content
large_stringlengths
0
6.46M
path
large_stringlengths
3
331
license_type
large_stringclasses
2 values
repo_name
large_stringlengths
5
125
language
large_stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.46M
extension
large_stringclasses
75 values
text
stringlengths
0
6.46M
#' Sales Taxes Project #' This code estimates the demand using the proposed method. First, we #' run a Basic DiD model by initial price level and estimate the "long run" models #' splitting the sample by quantiles increasing the number of groups. #' Here initial level means previous period and we divide by groups within the "common" support #' In this case, we run a fully saturated model (instead of splitting the sample) #' We get the Implied IV and recover the implied demand function varying the degree estimated (no. of quantiles) library(data.table) library(futile.logger) library(lfe) library(multcomp) setwd("/project2/igaarder") ## input filepaths ----------------------------------------------- #' This data is the same as all_goods_pi_path, except it has 2015-2016 data as well. data.semester <- "Data/Nielsen/semester_nielsen_data_county.csv" #data.year <- "Data/Nielsen/yearly_nielsen_data.csv" ## output filepaths ---------------------------------------------- iv.output.results.file <- "Data/Demand_iv_sat_initial_price_semester_county.csv" theta.output.results.file <- "Data/Demand_theta_sat_initial_price_semester_county.csv" ### Set up Semester Data --------------------------------- all_pi <- fread(data.semester) # Create a categorical variable for county_by_module all_pi[, county_by_module := .GRP, by = .(fips_state, fips_county, product_module_code)] all_pi[, w.ln_sales_tax := ln_sales_tax - mean(ln_sales_tax), by = .(county_by_module)] all_pi[, w.ln_cpricei2 := ln_cpricei2 - mean(ln_cpricei2), by = .(county_by_module)] all_pi[, w.ln_quantity3 := ln_quantity3 - mean(ln_quantity3), by = .(county_by_module)] # Need to demean all_pi[, module_by_time := .GRP, by = .(product_module_code, semester, year)] all_pi[, L.ln_cpricei2 := ln_cpricei2 - D.ln_cpricei2] all_pi[, dm.L.ln_cpricei2 := L.ln_cpricei2 - mean(L.ln_cpricei2, na.rm = T), by = module_by_time] all_pi[, dm.ln_cpricei2 := ln_cpricei2 - mean(ln_cpricei2, na.rm = T), by = module_by_time] all_pi[, dm.ln_quantity3 := ln_quantity3 - mean(ln_quantity3, na.rm = T), by = module_by_time] ## Defining common support control <- all_pi[D.ln_sales_tax == 0,] treated <- all_pi[D.ln_sales_tax != 0,] ## Price #pct1.control <- quantile(control$dm.L.ln_cpricei2, probs = 0.01, na.rm = T, weight=control$base.sales) #pct1.treated <- quantile(treated$dm.L.ln_cpricei2, probs = 0.01, na.rm = T, weight=treated$base.sales) #pct99.control <- quantile(control$dm.L.ln_cpricei2, probs = 0.99, na.rm = T, weight=control$base.sales) #pct99treated <- quantile(treated$dm.L.ln_cpricei2, probs = 0.99, na.rm = T, weight=treated$base.sales) pct5.control <- quantile(control$dm.ln_cpricei2, probs = 0.05, na.rm = T, weight=control$base.sales) pct5.treated <- quantile(treated$dm.ln_cpricei2, probs = 0.05, na.rm = T, weight=treated$base.sales) pct95.control <- quantile(control$dm.ln_cpricei2, probs = 0.95, na.rm = T, weight=control$base.sales) pct95.treated <- quantile(treated$dm.ln_cpricei2, probs = 0.95, na.rm = T, weight=treated$base.sales) pct5.control pct5.treated pct95.control pct95.treated max(control$dm.ln_cpricei2, na.rm = T) min(control$dm.ln_cpricei2, na.rm = T) #all_pi[, cs_price := ifelse(dm.L.ln_cpricei2 > max(pct1.treated, pct1.control) & # dm.L.ln_cpricei2 < min(pct99treated, pct99.control), 1, 0)] # Make sure missings are 0s #all_pi[, cs_price := ifelse(is.na(dm.L.ln_cpricei2), 0, cs_price)] ## Keep within the common support #all_pi <- all_pi[cs_price == 1,] all_pi[, cs_price := ifelse(dm.ln_cpricei2 > max(pct5.treated, pct5.control) & dm.ln_cpricei2 < min(pct95.treated, pct95.control), 1, 0)] # Make sure missings are 0s all_pi[, cs_price := ifelse(is.na(dm.ln_cpricei2), 0, cs_price)] ## Keep within the common support all_pi <- all_pi[cs_price == 1,] outcomes <- c("w.ln_cpricei2", "w.ln_quantity3") FE_opts <- c("group_region_by_module_by_time", "group_division_by_module_by_time") LRdiff_res <- data.table(NULL) target_res <- data.table(NULL) ## Run within for (n.g in 2:7) { # Create groups of initial values of tax rate # We use the full weighted distribution all_pi <- all_pi[, quantile := cut(dm.L.ln_cpricei2, breaks = quantile(dm.L.ln_cpricei2, probs = seq(0, 1, by = 1/n.g), na.rm = T, weight = base.sales), labels = 1:n.g, right = FALSE)] quantlab <- round(quantile(all_pi$dm.L.ln_cpricei2, probs = seq(0, 1, by = 1/n.g), na.rm = T, weight = all_pi$base.sales), digits = 4) # Saturate fixed effects all_pi[, group_region_by_module_by_time := .GRP, by = .(region_by_module_by_time, quantile)] all_pi[, group_division_by_module_by_time := .GRP, by = .(division_by_module_by_time, quantile)] ## Estimate RF and FS for (FE in FE_opts) { for (Y in outcomes) { formula1 <- as.formula(paste0( Y, " ~ w.ln_sales_tax:quantile | ", FE, "+ quantile | 0 | module_by_state" )) res1 <- felm(formula = formula1, data = all_pi, weights = all_pi$base.sales) ## attach results res1.dt <- data.table(coef(summary(res1)), keep.rownames=T) res1.dt[, outcome := Y] res1.dt[, controls := FE] res1.dt[, n.groups := n.g] res1.dt[, lev := quantlab[-1]] LRdiff_res <- rbind(LRdiff_res, res1.dt, fill = T) fwrite(LRdiff_res, iv.output.results.file) } ## Estimate IVs and retrieve in vector IV <- LRdiff_res[outcome == "w.ln_quantity3" & n.groups == n.g & controls == FE,][["Estimate"]]/LRdiff_res[outcome == "w.ln_cpricei2" & n.groups == n.g & controls == FE,][["Estimate"]] ## Estimate the matrix of the implied system of equations # Get the empirical distribution of prices by quantile all_pi[, base.sales.q := base.sales/sum(base.sales), by = .(quantile)] all_pi[, p_group := floor((dm.ln_cpricei2 - min(dm.ln_cpricei2, na.rm = T))/((max(dm.ln_cpricei2, na.rm = T)-min(dm.ln_cpricei2, na.rm = T))/100)), by = .(quantile)] all_pi[, p_ll := p_group*((max(dm.ln_cpricei2, na.rm = T)-min(dm.ln_cpricei2, na.rm = T))/100), by = .(quantile)] all_pi[, p_ll := p_ll + min(dm.ln_cpricei2, na.rm = T), by = .(quantile)] all_pi[, p_ul := p_ll + ((max(dm.ln_cpricei2, na.rm = T)-min(dm.ln_cpricei2, na.rm = T))/100), by = .(quantile)] ed.price.quantile <- all_pi[, .(w1 = (sum(base.sales.q))), by = .(p_ul, p_ll, quantile)] ed.price.quantile[, p_m := (p_ul+p_ll)/2] # Create the derivative of the polynomial of prices and multiplicate by weights for (n in 1:n.g){ ed.price.quantile[, paste0("b",n) := (n)*w1*(p_m^(n-1))] } # Calculate integral gamma <- ed.price.quantile[ , lapply(.SD, sum), by = .(quantile), .SDcols = paste0("b",1:n.g)] gamma <- gamma[!is.na(quantile),][order(quantile)][, -c("quantile")] ## Retrieve target parameters beta_hat <- as.vector(solve(as.matrix(gamma))%*%(as.matrix(IV))) # Estimate intercept mean.q <- all_pi[, mean(dm.ln_quantity3, weights = base.sales)] mean.p <- all_pi[, mean(dm.ln_cpricei2, weights = base.sales)] beta_0_hat <- mean.q - sum((beta_hat)*(mean.p^(1:n.g))) beta_hat <- c(beta_0_hat, beta_hat) ## Export estimated target parameters estimated.target <- data.table(beta_hat) estimated.target[, beta_n := .I-1] estimated.target[, n.groups := n.g] estimated.target[, controls := FE] target_res <- rbind(target_res, estimated.target) fwrite(target_res, theta.output.results.file) } }
/R/regressions/Semester_regressions/Demand_semester_initprice_quantiles_COUNTY.R
no_license
lancelothdf/sales.taxes
R
false
false
7,644
r
#' Sales Taxes Project #' This code estimates the demand using the proposed method. First, we #' run a Basic DiD model by initial price level and estimate the "long run" models #' splitting the sample by quantiles increasing the number of groups. #' Here initial level means previous period and we divide by groups within the "common" support #' In this case, we run a fully saturated model (instead of splitting the sample) #' We get the Implied IV and recover the implied demand function varying the degree estimated (no. of quantiles) library(data.table) library(futile.logger) library(lfe) library(multcomp) setwd("/project2/igaarder") ## input filepaths ----------------------------------------------- #' This data is the same as all_goods_pi_path, except it has 2015-2016 data as well. data.semester <- "Data/Nielsen/semester_nielsen_data_county.csv" #data.year <- "Data/Nielsen/yearly_nielsen_data.csv" ## output filepaths ---------------------------------------------- iv.output.results.file <- "Data/Demand_iv_sat_initial_price_semester_county.csv" theta.output.results.file <- "Data/Demand_theta_sat_initial_price_semester_county.csv" ### Set up Semester Data --------------------------------- all_pi <- fread(data.semester) # Create a categorical variable for county_by_module all_pi[, county_by_module := .GRP, by = .(fips_state, fips_county, product_module_code)] all_pi[, w.ln_sales_tax := ln_sales_tax - mean(ln_sales_tax), by = .(county_by_module)] all_pi[, w.ln_cpricei2 := ln_cpricei2 - mean(ln_cpricei2), by = .(county_by_module)] all_pi[, w.ln_quantity3 := ln_quantity3 - mean(ln_quantity3), by = .(county_by_module)] # Need to demean all_pi[, module_by_time := .GRP, by = .(product_module_code, semester, year)] all_pi[, L.ln_cpricei2 := ln_cpricei2 - D.ln_cpricei2] all_pi[, dm.L.ln_cpricei2 := L.ln_cpricei2 - mean(L.ln_cpricei2, na.rm = T), by = module_by_time] all_pi[, dm.ln_cpricei2 := ln_cpricei2 - mean(ln_cpricei2, na.rm = T), by = module_by_time] all_pi[, dm.ln_quantity3 := ln_quantity3 - mean(ln_quantity3, na.rm = T), by = module_by_time] ## Defining common support control <- all_pi[D.ln_sales_tax == 0,] treated <- all_pi[D.ln_sales_tax != 0,] ## Price #pct1.control <- quantile(control$dm.L.ln_cpricei2, probs = 0.01, na.rm = T, weight=control$base.sales) #pct1.treated <- quantile(treated$dm.L.ln_cpricei2, probs = 0.01, na.rm = T, weight=treated$base.sales) #pct99.control <- quantile(control$dm.L.ln_cpricei2, probs = 0.99, na.rm = T, weight=control$base.sales) #pct99treated <- quantile(treated$dm.L.ln_cpricei2, probs = 0.99, na.rm = T, weight=treated$base.sales) pct5.control <- quantile(control$dm.ln_cpricei2, probs = 0.05, na.rm = T, weight=control$base.sales) pct5.treated <- quantile(treated$dm.ln_cpricei2, probs = 0.05, na.rm = T, weight=treated$base.sales) pct95.control <- quantile(control$dm.ln_cpricei2, probs = 0.95, na.rm = T, weight=control$base.sales) pct95.treated <- quantile(treated$dm.ln_cpricei2, probs = 0.95, na.rm = T, weight=treated$base.sales) pct5.control pct5.treated pct95.control pct95.treated max(control$dm.ln_cpricei2, na.rm = T) min(control$dm.ln_cpricei2, na.rm = T) #all_pi[, cs_price := ifelse(dm.L.ln_cpricei2 > max(pct1.treated, pct1.control) & # dm.L.ln_cpricei2 < min(pct99treated, pct99.control), 1, 0)] # Make sure missings are 0s #all_pi[, cs_price := ifelse(is.na(dm.L.ln_cpricei2), 0, cs_price)] ## Keep within the common support #all_pi <- all_pi[cs_price == 1,] all_pi[, cs_price := ifelse(dm.ln_cpricei2 > max(pct5.treated, pct5.control) & dm.ln_cpricei2 < min(pct95.treated, pct95.control), 1, 0)] # Make sure missings are 0s all_pi[, cs_price := ifelse(is.na(dm.ln_cpricei2), 0, cs_price)] ## Keep within the common support all_pi <- all_pi[cs_price == 1,] outcomes <- c("w.ln_cpricei2", "w.ln_quantity3") FE_opts <- c("group_region_by_module_by_time", "group_division_by_module_by_time") LRdiff_res <- data.table(NULL) target_res <- data.table(NULL) ## Run within for (n.g in 2:7) { # Create groups of initial values of tax rate # We use the full weighted distribution all_pi <- all_pi[, quantile := cut(dm.L.ln_cpricei2, breaks = quantile(dm.L.ln_cpricei2, probs = seq(0, 1, by = 1/n.g), na.rm = T, weight = base.sales), labels = 1:n.g, right = FALSE)] quantlab <- round(quantile(all_pi$dm.L.ln_cpricei2, probs = seq(0, 1, by = 1/n.g), na.rm = T, weight = all_pi$base.sales), digits = 4) # Saturate fixed effects all_pi[, group_region_by_module_by_time := .GRP, by = .(region_by_module_by_time, quantile)] all_pi[, group_division_by_module_by_time := .GRP, by = .(division_by_module_by_time, quantile)] ## Estimate RF and FS for (FE in FE_opts) { for (Y in outcomes) { formula1 <- as.formula(paste0( Y, " ~ w.ln_sales_tax:quantile | ", FE, "+ quantile | 0 | module_by_state" )) res1 <- felm(formula = formula1, data = all_pi, weights = all_pi$base.sales) ## attach results res1.dt <- data.table(coef(summary(res1)), keep.rownames=T) res1.dt[, outcome := Y] res1.dt[, controls := FE] res1.dt[, n.groups := n.g] res1.dt[, lev := quantlab[-1]] LRdiff_res <- rbind(LRdiff_res, res1.dt, fill = T) fwrite(LRdiff_res, iv.output.results.file) } ## Estimate IVs and retrieve in vector IV <- LRdiff_res[outcome == "w.ln_quantity3" & n.groups == n.g & controls == FE,][["Estimate"]]/LRdiff_res[outcome == "w.ln_cpricei2" & n.groups == n.g & controls == FE,][["Estimate"]] ## Estimate the matrix of the implied system of equations # Get the empirical distribution of prices by quantile all_pi[, base.sales.q := base.sales/sum(base.sales), by = .(quantile)] all_pi[, p_group := floor((dm.ln_cpricei2 - min(dm.ln_cpricei2, na.rm = T))/((max(dm.ln_cpricei2, na.rm = T)-min(dm.ln_cpricei2, na.rm = T))/100)), by = .(quantile)] all_pi[, p_ll := p_group*((max(dm.ln_cpricei2, na.rm = T)-min(dm.ln_cpricei2, na.rm = T))/100), by = .(quantile)] all_pi[, p_ll := p_ll + min(dm.ln_cpricei2, na.rm = T), by = .(quantile)] all_pi[, p_ul := p_ll + ((max(dm.ln_cpricei2, na.rm = T)-min(dm.ln_cpricei2, na.rm = T))/100), by = .(quantile)] ed.price.quantile <- all_pi[, .(w1 = (sum(base.sales.q))), by = .(p_ul, p_ll, quantile)] ed.price.quantile[, p_m := (p_ul+p_ll)/2] # Create the derivative of the polynomial of prices and multiplicate by weights for (n in 1:n.g){ ed.price.quantile[, paste0("b",n) := (n)*w1*(p_m^(n-1))] } # Calculate integral gamma <- ed.price.quantile[ , lapply(.SD, sum), by = .(quantile), .SDcols = paste0("b",1:n.g)] gamma <- gamma[!is.na(quantile),][order(quantile)][, -c("quantile")] ## Retrieve target parameters beta_hat <- as.vector(solve(as.matrix(gamma))%*%(as.matrix(IV))) # Estimate intercept mean.q <- all_pi[, mean(dm.ln_quantity3, weights = base.sales)] mean.p <- all_pi[, mean(dm.ln_cpricei2, weights = base.sales)] beta_0_hat <- mean.q - sum((beta_hat)*(mean.p^(1:n.g))) beta_hat <- c(beta_0_hat, beta_hat) ## Export estimated target parameters estimated.target <- data.table(beta_hat) estimated.target[, beta_n := .I-1] estimated.target[, n.groups := n.g] estimated.target[, controls := FE] target_res <- rbind(target_res, estimated.target) fwrite(target_res, theta.output.results.file) } }
#' @title Get data of NTB experiments in customized format #' #' @author Paul Volkmann #' #' @name getexpdata #' #' @description A function that imports an NTB dataset and prepares the data for plotting and analysis as #' dataframe or matrix. #' For right formatting of your files, please consider the "ReadMe for ntbgraphics". #' #' @param directory specifies file directory of 'Meta Behavior' and 'Animal List' files within quotation #' marks (mind correct spelling of both files and 'directory'!); #' no default #' @param analysis specifies the kind of experiment performed within quotation marks; #' "2arm_ko","2arm_tg", "2arm_sd", "2arm_treat", #' "4arm_sd_ko", "4arm_sd_tg", "4arm_treat_ko", "4arm_treat_tg" #' (tg for transgenic, ko for knockout; #' 4arm_sd_x assumes a stress paradigm with social defeat (sd) and housing or handling control (hc) as #' control; #' 4arm_treat_x assumes a treatment paradigm with treated (treat) and untreated (untreat) animals; #' 2arm_x assumes wildtype controls (wt) for tg and ko, housing or handling controls (hc) for sd and #' untreated controls (untreat) for treated animals; #' ('analysis' defines the kind of experiment performed, respectively the kind of analysis preferred - #' you can easily perform 2arm analysis for 4arm experiments looking only at the groups of interest, #' but not the other way around); #' default: "2arm_ko" #' @param ordercolumns defines the order paradigm of experiment column appearance in final table within #' quotation marks: "ntb", "rdoc", "manual"; #' RFID and Condition are always listed first and need no specification; #' order of experiments may be chronological with "ntb", follow RDoC clustering with "rdoc" or be customized #' manually with "manual" (-> use 'ordercolumns_manual' for exact appearance; there, you may also choose to #' exclude experiments); #' default: "ntb" #' @param ordercolumns_manual customizes order of appearance and appearance itself of experiment columns #' in final table (experiments that are not listed will not be included); #' only if 'ordercolumns' = "manual"; #' user has to provide a vector containing characters within quotation marks (e.g. by using #' c("Meanspeed", "SerialLearn")) with all experiments he wants to include into the final tabel with desired #' order; #' no need for specification if 'ordercolumns' is not "manual" #' default: FALSE #' @param exclude.animals excluding animals from analysis by RFID; #' user has to provide a vector containing characters within quotation marks (e.g. by using #' c("900200000067229", "900200000065167")) with all animals he wants to exclude from the final table; #' if FALSE is provided, no animal will be excluded; #' default: FALSE #' @param orderlevelcond defines order of factor levels of conditions within quotation marks: #' "other", "gtblock", "etblock", "2rev"; #' (might be important when it comes to plotting or displaying your data grouped by condition #' in a defined order): #' "other" for alphabetical order in case of 4arm; also for default order of 2arm experiments #' (which lists the 'control' first, then the 'condition'); #' "gtblock" for order wt_x, wt_y, tg_x, tg_y; #' "etblock" for order x_hc, y_hc, x_sd, y_sd; #' "2rev" for inverse order of 2arm default only, meaning listing the 'condition' first, then the 'control'; #' default: "other" #' @param acceptable.nas defines the maximum number of NAs allowed within the same row; #' if number of actual NAs within one row is bigger than the number provided, the row will be excluded from #' table and following analyses; #' if the number of acceptable NAs should be unlimited, no value has to be provided; #' default: "unlimited" #' @param return.matrix boolean that defines if the standard dataframe or a z-scored matrix should be #' provided; #' by default, getexpdata generates a dataframe containing raw joined animal and experiment information; #' 'return.matrix' can further process the dataframe with customizable functions to return a z-scored matrix, #' for e.g. heatmapping, pca and tsne; #' default: FALSE #' @param return.matrix,mean boolean that specifies if matrix should only contain the mean of each group #' for each experiment; grouping follows specification of groups to be analyzed as defined by 'analysis'; #' only useful if 'return.matrix' is TRUE; #' default: FALSE #' @param healthy_norm boolean that specifies if mean matrix should be normalized to healthy controls by #' subtracting all values by the healthy controls; #' only if return.matrix and return.matrix.mean are TRUE; not possible for 2arm experiments; #' default: FALSE #' @param naomit boolean that specifies if each columns with any number of NAs bigger than 0 should be #' excluded; only applied and useful if 'return.matrix' is TRUE; #' may appear redundant concerning earlier listed 'acceptable.nas', but gives user the opportunity, to save #' settings within function with different needs for dataframe and (probably later needed) matrix; #' default: FALSE #' @param directional specifies which directionality paradigm should be applied; several options are #' available, manual specification is also possible; #' if "rdoc" within quotation marks is provided, columns 'Rotations', 'FreezeBase', 'Timeimmobile', #' 'Baseline', 'Activity', 'Choices' and 'Meanspeed' are multiplied by -1; #' if "emptcf4" within quotation marks is provided, columns 'Center', 'Choices' and 'Meanspeed' are #' multiplied by -1; #' you may alternatively provide a vector containing characters within quotation marks (e.g. by using #' c("Nocturnal", "inhibition75")) with all columns you wants to have multiplied by -1; #' only applied if 'return.matrix' is TRUE and only useful if 'absoluteval' is FALSE; #' default: FALSE #' @param absoluteval boolean that specifies if only absolute values of z-scored matrix should be given; #' only applied and useful if 'return.matrix' is TRUE; #' default: FALSE #' #' @return prepared and joined dataframe of all animals and corresponding NTB experiments #' or customized z-scored matrix #' #' @export #' #' @examples getexpdata(directory = paste0(system.file("extdata", package = "ntbgraphics", mustWork = T),"/")) #' #' @examples getexpdata(directory = paste0(system.file("extdata", package = "ntbgraphics", mustWork = T),"/"), #' analysis = "2arm_sd", #' ordercolumns = "manual", #' ordercolumns_manual = c("Meanspeed", "SerialLearn", "Center"), #' exclude.animals = c("900200000070142"), #' orderlevelcond = "2rev", #' acceptable.nas = 3, #' return.matrix = TRUE, #' naomit = TRUE, #' directional = "emptcf4") getexpdata <- function(directory, analysis = c("2arm_ko","2arm_tg", "2arm_sd", "2arm_treat", "4arm_sd_ko", "4arm_sd_tg", "4arm_treat_ko", "4arm_treat_tg"), ordercolumns = c("ntb", "rdoc", "manual"), ordercolumns_manual = FALSE, exclude.animals = FALSE, orderlevelcond = c("other", "gtblock", "etblock", "2rev"), acceptable.nas = "unlimited", return.matrix = FALSE, return.matrix.mean = FALSE, healthy_norm = FALSE, naomit = FALSE, directional = FALSE, absoluteval = FALSE) { ### use switch() for more flexible level assignments and assert_that() for more complex error management ### if errors occur when modifying the functions or even just occasionally, write a test (testthat package) # turn warnings off options(warn=-1) # check if directory is provided and if it exists if (missing(directory)) { stop("Please provide path to 'Meta Behavior' and 'Animal List' files!") } else if (dir.exists(directory) == FALSE) { stop(sprintf("The path `%s` does not exist!", directory)) } # check for data file if (file.exists(paste0(directory,"/Meta Behavior.xlsx")) == FALSE | file.exists(paste0(directory,"/Animal List.xlsx")) == FALSE) { stop(sprintf("Path `%s` does not contain one of or both input excel files!", directory)) } # ensure that in case of no provided argument, first one of list is taken analysis <- analysis[1] ordercolumns <- ordercolumns[1] orderlevelcond <- orderlevelcond[1] # ensure that correct analysis is provided if (analysis == "2arm_ko") { print("Warning: You have chosen '2arm_ko' as type of analysis. Since this is the default setting, please make sure it matches the data provided. Furthermore, refer to the help page of 'getexpdata' to check available options!") } possible.ana <- c("2arm_ko","2arm_tg", "2arm_sd", "2arm_treat", "4arm_sd_ko", "4arm_sd_tg", "4arm_treat_ko", "4arm_treat_tg") if (! analysis %in% possible.ana) { stop("The 'analysis' provided does not exist. Please refer to the help page of 'getexpdata' to check available arguments!") } # ensure that correct ordercolumns is provided possible.oc <- c("ntb", "rdoc", "manual") if (! ordercolumns %in% possible.oc) { stop("The 'ordercolumns' provided does not exist. Please refer to the help page of 'getexpdata' to check available arguments!") } # ensure that correct orderlevelcond is provided possible.olc <- c("other", "gtblock", "etblock", "2rev") if (! orderlevelcond %in% possible.olc) { stop("The 'orderlevelcond' provided does not exist. Please refer to the help page of 'getexpdata' to check available arguments!") } # define provided directionality paradigm if provided if (directional == "rdoc") { directional = c("Rotations", "FreezeBase", "Timeimmobile", "Baseline", "Activity", "Choices", "Meanspeed") } if (directional == "emptcf4") { directional = c("Center", "Choices", "Meanspeed") } ## import data suppressMessages(meta.data <- readxl::read_excel(paste0(directory,"/Meta Behavior.xlsx"))) suppressMessages(animal.list <- readxl::read_excel(paste0(directory, "/Animal List.xlsx"))) # ensure that Animal is a character - important for joining both tables meta.data <- meta.data %>% mutate_at(., vars("Animal"),list(as.character)) # modify tables data.animal.joined <- animal.list %>% # exclude NAs in Genotype filter(Genotype!