agg_col() expect_true(check_graph(p, "misc-long-rotated-x-labels-45")) })
/examples/pruebas_simples/basico_multivariantes.R
no_license
Bastianpizarro1991/SeriesTemporalesEnCastellano
R
false
false
2,686
r