= 'NA') %>% # merge conditions in case of 4arm `if`(analysis == "4arm_sd_tg", unite(., col="Condition", Genotype, Environmental, sep= "_", remove = FALSE), .) %>% `if`(analysis == "4arm_sd_ko", unite(., col="Condition", Genotype, Environmental, sep= "_", remove = FALSE), .) %>% `if`(analysis == "4arm_treat_tg", unite(., col="Condition", Genotype, Treatment, sep= "_", remove = FALSE), .) %>% `if`(analysis == "4arm_treat_ko", unite(., col="Condition", Genotype, Treatment, sep= "_", remove = FALSE), .) %>% # rename column of interest in case of 2arm `if`(analysis == "2arm_tg", dplyr::rename(., Condition = Genotype), .) %>% `if`(analysis == "2arm_ko", dplyr::rename(., Condition = Genotype), .) %>% `if`(analysis == "2arm_sd", dplyr::rename(., Condition = Environmental), .) %>% `if`(analysis == "2arm_treat", dplyr::rename(., Condition = Treatment), .) %>% # ensure that RFID is a character - important for joining both tables mutate_at(., vars("RFID"),list(as.character)) %>% # join animals and behavior data left_join(meta.data, by = c("RFID" = "Animal")) # define preferred order of columns if (ordercolumns == "ntb") { col.names <- c("RFID", "Condition", # identifiers "Meanspeed", "Rotations", # open field "Center", "Alternations", "Choices", # y maze "Activity", "Nocturnal", "PlacePref", "SerialLearn", "ReversalLearn", "SucPref", # ic "Baseline", "inhibition70", "inhibition75", "inhibition80", # ppi "Timeimmobile", # tail suspension "FreezeBase", "Context", "Cue") # fear conditioning } else if (ordercolumns == "rdoc") { col.names <- c("RFID", "Condition", # identifiers "Alternations", "ReversalLearn", "SerialLearn", "Cue", "Context", # cognition "SucPref", "PlacePref", "Rotations", # positive valence "Center", "FreezeBase", "Timeimmobile", "Baseline", # negative valence "Activity", "Nocturnal", "Choices", "Meanspeed", # arousal and regulation "inhibition70", "inhibition75", "inhibition80") # sensorimotor } else if (ordercolumns == "manual") { col.names <- c("RFID", "Condition", ordercolumns_manual) } ## prepare order setup # consider intersect(x, y) # define number of column positions col.pos <- c(1:length(col.names)) # create data frame with all possible column names and their ideal positions col.names.order.ideal <- data.frame(col.names, col.pos) # create data frame with actual column names col.names.order.actual <- data.frame(colnames(data.animal.joined)) order.input <- col.names.order.actual %>% # join the two created frames left_join(col.names.order.ideal, by=c("colnames.data.animal.joined."="col.names")) %>% # loose all NAs, i.e. columns that do not exist in data.animal.joined na.omit() %>% # sort by ideal positions arrange(., col.pos) %>% # select your column names, now sorted select(., colnames.data.animal.joined.) %>% # extract your column names as a vector pull(., colnames.data.animal.joined.) data.animal.joined <- data.animal.joined %>% # select relevant columns and adjust order according to former preparation select(., all_of(order.input)) %>% # change values from chr to num mutate_at(., vars(nth(order.input, 3):last(order.input)),list(as.numeric)) %>% # delete selected animals `if`(exclude.animals != FALSE, filter(., !RFID %in% exclude.animals),.) # order factor levels of conditions (e.g. for order of plot appearance) if (analysis == "4arm_sd_tg" && orderlevelcond == "gtblock") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt_hc", "wt_sd", "tg_hc", "tg_sd")) } if (analysis == "4arm_sd_ko" && orderlevelcond == "gtblock") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt_hc", "wt_sd", "ko_hc", "ko_sd")) } if (analysis == "4arm_treat_tg" && orderlevelcond == "gtblock") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt_untreat", "wt_treat", "tg_untreat", "tg_treat")) } if (analysis == "4arm_treat_ko" && orderlevelcond == "gtblock") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt_untreat", "wt_treat", "ko_untreat", "ko_treat")) } if (analysis == "4arm_sd_tg" && orderlevelcond == "etblock") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt_hc", "tg_hc", "wt_sd", "tg_sd")) } if (analysis == "4arm_sd_ko" && orderlevelcond == "etblock") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt_hc", "ko_hc", "wt_sd", "ko_sd")) } if (analysis == "4arm_treat_tg" && orderlevelcond == "etblock") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt_untreat", "tg_untreat", "wt_treat", "tg_treat")) } if (analysis == "4arm_treat_ko" && orderlevelcond == "etblock") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt_untreat", "ko_untreat", "wt_treat", "ko_treat")) } if (analysis == "2arm_tg") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt", "tg")) } if (analysis == "2arm_ko") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt", "ko")) } if (analysis == "2arm_sd") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("hc", "sd")) } if (analysis == "2arm_treat") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("untreat", "treat")) } if (orderlevelcond == "2rev") { if (analysis == "2arm_tg") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("tg", "wt")) } else if (analysis == "2arm_ko") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("ko", "wt")) } else if (analysis == "2arm_sd") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("sd", "hc")) } else if(analysis == "2arm_treat") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("treat", "untreat")) } } # exclude columns containing certain amount of NAs (counts number of NAs per columns, saves information # in new column na_count, filters regarding value in this columns na_count, drops columns na_count) data.animal.joined$na_count <- rowSums(is.na(data.animal.joined)) data.animal.joined <- data.animal.joined %>% filter(na_count <= paste(acceptable.nas)) %>% select(-na_count) %>% # finally, arrange by condition arrange(.,Condition) # option for creating matrix with different possible parameters if(return.matrix == TRUE) { # standard matrix if (return.matrix.mean == FALSE) { # arrange by condition and transform column RFID to rownames data.animal.matrix <- data.animal.joined %>% column_to_rownames(., "RFID") # unselect condition and transfrom into matrix, z-scoring data.animal.matrix <- data.animal.matrix %>% select(nth(colnames(data.animal.matrix), 2):last(colnames(data.animal.matrix))) %>% data.matrix() %>% `if`(naomit == TRUE, na.omit(.), .) %>% scale() # set NAs to zero data.animal.matrix[is.na(data.animal.matrix)] <- 0 } # matrix containing means for every group only if (return.matrix.mean == TRUE) { length.col <- data.animal.joined %>% colnames() %>% length() %>% as.numeric() data.animal.matrix <- aggregate(data.animal.joined[, 3:length.col], list(data.animal.joined$Condition), mean, na.rm = T) data.animal.matrix <- data.animal.matrix %>% data.frame() %>% column_to_rownames("Group.1") %>% data.matrix() %>% scale() # optionally subtract the wt_hc values from all other values if (healthy_norm == TRUE && analysis == "4arm_sd_ko") { data.animal.matrix <- sweep(data.animal.matrix, 2, data.animal.matrix["wt_hc",], "-") } if (healthy_norm == TRUE && analysis == "4arm_sd_tg") { data.animal.matrix <- sweep(data.animal.matrix, 2, data.animal.matrix["wt_hc",], "-") } if (healthy_norm == TRUE && analysis == "4arm_treat_ko") { data.animal.matrix <- sweep(data.animal.matrix, 2, data.animal.matrix["wt_untreat",], "-") } if (healthy_norm == TRUE && analysis == "4arm_treat_tg") { data.animal.matrix <- sweep(data.animal.matrix, 2, data.animal.matrix["wt_untreat",], "-") } } # inverse z-scoring according to directionality paradigm col.names.actual <- colnames(data.animal.matrix) if (directional != FALSE) { dirlist <- directional for(x in dirlist) { if (x %in% col.names.actual == TRUE) { data.animal.matrix[, x] <- data.animal.matrix[, x]*-1 } } } # inverse z-scoring according to empirical Tcf4 paradigm col.names.actual <- colnames(data.animal.matrix) # optionally take absolute values if (absoluteval == TRUE) { data.animal.matrix <- abs(data.animal.matrix) } } # return amended dataframe if(return.matrix == FALSE) { return(data.animal.joined) } # return amended matrix if(return.matrix == TRUE) { return(data.animal.matrix) } # turn warnings back on options(warn=0) }
/R/getexpdata.R
no_license
volkmannp/ntbgraphics
R
false
false
21,279
r
#' @title Get data of NTB experiments in customized format #' #' @author Paul Volkmann #' #' @name getexpdata #' #' @description A function that imports an NTB dataset and prepares the data for plotting and analysis as #' dataframe or matrix. #' For right formatting of your files, please consider the "ReadMe for ntbgraphics". #' #' @param directory specifies file directory of 'Meta Behavior' and 'Animal List' files within quotation #' marks (mind correct spelling of both files and 'directory'!); #' no default #' @param analysis specifies the kind of experiment performed within quotation marks; #' "2arm_ko","2arm_tg", "2arm_sd", "2arm_treat", #' "4arm_sd_ko", "4arm_sd_tg", "4arm_treat_ko", "4arm_treat_tg" #' (tg for transgenic, ko for knockout; #' 4arm_sd_x assumes a stress paradigm with social defeat (sd) and housing or handling control (hc) as #' control; #' 4arm_treat_x assumes a treatment paradigm with treated (treat) and untreated (untreat) animals; #' 2arm_x assumes wildtype controls (wt) for tg and ko, housing or handling controls (hc) for sd and #' untreated controls (untreat) for treated animals; #' ('analysis' defines the kind of experiment performed, respectively the kind of analysis preferred - #' you can easily perform 2arm analysis for 4arm experiments looking only at the groups of interest, #' but not the other way around); #' default: "2arm_ko" #' @param ordercolumns defines the order paradigm of experiment column appearance in final table within #' quotation marks: "ntb", "rdoc", "manual"; #' RFID and Condition are always listed first and need no specification; #' order of experiments may be chronological with "ntb", follow RDoC clustering with "rdoc" or be customized #' manually with "manual" (-> use 'ordercolumns_manual' for exact appearance; there, you may also choose to #' exclude experiments); #' default: "ntb" #' @param ordercolumns_manual customizes order of appearance and appearance itself of experiment columns #' in final table (experiments that are not listed will not be included); #' only if 'ordercolumns' = "manual"; #' user has to provide a vector containing characters within quotation marks (e.g. by using #' c("Meanspeed", "SerialLearn")) with all experiments he wants to include into the final tabel with desired #' order; #' no need for specification if 'ordercolumns' is not "manual" #' default: FALSE #' @param exclude.animals excluding animals from analysis by RFID; #' user has to provide a vector containing characters within quotation marks (e.g. by using #' c("900200000067229", "900200000065167")) with all animals he wants to exclude from the final table; #' if FALSE is provided, no animal will be excluded; #' default: FALSE #' @param orderlevelcond defines order of factor levels of conditions within quotation marks: #' "other", "gtblock", "etblock", "2rev"; #' (might be important when it comes to plotting or displaying your data grouped by condition #' in a defined order): #' "other" for alphabetical order in case of 4arm; also for default order of 2arm experiments #' (which lists the 'control' first, then the 'condition'); #' "gtblock" for order wt_x, wt_y, tg_x, tg_y; #' "etblock" for order x_hc, y_hc, x_sd, y_sd; #' "2rev" for inverse order of 2arm default only, meaning listing the 'condition' first, then the 'control'; #' default: "other" #' @param acceptable.nas defines the maximum number of NAs allowed within the same row; #' if number of actual NAs within one row is bigger than the number provided, the row will be excluded from #' table and following analyses; #' if the number of acceptable NAs should be unlimited, no value has to be provided; #' default: "unlimited" #' @param return.matrix boolean that defines if the standard dataframe or a z-scored matrix should be #' provided; #' by default, getexpdata generates a dataframe containing raw joined animal and experiment information; #' 'return.matrix' can further process the dataframe with customizable functions to return a z-scored matrix, #' for e.g. heatmapping, pca and tsne; #' default: FALSE #' @param return.matrix,mean boolean that specifies if matrix should only contain the mean of each group #' for each experiment; grouping follows specification of groups to be analyzed as defined by 'analysis'; #' only useful if 'return.matrix' is TRUE; #' default: FALSE #' @param healthy_norm boolean that specifies if mean matrix should be normalized to healthy controls by #' subtracting all values by the healthy controls; #' only if return.matrix and return.matrix.mean are TRUE; not possible for 2arm experiments; #' default: FALSE #' @param naomit boolean that specifies if each columns with any number of NAs bigger than 0 should be #' excluded; only applied and useful if 'return.matrix' is TRUE; #' may appear redundant concerning earlier listed 'acceptable.nas', but gives user the opportunity, to save #' settings within function with different needs for dataframe and (probably later needed) matrix; #' default: FALSE #' @param directional specifies which directionality paradigm should be applied; several options are #' available, manual specification is also possible; #' if "rdoc" within quotation marks is provided, columns 'Rotations', 'FreezeBase', 'Timeimmobile', #' 'Baseline', 'Activity', 'Choices' and 'Meanspeed' are multiplied by -1; #' if "emptcf4" within quotation marks is provided, columns 'Center', 'Choices' and 'Meanspeed' are #' multiplied by -1; #' you may alternatively provide a vector containing characters within quotation marks (e.g. by using #' c("Nocturnal", "inhibition75")) with all columns you wants to have multiplied by -1; #' only applied if 'return.matrix' is TRUE and only useful if 'absoluteval' is FALSE; #' default: FALSE #' @param absoluteval boolean that specifies if only absolute values of z-scored matrix should be given; #' only applied and useful if 'return.matrix' is TRUE; #' default: FALSE #' #' @return prepared and joined dataframe of all animals and corresponding NTB experiments #' or customized z-scored matrix #' #' @export #' #' @examples getexpdata(directory = paste0(system.file("extdata", package = "ntbgraphics", mustWork = T),"/")) #' #' @examples getexpdata(directory = paste0(system.file("extdata", package = "ntbgraphics", mustWork = T),"/"), #' analysis = "2arm_sd", #' ordercolumns = "manual", #' ordercolumns_manual = c("Meanspeed", "SerialLearn", "Center"), #' exclude.animals = c("900200000070142"), #' orderlevelcond = "2rev", #' acceptable.nas = 3, #' return.matrix = TRUE, #' naomit = TRUE, #' directional = "emptcf4") getexpdata <- function(directory, analysis = c("2arm_ko","2arm_tg", "2arm_sd", "2arm_treat", "4arm_sd_ko", "4arm_sd_tg", "4arm_treat_ko", "4arm_treat_tg"), ordercolumns = c("ntb", "rdoc", "manual"), ordercolumns_manual = FALSE, exclude.animals = FALSE, orderlevelcond = c("other", "gtblock", "etblock", "2rev"), acceptable.nas = "unlimited", return.matrix = FALSE, return.matrix.mean = FALSE, healthy_norm = FALSE, naomit = FALSE, directional = FALSE, absoluteval = FALSE) { ### use switch() for more flexible level assignments and assert_that() for more complex error management ### if errors occur when modifying the functions or even just occasionally, write a test (testthat package) # turn warnings off options(warn=-1) # check if directory is provided and if it exists if (missing(directory)) { stop("Please provide path to 'Meta Behavior' and 'Animal List' files!") } else if (dir.exists(directory) == FALSE) { stop(sprintf("The path `%s` does not exist!", directory)) } # check for data file if (file.exists(paste0(directory,"/Meta Behavior.xlsx")) == FALSE | file.exists(paste0(directory,"/Animal List.xlsx")) == FALSE) { stop(sprintf("Path `%s` does not contain one of or both input excel files!", directory)) } # ensure that in case of no provided argument, first one of list is taken analysis <- analysis[1] ordercolumns <- ordercolumns[1] orderlevelcond <- orderlevelcond[1] # ensure that correct analysis is provided if (analysis == "2arm_ko") { print("Warning: You have chosen '2arm_ko' as type of analysis. Since this is the default setting, please make sure it matches the data provided. Furthermore, refer to the help page of 'getexpdata' to check available options!") } possible.ana <- c("2arm_ko","2arm_tg", "2arm_sd", "2arm_treat", "4arm_sd_ko", "4arm_sd_tg", "4arm_treat_ko", "4arm_treat_tg") if (! analysis %in% possible.ana) { stop("The 'analysis' provided does not exist. Please refer to the help page of 'getexpdata' to check available arguments!") } # ensure that correct ordercolumns is provided possible.oc <- c("ntb", "rdoc", "manual") if (! ordercolumns %in% possible.oc) { stop("The 'ordercolumns' provided does not exist. Please refer to the help page of 'getexpdata' to check available arguments!") } # ensure that correct orderlevelcond is provided possible.olc <- c("other", "gtblock", "etblock", "2rev") if (! orderlevelcond %in% possible.olc) { stop("The 'orderlevelcond' provided does not exist. Please refer to the help page of 'getexpdata' to check available arguments!") } # define provided directionality paradigm if provided if (directional == "rdoc") { directional = c("Rotations", "FreezeBase", "Timeimmobile", "Baseline", "Activity", "Choices", "Meanspeed") } if (directional == "emptcf4") { directional = c("Center", "Choices", "Meanspeed") } ## import data suppressMessages(meta.data <- readxl::read_excel(paste0(directory,"/Meta Behavior.xlsx"))) suppressMessages(animal.list <- readxl::read_excel(paste0(directory, "/Animal List.xlsx"))) # ensure that Animal is a character - important for joining both tables meta.data <- meta.data %>% mutate_at(., vars("Animal"),list(as.character)) # modify tables data.animal.joined <- animal.list %>% # exclude NAs in Genotype filter(Genotype!= 'NA') %>% # merge conditions in case of 4arm `if`(analysis == "4arm_sd_tg", unite(., col="Condition", Genotype, Environmental, sep= "_", remove = FALSE), .) %>% `if`(analysis == "4arm_sd_ko", unite(., col="Condition", Genotype, Environmental, sep= "_", remove = FALSE), .) %>% `if`(analysis == "4arm_treat_tg", unite(., col="Condition", Genotype, Treatment, sep= "_", remove = FALSE), .) %>% `if`(analysis == "4arm_treat_ko", unite(., col="Condition", Genotype, Treatment, sep= "_", remove = FALSE), .) %>% # rename column of interest in case of 2arm `if`(analysis == "2arm_tg", dplyr::rename(., Condition = Genotype), .) %>% `if`(analysis == "2arm_ko", dplyr::rename(., Condition = Genotype), .) %>% `if`(analysis == "2arm_sd", dplyr::rename(., Condition = Environmental), .) %>% `if`(analysis == "2arm_treat", dplyr::rename(., Condition = Treatment), .) %>% # ensure that RFID is a character - important for joining both tables mutate_at(., vars("RFID"),list(as.character)) %>% # join animals and behavior data left_join(meta.data, by = c("RFID" = "Animal")) # define preferred order of columns if (ordercolumns == "ntb") { col.names <- c("RFID", "Condition", # identifiers "Meanspeed", "Rotations", # open field "Center", "Alternations", "Choices", # y maze "Activity", "Nocturnal", "PlacePref", "SerialLearn", "ReversalLearn", "SucPref", # ic "Baseline", "inhibition70", "inhibition75", "inhibition80", # ppi "Timeimmobile", # tail suspension "FreezeBase", "Context", "Cue") # fear conditioning } else if (ordercolumns == "rdoc") { col.names <- c("RFID", "Condition", # identifiers "Alternations", "ReversalLearn", "SerialLearn", "Cue", "Context", # cognition "SucPref", "PlacePref", "Rotations", # positive valence "Center", "FreezeBase", "Timeimmobile", "Baseline", # negative valence "Activity", "Nocturnal", "Choices", "Meanspeed", # arousal and regulation "inhibition70", "inhibition75", "inhibition80") # sensorimotor } else if (ordercolumns == "manual") { col.names <- c("RFID", "Condition", ordercolumns_manual) } ## prepare order setup # consider intersect(x, y) # define number of column positions col.pos <- c(1:length(col.names)) # create data frame with all possible column names and their ideal positions col.names.order.ideal <- data.frame(col.names, col.pos) # create data frame with actual column names col.names.order.actual <- data.frame(colnames(data.animal.joined)) order.input <- col.names.order.actual %>% # join the two created frames left_join(col.names.order.ideal, by=c("colnames.data.animal.joined."="col.names")) %>% # loose all NAs, i.e. columns that do not exist in data.animal.joined na.omit() %>% # sort by ideal positions arrange(., col.pos) %>% # select your column names, now sorted select(., colnames.data.animal.joined.) %>% # extract your column names as a vector pull(., colnames.data.animal.joined.) data.animal.joined <- data.animal.joined %>% # select relevant columns and adjust order according to former preparation select(., all_of(order.input)) %>% # change values from chr to num mutate_at(., vars(nth(order.input, 3):last(order.input)),list(as.numeric)) %>% # delete selected animals `if`(exclude.animals != FALSE, filter(., !RFID %in% exclude.animals),.) # order factor levels of conditions (e.g. for order of plot appearance) if (analysis == "4arm_sd_tg" && orderlevelcond == "gtblock") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt_hc", "wt_sd", "tg_hc", "tg_sd")) } if (analysis == "4arm_sd_ko" && orderlevelcond == "gtblock") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt_hc", "wt_sd", "ko_hc", "ko_sd")) } if (analysis == "4arm_treat_tg" && orderlevelcond == "gtblock") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt_untreat", "wt_treat", "tg_untreat", "tg_treat")) } if (analysis == "4arm_treat_ko" && orderlevelcond == "gtblock") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt_untreat", "wt_treat", "ko_untreat", "ko_treat")) } if (analysis == "4arm_sd_tg" && orderlevelcond == "etblock") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt_hc", "tg_hc", "wt_sd", "tg_sd")) } if (analysis == "4arm_sd_ko" && orderlevelcond == "etblock") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt_hc", "ko_hc", "wt_sd", "ko_sd")) } if (analysis == "4arm_treat_tg" && orderlevelcond == "etblock") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt_untreat", "tg_untreat", "wt_treat", "tg_treat")) } if (analysis == "4arm_treat_ko" && orderlevelcond == "etblock") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt_untreat", "ko_untreat", "wt_treat", "ko_treat")) } if (analysis == "2arm_tg") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt", "tg")) } if (analysis == "2arm_ko") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("wt", "ko")) } if (analysis == "2arm_sd") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("hc", "sd")) } if (analysis == "2arm_treat") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("untreat", "treat")) } if (orderlevelcond == "2rev") { if (analysis == "2arm_tg") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("tg", "wt")) } else if (analysis == "2arm_ko") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("ko", "wt")) } else if (analysis == "2arm_sd") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("sd", "hc")) } else if(analysis == "2arm_treat") { data.animal.joined$Condition <- factor(data.animal.joined$Condition, levels = c("treat", "untreat")) } } # exclude columns containing certain amount of NAs (counts number of NAs per columns, saves information # in new column na_count, filters regarding value in this columns na_count, drops columns na_count) data.animal.joined$na_count <- rowSums(is.na(data.animal.joined)) data.animal.joined <- data.animal.joined %>% filter(na_count <= paste(acceptable.nas)) %>% select(-na_count) %>% # finally, arrange by condition arrange(.,Condition) # option for creating matrix with different possible parameters if(return.matrix == TRUE) { # standard matrix if (return.matrix.mean == FALSE) { # arrange by condition and transform column RFID to rownames data.animal.matrix <- data.animal.joined %>% column_to_rownames(., "RFID") # unselect condition and transfrom into matrix, z-scoring data.animal.matrix <- data.animal.matrix %>% select(nth(colnames(data.animal.matrix), 2):last(colnames(data.animal.matrix))) %>% data.matrix() %>% `if`(naomit == TRUE, na.omit(.), .) %>% scale() # set NAs to zero data.animal.matrix[is.na(data.animal.matrix)] <- 0 } # matrix containing means for every group only if (return.matrix.mean == TRUE) { length.col <- data.animal.joined %>% colnames() %>% length() %>% as.numeric() data.animal.matrix <- aggregate(data.animal.joined[, 3:length.col], list(data.animal.joined$Condition), mean, na.rm = T) data.animal.matrix <- data.animal.matrix %>% data.frame() %>% column_to_rownames("Group.1") %>% data.matrix() %>% scale() # optionally subtract the wt_hc values from all other values if (healthy_norm == TRUE && analysis == "4arm_sd_ko") { data.animal.matrix <- sweep(data.animal.matrix, 2, data.animal.matrix["wt_hc",], "-") } if (healthy_norm == TRUE && analysis == "4arm_sd_tg") { data.animal.matrix <- sweep(data.animal.matrix, 2, data.animal.matrix["wt_hc",], "-") } if (healthy_norm == TRUE && analysis == "4arm_treat_ko") { data.animal.matrix <- sweep(data.animal.matrix, 2, data.animal.matrix["wt_untreat",], "-") } if (healthy_norm == TRUE && analysis == "4arm_treat_tg") { data.animal.matrix <- sweep(data.animal.matrix, 2, data.animal.matrix["wt_untreat",], "-") } } # inverse z-scoring according to directionality paradigm col.names.actual <- colnames(data.animal.matrix) if (directional != FALSE) { dirlist <- directional for(x in dirlist) { if (x %in% col.names.actual == TRUE) { data.animal.matrix[, x] <- data.animal.matrix[, x]*-1 } } } # inverse z-scoring according to empirical Tcf4 paradigm col.names.actual <- colnames(data.animal.matrix) # optionally take absolute values if (absoluteval == TRUE) { data.animal.matrix <- abs(data.animal.matrix) } } # return amended dataframe if(return.matrix == FALSE) { return(data.animal.joined) } # return amended matrix if(return.matrix == TRUE) { return(data.animal.matrix) } # turn warnings back on options(warn=0) }
`%||%` <- function(a, b) if (is.null(a)) b else a is_named <- function(x) { all(has_names(x)) } has_names <- function(x) { nms <- names(x) if (is.null(nms)) { rep(FALSE, length(x)) } else { !(is.na(nms) | nms == "") } } # non smart quote version of sQuote quote_str <- function(x, quote = "\"") { if (!length(x)) { return(character(0)) } paste0(quote, x, quote) } is_installed <- function(pkg) { requireNamespace(pkg, quietly = TRUE) } need_package <- function(pkg) { if (is_installed(pkg)) return(invisible()) stop("Please install ", pkg, " package", call. = FALSE) }
/R/utils.R
no_license
gothub/xml2
R
false
false
610
r
`%||%` <- function(a, b) if (is.null(a)) b else a is_named <- function(x) { all(has_names(x)) } has_names <- function(x) { nms <- names(x) if (is.null(nms)) { rep(FALSE, length(x)) } else { !(is.na(nms) | nms == "") } } # non smart quote version of sQuote quote_str <- function(x, quote = "\"") { if (!length(x)) { return(character(0)) } paste0(quote, x, quote) } is_installed <- function(pkg) { requireNamespace(pkg, quietly = TRUE) } need_package <- function(pkg) { if (is_installed(pkg)) return(invisible()) stop("Please install ", pkg, " package", call. = FALSE) }
library(tidyverse) library(lubridate) source("./R/import/import_Fitbit_HR.R") source("./R/import/import_gpx_HR.R") glimpse(polar_hr) glimpse(fitbit_hr) # ajusting the "timezone" and merging both devices polar_hr %>% mutate(datetime = datetime - hours(2)) %>% inner_join(fitbit_hr, by = "datetime") -> hr_data glimpse(hr_data) # lets plot the dataset hr_data %>% gather(device, hr, -datetime) %>% ggplot(aes(x=datetime, y=hr, group=device)) + geom_line(aes(color=device)) + theme_minimal() # lets see the correlation hr_data %>% ggplot(aes(x=polar_hr, y=fitbit_hr)) + geom_point() + stat_smooth(method = "lm", se=T, level=.95) + theme_minimal() # correlation test cor.test(x=hr_data$polar_hr, y=hr_data$fitbit_hr, alternative = "two.sided") # check the quality of a linear correlation model <- lm(fitbit_hr~polar_hr, hr_data) summary(model) par(mfrow = c(2, 2)) plot(model) ## teste Bland Altman # ref: https://seer.ufrgs.br/hcpa/article/view/11727/7021 # Deve ser avaliado se as diferenças entre as variáveis dependem ou não do tamanho da # medida. Isto pode ser feito através de uma correlação entre as diferenças e as médias, que # deve ser nula. A hipótese do viés ser ou não igual a zero pode ser testada por um teste t para # amostras emparelhadas. A partir do cálculo do viés ( d ) e do seu desvio-padrão (sd) é possível # chegar aos limites de concordância: d ± 1,96sd, que devem ser calculados e incluídos no gráfico. # Se o viés apresenta distribuição normal, estes limites representam a região em # que se encontram 95% das diferenças nos casos estudados. # Nas situações em que o viés não apresenta # distribuição normal, é recomendada uma abordagem não-paramétrica. # math hr_data %>% mutate( mean = (polar_hr + fitbit_hr)/2, diff = polar_hr - fitbit_hr, diff.mn = mean(diff), diff.sd = sqrt(var(diff)), upper.lim = diff.mn + (2*diff.sd), lower.lim = diff.mn - (2*diff.sd), ) -> hr_data_ba # overview summary(hr_data_ba) # plotting the differences hr_data_ba %>% ggplot() + geom_segment(aes(x=datetime, xend = datetime, y=0, yend = diff), color="red", size=1) + geom_point(aes(x=datetime, y=diff), color='black') + theme_minimal() # distribuição das diferenças hr_data_ba %>% ggplot() + geom_density(aes(x=diff), color="red", fill="red" ) + theme_minimal() # Deve ser avaliado se as diferenças entre as variáveis dependem ou não do tamanho da # medida. Isto pode ser feito através de uma correlação entre as diferenças e as médias, que # deve ser nula. cor.test(x=hr_data_ba$diff, y=hr_data_ba$mean) # A hipótese do viés ser ou não igual a zero pode ser testada por um teste t para # amostras emparelhadas. t.test(x=hr_data_ba$diff, y=hr_data_ba$mean, paired = T) # plot hr_data_ba %>% ggplot(aes(x=mean, y=diff)) + geom_point() + geom_hline(yintercept=0) + geom_hline(yintercept=hr_data_ba$diff.mn[1], linetype=2) + geom_hline(yintercept=hr_data_ba$upper.lim[1], linetype=2) + geom_hline(yintercept=hr_data_ba$lower.lim[1], linetype=2) + theme_minimal() hrdata %>% ggplot(aes(x=timestamp)) + geom_line(aes(y=hr_fitbit), color="blue") + geom_line(aes(y=hr_polar), color="red") + theme_minimal() hrdata %>% ggplot() + geom_point(aes(x=hr_polar, y=hr_fitbit, color=error)) + scale_color_gradient(name="error %",low="green", high="red") + theme_minimal() hrdata %>% ggplot(aes(x=timestamp)) + geom_line(aes(y=error, color=error)) + scale_color_gradient(name="heart rate (bpm)",low="green", high="red") + theme_minimal() summary(hrdata) hist(hrdata$error, breaks=25, col="red")
/R/analysis/analysis_polar_x_fitbit.R
no_license
GiulSposito/fitbit_api
R
false
false
3,682
r
library(tidyverse) library(lubridate) source("./R/import/import_Fitbit_HR.R") source("./R/import/import_gpx_HR.R") glimpse(polar_hr) glimpse(fitbit_hr) # ajusting the "timezone" and merging both devices polar_hr %>% mutate(datetime = datetime - hours(2)) %>% inner_join(fitbit_hr, by = "datetime") -> hr_data glimpse(hr_data) # lets plot the dataset hr_data %>% gather(device, hr, -datetime) %>% ggplot(aes(x=datetime, y=hr, group=device)) + geom_line(aes(color=device)) + theme_minimal() # lets see the correlation hr_data %>% ggplot(aes(x=polar_hr, y=fitbit_hr)) + geom_point() + stat_smooth(method = "lm", se=T, level=.95) + theme_minimal() # correlation test cor.test(x=hr_data$polar_hr, y=hr_data$fitbit_hr, alternative = "two.sided") # check the quality of a linear correlation model <- lm(fitbit_hr~polar_hr, hr_data) summary(model) par(mfrow = c(2, 2)) plot(model) ## teste Bland Altman # ref: https://seer.ufrgs.br/hcpa/article/view/11727/7021 # Deve ser avaliado se as diferenças entre as variáveis dependem ou não do tamanho da # medida. Isto pode ser feito através de uma correlação entre as diferenças e as médias, que # deve ser nula. A hipótese do viés ser ou não igual a zero pode ser testada por um teste t para # amostras emparelhadas. A partir do cálculo do viés ( d ) e do seu desvio-padrão (sd) é possível # chegar aos limites de concordância: d ± 1,96sd, que devem ser calculados e incluídos no gráfico. # Se o viés apresenta distribuição normal, estes limites representam a região em # que se encontram 95% das diferenças nos casos estudados. # Nas situações em que o viés não apresenta # distribuição normal, é recomendada uma abordagem não-paramétrica. # math hr_data %>% mutate( mean = (polar_hr + fitbit_hr)/2, diff = polar_hr - fitbit_hr, diff.mn = mean(diff), diff.sd = sqrt(var(diff)), upper.lim = diff.mn + (2*diff.sd), lower.lim = diff.mn - (2*diff.sd), ) -> hr_data_ba # overview summary(hr_data_ba) # plotting the differences hr_data_ba %>% ggplot() + geom_segment(aes(x=datetime, xend = datetime, y=0, yend = diff), color="red", size=1) + geom_point(aes(x=datetime, y=diff), color='black') + theme_minimal() # distribuição das diferenças hr_data_ba %>% ggplot() + geom_density(aes(x=diff), color="red", fill="red" ) + theme_minimal() # Deve ser avaliado se as diferenças entre as variáveis dependem ou não do tamanho da # medida. Isto pode ser feito através de uma correlação entre as diferenças e as médias, que # deve ser nula. cor.test(x=hr_data_ba$diff, y=hr_data_ba$mean) # A hipótese do viés ser ou não igual a zero pode ser testada por um teste t para # amostras emparelhadas. t.test(x=hr_data_ba$diff, y=hr_data_ba$mean, paired = T) # plot hr_data_ba %>% ggplot(aes(x=mean, y=diff)) + geom_point() + geom_hline(yintercept=0) + geom_hline(yintercept=hr_data_ba$diff.mn[1], linetype=2) + geom_hline(yintercept=hr_data_ba$upper.lim[1], linetype=2) + geom_hline(yintercept=hr_data_ba$lower.lim[1], linetype=2) + theme_minimal() hrdata %>% ggplot(aes(x=timestamp)) + geom_line(aes(y=hr_fitbit), color="blue") + geom_line(aes(y=hr_polar), color="red") + theme_minimal() hrdata %>% ggplot() + geom_point(aes(x=hr_polar, y=hr_fitbit, color=error)) + scale_color_gradient(name="error %",low="green", high="red") + theme_minimal() hrdata %>% ggplot(aes(x=timestamp)) + geom_line(aes(y=error, color=error)) + scale_color_gradient(name="heart rate (bpm)",low="green", high="red") + theme_minimal() summary(hrdata) hist(hrdata$error, breaks=25, col="red")
#' Copyright(c) 2017-2020 R. Mark Sharp #' This file is part of nprcgenekeepr context("convertRelationships") library(testthat) ped <- nprcgenekeepr::smallPed kmat <- kinship(ped$id, ped$sire, ped$dam, ped$gen, sparse = FALSE) ids <- c("A", "B", "D", "E", "F", "G", "I", "J", "L", "M", "O", "P") relIds <- convertRelationships(kmat, ped, ids) rel <- convertRelationships(kmat, ped, updateProgress = function() {}) ped <- nprcgenekeepr::qcPed bkmat <- kinship(ped$id, ped$sire, ped$dam, ped$gen, sparse = FALSE) relBIds <- convertRelationships(bkmat, ped, c("4LFS70", "DD1U77")) test_that("convertRelationships makes correct transformations", { expect_equal(relIds$id1[relIds$id1 %in% rel$id1], relIds$id1) expect_true(all(rel$id1[rel$id1 %in% relIds$id1] %in% relIds$id1)) expect_equal(rel$kinship[rel$id1 == "A" & rel$id2 == "D"], 0.25) expect_equal(rel$relation[rel$id1 == "D" & rel$id2 == "G"], "Parent-Offspring") expect_equal(rel$relation[rel$id1 == "C" & rel$id2 == "I"], "Half-Siblings") expect_equal(rel$relation[rel$id1 == "C" & rel$id2 == "J"], "No Relation") expect_equal(rel$relation[rel$id1 == "C" & rel$id2 == "C"], "Self") expect_equal(rel$relation[rel$id1 == "C" & rel$id2 == "G"], "Full-Avuncular") expect_equal(relIds$relation[relIds$id1 == "A" & relIds$id2 == "B"], "No Relation") expect_equal(relIds$relation[relIds$id1 == "A" & relIds$id2 == "F"], "Grandparent-Grandchild") expect_equal(relIds$relation[relIds$id1 == "F" & relIds$id2 == "G"], "Full-Siblings") expect_equal(relIds$relation[relIds$id1 == "F" & relIds$id2 == "I"], "Avuncular - Other") expect_equal(relIds$relation[relIds$id1 == "F" & relIds$id2 == "L"], "Full-Cousins") expect_equal(rel$relation[rel$id1 == "L" & rel$id2 == "P"], "Cousin - Other") expect_equal(relBIds$relation[relBIds$id1 == "4LFS70" & relBIds$id2 == "DD1U77"], "Other") })
/tests/testthat/test_convertRelationships.R
permissive
jhagberg/nprcgenekeepr
R
false
false
2,074
r
#' Copyright(c) 2017-2020 R. Mark Sharp #' This file is part of nprcgenekeepr context("convertRelationships") library(testthat) ped <- nprcgenekeepr::smallPed kmat <- kinship(ped$id, ped$sire, ped$dam, ped$gen, sparse = FALSE) ids <- c("A", "B", "D", "E", "F", "G", "I", "J", "L", "M", "O", "P") relIds <- convertRelationships(kmat, ped, ids) rel <- convertRelationships(kmat, ped, updateProgress = function() {}) ped <- nprcgenekeepr::qcPed bkmat <- kinship(ped$id, ped$sire, ped$dam, ped$gen, sparse = FALSE) relBIds <- convertRelationships(bkmat, ped, c("4LFS70", "DD1U77")) test_that("convertRelationships makes correct transformations", { expect_equal(relIds$id1[relIds$id1 %in% rel$id1], relIds$id1) expect_true(all(rel$id1[rel$id1 %in% relIds$id1] %in% relIds$id1)) expect_equal(rel$kinship[rel$id1 == "A" & rel$id2 == "D"], 0.25) expect_equal(rel$relation[rel$id1 == "D" & rel$id2 == "G"], "Parent-Offspring") expect_equal(rel$relation[rel$id1 == "C" & rel$id2 == "I"], "Half-Siblings") expect_equal(rel$relation[rel$id1 == "C" & rel$id2 == "J"], "No Relation") expect_equal(rel$relation[rel$id1 == "C" & rel$id2 == "C"], "Self") expect_equal(rel$relation[rel$id1 == "C" & rel$id2 == "G"], "Full-Avuncular") expect_equal(relIds$relation[relIds$id1 == "A" & relIds$id2 == "B"], "No Relation") expect_equal(relIds$relation[relIds$id1 == "A" & relIds$id2 == "F"], "Grandparent-Grandchild") expect_equal(relIds$relation[relIds$id1 == "F" & relIds$id2 == "G"], "Full-Siblings") expect_equal(relIds$relation[relIds$id1 == "F" & relIds$id2 == "I"], "Avuncular - Other") expect_equal(relIds$relation[relIds$id1 == "F" & relIds$id2 == "L"], "Full-Cousins") expect_equal(rel$relation[rel$id1 == "L" & rel$id2 == "P"], "Cousin - Other") expect_equal(relBIds$relation[relBIds$id1 == "4LFS70" & relBIds$id2 == "DD1U77"], "Other") })
# # This is the user-interface definition of a Shiny web application. You can # run the application by clicking 'Run App' above. # # Find out more about building applications with Shiny here: # # http://shiny.rstudio.com/ # library(shiny) # Define UI for application that draws a histogram ui <- shinyUI(fluidPage( tags$head(tags$link(rel = "stylesheet", type = "text/css", href = "style.css")), # Application title titlePanel("One file test app for shiny.epa.gov"), # Sidebar with a slider input for number of bins sidebarLayout( sidebarPanel( selectInput("species", "Which Species To Display", choices = unique(iris$Species), multiple = TRUE, selected = c("setosa", "versicolor", "virginica") ) ), # Show a plot of the generated distribution mainPanel( plotOutput("scatterPlot") ) ) )) # Define server logic required to draw a histogram server <- shinyServer(function(input, output) { output$scatterPlot <- renderPlot({ # filter x <- iris[iris$Species %in% input$species,] # plot scatter plot with selected species plot(x$Petal.Length, x$Petal.Width, col = x$Species) }) }) shinyApp(ui, server, uiPattern = ".*")
/routetest/app.R
no_license
jhollist/cloud_gov_shiny
R
false
false
1,314
r
# # This is the user-interface definition of a Shiny web application. You can # run the application by clicking 'Run App' above. # # Find out more about building applications with Shiny here: # # http://shiny.rstudio.com/ # library(shiny) # Define UI for application that draws a histogram ui <- shinyUI(fluidPage( tags$head(tags$link(rel = "stylesheet", type = "text/css", href = "style.css")), # Application title titlePanel("One file test app for shiny.epa.gov"), # Sidebar with a slider input for number of bins sidebarLayout( sidebarPanel( selectInput("species", "Which Species To Display", choices = unique(iris$Species), multiple = TRUE, selected = c("setosa", "versicolor", "virginica") ) ), # Show a plot of the generated distribution mainPanel( plotOutput("scatterPlot") ) ) )) # Define server logic required to draw a histogram server <- shinyServer(function(input, output) { output$scatterPlot <- renderPlot({ # filter x <- iris[iris$Species %in% input$species,] # plot scatter plot with selected species plot(x$Petal.Length, x$Petal.Width, col = x$Species) }) }) shinyApp(ui, server, uiPattern = ".*")
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/RcppExports.R \name{FindTpsIp} \alias{FindTpsIp} \title{Gets IP address of TPS2.} \usage{ FindTpsIp(TpsSerial, timeout) } \arguments{ \item{TpsSerial}{Serial number of TPS2.} \item{timeout}{Timeout in ms to wait for the UDP packet.} } \value{ String of IP address. } \description{ \code{FindTpsIp} listens for UDP packets that TPS2 broadcast and returns the IP of the TPS2. } \details{ Note that executing this function makes your program to a UDP server and Windows firewall (or other personal firewall software) will query for permission. } \examples{ \dontrun{ FindTpsIp("910.33.0316", 500) } }
/man/FindTpsIp.Rd
no_license
pasturm/TofDaqR
R
false
true
677
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/RcppExports.R \name{FindTpsIp} \alias{FindTpsIp} \title{Gets IP address of TPS2.} \usage{ FindTpsIp(TpsSerial, timeout) } \arguments{ \item{TpsSerial}{Serial number of TPS2.} \item{timeout}{Timeout in ms to wait for the UDP packet.} } \value{ String of IP address. } \description{ \code{FindTpsIp} listens for UDP packets that TPS2 broadcast and returns the IP of the TPS2. } \details{ Note that executing this function makes your program to a UDP server and Windows firewall (or other personal firewall software) will query for permission. } \examples{ \dontrun{ FindTpsIp("910.33.0316", 500) } }
## Monte Carlo calculation of posterior probability ## s <- as.numeric(commandArgs(trailingOnly=TRUE)) ntasks <- 21 pdff <- function(filename){pdf(file=paste0(filename,'.pdf'),paper='a4r',height=11.7,width=16.5)} #library('ggplot2') library('RColorBrewer') #library('cowplot') #library('png') #library('plot3D') library('foreach') library('doFuture') ## registerDoFuture() ## #library("future.batchtools") ## print(paste0('available workers: ', availableCores())) ## if(length(ntasks)==0){ntasks <- availableCores()} ## #plan(batchtools_slurm, workers=ntasks-1) ## #plan(multiprocess, workers=ntasks-1) ## cl <- makeCluster(ntasks-1) ## plan(cluster, workers = cl) ## print(paste0('number of workers: ', nbrOfWorkers())) library('doRNG') #library('LaplacesDemon') library('dirichletprocess') library('mvtnorm') library('RNetCDF') #library('Rmpfr') options(bitmapType='cairo') mypurpleblue <- '#4477AA' myblue <- '#66CCEE' mygreen <- '#228833' myyellow <- '#CCBB44' myred <- '#EE6677' myredpurple <- '#AA3377' mygrey <- '#BBBBBB' mycolours <- c(myblue, myred, mygreen, myyellow, myredpurple, mypurpleblue, mygrey, 'black') palette(mycolours) barpalette <- colorRampPalette(c(mypurpleblue,'white',myredpurple),space='Lab') barpalettepos <- colorRampPalette(c('white','black'),space='Lab') dev.off() set.seed(181225+0) ################################################################# ######################## EQUATIONS SETUP ######################## ################################################################# group <- 'con' #group <- 'sch' savename <- paste0('fits_',group) datafilename <- paste0('weights_', group, '_40cons') logit2 <- function(x){log(1+x)-log(1-x)} y <- t(as.matrix(read.csv(paste0(datafilename,'.csv'),header=FALSE,sep=','))) dims <- ncol(y) y <- logit2(y) datasize <- nrow(y) #foreach(s = 1:(datasize+1))%dopar%{ print(paste0('marg: ',s)) x <- y[-s,] dp <- DirichletProcessMvnormal(x, #alphaPriors=c(0.1, 0.1), g0Priors=list(mu0=rep(0,dims), kappa0=0.01, Lambda=diag(dims)/2, nu=dims+1), numInitialClusters = nrow(x)) fitdp <- dp fitdp <- Fit(fitdp,1000) fitdp <- Fit(fitdp,10000) saveRDS(fitdp,paste0(savename, '_marg_', s, '.rds')) NULL #} ## Idun: ## > dp <- DirichletProcessMvnormal(y, ## + #alphaPriors=c(0.1, 0.1), ## + g0Priors=list(mu0=rep(0,dims), kappa0=0.01, Lambda=diag(dims)/2, nu=dims+1), numInitialClusters = datasize) ## > fitdp <- dp ## > system.time(for(i in 1:1){fitdp <- Fit(fitdp,10000)}) ## |--------------------------------------------------| 100% ## user system elapsed ## 15168.709 47.122 781.522 ## > system.time(for(i in 1:1){fitdp <- Fit(fitdp,1000)}) ## |--------------------------------------------------| 100% ## user system elapsed ## 1042.095 3.345 53.594 ## ## > system.time(for(i in 1:1){fitdp <- Fit(fitdp,10000)}) ## |--------------------------------------------------| 100% ## user system elapsed ## 10789.939 35.819 558.570 ## > ## + system.time(for(i in 1:1){fitdptest <- Fit(fitdptest,5000)}) ## + ## |--------------------------------------------------| 100% ## user system elapsed ## 317.40 0.15 317.67 ## + system.time(for(i in 1:1){fitdptest <- Fit(fitdptest,1000)}) ## + ## |--------------------------------------------------| 100% ## user system elapsed ## 52.40 0.15 52.57
/codev3/posteriors.R
no_license
pglpm/nanunana
R
false
false
3,517
r
## Monte Carlo calculation of posterior probability ## s <- as.numeric(commandArgs(trailingOnly=TRUE)) ntasks <- 21 pdff <- function(filename){pdf(file=paste0(filename,'.pdf'),paper='a4r',height=11.7,width=16.5)} #library('ggplot2') library('RColorBrewer') #library('cowplot') #library('png') #library('plot3D') library('foreach') library('doFuture') ## registerDoFuture() ## #library("future.batchtools") ## print(paste0('available workers: ', availableCores())) ## if(length(ntasks)==0){ntasks <- availableCores()} ## #plan(batchtools_slurm, workers=ntasks-1) ## #plan(multiprocess, workers=ntasks-1) ## cl <- makeCluster(ntasks-1) ## plan(cluster, workers = cl) ## print(paste0('number of workers: ', nbrOfWorkers())) library('doRNG') #library('LaplacesDemon') library('dirichletprocess') library('mvtnorm') library('RNetCDF') #library('Rmpfr') options(bitmapType='cairo') mypurpleblue <- '#4477AA' myblue <- '#66CCEE' mygreen <- '#228833' myyellow <- '#CCBB44' myred <- '#EE6677' myredpurple <- '#AA3377' mygrey <- '#BBBBBB' mycolours <- c(myblue, myred, mygreen, myyellow, myredpurple, mypurpleblue, mygrey, 'black') palette(mycolours) barpalette <- colorRampPalette(c(mypurpleblue,'white',myredpurple),space='Lab') barpalettepos <- colorRampPalette(c('white','black'),space='Lab') dev.off() set.seed(181225+0) ################################################################# ######################## EQUATIONS SETUP ######################## ################################################################# group <- 'con' #group <- 'sch' savename <- paste0('fits_',group) datafilename <- paste0('weights_', group, '_40cons') logit2 <- function(x){log(1+x)-log(1-x)} y <- t(as.matrix(read.csv(paste0(datafilename,'.csv'),header=FALSE,sep=','))) dims <- ncol(y) y <- logit2(y) datasize <- nrow(y) #foreach(s = 1:(datasize+1))%dopar%{ print(paste0('marg: ',s)) x <- y[-s,] dp <- DirichletProcessMvnormal(x, #alphaPriors=c(0.1, 0.1), g0Priors=list(mu0=rep(0,dims), kappa0=0.01, Lambda=diag(dims)/2, nu=dims+1), numInitialClusters = nrow(x)) fitdp <- dp fitdp <- Fit(fitdp,1000) fitdp <- Fit(fitdp,10000) saveRDS(fitdp,paste0(savename, '_marg_', s, '.rds')) NULL #} ## Idun: ## > dp <- DirichletProcessMvnormal(y, ## + #alphaPriors=c(0.1, 0.1), ## + g0Priors=list(mu0=rep(0,dims), kappa0=0.01, Lambda=diag(dims)/2, nu=dims+1), numInitialClusters = datasize) ## > fitdp <- dp ## > system.time(for(i in 1:1){fitdp <- Fit(fitdp,10000)}) ## |--------------------------------------------------| 100% ## user system elapsed ## 15168.709 47.122 781.522 ## > system.time(for(i in 1:1){fitdp <- Fit(fitdp,1000)}) ## |--------------------------------------------------| 100% ## user system elapsed ## 1042.095 3.345 53.594 ## ## > system.time(for(i in 1:1){fitdp <- Fit(fitdp,10000)}) ## |--------------------------------------------------| 100% ## user system elapsed ## 10789.939 35.819 558.570 ## > ## + system.time(for(i in 1:1){fitdptest <- Fit(fitdptest,5000)}) ## + ## |--------------------------------------------------| 100% ## user system elapsed ## 317.40 0.15 317.67 ## + system.time(for(i in 1:1){fitdptest <- Fit(fitdptest,1000)}) ## + ## |--------------------------------------------------| 100% ## user system elapsed ## 52.40 0.15 52.57
#This code is revised from Zhenyu Zhang's code here:http://github.com/ZhenyuZ/eqtl/blob/master/cnv/GetGeneLevelCNA.r options(stringsAsFactors=F) library("GenomicRanges") library(DESeq) library(optparse) option_list <- list( make_option("--locfile", type="character", help="path to locations file"), make_option("--patients", type="character", help="path to uuids"), make_option("--segfiles", type="character", help="path to datasets"), make_option("--outfile", type="character", help="name of output file") ) parser <- OptionParser(usage="main.R [options] file", option_list=option_list) args <- parse_args(parser) #get gene locations get_gene_loc <- function(geneloc){ loc = GRanges(seqnames = geneloc$chr, ranges = IRanges(start=as.numeric(geneloc$start), end=as.numeric(geneloc$end)), strand = "+", name = geneloc$gene_id) #gene.length = width(loc) #vector of lengths of each gene id. #n = length(loc) #no. of geneids return(loc) } get_seg_loc <- function(segfile){ cnvseg <- data.frame(read.table(segfile, header=T, colClasses="character", sep="\t")) seg <- GRanges(seqnames = paste("chr", cnvseg$Chromosome, sep=""), ranges = IRanges(start=as.numeric(cnvseg$Start), end=as.numeric(cnvseg$End)), strand = "+", Num_probes = as.numeric(cnvseg$Num_Probes), Segment_Mean = as.numeric(cnvseg$Segment_Mean)) return(seg) } get_copy_number<- function(loc, seg){ segm <- values(seg)$Segment_Mean Hits <- findOverlaps(loc,seg) gene_to_seg_map <- data.frame(cbind(queryHits(Hits), subjectHits(Hits))) #contains the indices of the genes #from the locfile mapped to #the indices of the segfile. colnames(gene_to_seg_map ) <- c("loc.index", "seg.index") cnv <- numeric(length(loc)) for (gene_index in 1:nrow(gene_to_seg_map)){ cnv[gene_index] <- 2 * (2^segm[gene_to_seg_map$seg.index[gene_index]]) } return(cnv) } locfile = args$locfile geneloc = read.table(locfile, h=F, sep="\t", colClasses="character") colnames(geneloc) <- c("gene_id", "chr", "start", "end") w <- which(!duplicated(geneloc$gene_id)) geneloc <- geneloc[w,] loc <- get_gene_loc(geneloc) patients <- read.table(args$patients, header=T, colClasses="character") all_cnv = matrix(nrow=nrow(geneloc), ncol=0) col_counter = 0 for (i in 1:nrow(patients)){ segfile=paste(args$segfiles, patients[i,1], ".seg.txt", sep="") if (file.exists(segfile)){ col_counter = col_counter + 1 print(paste("Getting copy number for", patients[i,1])) seg <- get_seg_loc(segfile) cnv <- get_copy_number(loc, seg) all_cnv <- cbind(all_cnv, as.numeric(cnv)) colnames(all_cnv)[col_counter] <- patients[i,1] } } rownames(all_cnv) <- geneloc$gene_id write.table(all_cnv, file=args$outfile, quote=FALSE, sep='\t')
/cnv.aggr.R
no_license
stutiagrawal/nbl
R
false
false
3,140
r
#This code is revised from Zhenyu Zhang's code here:http://github.com/ZhenyuZ/eqtl/blob/master/cnv/GetGeneLevelCNA.r options(stringsAsFactors=F) library("GenomicRanges") library(DESeq) library(optparse) option_list <- list( make_option("--locfile", type="character", help="path to locations file"), make_option("--patients", type="character", help="path to uuids"), make_option("--segfiles", type="character", help="path to datasets"), make_option("--outfile", type="character", help="name of output file") ) parser <- OptionParser(usage="main.R [options] file", option_list=option_list) args <- parse_args(parser) #get gene locations get_gene_loc <- function(geneloc){ loc = GRanges(seqnames = geneloc$chr, ranges = IRanges(start=as.numeric(geneloc$start), end=as.numeric(geneloc$end)), strand = "+", name = geneloc$gene_id) #gene.length = width(loc) #vector of lengths of each gene id. #n = length(loc) #no. of geneids return(loc) } get_seg_loc <- function(segfile){ cnvseg <- data.frame(read.table(segfile, header=T, colClasses="character", sep="\t")) seg <- GRanges(seqnames = paste("chr", cnvseg$Chromosome, sep=""), ranges = IRanges(start=as.numeric(cnvseg$Start), end=as.numeric(cnvseg$End)), strand = "+", Num_probes = as.numeric(cnvseg$Num_Probes), Segment_Mean = as.numeric(cnvseg$Segment_Mean)) return(seg) } get_copy_number<- function(loc, seg){ segm <- values(seg)$Segment_Mean Hits <- findOverlaps(loc,seg) gene_to_seg_map <- data.frame(cbind(queryHits(Hits), subjectHits(Hits))) #contains the indices of the genes #from the locfile mapped to #the indices of the segfile. colnames(gene_to_seg_map ) <- c("loc.index", "seg.index") cnv <- numeric(length(loc)) for (gene_index in 1:nrow(gene_to_seg_map)){ cnv[gene_index] <- 2 * (2^segm[gene_to_seg_map$seg.index[gene_index]]) } return(cnv) } locfile = args$locfile geneloc = read.table(locfile, h=F, sep="\t", colClasses="character") colnames(geneloc) <- c("gene_id", "chr", "start", "end") w <- which(!duplicated(geneloc$gene_id)) geneloc <- geneloc[w,] loc <- get_gene_loc(geneloc) patients <- read.table(args$patients, header=T, colClasses="character") all_cnv = matrix(nrow=nrow(geneloc), ncol=0) col_counter = 0 for (i in 1:nrow(patients)){ segfile=paste(args$segfiles, patients[i,1], ".seg.txt", sep="") if (file.exists(segfile)){ col_counter = col_counter + 1 print(paste("Getting copy number for", patients[i,1])) seg <- get_seg_loc(segfile) cnv <- get_copy_number(loc, seg) all_cnv <- cbind(all_cnv, as.numeric(cnv)) colnames(all_cnv)[col_counter] <- patients[i,1] } } rownames(all_cnv) <- geneloc$gene_id write.table(all_cnv, file=args$outfile, quote=FALSE, sep='\t')
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/nn-utils-clip-grad.R \name{nn_utils_clip_grad_value_} \alias{nn_utils_clip_grad_value_} \title{Clips gradient of an iterable of parameters at specified value.} \usage{ nn_utils_clip_grad_value_(parameters, clip_value) } \arguments{ \item{parameters}{(Iterable(Tensor) or Tensor): an iterable of Tensors or a single Tensor that will have gradients normalized} \item{clip_value}{(float or int): maximum allowed value of the gradients.} } \description{ Gradients are modified in-place. } \details{ The gradients are clipped in the range \eqn{\left[\mbox{-clip\_value}, \mbox{clip\_value}\right]} }
/man/nn_utils_clip_grad_value_.Rd
permissive
mlverse/torch
R
false
true
674
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/nn-utils-clip-grad.R \name{nn_utils_clip_grad_value_} \alias{nn_utils_clip_grad_value_} \title{Clips gradient of an iterable of parameters at specified value.} \usage{ nn_utils_clip_grad_value_(parameters, clip_value) } \arguments{ \item{parameters}{(Iterable(Tensor) or Tensor): an iterable of Tensors or a single Tensor that will have gradients normalized} \item{clip_value}{(float or int): maximum allowed value of the gradients.} } \description{ Gradients are modified in-place. } \details{ The gradients are clipped in the range \eqn{\left[\mbox{-clip\_value}, \mbox{clip\_value}\right]} }
# importing libraries library(shiny) library(tidyverse) library(scales) library(shinythemes) library(ggrepel) # importing data scatter_data <- read_csv("Data Wrangling/school-enrollment-and-water-access.csv") # defining choice values and labels for user inputs country_choices <- unique(scatter_data$country) # for scatter plot scatter_school_type_values <- c("primary","secondary") scatter_school_type_names <- c("Primary Schools", "Secondary Schools") names(scatter_school_type_values) <- scatter_school_type_names ############ # ui # ############ ui <- navbarPage( title = "Effect of Basic Water Access in Schools on Enrollment Rates", theme = shinytheme("flatly"), # SCATTERPLOT (incorporating enrollment rates data) sidebarLayout( sidebarPanel( # choose school type radioButtons(inputId = "stat_type_scatter", label = "Filter by School Type:", choices = scatter_school_type_values, selected = "primary") , selectizeInput(inputId = "country_name" , label = "Identify country(s) in the scatterplot:" , choices = country_choices , selected = NULL , multiple = TRUE) ), mainPanel( plotOutput(outputId = "scatter") ) ) ) ############ # server # ############ server <- function(input, output) { # SCATTERPLOT data_for_scatter_reactive <- reactive({ data_for_scatter <- scatter_data %>% filter(schoolType == input$stat_type_scatter) }) output$scatter <- renderPlot({ ggplot(data_for_scatter_reactive(), aes_string(x="coverage/100", y="grossSchoolEnrollmentRatio/100")) + geom_point(color = "#2c7fb8") + geom_smooth(method = "lm") + labs(x = "\nPercent of Schools in Country with Basic Water Supply", y = "School Enrollment Rates (Gross Ratios)\n" , title = "School Enrollment Rates (Gross Ratios) vs. Percent of Schools with Basic Water Supply\n") + geom_label_repel(data = filter(data_for_scatter_reactive(), country %in% input$country_name), aes(label = country), show.legend = FALSE) + theme(text = element_text(size=13.5), plot.title = element_text(face = "bold")) + scale_x_continuous(labels = scales::percent) + scale_y_continuous(labels = scales::percent) } ) } #################### # call to shinyApp # #################### shinyApp(ui = ui, server = server)
/Jamie_Shiny2.R
no_license
stat231-s21/Blog-JAMS
R
false
false
2,573
r
# importing libraries library(shiny) library(tidyverse) library(scales) library(shinythemes) library(ggrepel) # importing data scatter_data <- read_csv("Data Wrangling/school-enrollment-and-water-access.csv") # defining choice values and labels for user inputs country_choices <- unique(scatter_data$country) # for scatter plot scatter_school_type_values <- c("primary","secondary") scatter_school_type_names <- c("Primary Schools", "Secondary Schools") names(scatter_school_type_values) <- scatter_school_type_names ############ # ui # ############ ui <- navbarPage( title = "Effect of Basic Water Access in Schools on Enrollment Rates", theme = shinytheme("flatly"), # SCATTERPLOT (incorporating enrollment rates data) sidebarLayout( sidebarPanel( # choose school type radioButtons(inputId = "stat_type_scatter", label = "Filter by School Type:", choices = scatter_school_type_values, selected = "primary") , selectizeInput(inputId = "country_name" , label = "Identify country(s) in the scatterplot:" , choices = country_choices , selected = NULL , multiple = TRUE) ), mainPanel( plotOutput(outputId = "scatter") ) ) ) ############ # server # ############ server <- function(input, output) { # SCATTERPLOT data_for_scatter_reactive <- reactive({ data_for_scatter <- scatter_data %>% filter(schoolType == input$stat_type_scatter) }) output$scatter <- renderPlot({ ggplot(data_for_scatter_reactive(), aes_string(x="coverage/100", y="grossSchoolEnrollmentRatio/100")) + geom_point(color = "#2c7fb8") + geom_smooth(method = "lm") + labs(x = "\nPercent of Schools in Country with Basic Water Supply", y = "School Enrollment Rates (Gross Ratios)\n" , title = "School Enrollment Rates (Gross Ratios) vs. Percent of Schools with Basic Water Supply\n") + geom_label_repel(data = filter(data_for_scatter_reactive(), country %in% input$country_name), aes(label = country), show.legend = FALSE) + theme(text = element_text(size=13.5), plot.title = element_text(face = "bold")) + scale_x_continuous(labels = scales::percent) + scale_y_continuous(labels = scales::percent) } ) } #################### # call to shinyApp # #################### shinyApp(ui = ui, server = server)
% Generated by roxygen2 (4.1.1): do not edit by hand % Please edit documentation in R/2_SimpleModels.R \name{M_M_1} \alias{M_M_1} \title{Obtains the main characteristics of a M/M/1 queueing model} \usage{ M_M_1(lambda = 3, mu = 6) } \arguments{ \item{lambda}{Mean arrival rate} \item{mu}{Mean service rate} } \value{ Returns the next information of a M/M/1 model: \item{rho}{Traffic intensity: \eqn{\rho}} \item{cn}{Coefficients used in the computation of \ifelse{latex}{\eqn{P_n}: \eqn{C_n}}{\out{<i>P<sub>n</sub>: C<sub>n</sub></i>}}} \item{p0}{Probability of empty system: \ifelse{latex}{\eqn{P_{0}}}{\out{<i>P<sub>0</sub></i>}}} \item{l}{Number of customers in the system: \eqn{L}} \item{lq}{Number of customers in the queue: \ifelse{latex}{\eqn{L_q}}{\out{<i>L<sub>q</sub></i>}}} \item{w}{Waiting time in the system: \eqn{W}} \item{wq}{Waiting time in the queue: \ifelse{latex}{\eqn{W_q}}{\out{<i>W<sub>q</sub></i>}}} \item{eff}{System efficiency: \ifelse{latex}{\eqn{Eff = W/(W-W_q)}}{\out{<i>Eff = W/(W-W<sub>q</sub>)</i>}}} } \description{ Obtains the main characteristics of a M/M/1 queueing model } \examples{ #A workstation with a single processor #runs programs with CPU time following #an exponential distribution with mean 3 minutes. #The programs arrive to the workstation following #a Poisson process with an intensity of 15 #programs per hour. M_M_1(lambda=15, mu=60/3) } \seealso{ Other AnaliticalModels: \code{\link{ClosedJacksonNetwork}}; \code{\link{M_M_1_INF_H}}; \code{\link{M_M_1_K}}; \code{\link{M_M_INF}}; \code{\link{M_M_S_INF_H_Y}}; \code{\link{M_M_S_INF_H}}; \code{\link{M_M_S_K}}; \code{\link{M_M_S}}; \code{\link{OpenJacksonNetwork}} }
/man/M_M_1.Rd
no_license
vishkey/arqas
R
false
false
1,678
rd
% Generated by roxygen2 (4.1.1): do not edit by hand % Please edit documentation in R/2_SimpleModels.R \name{M_M_1} \alias{M_M_1} \title{Obtains the main characteristics of a M/M/1 queueing model} \usage{ M_M_1(lambda = 3, mu = 6) } \arguments{ \item{lambda}{Mean arrival rate} \item{mu}{Mean service rate} } \value{ Returns the next information of a M/M/1 model: \item{rho}{Traffic intensity: \eqn{\rho}} \item{cn}{Coefficients used in the computation of \ifelse{latex}{\eqn{P_n}: \eqn{C_n}}{\out{<i>P<sub>n</sub>: C<sub>n</sub></i>}}} \item{p0}{Probability of empty system: \ifelse{latex}{\eqn{P_{0}}}{\out{<i>P<sub>0</sub></i>}}} \item{l}{Number of customers in the system: \eqn{L}} \item{lq}{Number of customers in the queue: \ifelse{latex}{\eqn{L_q}}{\out{<i>L<sub>q</sub></i>}}} \item{w}{Waiting time in the system: \eqn{W}} \item{wq}{Waiting time in the queue: \ifelse{latex}{\eqn{W_q}}{\out{<i>W<sub>q</sub></i>}}} \item{eff}{System efficiency: \ifelse{latex}{\eqn{Eff = W/(W-W_q)}}{\out{<i>Eff = W/(W-W<sub>q</sub>)</i>}}} } \description{ Obtains the main characteristics of a M/M/1 queueing model } \examples{ #A workstation with a single processor #runs programs with CPU time following #an exponential distribution with mean 3 minutes. #The programs arrive to the workstation following #a Poisson process with an intensity of 15 #programs per hour. M_M_1(lambda=15, mu=60/3) } \seealso{ Other AnaliticalModels: \code{\link{ClosedJacksonNetwork}}; \code{\link{M_M_1_INF_H}}; \code{\link{M_M_1_K}}; \code{\link{M_M_INF}}; \code{\link{M_M_S_INF_H_Y}}; \code{\link{M_M_S_INF_H}}; \code{\link{M_M_S_K}}; \code{\link{M_M_S}}; \code{\link{OpenJacksonNetwork}} }
#SEM practicing library(lavaan) library(semPlot) library(tidyverse) #path Analysis n<-3094 sd<-c(.71,.75,.90,.69,1.84,1.37) lowercorr<-c(1.00, .28,1.00, .19,.21,1.00, .15,.15,.23,1.00, .35,.09,.20,.20,1.00, .08,.11,.09,.11,.23,1.00) fullcorr<-lav_matrix_lower2full(lowercorr) covmat<-cor2cov(R = fullcorr,sds = sd) colnames(covmat)<-rownames(covmat)<-c("ability","acheive","deg_asp","hi_deg","selectiv","income") model<-' income~hi_deg+selectiv hi_deg~ability+acheive+deg_asp selectiv~ability+acheive+deg_asp ability~~acheive ability~~deg_asp acheive~~deg_asp ' fit<-sem(model = model,sample.cov = covmat,sample.nobs = n) summary(fit,standardized=T,fit.measures=T,rsquare=T) semPaths(fit,layout = "tree2",whatLabels = "std",color = "red") lavResiduals(object = fit,zstat = T) #the std.all in case of error variance is the total variance unexplained modificationindices(fit,sort. = T) model2<-' income~hi_deg+selectiv hi_deg~ability+acheive+deg_asp selectiv~ability+acheive+deg_asp+hi_deg ability~~acheive ability~~deg_asp acheive~~deg_asp ' fit2<-sem(model = model2,sample.cov = covmat,sample.nobs = n) summary(fit2,standardized=T,fit.measures=T,rsquare=T) semPaths(fit2,layout = "tree2",whatLabels = "std",color = "red") lavResiduals(object = fit2,zstat = T) modificationindices(fit2,sort. = T) model3<-' income~hi_deg+selectiv+acheive hi_deg~ability+acheive+deg_asp selectiv~ability+acheive+deg_asp+hi_deg ability~~acheive ability~~deg_asp acheive~~deg_asp ' fit3<-sem(model = model3,sample.cov = covmat,sample.nobs = n) summary(fit3,standardized=T,fit.measures=T,rsquare=T) semPaths(fit3,layout = "tree2",whatLabels = "std",color = "red") lavResiduals(object = fit3,zstat = T) modificationindices(fit3,sort. = T) model4<-' income~hi_deg+selectiv+acheive hi_deg~ability+acheive+deg_asp selectiv~ability+acheive+deg_asp+hi_deg ability~income ability~~acheive ability~~deg_asp acheive~~deg_asp ' fit4<-sem(model = model4,sample.cov = covmat,sample.nobs = n) summary(fit4,standardized=T,fit.measures=T,rsquare=T) semPaths(fit4,layout = "tree2",whatLabels = "std",color = "red") lavResiduals(object = fit4,zstat = T) modificationindices(fit4,sort. = T) anova(fit4,fit3,fit2,fit) #third and fourth modifications is not significant #CFA by lavaan n<-318 covlow<-c(.7821, .5602,.9299, .5695,.6281,.9751, .1969,.2599,.2362,.6352, .2289,.2835,.3079,.4575,.7943, .2609,.3670,.3575,.4327,.4151,.6783, .0556,.0740,.0981,.2094,.2306,.2503,.6855, .0025,.0279,.0798,.2047,.2270,.2257,.4224,.6952, .0180,.0753,.0744,.1892,.2352,.2008,.4343,.4514,.6065, .1617,.1919,.2892,.1376,.1744,.1845,.0645,.0731,.0921,.4068, .2628,.3047,.4043,.1742,.2066,.2547,.1356,.1336,.1283,.1958,.7015, .2966,.3040,.3919,.1942,.1864,.2402,.1073,.0988,.0599,.2233,.3033,.5786) covfull<-lav_matrix_lower2full(covlow) colnames(covfull)<-rownames(covfull)<-c(paste0("TEN",1:3),paste0("WOR",1:3),paste0("IRTHK",1:3),paste0("BODY",1:3)) model<-' TENSION=~TEN1+TEN2+TEN3 WORRY=~WOR1+WOR2+WOR3 TESTIRRTHINKING=~IRTHK1+IRTHK2+IRTHK3 BODILYSUMP=~BODY1+BODY2+BODY3 TENSION~~WORRY TENSION~~TESTIRRTHINKING TENSION~~BODILYSUMP WORRY~~TESTIRRTHINKING WORRY~~BODILYSUMP TESTIRRTHINKING~~BODILYSUMP TENSION~~1*TENSION WORRY~~1*WORRY TESTIRRTHINKING~~1*TESTIRRTHINKING BODILYSUMP~~1*BODILYSUMP ' fit<-cfa(model = model,sample.cov = covfull,sample.nobs = n,std.lv=TRUE) summary(fit,fit.measures=T,standardized=T,rsquare=T) lavResiduals(object = fit,zstat = T) modificationindices(fit,sort. = T)[1,] semPaths(fit,whatLabels = "std",residuals = T,color = "green") #modification 1 model2<-' TENSION=~TEN1+TEN2+TEN3 WORRY=~WOR1+WOR2+WOR3 TESTIRRTHINKING=~IRTHK1+IRTHK2+IRTHK3 BODILYSUMP=~BODY1+BODY2+BODY3+TEN3 TENSION~~WORRY TENSION~~TESTIRRTHINKING TENSION~~BODILYSUMP WORRY~~TESTIRRTHINKING WORRY~~BODILYSUMP TESTIRRTHINKING~~BODILYSUMP TENSION~~1*TENSION WORRY~~1*WORRY TESTIRRTHINKING~~1*TESTIRRTHINKING BODILYSUMP~~1*BODILYSUMP ' fit2<-cfa(model = model2,sample.cov = covfull,sample.nobs = n,std.lv=TRUE) summary(fit2,fit.measures=T,standardized=T,rsquare=T) lavResiduals(object = fit2,zstat = T)$cov.z%>%data.frame()%>%apply(MARGIN = 2,function(x){ ifelse(abs(x)>=1.96,x,0) })%>%View modificationindices(fit2,sort. = T) semPaths(fit2,whatLabels = "std",residuals = T,color = "green") #modification 12 model3<-' TENSION=~TEN1+TEN2+TEN3 WORRY=~WOR1+WOR2+WOR3 TESTIRRTHINKING=~IRTHK1+IRTHK2+IRTHK3 BODILYSUMP=~BODY1+BODY2+BODY3+TEN3 TENSION~~WORRY TENSION~~TESTIRRTHINKING TENSION~~BODILYSUMP WORRY~~TESTIRRTHINKING WORRY~~BODILYSUMP TESTIRRTHINKING~~BODILYSUMP WOR2~~WOR3 TENSION~~1*TENSION WORRY~~1*WORRY TESTIRRTHINKING~~1*TESTIRRTHINKING BODILYSUMP~~1*BODILYSUMP ' fit3<-cfa(model = model3,sample.cov = covfull,sample.nobs = n,std.lv=TRUE) summary(fit3,fit.measures=T,standardized=T,rsquare=T) lavResiduals(object = fit3,zstat = T)$cov.z%>%data.frame()%>%apply(MARGIN = 2,function(x){ ifelse(abs(x)>=1.96,x,0) })%>%View modificationindices(fit3,sort. = T) semPaths(fit3,whatLabels = "std",residuals = T,color = "green") anova(fit,fit2,fit3) #################################3 #structural ( latent path analysis ) model corlow<-c(1.000, .812,1.000, .819,.752,1.000, .334,.344,.228,1.000, .177,.094,.141,.363,1.000, .363,.383,.387,.241,.273,1.000, .239,.258,.275,.286,.389,.445,1.000, .243,.293,.234,.116,.096,.222,.344,1.000, .672,.616,.621,.277,.137,.458,.315,.246,1.000, .464,.620,.514,.213,.173,.430,.387,.132,.680,1.000, .612,.640,.719,.192,.090,.509,.336,.230,.819,.676,1.000, .331,.391,.310,.435,.263,.409,.298,.256,.446,.395,.411,1.000, .209,.214,.286,.319,.671,.423,.334,.246,.308,.268,.280,.573,1.000, .298,.358,.361,.171,.232,.791,.286,.057,.433,.387,.477,.389,.445,1.000, .309,.303,.381,.132,.307,.637,.459,.267,.468,.406,.458,.554,.514,.551,1.000, .056,.086,.092,.090,.201,.123,.247,.403,.176,.076,.131,.318,.213,.056,.342,1.000) corfull<-lav_matrix_lower2full(corlow) colnames(corfull)<-rownames(corfull)<-c(paste("SS1",1:3,sep = "_"), paste("SE1",1:2,sep = "_"), paste("EB1",1:3,sep = "_"), paste("SS2",1:3,sep = "_"), paste("SE2",1:2,sep = "_"), paste("EB2",1:3,sep = "_")) sds<-c(2.46,1.76,2.74,2.04,2.13,4.30,1.90,1.90,2.63,1.89,2.84,2.34,2.27,4.86,2.66,1.94) n<-300 covmat<-cor2cov(corfull,sds = sds) path1<-paste("EB1",paste(paste("EB1",1:3,sep = "_"),collapse = "+"),sep = "=~") path2<-paste("EB2",paste(paste("EB2",1:3,sep = "_"),collapse = "+"),sep = "=~") path3<-paste("SE1",paste(paste("SE1",1:2,sep = "_"),collapse = "+"),sep = "=~") path4<-paste("SE2",paste(paste("SE2",1:2,sep = "_"),collapse = "+"),sep = "=~") path5<-paste("SS1",paste(paste("SS1",1:3,sep = "_"),collapse = "+"),sep = "=~") path6<-paste("SS2",paste(paste("SS2",1:3,sep = "_"),collapse = "+"),sep = "=~") measuremodel<-paste(path1,path2,path3,path4,path5,path6,sep = "\n") structuralmodel<-" SS2~SS1 SE2~SS2+SS1+SE1 EB2~SE1+SE2+EB1 EB1~~SE1 EB1~~SS1 SE1~~SS1 " model<-paste(measuremodel,structuralmodel,collapse = "\n") fit<-sem(model = model,sample.cov = covmat,sample.nobs = n) summary(fit,fit.measures=T,standardized=T,rsquare=T) semPaths(fit,whatLabels = "std") modificationindices(fit,sort. = T)[1:10,] lavResiduals(object = fit,zstat = T)$cov.z%>%data.frame()%>%apply(MARGIN = 2,function(x){ ifelse(abs(x)>=1.96,x,NA) })%>%round(digits = 2)%>%View #running a saturated path analysis structuralmodel2<-' EB1~~EB2 EB1~~SE2 EB1~~SS2 EB1~~SE1 EB1~~SS1 SE1~~EB2 SE1~~SE2 SE1~~SS2 SE1~~SS1 SS1~~EB2 SS1~~SE2 SS1~~SS2 EB2~~SE2 EB2~~SS2 SE2~~SS2 ' model2<-paste(measuremodel,structuralmodel2,collapse = "\n") fit2<-sem(model = model2,sample.cov = covmat,sample.nobs = n) summary(fit2,fit.measures=T,standardized=T,rsquare=T) semPaths(fit2,whatLabels = "std") modificationindices(fit2,sort. = T)[1:10,] pathmi1<-"EB1_1 ~~ EB2_1" pathmi2<-"SE1_2 ~~ SE2_2" pathmi3<-"SE1_2 ~~ SE2_1" pathmi4<-"SS1_3 ~~ SS2_3" pathmi5<-"SS1_1 ~~ SS2_1" pathmi6<-" EB2 =~ SE2_2" pathmi7<-"EB1 =~ SE2_2" measuremodel2<-paste(path1,path2,path3,path4,path5,path6,pathmi1,pathmi2,pathmi3,pathmi4,pathmi5,pathmi6,pathmi7,sep = "\n") model3<-paste(measuremodel2,structuralmodel2,collapse = "\n") fit3<-sem(model = model3,sample.cov = covmat,sample.nobs = n) summary(fit3,fit.measures=T,standardized=T,rsquare=T) semPaths(fit3,whatLabels = "std")
/SEM.R
no_license
VetMomen/Statistical-practice
R
false
false
8,463
r
#SEM practicing library(lavaan) library(semPlot) library(tidyverse) #path Analysis n<-3094 sd<-c(.71,.75,.90,.69,1.84,1.37) lowercorr<-c(1.00, .28,1.00, .19,.21,1.00, .15,.15,.23,1.00, .35,.09,.20,.20,1.00, .08,.11,.09,.11,.23,1.00) fullcorr<-lav_matrix_lower2full(lowercorr) covmat<-cor2cov(R = fullcorr,sds = sd) colnames(covmat)<-rownames(covmat)<-c("ability","acheive","deg_asp","hi_deg","selectiv","income") model<-' income~hi_deg+selectiv hi_deg~ability+acheive+deg_asp selectiv~ability+acheive+deg_asp ability~~acheive ability~~deg_asp acheive~~deg_asp ' fit<-sem(model = model,sample.cov = covmat,sample.nobs = n) summary(fit,standardized=T,fit.measures=T,rsquare=T) semPaths(fit,layout = "tree2",whatLabels = "std",color = "red") lavResiduals(object = fit,zstat = T) #the std.all in case of error variance is the total variance unexplained modificationindices(fit,sort. = T) model2<-' income~hi_deg+selectiv hi_deg~ability+acheive+deg_asp selectiv~ability+acheive+deg_asp+hi_deg ability~~acheive ability~~deg_asp acheive~~deg_asp ' fit2<-sem(model = model2,sample.cov = covmat,sample.nobs = n) summary(fit2,standardized=T,fit.measures=T,rsquare=T) semPaths(fit2,layout = "tree2",whatLabels = "std",color = "red") lavResiduals(object = fit2,zstat = T) modificationindices(fit2,sort. = T) model3<-' income~hi_deg+selectiv+acheive hi_deg~ability+acheive+deg_asp selectiv~ability+acheive+deg_asp+hi_deg ability~~acheive ability~~deg_asp acheive~~deg_asp ' fit3<-sem(model = model3,sample.cov = covmat,sample.nobs = n) summary(fit3,standardized=T,fit.measures=T,rsquare=T) semPaths(fit3,layout = "tree2",whatLabels = "std",color = "red") lavResiduals(object = fit3,zstat = T) modificationindices(fit3,sort. = T) model4<-' income~hi_deg+selectiv+acheive hi_deg~ability+acheive+deg_asp selectiv~ability+acheive+deg_asp+hi_deg ability~income ability~~acheive ability~~deg_asp acheive~~deg_asp ' fit4<-sem(model = model4,sample.cov = covmat,sample.nobs = n) summary(fit4,standardized=T,fit.measures=T,rsquare=T) semPaths(fit4,layout = "tree2",whatLabels = "std",color = "red") lavResiduals(object = fit4,zstat = T) modificationindices(fit4,sort. = T) anova(fit4,fit3,fit2,fit) #third and fourth modifications is not significant #CFA by lavaan n<-318 covlow<-c(.7821, .5602,.9299, .5695,.6281,.9751, .1969,.2599,.2362,.6352, .2289,.2835,.3079,.4575,.7943, .2609,.3670,.3575,.4327,.4151,.6783, .0556,.0740,.0981,.2094,.2306,.2503,.6855, .0025,.0279,.0798,.2047,.2270,.2257,.4224,.6952, .0180,.0753,.0744,.1892,.2352,.2008,.4343,.4514,.6065, .1617,.1919,.2892,.1376,.1744,.1845,.0645,.0731,.0921,.4068, .2628,.3047,.4043,.1742,.2066,.2547,.1356,.1336,.1283,.1958,.7015, .2966,.3040,.3919,.1942,.1864,.2402,.1073,.0988,.0599,.2233,.3033,.5786) covfull<-lav_matrix_lower2full(covlow) colnames(covfull)<-rownames(covfull)<-c(paste0("TEN",1:3),paste0("WOR",1:3),paste0("IRTHK",1:3),paste0("BODY",1:3)) model<-' TENSION=~TEN1+TEN2+TEN3 WORRY=~WOR1+WOR2+WOR3 TESTIRRTHINKING=~IRTHK1+IRTHK2+IRTHK3 BODILYSUMP=~BODY1+BODY2+BODY3 TENSION~~WORRY TENSION~~TESTIRRTHINKING TENSION~~BODILYSUMP WORRY~~TESTIRRTHINKING WORRY~~BODILYSUMP TESTIRRTHINKING~~BODILYSUMP TENSION~~1*TENSION WORRY~~1*WORRY TESTIRRTHINKING~~1*TESTIRRTHINKING BODILYSUMP~~1*BODILYSUMP ' fit<-cfa(model = model,sample.cov = covfull,sample.nobs = n,std.lv=TRUE) summary(fit,fit.measures=T,standardized=T,rsquare=T) lavResiduals(object = fit,zstat = T) modificationindices(fit,sort. = T)[1,] semPaths(fit,whatLabels = "std",residuals = T,color = "green") #modification 1 model2<-' TENSION=~TEN1+TEN2+TEN3 WORRY=~WOR1+WOR2+WOR3 TESTIRRTHINKING=~IRTHK1+IRTHK2+IRTHK3 BODILYSUMP=~BODY1+BODY2+BODY3+TEN3 TENSION~~WORRY TENSION~~TESTIRRTHINKING TENSION~~BODILYSUMP WORRY~~TESTIRRTHINKING WORRY~~BODILYSUMP TESTIRRTHINKING~~BODILYSUMP TENSION~~1*TENSION WORRY~~1*WORRY TESTIRRTHINKING~~1*TESTIRRTHINKING BODILYSUMP~~1*BODILYSUMP ' fit2<-cfa(model = model2,sample.cov = covfull,sample.nobs = n,std.lv=TRUE) summary(fit2,fit.measures=T,standardized=T,rsquare=T) lavResiduals(object = fit2,zstat = T)$cov.z%>%data.frame()%>%apply(MARGIN = 2,function(x){ ifelse(abs(x)>=1.96,x,0) })%>%View modificationindices(fit2,sort. = T) semPaths(fit2,whatLabels = "std",residuals = T,color = "green") #modification 12 model3<-' TENSION=~TEN1+TEN2+TEN3 WORRY=~WOR1+WOR2+WOR3 TESTIRRTHINKING=~IRTHK1+IRTHK2+IRTHK3 BODILYSUMP=~BODY1+BODY2+BODY3+TEN3 TENSION~~WORRY TENSION~~TESTIRRTHINKING TENSION~~BODILYSUMP WORRY~~TESTIRRTHINKING WORRY~~BODILYSUMP TESTIRRTHINKING~~BODILYSUMP WOR2~~WOR3 TENSION~~1*TENSION WORRY~~1*WORRY TESTIRRTHINKING~~1*TESTIRRTHINKING BODILYSUMP~~1*BODILYSUMP ' fit3<-cfa(model = model3,sample.cov = covfull,sample.nobs = n,std.lv=TRUE) summary(fit3,fit.measures=T,standardized=T,rsquare=T) lavResiduals(object = fit3,zstat = T)$cov.z%>%data.frame()%>%apply(MARGIN = 2,function(x){ ifelse(abs(x)>=1.96,x,0) })%>%View modificationindices(fit3,sort. = T) semPaths(fit3,whatLabels = "std",residuals = T,color = "green") anova(fit,fit2,fit3) #################################3 #structural ( latent path analysis ) model corlow<-c(1.000, .812,1.000, .819,.752,1.000, .334,.344,.228,1.000, .177,.094,.141,.363,1.000, .363,.383,.387,.241,.273,1.000, .239,.258,.275,.286,.389,.445,1.000, .243,.293,.234,.116,.096,.222,.344,1.000, .672,.616,.621,.277,.137,.458,.315,.246,1.000, .464,.620,.514,.213,.173,.430,.387,.132,.680,1.000, .612,.640,.719,.192,.090,.509,.336,.230,.819,.676,1.000, .331,.391,.310,.435,.263,.409,.298,.256,.446,.395,.411,1.000, .209,.214,.286,.319,.671,.423,.334,.246,.308,.268,.280,.573,1.000, .298,.358,.361,.171,.232,.791,.286,.057,.433,.387,.477,.389,.445,1.000, .309,.303,.381,.132,.307,.637,.459,.267,.468,.406,.458,.554,.514,.551,1.000, .056,.086,.092,.090,.201,.123,.247,.403,.176,.076,.131,.318,.213,.056,.342,1.000) corfull<-lav_matrix_lower2full(corlow) colnames(corfull)<-rownames(corfull)<-c(paste("SS1",1:3,sep = "_"), paste("SE1",1:2,sep = "_"), paste("EB1",1:3,sep = "_"), paste("SS2",1:3,sep = "_"), paste("SE2",1:2,sep = "_"), paste("EB2",1:3,sep = "_")) sds<-c(2.46,1.76,2.74,2.04,2.13,4.30,1.90,1.90,2.63,1.89,2.84,2.34,2.27,4.86,2.66,1.94) n<-300 covmat<-cor2cov(corfull,sds = sds) path1<-paste("EB1",paste(paste("EB1",1:3,sep = "_"),collapse = "+"),sep = "=~") path2<-paste("EB2",paste(paste("EB2",1:3,sep = "_"),collapse = "+"),sep = "=~") path3<-paste("SE1",paste(paste("SE1",1:2,sep = "_"),collapse = "+"),sep = "=~") path4<-paste("SE2",paste(paste("SE2",1:2,sep = "_"),collapse = "+"),sep = "=~") path5<-paste("SS1",paste(paste("SS1",1:3,sep = "_"),collapse = "+"),sep = "=~") path6<-paste("SS2",paste(paste("SS2",1:3,sep = "_"),collapse = "+"),sep = "=~") measuremodel<-paste(path1,path2,path3,path4,path5,path6,sep = "\n") structuralmodel<-" SS2~SS1 SE2~SS2+SS1+SE1 EB2~SE1+SE2+EB1 EB1~~SE1 EB1~~SS1 SE1~~SS1 " model<-paste(measuremodel,structuralmodel,collapse = "\n") fit<-sem(model = model,sample.cov = covmat,sample.nobs = n) summary(fit,fit.measures=T,standardized=T,rsquare=T) semPaths(fit,whatLabels = "std") modificationindices(fit,sort. = T)[1:10,] lavResiduals(object = fit,zstat = T)$cov.z%>%data.frame()%>%apply(MARGIN = 2,function(x){ ifelse(abs(x)>=1.96,x,NA) })%>%round(digits = 2)%>%View #running a saturated path analysis structuralmodel2<-' EB1~~EB2 EB1~~SE2 EB1~~SS2 EB1~~SE1 EB1~~SS1 SE1~~EB2 SE1~~SE2 SE1~~SS2 SE1~~SS1 SS1~~EB2 SS1~~SE2 SS1~~SS2 EB2~~SE2 EB2~~SS2 SE2~~SS2 ' model2<-paste(measuremodel,structuralmodel2,collapse = "\n") fit2<-sem(model = model2,sample.cov = covmat,sample.nobs = n) summary(fit2,fit.measures=T,standardized=T,rsquare=T) semPaths(fit2,whatLabels = "std") modificationindices(fit2,sort. = T)[1:10,] pathmi1<-"EB1_1 ~~ EB2_1" pathmi2<-"SE1_2 ~~ SE2_2" pathmi3<-"SE1_2 ~~ SE2_1" pathmi4<-"SS1_3 ~~ SS2_3" pathmi5<-"SS1_1 ~~ SS2_1" pathmi6<-" EB2 =~ SE2_2" pathmi7<-"EB1 =~ SE2_2" measuremodel2<-paste(path1,path2,path3,path4,path5,path6,pathmi1,pathmi2,pathmi3,pathmi4,pathmi5,pathmi6,pathmi7,sep = "\n") model3<-paste(measuremodel2,structuralmodel2,collapse = "\n") fit3<-sem(model = model3,sample.cov = covmat,sample.nobs = n) summary(fit3,fit.measures=T,standardized=T,rsquare=T) semPaths(fit3,whatLabels = "std")
# test <- wilcox.test(statsAov$Median~statsAov$PRESa, exact=T, estimate=T) ## Kruskal Wallis tests for differences between groups ## helper function require(xtable) require(dplyr) require(pgirmess) rdec <- function(x, k){format(round(x), nsmall=k)} # # load("./output/statsAov_medianCI.Rda") # load("./output/simConcise.Rda") # simConcise$ExpNo <- as.factor(simConcise$ExpNo) # # statsAov <- inner_join(statsAov, simConcise) load("./output/statsAov.Rda") statsAov$ExpNo <- as.factor(statsAov$ExpNo) ## Set up output paths: outPath <- "./output/" # bigtabsPath <- "output/MWU/bigtabs/" ## Build subsets, run kruskalmc and record differences for both cells and all FG ## individually ## ------ PRES ------ PRES <- new.env() #Storage for output PRES$median <- new.env() PRES$mwutest <- new.env() cells <- unique(statsAov$CellCode) fgroups <- unique(statsAov$FGroup) expno <- levels(statsAov$ExpNo) exptest <- expno numexp <- length(exptest) categ <- names(statsAov)[c(19:21)] for(ce in cells){ curPath <- paste0(outPath,"MannW/BMD_pres/", ce) xPath <- paste0(curPath, "/xtable") if(!is.factor(statsAov$ExpNo) | !is.factor(statsAov$FD)){ break("Coerce to factors!") } else { paste("Factor Check successful!") } if(!file.exists(curPath)){ dir.create(curPath, recursive=T) } else {} if(!file.exists(xPath)){ dir.create(xPath, recursive = T) } else {} for(fg in fgroups){ assign(paste0(fg, "_dat"), subset(statsAov, FGroup==fg & TimeStep>=1080 & CellCode==ce), envir = PRES) for(cat in categ){ dat <- get(paste0(fg, "_dat"), envir = PRES) dat <- as.data.frame(dat) n1 <- table(dat[,cat])[[1]] n2 <- table(dat[,cat])[[2]] assign(paste0(fg, "_", cat, "_", ce, "_median"), tapply(dat$Median,list(dat[,cat]), median) , envir = PRES$median ) assign(paste0(fg, "_", cat, "_", ce, "_mwutest"), { wilcox.test(dat$Median~dat[,cat]) } , envir = PRES$mwutest ) # write.csv(dat.tmp, file=paste0(curPath,"/",fg, "_", cat, "_",ce, "_res.csv")) # curr.test <- get(x = paste0(fg, "_", cat, "_", ce, "_mwutest"), # envir = PRES$mwutest) # # curr.test[6] <- paste(cat,"for",fg, "in", ce, " biomass density [$kg\\cdot km^{-2}$]") # # xtab <- xtable(dat.tmp, # caption = paste0("$\\U_{", # n1, # "," , # n2, # "} = ", # round(as.numeric(curr.test[1]),2), # "$ ", # "$p = ", # round(as.numeric(curr.test[3]), 4), # "$ ", # curr.test[5]), # label = "tab:" # # ) # # print(xtab, file=paste0(xPath,"/",fg, "_", cat, "_", ce, "_res.tex"), # sanitize.text.function = function(x) x, # tabular.environment = "tabular*", # caption.placement = "top", # booktabs = T, # sanitize.colnames.function = function(x){ # paste0("\\textbf{", x, "}") # }) } } } # PRES.kw <- as.list(mget(ls(pattern = "res", envir = PRES), envir = PRES)) save(PRES, file="output/MannW/BMD_pres/PRES_env.Rda") # save(PRES.mwu, file="output/MWU/PRES_MWU.Rda")
/Analysis/scripts/08_statAnalysis_MannW_presence.R
no_license
the-Hull/Diss
R
false
false
4,397
r
# test <- wilcox.test(statsAov$Median~statsAov$PRESa, exact=T, estimate=T) ## Kruskal Wallis tests for differences between groups ## helper function require(xtable) require(dplyr) require(pgirmess) rdec <- function(x, k){format(round(x), nsmall=k)} # # load("./output/statsAov_medianCI.Rda") # load("./output/simConcise.Rda") # simConcise$ExpNo <- as.factor(simConcise$ExpNo) # # statsAov <- inner_join(statsAov, simConcise) load("./output/statsAov.Rda") statsAov$ExpNo <- as.factor(statsAov$ExpNo) ## Set up output paths: outPath <- "./output/" # bigtabsPath <- "output/MWU/bigtabs/" ## Build subsets, run kruskalmc and record differences for both cells and all FG ## individually ## ------ PRES ------ PRES <- new.env() #Storage for output PRES$median <- new.env() PRES$mwutest <- new.env() cells <- unique(statsAov$CellCode) fgroups <- unique(statsAov$FGroup) expno <- levels(statsAov$ExpNo) exptest <- expno numexp <- length(exptest) categ <- names(statsAov)[c(19:21)] for(ce in cells){ curPath <- paste0(outPath,"MannW/BMD_pres/", ce) xPath <- paste0(curPath, "/xtable") if(!is.factor(statsAov$ExpNo) | !is.factor(statsAov$FD)){ break("Coerce to factors!") } else { paste("Factor Check successful!") } if(!file.exists(curPath)){ dir.create(curPath, recursive=T) } else {} if(!file.exists(xPath)){ dir.create(xPath, recursive = T) } else {} for(fg in fgroups){ assign(paste0(fg, "_dat"), subset(statsAov, FGroup==fg & TimeStep>=1080 & CellCode==ce), envir = PRES) for(cat in categ){ dat <- get(paste0(fg, "_dat"), envir = PRES) dat <- as.data.frame(dat) n1 <- table(dat[,cat])[[1]] n2 <- table(dat[,cat])[[2]] assign(paste0(fg, "_", cat, "_", ce, "_median"), tapply(dat$Median,list(dat[,cat]), median) , envir = PRES$median ) assign(paste0(fg, "_", cat, "_", ce, "_mwutest"), { wilcox.test(dat$Median~dat[,cat]) } , envir = PRES$mwutest ) # write.csv(dat.tmp, file=paste0(curPath,"/",fg, "_", cat, "_",ce, "_res.csv")) # curr.test <- get(x = paste0(fg, "_", cat, "_", ce, "_mwutest"), # envir = PRES$mwutest) # # curr.test[6] <- paste(cat,"for",fg, "in", ce, " biomass density [$kg\\cdot km^{-2}$]") # # xtab <- xtable(dat.tmp, # caption = paste0("$\\U_{", # n1, # "," , # n2, # "} = ", # round(as.numeric(curr.test[1]),2), # "$ ", # "$p = ", # round(as.numeric(curr.test[3]), 4), # "$ ", # curr.test[5]), # label = "tab:" # # ) # # print(xtab, file=paste0(xPath,"/",fg, "_", cat, "_", ce, "_res.tex"), # sanitize.text.function = function(x) x, # tabular.environment = "tabular*", # caption.placement = "top", # booktabs = T, # sanitize.colnames.function = function(x){ # paste0("\\textbf{", x, "}") # }) } } } # PRES.kw <- as.list(mget(ls(pattern = "res", envir = PRES), envir = PRES)) save(PRES, file="output/MannW/BMD_pres/PRES_env.Rda") # save(PRES.mwu, file="output/MWU/PRES_MWU.Rda")
# should be parsed as dependencies (use only lower-case letters for package names) library(a) library("b") base::library(c) base::library("d", character.only = TRUE) requireNamespace("e") base::requireNamespace("f", quietly = TRUE) xfun::pkg_attach(c("g", "h")) pkg_attach2("i", "j") k::foo() l:::bar() "m"::baz() # should NOT be parsed as dependencies (use only upper-case names for package names) library(A, character.only = TRUE)
/tests/testthat/resources/code.R
permissive
rstudio/renv
R
false
false
435
r
# should be parsed as dependencies (use only lower-case letters for package names) library(a) library("b") base::library(c) base::library("d", character.only = TRUE) requireNamespace("e") base::requireNamespace("f", quietly = TRUE) xfun::pkg_attach(c("g", "h")) pkg_attach2("i", "j") k::foo() l:::bar() "m"::baz() # should NOT be parsed as dependencies (use only upper-case names for package names) library(A, character.only = TRUE)
library(glmnet) mydata = read.table("./TrainingSet/Correlation/urinary_tract.csv",head=T,sep=",") x = as.matrix(mydata[,4:ncol(mydata)]) y = as.matrix(mydata[,1]) set.seed(123) glm = cv.glmnet(x,y,nfolds=10,type.measure="mae",alpha=0.75,family="gaussian",standardize=TRUE) sink('./Model/EN/Correlation/urinary_tract/urinary_tract_079.txt',append=TRUE) print(glm$glmnet.fit) sink()
/Model/EN/Correlation/urinary_tract/urinary_tract_079.R
no_license
leon1003/QSMART
R
false
false
381
r
library(glmnet) mydata = read.table("./TrainingSet/Correlation/urinary_tract.csv",head=T,sep=",") x = as.matrix(mydata[,4:ncol(mydata)]) y = as.matrix(mydata[,1]) set.seed(123) glm = cv.glmnet(x,y,nfolds=10,type.measure="mae",alpha=0.75,family="gaussian",standardize=TRUE) sink('./Model/EN/Correlation/urinary_tract/urinary_tract_079.txt',append=TRUE) print(glm$glmnet.fit) sink()
loadDigestDataFromXL_Severity <- function(xlsPath, sheets, labelCol="B", positionCol="C", dataCol="D") { # Loads digest data from Excel. # # The data for fire severity samples are in separate worksheets. # Unlike the similar fire frequency data files, the sheet names do not # always match sample label, so instead this script examines the contents # of the label column and takes the last non-blank entry as the name # of the sample (earlier entries can be header label or other comments). # # The data are formatted in blocks with header rows and blank lines # so this script has to match things up. # # The value returned is a single data.frame with cols for sample label # and data value (both as character). require(xlsx) require(stringr) gc() wb <- loadWorkbook(xlsPath) wss <- getSheets(wb)[sheets] getColValues <- function(ws, col, rowIndices) { if (missing(rowIndices)) rows <- getRows(ws) else rows <- getRows(ws, rowIndices) # sometimes we end up with NAs for blank cells - no idea why vals <- sapply(getCells(rows, col), getCellValue) vals[ is.na(vals) ] <- "" vals } cellNamesToRowIndex <- function(cellNames) { # names have the form rownum.colnum rows <- sapply( str_split(cellNames, "\\."), function(parts) parts[1] ) as.integer(rows) } lastLabel <- function(labels) { ts <- str_trim(labels) ii <- which(str_length(ts) > 0) ilast <- max(ii) labels[ilast] } # browser() out <- NULL for (isheet in 1:length(wss)) { cat("sheet", isheet, ": ") labelCol <- xlColLabelToIndex(labelCol) labels <- getColValues(wss[[isheet]], labelCol) # Assume that the last non-blank label col value is the # sample label sampleLabel <- lastLabel(labels) cat(sampleLabel, "\n") # The rows that we want are identified by having a label # identical to the sample label (e.g. "K1F1") ii <- labels == sampleLabel # We need to get the excel row numbers from the label vector names # because of some cols having or not having header data ii.rows <- cellNamesToRowIndex( names(ii)[ii] ) positionCol <- xlColLabelToIndex(positionCol) positionVals <- getColValues(wss[[isheet]], positionCol, ii.rows) dataCol <- xlColLabelToIndex(dataCol) dataVals <- getColValues(wss[[isheet]], dataCol, ii.rows) if (is.null(out)) out <- data.frame(label=labels[ii], position=positionVals, x=dataVals, stringsAsFactors=FALSE) else out <- rbind(out, data.frame(label=labels[ii], position=positionVals, x=dataVals, stringsAsFactors=FALSE)) } out }
/scripts/loadDigestDataFromXL_Severity.R
no_license
mbedward/robert_fire_sev
R
false
false
2,770
r
loadDigestDataFromXL_Severity <- function(xlsPath, sheets, labelCol="B", positionCol="C", dataCol="D") { # Loads digest data from Excel. # # The data for fire severity samples are in separate worksheets. # Unlike the similar fire frequency data files, the sheet names do not # always match sample label, so instead this script examines the contents # of the label column and takes the last non-blank entry as the name # of the sample (earlier entries can be header label or other comments). # # The data are formatted in blocks with header rows and blank lines # so this script has to match things up. # # The value returned is a single data.frame with cols for sample label # and data value (both as character). require(xlsx) require(stringr) gc() wb <- loadWorkbook(xlsPath) wss <- getSheets(wb)[sheets] getColValues <- function(ws, col, rowIndices) { if (missing(rowIndices)) rows <- getRows(ws) else rows <- getRows(ws, rowIndices) # sometimes we end up with NAs for blank cells - no idea why vals <- sapply(getCells(rows, col), getCellValue) vals[ is.na(vals) ] <- "" vals } cellNamesToRowIndex <- function(cellNames) { # names have the form rownum.colnum rows <- sapply( str_split(cellNames, "\\."), function(parts) parts[1] ) as.integer(rows) } lastLabel <- function(labels) { ts <- str_trim(labels) ii <- which(str_length(ts) > 0) ilast <- max(ii) labels[ilast] } # browser() out <- NULL for (isheet in 1:length(wss)) { cat("sheet", isheet, ": ") labelCol <- xlColLabelToIndex(labelCol) labels <- getColValues(wss[[isheet]], labelCol) # Assume that the last non-blank label col value is the # sample label sampleLabel <- lastLabel(labels) cat(sampleLabel, "\n") # The rows that we want are identified by having a label # identical to the sample label (e.g. "K1F1") ii <- labels == sampleLabel # We need to get the excel row numbers from the label vector names # because of some cols having or not having header data ii.rows <- cellNamesToRowIndex( names(ii)[ii] ) positionCol <- xlColLabelToIndex(positionCol) positionVals <- getColValues(wss[[isheet]], positionCol, ii.rows) dataCol <- xlColLabelToIndex(dataCol) dataVals <- getColValues(wss[[isheet]], dataCol, ii.rows) if (is.null(out)) out <- data.frame(label=labels[ii], position=positionVals, x=dataVals, stringsAsFactors=FALSE) else out <- rbind(out, data.frame(label=labels[ii], position=positionVals, x=dataVals, stringsAsFactors=FALSE)) } out }
% Generated by roxygen2 (4.1.1): do not edit by hand % Please edit documentation in R/rfVIP_master.R \name{createRFmodel} \alias{createRFmodel} \title{createRFmodel} \usage{ createRFmodel(train.x, train.y, m.try, nSeed = 3456, nCores = 1) } \arguments{ \item{train.x}{dataframe containing x values} \item{train.y}{vector containing y values} \item{m.try}{tuned m.try value} \item{nSeed}{integer containing seed value, defaults to 3456} \item{nCores}{integer indicating number of cores used for parallal processing} } \value{ random forest model of class "train" } \description{ This function does the random forest modeling for a given x and y } \examples{ rf_model <- createRFmodel(train.x,train.y,nSeed=3456,nCores=4) }
/man/createRFmodel.Rd
no_license
kpadm/rfeVIP
R
false
false
727
rd
% Generated by roxygen2 (4.1.1): do not edit by hand % Please edit documentation in R/rfVIP_master.R \name{createRFmodel} \alias{createRFmodel} \title{createRFmodel} \usage{ createRFmodel(train.x, train.y, m.try, nSeed = 3456, nCores = 1) } \arguments{ \item{train.x}{dataframe containing x values} \item{train.y}{vector containing y values} \item{m.try}{tuned m.try value} \item{nSeed}{integer containing seed value, defaults to 3456} \item{nCores}{integer indicating number of cores used for parallal processing} } \value{ random forest model of class "train" } \description{ This function does the random forest modeling for a given x and y } \examples{ rf_model <- createRFmodel(train.x,train.y,nSeed=3456,nCores=4) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/cashflows.R \name{shift_for_dividends} \alias{shift_for_dividends} \title{Shift a set of grid values for dividends paid, using spline interpolation} \usage{ shift_for_dividends(grid_values_before_shift, stock_prices, div_sum) } \arguments{ \item{grid_values_before_shift}{Values on grid before accounting for expected dividends} \item{stock_prices}{Stock prices for which to shift the grid} \item{div_sum}{Sum of dividend values at each grid point} } \value{ An object like \code{grid_values_before_shift} with entries shifted according to the dividend sums } \description{ Shift a set of grid values for dividends paid, using spline interpolation } \seealso{ Other Dividends: \code{\link{adjust_for_dividends}}, \code{\link{time_adj_dividends}} }
/man/shift_for_dividends.Rd
no_license
freephys/ragtop
R
false
true
833
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/cashflows.R \name{shift_for_dividends} \alias{shift_for_dividends} \title{Shift a set of grid values for dividends paid, using spline interpolation} \usage{ shift_for_dividends(grid_values_before_shift, stock_prices, div_sum) } \arguments{ \item{grid_values_before_shift}{Values on grid before accounting for expected dividends} \item{stock_prices}{Stock prices for which to shift the grid} \item{div_sum}{Sum of dividend values at each grid point} } \value{ An object like \code{grid_values_before_shift} with entries shifted according to the dividend sums } \description{ Shift a set of grid values for dividends paid, using spline interpolation } \seealso{ Other Dividends: \code{\link{adjust_for_dividends}}, \code{\link{time_adj_dividends}} }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/motifComparision.r \name{locHist2} \alias{locHist2} \title{locHist} \usage{ locHist2(t1, x, xlab = "Histogram", limits = c(-32, 32)) } \description{ locHist }
/man/locHist2.Rd
permissive
alexjgriffith/CCCA
R
false
true
238
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/motifComparision.r \name{locHist2} \alias{locHist2} \title{locHist} \usage{ locHist2(t1, x, xlab = "Histogram", limits = c(-32, 32)) } \description{ locHist }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/loadCLSAData.R \name{loadCLSAData} \alias{loadCLSAData} \title{Load CLSA Comprehensive and Tracking Datasets} \usage{ loadCLSAData(path) } \arguments{ \item{path}{The path to the folder containging the comprehensive and tracking .csv files} } \value{ A list of the comprehensive and tracking CLSA datasets in the following order: \enumerate{ \item comprehensive \item tracking } } \description{ Load the most recent comprehensive and tracking data sets. Note that the .csv files must already be saved on your computer before using this function. Make sure that the csv files containing the data are named as follows: \itemize{ \item comprehensive: cop3_2.csv \item tracking: tra3_3.csv } } \examples{ \dontrun{ dataList <- loadCLSAData(path = "C:/Users/Documents") # tracking data set cop3.2 <- dataList[[1]] tra3.3 <- dataList[[2]] } } \author{ Phil Boileau, \email{philippe.boileau (at) rimuhc.ca} }
/man/loadCLSAData.Rd
permissive
gevamaimon/CLSAR
R
false
true
983
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/loadCLSAData.R \name{loadCLSAData} \alias{loadCLSAData} \title{Load CLSA Comprehensive and Tracking Datasets} \usage{ loadCLSAData(path) } \arguments{ \item{path}{The path to the folder containging the comprehensive and tracking .csv files} } \value{ A list of the comprehensive and tracking CLSA datasets in the following order: \enumerate{ \item comprehensive \item tracking } } \description{ Load the most recent comprehensive and tracking data sets. Note that the .csv files must already be saved on your computer before using this function. Make sure that the csv files containing the data are named as follows: \itemize{ \item comprehensive: cop3_2.csv \item tracking: tra3_3.csv } } \examples{ \dontrun{ dataList <- loadCLSAData(path = "C:/Users/Documents") # tracking data set cop3.2 <- dataList[[1]] tra3.3 <- dataList[[2]] } } \author{ Phil Boileau, \email{philippe.boileau (at) rimuhc.ca} }
% Generated by roxygen2 (4.0.1): do not edit by hand \name{wmatrix} \alias{wmatrix} \title{Model variance-covariance matrix of the multinomial mixed models} \usage{ wmatrix(M, pr) } \arguments{ \item{M}{vector with area sample sizes.} \item{pr}{matrix with the estimated probabilities for the categories of the response variable obtained from \code{\link[mme]{prmu}} or \code{\link[mme]{prmu.time}}.} } \value{ W a list with the model variance-covariance matrices for each domain. } \description{ This function calculates the variance-covariance matrix of the multinomial mixed models. Three types of multinomial mixed model are considered. The first model (Model 1), with one random effect in each category of the response variable; Model 2, introducing independent time effect; Model 3, introducing correlated time effect. } \examples{ k=3 #number of categories of the response variable pp=c(1,1) #vector with the number of auxiliary variables in each category mod=2 #type of model data(simdata2) datar=data.mme(simdata2,k,pp,mod) initial=datar$initial mean=prmu.time(datar$n,datar$Xk,initial$beta.0,initial$u1.0,initial$u2.0) ##The model variance-covariance matrix varcov=wmatrix(datar$n,mean$estimated.probabilities) } \references{ Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small area estimation of labour force indicators. Statistical Modelling,13,153-178. } \seealso{ \code{\link[mme]{data.mme}}, \code{\link[mme]{initial.values}}, \code{\link[mme]{phi.mult}}, \code{\link[mme]{prmu}}, \code{\link[mme]{prmu.time}} \code{\link[mme]{Fbetaf}}, \code{\link[mme]{phi.direct}}, \code{\link[mme]{sPhikf}}, \code{\link[mme]{ci}}, \code{\link[mme]{modelfit1}}, \code{\link[mme]{msef}}, \code{\link[mme]{mseb}} } \keyword{models}
/man/wmatrix.Rd
no_license
cran/mme
R
false
false
1,810
rd
% Generated by roxygen2 (4.0.1): do not edit by hand \name{wmatrix} \alias{wmatrix} \title{Model variance-covariance matrix of the multinomial mixed models} \usage{ wmatrix(M, pr) } \arguments{ \item{M}{vector with area sample sizes.} \item{pr}{matrix with the estimated probabilities for the categories of the response variable obtained from \code{\link[mme]{prmu}} or \code{\link[mme]{prmu.time}}.} } \value{ W a list with the model variance-covariance matrices for each domain. } \description{ This function calculates the variance-covariance matrix of the multinomial mixed models. Three types of multinomial mixed model are considered. The first model (Model 1), with one random effect in each category of the response variable; Model 2, introducing independent time effect; Model 3, introducing correlated time effect. } \examples{ k=3 #number of categories of the response variable pp=c(1,1) #vector with the number of auxiliary variables in each category mod=2 #type of model data(simdata2) datar=data.mme(simdata2,k,pp,mod) initial=datar$initial mean=prmu.time(datar$n,datar$Xk,initial$beta.0,initial$u1.0,initial$u2.0) ##The model variance-covariance matrix varcov=wmatrix(datar$n,mean$estimated.probabilities) } \references{ Lopez-Vizcaino, ME, Lombardia, MJ and Morales, D (2013). Multinomial-based small area estimation of labour force indicators. Statistical Modelling,13,153-178. } \seealso{ \code{\link[mme]{data.mme}}, \code{\link[mme]{initial.values}}, \code{\link[mme]{phi.mult}}, \code{\link[mme]{prmu}}, \code{\link[mme]{prmu.time}} \code{\link[mme]{Fbetaf}}, \code{\link[mme]{phi.direct}}, \code{\link[mme]{sPhikf}}, \code{\link[mme]{ci}}, \code{\link[mme]{modelfit1}}, \code{\link[mme]{msef}}, \code{\link[mme]{mseb}} } \keyword{models}
# # Author: Joyce Woznica # Class: IST 719 # Date: 3/16/2020 # Subject: Lab 10, Week 10 # # Lab 10 #---------------- Package Load ------------------- library(shiny) server <- function(input, output) { output$myPie <- renderPlot( { pie (c(8,12,3), main = "Hello World") }) } ui <- fluidPage( mainPanel(plotOutput("myPie")) ) shinyApp(ui,server)
/Labs/Lab10/.Rproj.user/CA2B7130/sources/s-621F4385/D52BC42E-contents
no_license
jlwoznic/IST719
R
false
false
364
# # Author: Joyce Woznica # Class: IST 719 # Date: 3/16/2020 # Subject: Lab 10, Week 10 # # Lab 10 #---------------- Package Load ------------------- library(shiny) server <- function(input, output) { output$myPie <- renderPlot( { pie (c(8,12,3), main = "Hello World") }) } ui <- fluidPage( mainPanel(plotOutput("myPie")) ) shinyApp(ui,server)
options(stringsAsFactors=FALSE, width=400, max.print=10^6) projpath <- getwd() library(XML) library(rjson) library(rlist) library(dynamicDensity) xpath_mainData <- Sys.getenv("PATH_DZ_MAIN_DATA") xpath_scrapedData <- file.path(xpath_mainData, "MLBjsons") if(!dir.exists(xpath_scrapedData)) { dir.create(xpath_scrapedData) } xpath_scrapedDataDays <- file.path(xpath_scrapedData, "MLBdays") if(!dir.exists(xpath_scrapedDataDays)) { dir.create(xpath_scrapedDataDays) } xpath_scrapedDataGames <- file.path(xpath_scrapedData, "MLBgames") if(!dir.exists(xpath_scrapedDataGames)) { dir.create(xpath_scrapedDataGames) } ####################### if(FALSE) { xpatternFN <- "^game__2019" xbigDFname <- "2019" source( file.path(projpath, "_s_readData.R") ) } xfn <- list.files(xpath_scrapedDataGames, pattern=xpatternFN) length(xfn) df_list <- list() ii <- 1 for(ii in 1:length(xfn)) { load( file.path(xpath_scrapedDataGames, xfn[ii]) ) xxx <- fromJSON( paste(xthis_game_data, collapse=" ") ) xgameDateInfo <- xxx[[ "gameData" ]][[ "datetime" ]] xVT <- xxx[[ "gameData" ]][[ "teams" ]][[ "away" ]][[ "abbreviation" ]] ; xVT xHT <- xxx[[ "gameData" ]][[ "teams" ]][[ "home" ]][[ "abbreviation" ]] ; xHT xall_plays <- xxx[[ "liveData" ]][[ "plays" ]][[ "allPlays" ]] length(xall_plays) iiplay <- 1 if( length(xall_plays) > 0 ) { for(iiplay in 1:length(xall_plays)) { xthis_play <- xall_plays[[ iiplay ]] xthis_pitcher <- xthis_play[[ "matchup" ]][[ "pitcher" ]] xthis_play_events <- xthis_play[[ "playEvents" ]] } } cat(ii, xfn[ii], "\n") } object.size(df_list)
/__06_week_01/__06b_go_MLB_02clean.R
no_license
davezes/MAS405_S2021
R
false
false
1,811
r
options(stringsAsFactors=FALSE, width=400, max.print=10^6) projpath <- getwd() library(XML) library(rjson) library(rlist) library(dynamicDensity) xpath_mainData <- Sys.getenv("PATH_DZ_MAIN_DATA") xpath_scrapedData <- file.path(xpath_mainData, "MLBjsons") if(!dir.exists(xpath_scrapedData)) { dir.create(xpath_scrapedData) } xpath_scrapedDataDays <- file.path(xpath_scrapedData, "MLBdays") if(!dir.exists(xpath_scrapedDataDays)) { dir.create(xpath_scrapedDataDays) } xpath_scrapedDataGames <- file.path(xpath_scrapedData, "MLBgames") if(!dir.exists(xpath_scrapedDataGames)) { dir.create(xpath_scrapedDataGames) } ####################### if(FALSE) { xpatternFN <- "^game__2019" xbigDFname <- "2019" source( file.path(projpath, "_s_readData.R") ) } xfn <- list.files(xpath_scrapedDataGames, pattern=xpatternFN) length(xfn) df_list <- list() ii <- 1 for(ii in 1:length(xfn)) { load( file.path(xpath_scrapedDataGames, xfn[ii]) ) xxx <- fromJSON( paste(xthis_game_data, collapse=" ") ) xgameDateInfo <- xxx[[ "gameData" ]][[ "datetime" ]] xVT <- xxx[[ "gameData" ]][[ "teams" ]][[ "away" ]][[ "abbreviation" ]] ; xVT xHT <- xxx[[ "gameData" ]][[ "teams" ]][[ "home" ]][[ "abbreviation" ]] ; xHT xall_plays <- xxx[[ "liveData" ]][[ "plays" ]][[ "allPlays" ]] length(xall_plays) iiplay <- 1 if( length(xall_plays) > 0 ) { for(iiplay in 1:length(xall_plays)) { xthis_play <- xall_plays[[ iiplay ]] xthis_pitcher <- xthis_play[[ "matchup" ]][[ "pitcher" ]] xthis_play_events <- xthis_play[[ "playEvents" ]] } } cat(ii, xfn[ii], "\n") } object.size(df_list)
#' airqualityES: Air quality measurements in Spain #' #' aiqualityES dataset contains daily quality air measurements from 2001 to 2018. #' #' @author Jose V. Die \email{jose.die@uco.es}, Jose R. Caro #' #' @docType package #' #' @name airqualityES #' "_PACKAGE"
/R/airquaityES.R
no_license
rOpenSpain/airqualityES
R
false
false
262
r
#' airqualityES: Air quality measurements in Spain #' #' aiqualityES dataset contains daily quality air measurements from 2001 to 2018. #' #' @author Jose V. Die \email{jose.die@uco.es}, Jose R. Caro #' #' @docType package #' #' @name airqualityES #' "_PACKAGE"
slr.predict <- function (y, x, newx=x, polydeg=1, interval, conf.level=95, no.intercept=FALSE, ndigit=2) { if (!is.vector(y)) return("First Argument has to be Numeric Vector") if(!is.vector(x)) return("Second Argument has to be Numeric Vector") namResp <- deparse(substitute(y)) namPred <- deparse(substitute(x)) z<-newx if(polydeg>1) { X<-matrix(0,nrow=length(x),ncol=polydeg) for(i in 1:polydeg) X[,i]<-x^i x<-X newX<-matrix(0,nrow=length(newx),ncol=polydeg) for(i in 1:polydeg) newX[,i]<-newx^i newx<-newX } if(no.intercept) fit<-lm(y~x-1) else fit<-lm(y~x) if(missing(interval)) est <- predict(fit,newdata=list(x=newx)) else { if(interval=="PI") a <- predict(fit,newdata=list(x=newx),interval = "prediction",level=conf.level/100) if(interval=="CI") a <- predict(fit,newdata=list(x=newx),interval = "confidence",level=conf.level/100) if(length(newx)==1) { est <- a[1] L <-a[2] U<-a[3] } else { est <- a[,1] L <-a[,2] U<-a[,3] } } txt1 <- matrix(0,length(est), 2+ifelse(missing(interval),0,2)) if(missing(interval)) colnames(txt1) <- c(namPred,"Fit") else colnames(txt1)<-c(namPred, "Fit", "Lower", "Upper") rownames(txt1) <- rep("",nrow(txt1)) for(i in 1:length(z)) { txt1[i,1:2]<-c(z[i],round(est[i],ndigit)) if(!missing(interval)) txt1[i,3:4]<-c(round(L[i], ndigit), round(U[i], ndigit)) } txt1 }
/R/slr.predict.R
no_license
WolfgangRolke/Resma3
R
false
false
1,655
r
slr.predict <- function (y, x, newx=x, polydeg=1, interval, conf.level=95, no.intercept=FALSE, ndigit=2) { if (!is.vector(y)) return("First Argument has to be Numeric Vector") if(!is.vector(x)) return("Second Argument has to be Numeric Vector") namResp <- deparse(substitute(y)) namPred <- deparse(substitute(x)) z<-newx if(polydeg>1) { X<-matrix(0,nrow=length(x),ncol=polydeg) for(i in 1:polydeg) X[,i]<-x^i x<-X newX<-matrix(0,nrow=length(newx),ncol=polydeg) for(i in 1:polydeg) newX[,i]<-newx^i newx<-newX } if(no.intercept) fit<-lm(y~x-1) else fit<-lm(y~x) if(missing(interval)) est <- predict(fit,newdata=list(x=newx)) else { if(interval=="PI") a <- predict(fit,newdata=list(x=newx),interval = "prediction",level=conf.level/100) if(interval=="CI") a <- predict(fit,newdata=list(x=newx),interval = "confidence",level=conf.level/100) if(length(newx)==1) { est <- a[1] L <-a[2] U<-a[3] } else { est <- a[,1] L <-a[,2] U<-a[,3] } } txt1 <- matrix(0,length(est), 2+ifelse(missing(interval),0,2)) if(missing(interval)) colnames(txt1) <- c(namPred,"Fit") else colnames(txt1)<-c(namPred, "Fit", "Lower", "Upper") rownames(txt1) <- rep("",nrow(txt1)) for(i in 1:length(z)) { txt1[i,1:2]<-c(z[i],round(est[i],ndigit)) if(!missing(interval)) txt1[i,3:4]<-c(round(L[i], ndigit), round(U[i], ndigit)) } txt1 }
#' Trend analysis for single-cases data #' #' The `trend()` function provides an overview of linear trends in single case #' data. By default, it provides the intercept and slope of a linear and #' quadratic regression of measurement time on scores. Models are calculated #' separately for each phase and across all phases. For more advanced use, you #' can add regression models using the R-specific formula class. #' #' @inheritParams .inheritParams #' @param first_mt A numeric setting the value for the first measurement-time. #' Default = 0. #' @param offset (Deprecated. Please use first_mt). An offset for the first #' measurement-time of each phase. If `offset = 0`, the phase measurement is #' handled as MT 1. Default is `offset = -1`, setting the first value of MT to #' 0. #' @param model A string or a list of (named) strings each depicting one #' regression model. This is a formula expression of the standard R class. The #' parameters of the model are `values`, `mt` and `phase`. #' @return \item{trend}{A matrix containing the results (Intercept, B and beta) #' of separate regression models for phase A, phase B, and the whole data.} #' \item{offset}{Numeric argument from function call (see arguments #' section).} #' @author Juergen Wilbert #' @seealso [describe()] #' @family regression functions #' @examples #' #' ## Compute the linear and squared regression for a random single-case #' design <- design(slope = 0.5) #' matthea <- random_scdf(design) #' trend(matthea) #' #' ## Besides the linear and squared regression models compute two custom models: #' ## a) a cubic model, and b) the values predicted by the natural logarithm of the #' ## measurement time. #' design <- design(slope = 0.3) #' ben <- random_scdf(design) #' trend(ben, offset = 0, model = c("Cubic" = values ~ I(mt^3), "Log Time" = values ~ log(mt))) #' #' @export trend <- function(data, dvar, pvar, mvar, offset = "deprecated", first_mt = 0, model = NULL) { if (is.numeric(offset)) first_mt <- offset + 1 # set attributes to arguments else set to defaults of scdf if (missing(dvar)) dvar <- dv(data) else dv(data) <- dvar if (missing(pvar)) pvar <- phase(data) else phase(data) <- pvar if (missing(mvar)) mvar <- mt(data) else mt(data) <- mvar data <- .prepare_scdf(data) phase <- NULL N <- length(data) if(N > 1) { stop("Multiple single-cases are given. ", "Calculations can only be applied to one single-case data set.\n") } data <- data[[1]] design <- rle(as.character(data[, pvar]))$values while(any(duplicated(design))) { design[anyDuplicated(design)] <- paste0( design[anyDuplicated(design)], ".phase", anyDuplicated(design) ) } phases <- .phasestructure(data, pvar = pvar) fomulas <- c( formula(paste0(dvar, " ~ ", mvar)) , formula(paste0(dvar, " ~ I(", mvar, "^2)")) ) fomulas_names <- c("Linear", "Quadratic") if(!is.null(model)) { fomulas <- c(fomulas, model) fomulas_names <- c(fomulas_names, names(model)) } tmp <- length(design) + 1 rows <- paste0(paste0(rep(fomulas_names, each = tmp), "."), c("ALL", design)) ma <- matrix(NA, nrow = length(rows), ncol = 3) row.names(ma) <- rows colnames(ma) <- c("Intercept", "B", "Beta") ma <- as.data.frame(ma) for(i_formula in 1:length(fomulas)) { data_phase <- data mvar_correction <- min(data_phase[[mvar]], na.rm = TRUE) - first_mt data_phase[[mvar]] <- data_phase[[mvar]] - mvar_correction .row <- which(rows == paste0(fomulas_names[i_formula], ".ALL")) ma[.row, 1:3] <- .beta_weights(lm(fomulas[[i_formula]], data = data_phase)) for(p in 1:length(design)) { data_phase <- data[phases$start[p]:phases$stop[p], ] mvar_correction <- min(data_phase[[mvar]], na.rm = TRUE) - first_mt data_phase[[mvar]] <- data_phase[[mvar]] - mvar_correction .row <- which(rows == paste0(fomulas_names[i_formula], ".", design[p])) ma[.row, 1:3] <- .beta_weights(lm(fomulas[[i_formula]], data=data_phase)) } } out <- list( trend = ma, offset = offset, first_mt = first_mt, formulas = fomulas_names, design = design ) class(out) <- c("sc_trend") attr(out, opt("phase")) <- pvar attr(out, opt("mt")) <- mvar attr(out, opt("dv")) <- dvar out }
/R/trend.R
no_license
cran/scan
R
false
false
4,395
r
#' Trend analysis for single-cases data #' #' The `trend()` function provides an overview of linear trends in single case #' data. By default, it provides the intercept and slope of a linear and #' quadratic regression of measurement time on scores. Models are calculated #' separately for each phase and across all phases. For more advanced use, you #' can add regression models using the R-specific formula class. #' #' @inheritParams .inheritParams #' @param first_mt A numeric setting the value for the first measurement-time. #' Default = 0. #' @param offset (Deprecated. Please use first_mt). An offset for the first #' measurement-time of each phase. If `offset = 0`, the phase measurement is #' handled as MT 1. Default is `offset = -1`, setting the first value of MT to #' 0. #' @param model A string or a list of (named) strings each depicting one #' regression model. This is a formula expression of the standard R class. The #' parameters of the model are `values`, `mt` and `phase`. #' @return \item{trend}{A matrix containing the results (Intercept, B and beta) #' of separate regression models for phase A, phase B, and the whole data.} #' \item{offset}{Numeric argument from function call (see arguments #' section).} #' @author Juergen Wilbert #' @seealso [describe()] #' @family regression functions #' @examples #' #' ## Compute the linear and squared regression for a random single-case #' design <- design(slope = 0.5) #' matthea <- random_scdf(design) #' trend(matthea) #' #' ## Besides the linear and squared regression models compute two custom models: #' ## a) a cubic model, and b) the values predicted by the natural logarithm of the #' ## measurement time. #' design <- design(slope = 0.3) #' ben <- random_scdf(design) #' trend(ben, offset = 0, model = c("Cubic" = values ~ I(mt^3), "Log Time" = values ~ log(mt))) #' #' @export trend <- function(data, dvar, pvar, mvar, offset = "deprecated", first_mt = 0, model = NULL) { if (is.numeric(offset)) first_mt <- offset + 1 # set attributes to arguments else set to defaults of scdf if (missing(dvar)) dvar <- dv(data) else dv(data) <- dvar if (missing(pvar)) pvar <- phase(data) else phase(data) <- pvar if (missing(mvar)) mvar <- mt(data) else mt(data) <- mvar data <- .prepare_scdf(data) phase <- NULL N <- length(data) if(N > 1) { stop("Multiple single-cases are given. ", "Calculations can only be applied to one single-case data set.\n") } data <- data[[1]] design <- rle(as.character(data[, pvar]))$values while(any(duplicated(design))) { design[anyDuplicated(design)] <- paste0( design[anyDuplicated(design)], ".phase", anyDuplicated(design) ) } phases <- .phasestructure(data, pvar = pvar) fomulas <- c( formula(paste0(dvar, " ~ ", mvar)) , formula(paste0(dvar, " ~ I(", mvar, "^2)")) ) fomulas_names <- c("Linear", "Quadratic") if(!is.null(model)) { fomulas <- c(fomulas, model) fomulas_names <- c(fomulas_names, names(model)) } tmp <- length(design) + 1 rows <- paste0(paste0(rep(fomulas_names, each = tmp), "."), c("ALL", design)) ma <- matrix(NA, nrow = length(rows), ncol = 3) row.names(ma) <- rows colnames(ma) <- c("Intercept", "B", "Beta") ma <- as.data.frame(ma) for(i_formula in 1:length(fomulas)) { data_phase <- data mvar_correction <- min(data_phase[[mvar]], na.rm = TRUE) - first_mt data_phase[[mvar]] <- data_phase[[mvar]] - mvar_correction .row <- which(rows == paste0(fomulas_names[i_formula], ".ALL")) ma[.row, 1:3] <- .beta_weights(lm(fomulas[[i_formula]], data = data_phase)) for(p in 1:length(design)) { data_phase <- data[phases$start[p]:phases$stop[p], ] mvar_correction <- min(data_phase[[mvar]], na.rm = TRUE) - first_mt data_phase[[mvar]] <- data_phase[[mvar]] - mvar_correction .row <- which(rows == paste0(fomulas_names[i_formula], ".", design[p])) ma[.row, 1:3] <- .beta_weights(lm(fomulas[[i_formula]], data=data_phase)) } } out <- list( trend = ma, offset = offset, first_mt = first_mt, formulas = fomulas_names, design = design ) class(out) <- c("sc_trend") attr(out, opt("phase")) <- pvar attr(out, opt("mt")) <- mvar attr(out, opt("dv")) <- dvar out }
############################################################################### ################## FIGURE 5: LEARNING TRIAL LOOKING IN EXP 1 ################## ############################################################################### quartz(width=4,height=3,title = "Learning") p <- ggplot(train.data.e1.notd, aes(x=age.grp, y=prop,colour=trial.type, group=trial.type)) + geom_pointrange(aes(ymin = prop-cih, ymax = prop+cih), position = position_dodge(.1), size=.8)+ geom_line() + scale_x_continuous(limits = c(.9,4.3), breaks=seq(1,3.5,.5), name = "Age(years)", labels = c("1", "1.5", "2","2.5","3","3.5")) + scale_y_continuous(limits = c(0,1), breaks=seq(0,1,.2), name = "Prop. Looks to ROI") + theme_bw(base_size=12) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) + geom_dl(aes(label=trial.type), method=list(dl.trans(x=x +.2),"last.qp",cex=.8)) + scale_color_manual(values=man_cols,breaks=c("3.5","3","2.5","2","1.5","1")) print(p) quartz(width=12,height=3,title = "Learning") p <- ggplot(filter(train.data.subj.trial ,aoi != "TD",exp == "Balanced", age.grp < 4), aes(x=age.grp, y=na.mean,colour=aoi)) + facet_grid(. ~ trial.num) + geom_pointrange(aes(ymin = na.mean-ci.low, ymax = na.mean+ci.high), position = position_dodge(.1), size=.8)+ geom_line() + scale_x_continuous(limits = c(.9,4.4), breaks=seq(1,3.5,.5), name = "Age(years)", labels = c("1", "1.5", "2","2.5","3","3.5")) + scale_y_continuous(limits = c(0,1), breaks=seq(0,1,.2), name = "Prop. Looks to ROI") + theme_bw(base_size=12) + #theme(panel.grid.major = element_blank()) + geom_dl(aes(label=aoi), method=list(dl.trans(x=x +.2),"last.qp",cex=.8)) + scale_color_manual(values=man_cols,breaks=c("3.5","3","2.5","2","1.5","1")) print(p) ############################################################################### ################# FIGURE 6: LEARNING AND TEST PROPS. IN EXP 1 ################# ############################################################################### quartz(width=10,height=4.5,title = "Test Data") p <- ggplot(preflook.data.e1, aes(x=age.grp, y=prop,colour=trial.type))+ facet_grid(. ~ trial.type) + geom_pointrange(aes(ymin = prop-cih, ymax = prop+cih), position = position_dodge(.3), size=.8)+ geom_hline(aes(yintercept=.5),lty=2) + geom_line(aes(group=trial.type)) + scale_x_continuous(breaks=c(1,1.5,2,2.5,3,3.5), name = "Age(years)", labels = c("1","1.5","2","2.5","3","3.5")) + scale_y_continuous(limits = c(.4,1), breaks=seq(.4,1,.1), name = "Prop. Looks to Target vs. Competitor") + theme_bw(base_size=18) + theme(legend.position=c(.95,.6),legend.title=element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank()) + scale_color_manual(values=man_cols,breaks=c("3.5","3","2.5","2","1.5","1")) print(p) quartz(width=10,height=4.5,title = "Test Data") p <- ggplot(filter(preflook.data.e1,trial.type != "Learning"), aes(x=age.grp, y=prop,colour=trial.type))+ facet_grid(. ~ trial.type) + geom_pointrange(aes(ymin = prop-cih, ymax = prop+cih), position = position_dodge(.3), size=.8)+ geom_hline(aes(yintercept=.5),lty=2) + geom_line(aes(group=trial.type)) + scale_x_continuous(breaks=c(1,1.5,2,2.5,3,3.5), name = "Age(years)", labels = c("1","1.5","2","2.5","3","3.5")) + scale_y_continuous(limits = c(.4,1), breaks=seq(.4,1,.1), name = "Prop. Looks to Target vs. Competitor") + theme_bw(base_size=18) + theme(legend.position=c(.95,.6),legend.title=element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank()) + scale_color_manual(values=man_cols,breaks=c("3.5","3","2.5","2","1.5","1")) print(p) quartz(width=4,height=4,title = "Test Data") p <- ggplot(filter(preflook.data.e1,trial.type=="Novel"), aes(x=age.grp, y=prop,colour=trial.type))+ geom_pointrange(aes(ymin = prop-cih, ymax = prop+cih), position = position_dodge(.3), size=1.25)+ geom_hline(aes(yintercept=.5),lty=2) + geom_line(aes(group=trial.type),size=1.25) + scale_x_continuous(breaks=c(1,1.5,2,2.5,3,3.5), name = "Age(years)", labels = c("1","1.5","2","2.5","3","3.5")) + scale_y_continuous(limits = c(.4,1), breaks=seq(.4,1,.1), name = "Prop. Looks to Target") + theme_bw(base_size=16) + theme(legend.position=c(.95,.6),legend.title=element_blank()) + scale_color_manual(values=man_cols[2],breaks=c("3.5","3","2.5","2","1.5","1")) print(p) ############################################################################### ############## FIGURE 10: COMPARING SALIENCE AT LEARNING AND TEST ############# ############################################################################### quartz(width=10,height=3.5,title = "Test Data") p <- ggplot(preflook.data.e1and2, aes(x=age.grp, y=prop,colour=exp, lty=exp))+ facet_grid(. ~ trial.type) + geom_pointrange(aes(ymin = prop-cih, ymax = prop+cih), position = position_dodge(.1), size=.8)+ geom_hline(aes(yintercept=.5),lty=2) + geom_line(aes(group=exp)) + scale_x_continuous(limits = c(.9,2.5), breaks=c(1,1.5,2),name = "Age(years)", labels = c("1", "1.5", "2")) + scale_y_continuous(limits = c(.25,1), breaks=seq(.3,1,.1), name = "Prop. Looks to Target") + theme_bw(base_size=14) + theme(legend.position="none", panel.grid.major = element_blank(), panel.grid.minor = element_blank())+ geom_dl(aes(label=exp),method=list(dl.trans(x=x +.3),"last.qp",cex=1)) + scale_color_manual(values=man_cols,breaks=c("2","1.5","1")) print(p)
/analysis/journal/dot_graphs.R
no_license
dyurovsky/ATT-WORD
R
false
false
6,322
r
############################################################################### ################## FIGURE 5: LEARNING TRIAL LOOKING IN EXP 1 ################## ############################################################################### quartz(width=4,height=3,title = "Learning") p <- ggplot(train.data.e1.notd, aes(x=age.grp, y=prop,colour=trial.type, group=trial.type)) + geom_pointrange(aes(ymin = prop-cih, ymax = prop+cih), position = position_dodge(.1), size=.8)+ geom_line() + scale_x_continuous(limits = c(.9,4.3), breaks=seq(1,3.5,.5), name = "Age(years)", labels = c("1", "1.5", "2","2.5","3","3.5")) + scale_y_continuous(limits = c(0,1), breaks=seq(0,1,.2), name = "Prop. Looks to ROI") + theme_bw(base_size=12) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) + geom_dl(aes(label=trial.type), method=list(dl.trans(x=x +.2),"last.qp",cex=.8)) + scale_color_manual(values=man_cols,breaks=c("3.5","3","2.5","2","1.5","1")) print(p) quartz(width=12,height=3,title = "Learning") p <- ggplot(filter(train.data.subj.trial ,aoi != "TD",exp == "Balanced", age.grp < 4), aes(x=age.grp, y=na.mean,colour=aoi)) + facet_grid(. ~ trial.num) + geom_pointrange(aes(ymin = na.mean-ci.low, ymax = na.mean+ci.high), position = position_dodge(.1), size=.8)+ geom_line() + scale_x_continuous(limits = c(.9,4.4), breaks=seq(1,3.5,.5), name = "Age(years)", labels = c("1", "1.5", "2","2.5","3","3.5")) + scale_y_continuous(limits = c(0,1), breaks=seq(0,1,.2), name = "Prop. Looks to ROI") + theme_bw(base_size=12) + #theme(panel.grid.major = element_blank()) + geom_dl(aes(label=aoi), method=list(dl.trans(x=x +.2),"last.qp",cex=.8)) + scale_color_manual(values=man_cols,breaks=c("3.5","3","2.5","2","1.5","1")) print(p) ############################################################################### ################# FIGURE 6: LEARNING AND TEST PROPS. IN EXP 1 ################# ############################################################################### quartz(width=10,height=4.5,title = "Test Data") p <- ggplot(preflook.data.e1, aes(x=age.grp, y=prop,colour=trial.type))+ facet_grid(. ~ trial.type) + geom_pointrange(aes(ymin = prop-cih, ymax = prop+cih), position = position_dodge(.3), size=.8)+ geom_hline(aes(yintercept=.5),lty=2) + geom_line(aes(group=trial.type)) + scale_x_continuous(breaks=c(1,1.5,2,2.5,3,3.5), name = "Age(years)", labels = c("1","1.5","2","2.5","3","3.5")) + scale_y_continuous(limits = c(.4,1), breaks=seq(.4,1,.1), name = "Prop. Looks to Target vs. Competitor") + theme_bw(base_size=18) + theme(legend.position=c(.95,.6),legend.title=element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank()) + scale_color_manual(values=man_cols,breaks=c("3.5","3","2.5","2","1.5","1")) print(p) quartz(width=10,height=4.5,title = "Test Data") p <- ggplot(filter(preflook.data.e1,trial.type != "Learning"), aes(x=age.grp, y=prop,colour=trial.type))+ facet_grid(. ~ trial.type) + geom_pointrange(aes(ymin = prop-cih, ymax = prop+cih), position = position_dodge(.3), size=.8)+ geom_hline(aes(yintercept=.5),lty=2) + geom_line(aes(group=trial.type)) + scale_x_continuous(breaks=c(1,1.5,2,2.5,3,3.5), name = "Age(years)", labels = c("1","1.5","2","2.5","3","3.5")) + scale_y_continuous(limits = c(.4,1), breaks=seq(.4,1,.1), name = "Prop. Looks to Target vs. Competitor") + theme_bw(base_size=18) + theme(legend.position=c(.95,.6),legend.title=element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank()) + scale_color_manual(values=man_cols,breaks=c("3.5","3","2.5","2","1.5","1")) print(p) quartz(width=4,height=4,title = "Test Data") p <- ggplot(filter(preflook.data.e1,trial.type=="Novel"), aes(x=age.grp, y=prop,colour=trial.type))+ geom_pointrange(aes(ymin = prop-cih, ymax = prop+cih), position = position_dodge(.3), size=1.25)+ geom_hline(aes(yintercept=.5),lty=2) + geom_line(aes(group=trial.type),size=1.25) + scale_x_continuous(breaks=c(1,1.5,2,2.5,3,3.5), name = "Age(years)", labels = c("1","1.5","2","2.5","3","3.5")) + scale_y_continuous(limits = c(.4,1), breaks=seq(.4,1,.1), name = "Prop. Looks to Target") + theme_bw(base_size=16) + theme(legend.position=c(.95,.6),legend.title=element_blank()) + scale_color_manual(values=man_cols[2],breaks=c("3.5","3","2.5","2","1.5","1")) print(p) ############################################################################### ############## FIGURE 10: COMPARING SALIENCE AT LEARNING AND TEST ############# ############################################################################### quartz(width=10,height=3.5,title = "Test Data") p <- ggplot(preflook.data.e1and2, aes(x=age.grp, y=prop,colour=exp, lty=exp))+ facet_grid(. ~ trial.type) + geom_pointrange(aes(ymin = prop-cih, ymax = prop+cih), position = position_dodge(.1), size=.8)+ geom_hline(aes(yintercept=.5),lty=2) + geom_line(aes(group=exp)) + scale_x_continuous(limits = c(.9,2.5), breaks=c(1,1.5,2),name = "Age(years)", labels = c("1", "1.5", "2")) + scale_y_continuous(limits = c(.25,1), breaks=seq(.3,1,.1), name = "Prop. Looks to Target") + theme_bw(base_size=14) + theme(legend.position="none", panel.grid.major = element_blank(), panel.grid.minor = element_blank())+ geom_dl(aes(label=exp),method=list(dl.trans(x=x +.3),"last.qp",cex=1)) + scale_color_manual(values=man_cols,breaks=c("2","1.5","1")) print(p)
library(archetypes) library(lattice) library(doParallel) library(ggplot2) library(dplyr) registerDoParallel() getDoParWorkers() library(readr) library(reshape2) a<-"~/Archetypes/AfSIS" #Read mir data mir <- read_csv("~/Dropbox/AfSIS_reporting_data/Seperated_datasets/Calibration_Htsxt_MIR.csv") #Read chem data chem<-read_csv("~/Dropbox/AfSIS_reporting_data/Seperated_datasets/AfSIS_reference_data.csv") setwd(a) set.seed(8970) #get number of mir columns n<-ncol(mir) #fit archetypes a <- stepArchetypes (mir[,-c(1,n)],k=1:10,verbose = TRUE, nrep=1) #fit robust archetype #ra <- robustArchetypes (mir[,-1],k=1:17,verbose = TRUE) png(file="Scree plots.png",height=500,width=800) screeplot(a) dev.off() #According to elbow criterion k = 3 or maybe k =6 or 8 are the best number of archetypes #Corresponding to Occam'srazor we use 3 archetypes; a3 <- bestModel(a[[3]]) #Transpose the four archetypes for better readability param<-t(parameters(a3)) #Store the parameters write.table(param, file="Parameters.csv",row.names=FALSE) #atypes <- apply(coef(a3, "alphas"), 2, which.max) #Show simplex plot par(mfrow=c(1,1)) png(file="Simplexplot3.png",height=500,width=1200) simplexplot(a3, show_direction = FALSE, show_points =TRUE,radius=400,points_col="grey") dev.off() #Determine the archetypes SSN<-as.vector(mir[,1]) arch.grps <- as.data.frame(cbind(SSN,paste0("Archetype.",apply(predict(a3,mir[,-c(1,n)]),1,which.max)))) colnames(arch.grps) <- c("SSN","archetypes" ) #Use barplot in relation to the original data: png(file="Archetype_barplot3.png",height=500,width=1200) barplot(a3, mir[,-c(1,n)], percentiles = FALSE) dev.off() #Or use the original raw spectra to show peaks mir.arch<-merge(arch.grps,mir) wave<-as.numeric(substr(colnames(mir.arch[,-c(1:2)]),2,19)) colnames(mir.arch) <- c("SSN","archetypes",wave) spec.melt<-melt(mir.arch,id=c("SSN","archetypes")) #By spectra p<-ggplot(data=spec.melt, aes(x=as.numeric(as.vector(variable)),y=value,group=SSN))+ geom_line(size=0.34,aes(col=as.numeric(variable)))+scale_colour_gradient(high="red",low="blue")+ ggtitle("Archetypes for AfSIS reference set raw MIR spectra")+ xlim(c(4000,600))+ ylim(c(0,3))+ xlab(expression("Wavenumbers cm"^-1))+ ylab("Absorbance")+ #theme with white background theme_bw() + #eliminates background, gridlines, and chart border theme(plot.background = element_blank() ,panel.grid.major = element_blank() ,panel.grid.minor = element_blank() ) p<-p+theme(legend.position = "none") p<-p+facet_wrap(~archetypes,ncol=1) png(file="Archetypes raw spectra.png") p dev.off() #Aggregate mir0<-mir.arch[,-1] ag<-aggregate(.~archetypes,data=mir0,mean) ag.melt<-melt(ag,id="archetypes") p<-ggplot(data=ag.melt,aes(x=as.numeric(as.vector(variable)),y=value,color=archetypes)) + geom_line()+ ggtitle("Averaged raw MIR spectra by archetype")+ xlim(c(4000,600))+ ylim(c(0,2))+ xlab(expression("Wavenumbers cm"^-1))+ ylab("Absorbance")+ #theme with white background theme_bw() + #eliminates background, gridlines, and chart border theme(plot.background = element_blank() ,panel.grid.major = element_blank() ,panel.grid.minor = element_blank() ) p<-p+theme(legend.justification=c(0,1),legend.position = c(0,1)) png(file="Archetypes Averaged raw spectra.png") p dev.off() #Merge arch.grps with chem data arch<-merge(chem, arch.grps) arch.s<-with(arch,table(paste(Country,Site,sep="."),archetypes)) #View somw exploratory plots showing distribution of selected soil properties across the obtained archetypes with(arch,bwplot(m3.Al~archetypes)) with(arch,bwplot(m3.Ca~archetypes)) with(arch,bwplot(ExAc~archetypes)) with(arch,bwplot(Na~archetypes)) with(arch,bwplot(psa.c4sand~archetypes)) with(arch,bwplot(pH~archetypes)) with(arch,bwplot(Total.Carbon~archetypes)) with(arch,bwplot(psa.c4clay~archetypes)) #which sites dorminate archetype 3 q<-which(arch.s[,3]>29) q #Save the spectral archetypes write.table(arch.grps, file="AfSIS spec archtypes classes3.csv", sep=",",row.names=FALSE)
/afsis_spectral_archetype_analysis.R
no_license
asila/Soil_Archetypes
R
false
false
4,135
r
library(archetypes) library(lattice) library(doParallel) library(ggplot2) library(dplyr) registerDoParallel() getDoParWorkers() library(readr) library(reshape2) a<-"~/Archetypes/AfSIS" #Read mir data mir <- read_csv("~/Dropbox/AfSIS_reporting_data/Seperated_datasets/Calibration_Htsxt_MIR.csv") #Read chem data chem<-read_csv("~/Dropbox/AfSIS_reporting_data/Seperated_datasets/AfSIS_reference_data.csv") setwd(a) set.seed(8970) #get number of mir columns n<-ncol(mir) #fit archetypes a <- stepArchetypes (mir[,-c(1,n)],k=1:10,verbose = TRUE, nrep=1) #fit robust archetype #ra <- robustArchetypes (mir[,-1],k=1:17,verbose = TRUE) png(file="Scree plots.png",height=500,width=800) screeplot(a) dev.off() #According to elbow criterion k = 3 or maybe k =6 or 8 are the best number of archetypes #Corresponding to Occam'srazor we use 3 archetypes; a3 <- bestModel(a[[3]]) #Transpose the four archetypes for better readability param<-t(parameters(a3)) #Store the parameters write.table(param, file="Parameters.csv",row.names=FALSE) #atypes <- apply(coef(a3, "alphas"), 2, which.max) #Show simplex plot par(mfrow=c(1,1)) png(file="Simplexplot3.png",height=500,width=1200) simplexplot(a3, show_direction = FALSE, show_points =TRUE,radius=400,points_col="grey") dev.off() #Determine the archetypes SSN<-as.vector(mir[,1]) arch.grps <- as.data.frame(cbind(SSN,paste0("Archetype.",apply(predict(a3,mir[,-c(1,n)]),1,which.max)))) colnames(arch.grps) <- c("SSN","archetypes" ) #Use barplot in relation to the original data: png(file="Archetype_barplot3.png",height=500,width=1200) barplot(a3, mir[,-c(1,n)], percentiles = FALSE) dev.off() #Or use the original raw spectra to show peaks mir.arch<-merge(arch.grps,mir) wave<-as.numeric(substr(colnames(mir.arch[,-c(1:2)]),2,19)) colnames(mir.arch) <- c("SSN","archetypes",wave) spec.melt<-melt(mir.arch,id=c("SSN","archetypes")) #By spectra p<-ggplot(data=spec.melt, aes(x=as.numeric(as.vector(variable)),y=value,group=SSN))+ geom_line(size=0.34,aes(col=as.numeric(variable)))+scale_colour_gradient(high="red",low="blue")+ ggtitle("Archetypes for AfSIS reference set raw MIR spectra")+ xlim(c(4000,600))+ ylim(c(0,3))+ xlab(expression("Wavenumbers cm"^-1))+ ylab("Absorbance")+ #theme with white background theme_bw() + #eliminates background, gridlines, and chart border theme(plot.background = element_blank() ,panel.grid.major = element_blank() ,panel.grid.minor = element_blank() ) p<-p+theme(legend.position = "none") p<-p+facet_wrap(~archetypes,ncol=1) png(file="Archetypes raw spectra.png") p dev.off() #Aggregate mir0<-mir.arch[,-1] ag<-aggregate(.~archetypes,data=mir0,mean) ag.melt<-melt(ag,id="archetypes") p<-ggplot(data=ag.melt,aes(x=as.numeric(as.vector(variable)),y=value,color=archetypes)) + geom_line()+ ggtitle("Averaged raw MIR spectra by archetype")+ xlim(c(4000,600))+ ylim(c(0,2))+ xlab(expression("Wavenumbers cm"^-1))+ ylab("Absorbance")+ #theme with white background theme_bw() + #eliminates background, gridlines, and chart border theme(plot.background = element_blank() ,panel.grid.major = element_blank() ,panel.grid.minor = element_blank() ) p<-p+theme(legend.justification=c(0,1),legend.position = c(0,1)) png(file="Archetypes Averaged raw spectra.png") p dev.off() #Merge arch.grps with chem data arch<-merge(chem, arch.grps) arch.s<-with(arch,table(paste(Country,Site,sep="."),archetypes)) #View somw exploratory plots showing distribution of selected soil properties across the obtained archetypes with(arch,bwplot(m3.Al~archetypes)) with(arch,bwplot(m3.Ca~archetypes)) with(arch,bwplot(ExAc~archetypes)) with(arch,bwplot(Na~archetypes)) with(arch,bwplot(psa.c4sand~archetypes)) with(arch,bwplot(pH~archetypes)) with(arch,bwplot(Total.Carbon~archetypes)) with(arch,bwplot(psa.c4clay~archetypes)) #which sites dorminate archetype 3 q<-which(arch.s[,3]>29) q #Save the spectral archetypes write.table(arch.grps, file="AfSIS spec archtypes classes3.csv", sep=",",row.names=FALSE)
library(pheatmap) library(DESeq2) ##assumes environment has res and countData loaded from short_read_deseq.R genes <- rownames(resOrdered[1:30, ]) countData_filtered <- countData[match(genes, rownames(countData)),] rownames(countData_filtered) <- (str_split_fixed(rownames(countData_filtered),'\\|',2)[, 2]) #view(countData_filtered) pheatmap(countData_filtered, show_rownames=T, cluster_cols=T, cluster_rows=T, scale="row", clustering_distance_rows="euclidean", clustering_distance_cols="euclidean", clustering_method="complete", border_color=FALSE, cex=0.7)
/short_read_code/heatmap.R
no_license
qhauck16/Quinn-Summer-2020
R
false
false
622
r
library(pheatmap) library(DESeq2) ##assumes environment has res and countData loaded from short_read_deseq.R genes <- rownames(resOrdered[1:30, ]) countData_filtered <- countData[match(genes, rownames(countData)),] rownames(countData_filtered) <- (str_split_fixed(rownames(countData_filtered),'\\|',2)[, 2]) #view(countData_filtered) pheatmap(countData_filtered, show_rownames=T, cluster_cols=T, cluster_rows=T, scale="row", clustering_distance_rows="euclidean", clustering_distance_cols="euclidean", clustering_method="complete", border_color=FALSE, cex=0.7)
\name{trclcomp} \alias{trclcomp} \title{Tree-Clustering Comparison} \description{ This function compares the within-group variation for groups formed by tree partitioning and unconstrained clustering. The results are plotted and returned invisibly. } \usage{ trclcomp(x, method = "com", km = TRUE, mrt = TRUE) } \arguments{ \item{x}{ Rpart object with method "mrt" -- see \code{\link{rpart}}} \item{method}{ The clustering method for the unconstrained clustering}. \item{km}{ If \code{TRUE} a K-Means clustering is compared with the multivariate tree partitioning. } \item{mrt}{ If \code{TRUE} an additional K-Means clustering with a starting configuration based on the multivariate tree partitioning is generated. } } \details{ The within-group variation for groups formed by multivariate tree partitioning and unconstrained clusterings are compared for all sizes of the hierarchy of tree partitions. } \value{ Returns a list (invisibly) of the within-tree and within-cluster variation for all tree sizes. } \references{ De'ath G. (2002) Multivariate Regression Trees : A New Technique for Constrained Classification Analysis. Ecology 83(4):1103-1117. } \examples{ data(spider) fit <- mvpart(data.matrix(spider[,1:12])~herbs+reft+moss+sand+twigs+water,spider) trclcomp(fit) } \keyword{ multivariate }%-- one or more ...
/man/trclcomp.Rd
no_license
mvignon/mvpart
R
false
false
1,350
rd
\name{trclcomp} \alias{trclcomp} \title{Tree-Clustering Comparison} \description{ This function compares the within-group variation for groups formed by tree partitioning and unconstrained clustering. The results are plotted and returned invisibly. } \usage{ trclcomp(x, method = "com", km = TRUE, mrt = TRUE) } \arguments{ \item{x}{ Rpart object with method "mrt" -- see \code{\link{rpart}}} \item{method}{ The clustering method for the unconstrained clustering}. \item{km}{ If \code{TRUE} a K-Means clustering is compared with the multivariate tree partitioning. } \item{mrt}{ If \code{TRUE} an additional K-Means clustering with a starting configuration based on the multivariate tree partitioning is generated. } } \details{ The within-group variation for groups formed by multivariate tree partitioning and unconstrained clusterings are compared for all sizes of the hierarchy of tree partitions. } \value{ Returns a list (invisibly) of the within-tree and within-cluster variation for all tree sizes. } \references{ De'ath G. (2002) Multivariate Regression Trees : A New Technique for Constrained Classification Analysis. Ecology 83(4):1103-1117. } \examples{ data(spider) fit <- mvpart(data.matrix(spider[,1:12])~herbs+reft+moss+sand+twigs+water,spider) trclcomp(fit) } \keyword{ multivariate }%-- one or more ...
#' Plot a fitted trajectory #' #' @param x an object returned from \code{\link{fit_trajectory}} #' @param center should the trajectory be centered around the median WHO standard? This is equivalent to plotting the age difference score (like height-for-age difference - HAD) #' @param x_range a vector specifying the range (min, max) that the superposed growth standard should span on the x-axis #' @param width width of the plot #' @param height height of the plot #' @param hover variable names in \code{x$data} to show on hover for each point (only variables with non-NA data will be shown) #' @param checkpoints should the checkpoints be plotted (if available)? #' @param p centiles at which to draw the WHO polygons #' @param x_units units of age x-axis (days, months, or years) #' @param \ldots additional parameters passed to \code{\link{figure}} #' @examples #' mod <- get_fit(cpp, y_var = "wtkg", method = "rlm") #' fit <- fit_trajectory(subset(cpp, subjid == 2), mod) #' plot(fit) #' plot(fit, x_units = "years") #' plot(fit, center = TRUE) #' plot(fit, hover = c("wtkg", "bmi", "waz", "haz")) #' @export plot.fittedTrajectory <- function(x, center = FALSE, x_range = NULL, width = 500, height = 520, hover = NULL, checkpoints = TRUE, p = 100 * pnorm(-3:0), x_units = c("days", "months", "years"), ...) { x_units <- match.arg(x_units) x_denom <- switch(x_units, days = 1, months = 365.25 / 12, years = 365.25) if(nrow(x$xy) == 0) return(empty_plot(paste0("No '", x$y_var, "' vs. '", x$x_var, "' data for this subject"))) if(is.null(x_range)) { x_range <- range(x$xy$x, na.rm = TRUE) x_range <- x_range + c(-1, 1) * diff(x_range) * 0.07 } # if(missing(hover)) { # hover <- names(x$data)[sapply(x$data, function(x) !all(is.na(x)))] # hover <- x$data[x$xy$idx, hover] # } else if(is.null(hover)) hover <- c(x$x_var, x$y_var) hover <- intersect(names(x$data), hover) if(length(hover) == 0) { hover <- NULL } else { hover <- hover[sapply(x$data[,hover], function(x) !all(is.na(x)))] hover <- x$data[x$xy$idx, hover] } ylab <- hbgd::hbgd_labels[[x$y_var]] if(center) { for(el in c("xy", "fitgrid", "checkpoint", "holdout")) { if(!is.null(x[[el]])) x[[el]]$y <- x[[el]]$y - who_centile2value(x[[el]]$x, p = 50, x_var = x$x_var, y_var = x$y_var, sex = x$sex) if(!is.null(x[[el]]$yfit)) x[[el]]$yfit <- x[[el]]$yfit - who_centile2value(x[[el]]$x, p = 50, x_var = x$x_var, y_var = x$y_var, sex = x$sex) } ylab <- paste(ylab, "(WHO median-centered)") } xlab <- hbgd::hbgd_labels[[x$x_var]] if(x_units == "months") xlab <- gsub("\\(days\\)", "(months)", xlab) if(x_units == "years") xlab <- gsub("\\(days\\)", "(years)", xlab) fig <- figure(width = width, height = height, xlab = xlab, ylab = ylab, logo = NULL, ...) %>% ly_who(x = seq(x_range[1], x_range[2], length = 100), center = center, x_var = x$x_var, y_var = x$y_var, sex = x$sex, p = p, x_units = x_units) %>% rbokeh::ly_points(x / x_denom, y, hover = hover, data = x$xy, color = "black") if(!is.null(x$fitgrid)) { fig <- fig %>% rbokeh::ly_lines(x / x_denom, y, data = x$fitgrid, color = "black") %>% rbokeh::ly_points(x / x_denom, yfit, data = x$xy, color = "black", glyph = 19, size = 4) } if(!is.null(x$holdout)) fig <- fig %>% rbokeh::ly_points(x / x_denom, y, data = x$holdout, color = "red") if(!all(is.na(x$checkpoint$y)) && checkpoints) { x$checkpoint <- subset(x$checkpoint, !is.na(y)) x$checkpoint <- data.frame(lapply(x$checkpoint, unname)) x$checkpoint$zcat <- as.character(x$checkpoint$zcat) fig <- fig %>% rbokeh::ly_points(x / x_denom, y, size = 15, hover = c("zcat", "x"), data = x$checkpoint, glyph = 13, color = "black", alpha = 0.6) } fig } #' Plot a fitted trajectory on z-score scale #' #' @param x an object returned from \code{\link{fit_trajectory}} #' @param x_range a vector specifying the range (min, max) that the superposed z-score bands should span on the x-axis #' @param nadir should a guide be added to the plot showing the location of the nadir? #' @param recovery age in days at which to plot recovery from nadir (only valid if nadir is TRUE) - if NULL (default), will not be plotted #' @param width width of the plot #' @param height height of the plot #' @param hover variable names in \code{x$data} to show on hover for each point (only variables with non-NA data will be shown) #' @param checkpoints should the checkpoints be plotted (if available)? #' @param z z-scores at which to draw the z-score bands #' @param x_units units of age x-axis (days, months, or years) #' @param \ldots additional parameters passed to \code{\link{figure}} #' @examples #' mod <- get_fit(cpp, y_var = "wtkg", method = "rlm") #' fit <- fit_trajectory(subset(cpp, subjid == 2), mod) #' plot_z(fit) #' @export plot_z <- function(x, x_range = NULL, nadir = FALSE, recovery = NULL, width = 500, height = 520, hover = NULL, checkpoints = TRUE, z = -3:0, x_units = c("days", "months", "years"), ...) { x_units <- match.arg(x_units) x_denom <- switch(x_units, days = 1, months = 365.25 / 12, years = 365.25) if(is.null(x$xy$z)) return(empty_plot("No z transformation data for this subject")) if(is.null(x_range)) { x_range <- range(x$xy$x, na.rm = TRUE) x_range <- x_range + c(-1, 1) * diff(x_range) * 0.07 } if(is.null(hover)) { y_var_out <- x$y_var if(x$y_var == "htcm") y_var_out <- "haz" if(x$y_var == "wtkg") y_var_out <- "waz" hover <- c(x$x_var, y_var_out) } hover <- intersect(names(x$data), hover) if(length(hover) == 0) { hover <- NULL } else { hover <- hover[sapply(x$data[,hover], function(x) !all(is.na(x)))] hover <- x$data[x$xy$idx, hover] } xlab <- hbgd::hbgd_labels[[x$x_var]] if(x_units == "months") xlab <- gsub("\\(days\\)", "(months)", xlab) if(x_units == "years") xlab <- gsub("\\(days\\)", "(years)", xlab) ylab <- paste(hbgd::hbgd_labels[[x$y_var]], "z-score") fig <- figure(width = width, height = height, xlab = xlab, ylab = ylab, logo = NULL, ...) %>% ly_zband(x = c(x_range[1], x_range[2]), z = z, color = ifelse(x$sex == "Male", "blue", "red"), x_units = x_units) %>% rbokeh::ly_points(x / x_denom, z, hover = hover, data = x$xy, color = "black") if(!is.null(x$fitgrid)) { fig <- fig %>% rbokeh::ly_lines(x / x_denom, z, data = x$fitgrid, color = "black") %>% rbokeh::ly_points(x / x_denom, zfit, data = x$xy, color = "black", glyph = 19, size = 4) } if(!is.null(x$holdout)) fig <- fig %>% rbokeh::ly_points(x / x_denom, z, data = x$holdout, color = "red") if(!all(is.na(x$checkpoint$y)) && checkpoints) { x$checkpoint <- subset(x$checkpoint, !is.na(y)) fig <- fig %>% rbokeh::ly_points(x / x_denom, z, size = 15, hover = zcat, data = x$checkpoint, glyph = 13, color = "black", alpha = 0.6) } if(nadir) { nadir <- get_nadir(x) if(!is.na(nadir$at)) { fig <- fig %>% rbokeh::ly_segments(nadir$at / x_denom, 0, nadir$at / x_denom, nadir$mag, line_width = 5, color = "red", alpha = 0.5) if(!is.null(recovery)) { recov <- get_recovery(x, nadir, recovery) if(!is.na(recov$at)) { fig <- fig %>% rbokeh::ly_segments(nadir$at / x_denom, nadir$mag, recov$at / x_denom, nadir$mag, width = 5, color = "orange", alpha = 0.5) %>% rbokeh::ly_segments(recov$at / x_denom, nadir$mag, recov$at / x_denom, recov$z, width = 5, color = "green", alpha = 0.5) } } } } fig } #' Plot a fitted trajectory's velocity #' #' @param x an object returned from \code{\link{fit_trajectory}} #' @param width width of the plot #' @param height height of the plot #' @param x_units units of age x-axis (days, months, or years) #' @param \ldots additional parameters passed to \code{\link{figure}} #' @examples #' mod <- get_fit(cpp, y_var = "wtkg", method = "rlm") #' fit <- fit_trajectory(subset(cpp, subjid == 2), mod) #' plot_velocity(fit) #' @export plot_velocity <- function(x, width = 500, height = 520, x_units = c("days", "months", "years"), ...) { x_units <- match.arg(x_units) x_denom <- switch(x_units, days = 1, months = 365.25 / 12, years = 365.25) if(is.null(x$fitgrid$dy)) return(empty_plot("No velocity data for this subject")) xlab <- hbgd::hbgd_labels[[x$x_var]] if(x_units == "months") xlab <- gsub("\\(days\\)", "(months)", xlab) if(x_units == "years") xlab <- gsub("\\(days\\)", "(years)", xlab) ylab <- paste(hbgd::hbgd_labels[[x$y_var]], "growth velocity") # remove blip in velocity xx <- x$fitgrid$x dyy <- x$fitgrid$dy ind <- which.min(abs(xx - 365.25 * 2)) if(abs(365.25 * 2 - xx[ind]) < 2 * diff(xx[1:2])) { dyy[max(1, ind - 2):min(length(xx), ind + 2)] <- NA } figure(width = width, height = height, xlab = xlab, ylab = ylab, logo = NULL, ...) %>% ly_lines(xx / x_denom, dyy, color = "black") } #' Plot a fitted trajectory's z-score velocity #' #' @param x an object returned from \code{\link{fit_trajectory}} #' @param width width of the plot #' @param height height of the plot #' @param x_units units of age x-axis (days, months, or years) #' @param \ldots additional parameters passed to \code{\link{figure}} #' @examples #' mod <- get_fit(cpp, y_var = "wtkg", method = "rlm") #' fit <- fit_trajectory(subset(cpp, subjid == 2), mod) #' plot_zvelocity(fit) #' @export plot_zvelocity <- function(x, width = 500, height = 520, x_units = c("days", "months", "years"), ...) { x_units <- match.arg(x_units) x_denom <- switch(x_units, days = 1, months = 365.25 / 12, years = 365.25) if(is.null(x$fitgrid$dz)) return(empty_plot("No z-score velocity data for this subject")) xlab <- hbgd::hbgd_labels[[x$x_var]] if(x_units == "months") xlab <- gsub("\\(days\\)", "(months)", xlab) if(x_units == "years") xlab <- gsub("\\(days\\)", "(years)", xlab) ylab <- paste(hbgd::hbgd_labels[[x$y_var]], "z-score growth velocity") # remove blip in velocity xx <- x$fitgrid$x dzz <- x$fitgrid$dz ind <- which.min(abs(xx - 365.25 * 2)) if(abs(365.25 * 2 - xx[ind]) < 2 * diff(xx[1:2])) { dzz[max(1, ind - 2):min(length(xx), ind + 2)] <- NA } figure(width = width, height = height, xlab = xlab, ylab = ylab, logo = NULL, ...) %>% ly_lines(xx / x_denom, dzz, color = "black") } empty_plot <- function(lab) { figure(xaxes = FALSE, yaxes = FALSE, xgrid = FALSE, ygrid = FALSE, logo = NULL) %>% ly_text(0, 0, c("", lab), align = "center") } #' Get nadir of z-scale growth trajectory #' #' @param obj object created from \code{\link{fit_trajectory}} #' @export get_nadir <- function(obj) { if(is.null(obj$fitgrid)) return(data.frame(at = NA, mag = NA, end = NA)) if(is.null(obj$fitgrid$dz)) return(data.frame(at = NA, mag = NA, end = NA)) nn <- nrow(obj$fitgrid) - 1 # get crossings of zero of dz cross <- which(diff(sign(obj$fitgrid$dz)) > 0) + 1 if(length(cross) == 0) { if(all(obj$fitgrid$dz[nn] >= obj$fitgrid$dz, na.rm = TRUE)) { return(data.frame(at = obj$fitgrid$x[nn], mag = obj$fitgrid$z[nn], end = TRUE)) } else { return(data.frame(at = NA, mag = NA, end = NA)) } } cross <- cross[which.min(obj$fitgrid$z[cross])] end <- FALSE if(obj$fitgrid$z[nn] < obj$fitgrid$z[cross]) { cross <- nn end <- TRUE } data.frame(at = obj$fitgrid$x[cross], mag = obj$fitgrid$z[cross], end = end) } #' Get recovery statistics of z-scale growth trajectory #' #' @param obj object created from \code{\link{fit_trajectory}} #' @param nadir object created from \code{\link{get_nadir}} (if NULL, will be automatically generated) #' @param at age (in days) at which to estimate recovery #' @export get_recovery <- function(obj, nadir = NULL, at = 365.25 * 3) { if(is.null(obj$fitgrid)) return(data.frame(at = NA, mag = NA, end = FALSE)) if(is.null(obj$fitgrid$z)) return(data.frame(at = NA, mag = NA, end = FALSE)) if(is.null(nadir)) { nadir <- get_nadir(obj) } if(!is.na(nadir$at) && nadir$at < at) { val <- approxfun(obj$fitgrid$x, obj$fitgrid$z)(at) return(data.frame(at = at, z = val, recov = val - nadir$mag)) } else { return(data.frame(at = NA, z = NA, recov = NA)) } }
/R/plot_trajectory.R
permissive
skhan890/hbgd
R
false
false
12,513
r
#' Plot a fitted trajectory #' #' @param x an object returned from \code{\link{fit_trajectory}} #' @param center should the trajectory be centered around the median WHO standard? This is equivalent to plotting the age difference score (like height-for-age difference - HAD) #' @param x_range a vector specifying the range (min, max) that the superposed growth standard should span on the x-axis #' @param width width of the plot #' @param height height of the plot #' @param hover variable names in \code{x$data} to show on hover for each point (only variables with non-NA data will be shown) #' @param checkpoints should the checkpoints be plotted (if available)? #' @param p centiles at which to draw the WHO polygons #' @param x_units units of age x-axis (days, months, or years) #' @param \ldots additional parameters passed to \code{\link{figure}} #' @examples #' mod <- get_fit(cpp, y_var = "wtkg", method = "rlm") #' fit <- fit_trajectory(subset(cpp, subjid == 2), mod) #' plot(fit) #' plot(fit, x_units = "years") #' plot(fit, center = TRUE) #' plot(fit, hover = c("wtkg", "bmi", "waz", "haz")) #' @export plot.fittedTrajectory <- function(x, center = FALSE, x_range = NULL, width = 500, height = 520, hover = NULL, checkpoints = TRUE, p = 100 * pnorm(-3:0), x_units = c("days", "months", "years"), ...) { x_units <- match.arg(x_units) x_denom <- switch(x_units, days = 1, months = 365.25 / 12, years = 365.25) if(nrow(x$xy) == 0) return(empty_plot(paste0("No '", x$y_var, "' vs. '", x$x_var, "' data for this subject"))) if(is.null(x_range)) { x_range <- range(x$xy$x, na.rm = TRUE) x_range <- x_range + c(-1, 1) * diff(x_range) * 0.07 } # if(missing(hover)) { # hover <- names(x$data)[sapply(x$data, function(x) !all(is.na(x)))] # hover <- x$data[x$xy$idx, hover] # } else if(is.null(hover)) hover <- c(x$x_var, x$y_var) hover <- intersect(names(x$data), hover) if(length(hover) == 0) { hover <- NULL } else { hover <- hover[sapply(x$data[,hover], function(x) !all(is.na(x)))] hover <- x$data[x$xy$idx, hover] } ylab <- hbgd::hbgd_labels[[x$y_var]] if(center) { for(el in c("xy", "fitgrid", "checkpoint", "holdout")) { if(!is.null(x[[el]])) x[[el]]$y <- x[[el]]$y - who_centile2value(x[[el]]$x, p = 50, x_var = x$x_var, y_var = x$y_var, sex = x$sex) if(!is.null(x[[el]]$yfit)) x[[el]]$yfit <- x[[el]]$yfit - who_centile2value(x[[el]]$x, p = 50, x_var = x$x_var, y_var = x$y_var, sex = x$sex) } ylab <- paste(ylab, "(WHO median-centered)") } xlab <- hbgd::hbgd_labels[[x$x_var]] if(x_units == "months") xlab <- gsub("\\(days\\)", "(months)", xlab) if(x_units == "years") xlab <- gsub("\\(days\\)", "(years)", xlab) fig <- figure(width = width, height = height, xlab = xlab, ylab = ylab, logo = NULL, ...) %>% ly_who(x = seq(x_range[1], x_range[2], length = 100), center = center, x_var = x$x_var, y_var = x$y_var, sex = x$sex, p = p, x_units = x_units) %>% rbokeh::ly_points(x / x_denom, y, hover = hover, data = x$xy, color = "black") if(!is.null(x$fitgrid)) { fig <- fig %>% rbokeh::ly_lines(x / x_denom, y, data = x$fitgrid, color = "black") %>% rbokeh::ly_points(x / x_denom, yfit, data = x$xy, color = "black", glyph = 19, size = 4) } if(!is.null(x$holdout)) fig <- fig %>% rbokeh::ly_points(x / x_denom, y, data = x$holdout, color = "red") if(!all(is.na(x$checkpoint$y)) && checkpoints) { x$checkpoint <- subset(x$checkpoint, !is.na(y)) x$checkpoint <- data.frame(lapply(x$checkpoint, unname)) x$checkpoint$zcat <- as.character(x$checkpoint$zcat) fig <- fig %>% rbokeh::ly_points(x / x_denom, y, size = 15, hover = c("zcat", "x"), data = x$checkpoint, glyph = 13, color = "black", alpha = 0.6) } fig } #' Plot a fitted trajectory on z-score scale #' #' @param x an object returned from \code{\link{fit_trajectory}} #' @param x_range a vector specifying the range (min, max) that the superposed z-score bands should span on the x-axis #' @param nadir should a guide be added to the plot showing the location of the nadir? #' @param recovery age in days at which to plot recovery from nadir (only valid if nadir is TRUE) - if NULL (default), will not be plotted #' @param width width of the plot #' @param height height of the plot #' @param hover variable names in \code{x$data} to show on hover for each point (only variables with non-NA data will be shown) #' @param checkpoints should the checkpoints be plotted (if available)? #' @param z z-scores at which to draw the z-score bands #' @param x_units units of age x-axis (days, months, or years) #' @param \ldots additional parameters passed to \code{\link{figure}} #' @examples #' mod <- get_fit(cpp, y_var = "wtkg", method = "rlm") #' fit <- fit_trajectory(subset(cpp, subjid == 2), mod) #' plot_z(fit) #' @export plot_z <- function(x, x_range = NULL, nadir = FALSE, recovery = NULL, width = 500, height = 520, hover = NULL, checkpoints = TRUE, z = -3:0, x_units = c("days", "months", "years"), ...) { x_units <- match.arg(x_units) x_denom <- switch(x_units, days = 1, months = 365.25 / 12, years = 365.25) if(is.null(x$xy$z)) return(empty_plot("No z transformation data for this subject")) if(is.null(x_range)) { x_range <- range(x$xy$x, na.rm = TRUE) x_range <- x_range + c(-1, 1) * diff(x_range) * 0.07 } if(is.null(hover)) { y_var_out <- x$y_var if(x$y_var == "htcm") y_var_out <- "haz" if(x$y_var == "wtkg") y_var_out <- "waz" hover <- c(x$x_var, y_var_out) } hover <- intersect(names(x$data), hover) if(length(hover) == 0) { hover <- NULL } else { hover <- hover[sapply(x$data[,hover], function(x) !all(is.na(x)))] hover <- x$data[x$xy$idx, hover] } xlab <- hbgd::hbgd_labels[[x$x_var]] if(x_units == "months") xlab <- gsub("\\(days\\)", "(months)", xlab) if(x_units == "years") xlab <- gsub("\\(days\\)", "(years)", xlab) ylab <- paste(hbgd::hbgd_labels[[x$y_var]], "z-score") fig <- figure(width = width, height = height, xlab = xlab, ylab = ylab, logo = NULL, ...) %>% ly_zband(x = c(x_range[1], x_range[2]), z = z, color = ifelse(x$sex == "Male", "blue", "red"), x_units = x_units) %>% rbokeh::ly_points(x / x_denom, z, hover = hover, data = x$xy, color = "black") if(!is.null(x$fitgrid)) { fig <- fig %>% rbokeh::ly_lines(x / x_denom, z, data = x$fitgrid, color = "black") %>% rbokeh::ly_points(x / x_denom, zfit, data = x$xy, color = "black", glyph = 19, size = 4) } if(!is.null(x$holdout)) fig <- fig %>% rbokeh::ly_points(x / x_denom, z, data = x$holdout, color = "red") if(!all(is.na(x$checkpoint$y)) && checkpoints) { x$checkpoint <- subset(x$checkpoint, !is.na(y)) fig <- fig %>% rbokeh::ly_points(x / x_denom, z, size = 15, hover = zcat, data = x$checkpoint, glyph = 13, color = "black", alpha = 0.6) } if(nadir) { nadir <- get_nadir(x) if(!is.na(nadir$at)) { fig <- fig %>% rbokeh::ly_segments(nadir$at / x_denom, 0, nadir$at / x_denom, nadir$mag, line_width = 5, color = "red", alpha = 0.5) if(!is.null(recovery)) { recov <- get_recovery(x, nadir, recovery) if(!is.na(recov$at)) { fig <- fig %>% rbokeh::ly_segments(nadir$at / x_denom, nadir$mag, recov$at / x_denom, nadir$mag, width = 5, color = "orange", alpha = 0.5) %>% rbokeh::ly_segments(recov$at / x_denom, nadir$mag, recov$at / x_denom, recov$z, width = 5, color = "green", alpha = 0.5) } } } } fig } #' Plot a fitted trajectory's velocity #' #' @param x an object returned from \code{\link{fit_trajectory}} #' @param width width of the plot #' @param height height of the plot #' @param x_units units of age x-axis (days, months, or years) #' @param \ldots additional parameters passed to \code{\link{figure}} #' @examples #' mod <- get_fit(cpp, y_var = "wtkg", method = "rlm") #' fit <- fit_trajectory(subset(cpp, subjid == 2), mod) #' plot_velocity(fit) #' @export plot_velocity <- function(x, width = 500, height = 520, x_units = c("days", "months", "years"), ...) { x_units <- match.arg(x_units) x_denom <- switch(x_units, days = 1, months = 365.25 / 12, years = 365.25) if(is.null(x$fitgrid$dy)) return(empty_plot("No velocity data for this subject")) xlab <- hbgd::hbgd_labels[[x$x_var]] if(x_units == "months") xlab <- gsub("\\(days\\)", "(months)", xlab) if(x_units == "years") xlab <- gsub("\\(days\\)", "(years)", xlab) ylab <- paste(hbgd::hbgd_labels[[x$y_var]], "growth velocity") # remove blip in velocity xx <- x$fitgrid$x dyy <- x$fitgrid$dy ind <- which.min(abs(xx - 365.25 * 2)) if(abs(365.25 * 2 - xx[ind]) < 2 * diff(xx[1:2])) { dyy[max(1, ind - 2):min(length(xx), ind + 2)] <- NA } figure(width = width, height = height, xlab = xlab, ylab = ylab, logo = NULL, ...) %>% ly_lines(xx / x_denom, dyy, color = "black") } #' Plot a fitted trajectory's z-score velocity #' #' @param x an object returned from \code{\link{fit_trajectory}} #' @param width width of the plot #' @param height height of the plot #' @param x_units units of age x-axis (days, months, or years) #' @param \ldots additional parameters passed to \code{\link{figure}} #' @examples #' mod <- get_fit(cpp, y_var = "wtkg", method = "rlm") #' fit <- fit_trajectory(subset(cpp, subjid == 2), mod) #' plot_zvelocity(fit) #' @export plot_zvelocity <- function(x, width = 500, height = 520, x_units = c("days", "months", "years"), ...) { x_units <- match.arg(x_units) x_denom <- switch(x_units, days = 1, months = 365.25 / 12, years = 365.25) if(is.null(x$fitgrid$dz)) return(empty_plot("No z-score velocity data for this subject")) xlab <- hbgd::hbgd_labels[[x$x_var]] if(x_units == "months") xlab <- gsub("\\(days\\)", "(months)", xlab) if(x_units == "years") xlab <- gsub("\\(days\\)", "(years)", xlab) ylab <- paste(hbgd::hbgd_labels[[x$y_var]], "z-score growth velocity") # remove blip in velocity xx <- x$fitgrid$x dzz <- x$fitgrid$dz ind <- which.min(abs(xx - 365.25 * 2)) if(abs(365.25 * 2 - xx[ind]) < 2 * diff(xx[1:2])) { dzz[max(1, ind - 2):min(length(xx), ind + 2)] <- NA } figure(width = width, height = height, xlab = xlab, ylab = ylab, logo = NULL, ...) %>% ly_lines(xx / x_denom, dzz, color = "black") } empty_plot <- function(lab) { figure(xaxes = FALSE, yaxes = FALSE, xgrid = FALSE, ygrid = FALSE, logo = NULL) %>% ly_text(0, 0, c("", lab), align = "center") } #' Get nadir of z-scale growth trajectory #' #' @param obj object created from \code{\link{fit_trajectory}} #' @export get_nadir <- function(obj) { if(is.null(obj$fitgrid)) return(data.frame(at = NA, mag = NA, end = NA)) if(is.null(obj$fitgrid$dz)) return(data.frame(at = NA, mag = NA, end = NA)) nn <- nrow(obj$fitgrid) - 1 # get crossings of zero of dz cross <- which(diff(sign(obj$fitgrid$dz)) > 0) + 1 if(length(cross) == 0) { if(all(obj$fitgrid$dz[nn] >= obj$fitgrid$dz, na.rm = TRUE)) { return(data.frame(at = obj$fitgrid$x[nn], mag = obj$fitgrid$z[nn], end = TRUE)) } else { return(data.frame(at = NA, mag = NA, end = NA)) } } cross <- cross[which.min(obj$fitgrid$z[cross])] end <- FALSE if(obj$fitgrid$z[nn] < obj$fitgrid$z[cross]) { cross <- nn end <- TRUE } data.frame(at = obj$fitgrid$x[cross], mag = obj$fitgrid$z[cross], end = end) } #' Get recovery statistics of z-scale growth trajectory #' #' @param obj object created from \code{\link{fit_trajectory}} #' @param nadir object created from \code{\link{get_nadir}} (if NULL, will be automatically generated) #' @param at age (in days) at which to estimate recovery #' @export get_recovery <- function(obj, nadir = NULL, at = 365.25 * 3) { if(is.null(obj$fitgrid)) return(data.frame(at = NA, mag = NA, end = FALSE)) if(is.null(obj$fitgrid$z)) return(data.frame(at = NA, mag = NA, end = FALSE)) if(is.null(nadir)) { nadir <- get_nadir(obj) } if(!is.na(nadir$at) && nadir$at < at) { val <- approxfun(obj$fitgrid$x, obj$fitgrid$z)(at) return(data.frame(at = at, z = val, recov = val - nadir$mag)) } else { return(data.frame(at = NA, z = NA, recov = NA)) } }
library(tidyverse) library(rtracklayer) library(ggrastr) library(patchwork) library(furrr) plan(multiprocess(workers = 10)) load('misc/cons_ko.rda') tads <- import.bed('misc/tad.bed') load('misc/g33.rda') load('misc/deg.rda') load('misc/dac.rda') signif.num <- function(x) { symnum(x, corr = FALSE, na = FALSE, legend = FALSE, cutpoints = c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***", "**", "*", "˙", "")) } getWhisks <- function(x) { x <- as.numeric(x) qs <- quantile(x, c(0.25, 0.75), na.rm = T) data.frame(lower = qs[1], upper = qs[2], middle = median(x, na.rm = T), ymin = min(x[x >= (qs[1] - 1.5 * diff(qs))], na.rm = T), ymax = max(x[x <= (qs[2] + 1.5 * diff(qs))], na.rm = T)) %>% mutate(notchlower = middle - 1.58 * diff(qs)/sqrt(length(x)), notchupper = middle + 1.58 * diff(qs)/sqrt(length(x))) } scientific_10 <- function(x) { xout <- gsub("1e", "10^{", format(x),fixed=TRUE) xout <- gsub("{-0", "{-", xout,fixed=TRUE) xout <- gsub("{+", "{", xout,fixed=TRUE) xout <- gsub("{0", "{", xout,fixed=TRUE) xout <- paste(xout,"}",sep="") parse(text=xout) } scale_x_log10nice <- function(name=NULL,omag=seq(-10,20),...) { breaks10 <- 10^omag scale_x_log10(name,breaks=breaks10,labels=scientific_10(breaks10),...) } g33 <- g33[g33$type == 'gene'] dbins <- cons$B tads <- tads[overlapsAny(tads, g33) & overlapsAny(tads, d.all)] g33 <- g33[overlapsAny(g33, tads)] d.all <- d.all[overlapsAny(d.all, tads)] ints <- read_delim('misc/GH_interactions1_doubleElite.bed', '\t', col_names = c("chrom","chromStart", "chromEnd", "name", "score", "value", "geneAssociationMethods", "color", "geneHancerChrom", "geneHancerStart", "geneHancerEnd", "geneHancerIdentifier", "geneHancerStrand", "geneChrom", "geneStart", "geneEnd", "geneName", "geneStrand")) gh <- read_delim('misc/GeneHancer.bed', '\t', col_names = c("chrom", "start", "end", "name", "score", "strand", "thickStart", "thickEnd", "reserved", "evidenceSources", "elementType", "eliteness")) %>% mutate(start = start + 1) %>% makeGRangesFromDataFrame(keep.extra.columns = T) igr <- import.bed('ensembl/intergenic.bed') igr_or_not <- setNames(overlapsAny(gh, igr), gh$name) enh_or_not <- setNames(gh$elementType == 'Enhancer', gh$name) enhs <- ints %>% dplyr::select(chr = geneHancerChrom, start = geneHancerStart, end = geneHancerEnd, strand = geneHancerStrand, id = geneHancerIdentifier) %>% mutate(start = start + 1, igr = igr_or_not[id], enh = enh_or_not[id]) %>% distinct(id, .keep_all = T) %>% makeGRangesFromDataFrame(keep.extra.columns = T) genes <- ints %>% dplyr::select(chr = geneChrom, start = geneStart, end = geneEnd, strand = geneStrand, gene = geneName, id = geneHancerIdentifier) %>% mutate(start = start + 1) %>% makeGRangesFromDataFrame(keep.extra.columns = T) gs <- genes[genes$gene %in% g33$gene_name] g2id <- setNames(g33$ID, g33$gene_name) gs$ensembl <- g2id[gs$gene] others <- genes[!(genes$gene %in% g33$gene_name)] others.ok <- others[overlapsAny(others, g33)] others <- others[!overlapsAny(others, g33)] hits <- findOverlaps(others.ok, g33) %>% as("List") ids <- extractList(g33$ID, hits) %>% as.list() init <- T while(T) { uniq <- which(sapply(ids, length) == 1) others.ok$ensembl <- sapply(ids, `[`, 1) if (init) { ok <- others.ok init <- F } else { ok <- c(ok, others.ok) } others.ok <- others.ok[-uniq] if (length(others.ok) < 1) { break } hits <- findOverlaps(others.ok, g33) %>% as("List") ids <- extractList(g33$ID, hits) %>% as.list } gs <- c(gs, ok) res <- res$KO res$dtad <- res$ID %in% g33[overlapsAny(g33, tads[overlapsAny(tads, dbins)])]$ID res$tany <- res$ID %in% (gs[gs$id %in% enhs[overlapsAny(enhs, d.all[ d.all$FDR < .05])]$id]$ensembl %>% unique()) res$tpos <- res$ID %in% (gs[gs$id %in% enhs[overlapsAny(enhs, d.all[ d.all$FDR < .05 & d.all$Fold > 0])]$id]$ensembl %>% unique()) res$tneg <- res$ID %in% (gs[gs$id %in% enhs[overlapsAny(enhs, d.all[ d.all$FDR < .05 & d.all$Fold < 0])]$id]$ensembl %>% unique()) res$targ <- res$ID %in% (gs[gs$id %in% enhs[overlapsAny(enhs, dbins)]$id]$ensembl %>% unique()) res$dpos <- !is.na(res$svalue) & res$svalue < .05 & res$log2FoldChangeAdj < 0 res$dneg <- !is.na(res$svalue) & res$svalue < .05 & res$log2FoldChangeAdj > 0 res <- res[res$ID %in% g33$ID,] gg <- g33[match(res$ID, g33$ID)] res$str <- distanceToNearest(gg, dbins)@elementMetadata$distance %>% cut(., breaks = quantile(., probs = seq(0, 1, by = .2)), include.lowest = T) %>% as.factor() res$dist <- distanceToNearest(gg, dbins)@elementMetadata$distance o <- res o <- o[o$dist > 0,] ht <- o$dist[o$dneg] %>% log10() %>% hist(10, plot = F) o$str2 <- cut(o$dist, breaks = 10^ht$breaks, include.lowest = T) o$int <- as.numeric(o$str2) probs <- lapply(seq_along(ht$counts), function(x) { rep(x, ht$counts[x]) }) %>% unlist() samp <- function(dat, idxs) { lapply(idxs, function(i) { dat[[as.character(i)]] %>% {.[sample(nrow(.), 1),]} }) %>% bind_rows() } dat <- split(o, o$int) nums <- future_map(1:1e4, function(x) { samp(dat, probs)$dtad %>% sum() }, .progress = T) %>% unlist() num <- sum(o$dtad[o$dneg]) p <- sum(nums >= num) / length(nums) ptxt <- tibble(x = -Inf, y = Inf, p = sprintf('p = %.3f', p)) p <- ggplot(tibble(x = nums, ttl = 'Permutation test on \'TAD\''), aes(x)) + geom_histogram(binwidth = 1, fill = 'dodgerblue4') + geom_vline(xintercept = num, color = 'firebrick3') + geom_label(aes(x, y, label = p), data = ptxt, vjust = 1.5, hjust = -0.1) + labs(x = sprintf("# genes in TAD with \u2193%s", 'H3K36me2 bin'), y = "Frequency") + facet_grid(ttl ~ .) + scale_y_continuous(expand = expansion(mult = c(0,0.1))) + theme(plot.background = element_blank(), panel.background = element_blank(), panel.grid = element_blank(), legend.position = c(.025, .90), legend.justification = c(0, 1), legend.title = element_text(family = 'Arial', size = 9), legend.background = element_blank(), legend.key = element_blank(), axis.title = element_text(family = 'Arial'), strip.background = element_rect(fill = 'black'), strip.text = element_text(color = 'white'), axis.line = element_line(color = 'black'), axis.text = element_text(color = 'black'), #axis.line.y = element_blank(), panel.grid.major = element_line(color = 'grey80', linetype = 'dashed'), axis.ticks = element_line(color = 'black')) ggsave('figs/4d.pdf', p, height = 2.1, width = 3.6, device = cairo_pdf)
/scripts/4d.R
no_license
yuzhenpeng/hnscc_nsd1
R
false
false
7,195
r
library(tidyverse) library(rtracklayer) library(ggrastr) library(patchwork) library(furrr) plan(multiprocess(workers = 10)) load('misc/cons_ko.rda') tads <- import.bed('misc/tad.bed') load('misc/g33.rda') load('misc/deg.rda') load('misc/dac.rda') signif.num <- function(x) { symnum(x, corr = FALSE, na = FALSE, legend = FALSE, cutpoints = c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***", "**", "*", "˙", "")) } getWhisks <- function(x) { x <- as.numeric(x) qs <- quantile(x, c(0.25, 0.75), na.rm = T) data.frame(lower = qs[1], upper = qs[2], middle = median(x, na.rm = T), ymin = min(x[x >= (qs[1] - 1.5 * diff(qs))], na.rm = T), ymax = max(x[x <= (qs[2] + 1.5 * diff(qs))], na.rm = T)) %>% mutate(notchlower = middle - 1.58 * diff(qs)/sqrt(length(x)), notchupper = middle + 1.58 * diff(qs)/sqrt(length(x))) } scientific_10 <- function(x) { xout <- gsub("1e", "10^{", format(x),fixed=TRUE) xout <- gsub("{-0", "{-", xout,fixed=TRUE) xout <- gsub("{+", "{", xout,fixed=TRUE) xout <- gsub("{0", "{", xout,fixed=TRUE) xout <- paste(xout,"}",sep="") parse(text=xout) } scale_x_log10nice <- function(name=NULL,omag=seq(-10,20),...) { breaks10 <- 10^omag scale_x_log10(name,breaks=breaks10,labels=scientific_10(breaks10),...) } g33 <- g33[g33$type == 'gene'] dbins <- cons$B tads <- tads[overlapsAny(tads, g33) & overlapsAny(tads, d.all)] g33 <- g33[overlapsAny(g33, tads)] d.all <- d.all[overlapsAny(d.all, tads)] ints <- read_delim('misc/GH_interactions1_doubleElite.bed', '\t', col_names = c("chrom","chromStart", "chromEnd", "name", "score", "value", "geneAssociationMethods", "color", "geneHancerChrom", "geneHancerStart", "geneHancerEnd", "geneHancerIdentifier", "geneHancerStrand", "geneChrom", "geneStart", "geneEnd", "geneName", "geneStrand")) gh <- read_delim('misc/GeneHancer.bed', '\t', col_names = c("chrom", "start", "end", "name", "score", "strand", "thickStart", "thickEnd", "reserved", "evidenceSources", "elementType", "eliteness")) %>% mutate(start = start + 1) %>% makeGRangesFromDataFrame(keep.extra.columns = T) igr <- import.bed('ensembl/intergenic.bed') igr_or_not <- setNames(overlapsAny(gh, igr), gh$name) enh_or_not <- setNames(gh$elementType == 'Enhancer', gh$name) enhs <- ints %>% dplyr::select(chr = geneHancerChrom, start = geneHancerStart, end = geneHancerEnd, strand = geneHancerStrand, id = geneHancerIdentifier) %>% mutate(start = start + 1, igr = igr_or_not[id], enh = enh_or_not[id]) %>% distinct(id, .keep_all = T) %>% makeGRangesFromDataFrame(keep.extra.columns = T) genes <- ints %>% dplyr::select(chr = geneChrom, start = geneStart, end = geneEnd, strand = geneStrand, gene = geneName, id = geneHancerIdentifier) %>% mutate(start = start + 1) %>% makeGRangesFromDataFrame(keep.extra.columns = T) gs <- genes[genes$gene %in% g33$gene_name] g2id <- setNames(g33$ID, g33$gene_name) gs$ensembl <- g2id[gs$gene] others <- genes[!(genes$gene %in% g33$gene_name)] others.ok <- others[overlapsAny(others, g33)] others <- others[!overlapsAny(others, g33)] hits <- findOverlaps(others.ok, g33) %>% as("List") ids <- extractList(g33$ID, hits) %>% as.list() init <- T while(T) { uniq <- which(sapply(ids, length) == 1) others.ok$ensembl <- sapply(ids, `[`, 1) if (init) { ok <- others.ok init <- F } else { ok <- c(ok, others.ok) } others.ok <- others.ok[-uniq] if (length(others.ok) < 1) { break } hits <- findOverlaps(others.ok, g33) %>% as("List") ids <- extractList(g33$ID, hits) %>% as.list } gs <- c(gs, ok) res <- res$KO res$dtad <- res$ID %in% g33[overlapsAny(g33, tads[overlapsAny(tads, dbins)])]$ID res$tany <- res$ID %in% (gs[gs$id %in% enhs[overlapsAny(enhs, d.all[ d.all$FDR < .05])]$id]$ensembl %>% unique()) res$tpos <- res$ID %in% (gs[gs$id %in% enhs[overlapsAny(enhs, d.all[ d.all$FDR < .05 & d.all$Fold > 0])]$id]$ensembl %>% unique()) res$tneg <- res$ID %in% (gs[gs$id %in% enhs[overlapsAny(enhs, d.all[ d.all$FDR < .05 & d.all$Fold < 0])]$id]$ensembl %>% unique()) res$targ <- res$ID %in% (gs[gs$id %in% enhs[overlapsAny(enhs, dbins)]$id]$ensembl %>% unique()) res$dpos <- !is.na(res$svalue) & res$svalue < .05 & res$log2FoldChangeAdj < 0 res$dneg <- !is.na(res$svalue) & res$svalue < .05 & res$log2FoldChangeAdj > 0 res <- res[res$ID %in% g33$ID,] gg <- g33[match(res$ID, g33$ID)] res$str <- distanceToNearest(gg, dbins)@elementMetadata$distance %>% cut(., breaks = quantile(., probs = seq(0, 1, by = .2)), include.lowest = T) %>% as.factor() res$dist <- distanceToNearest(gg, dbins)@elementMetadata$distance o <- res o <- o[o$dist > 0,] ht <- o$dist[o$dneg] %>% log10() %>% hist(10, plot = F) o$str2 <- cut(o$dist, breaks = 10^ht$breaks, include.lowest = T) o$int <- as.numeric(o$str2) probs <- lapply(seq_along(ht$counts), function(x) { rep(x, ht$counts[x]) }) %>% unlist() samp <- function(dat, idxs) { lapply(idxs, function(i) { dat[[as.character(i)]] %>% {.[sample(nrow(.), 1),]} }) %>% bind_rows() } dat <- split(o, o$int) nums <- future_map(1:1e4, function(x) { samp(dat, probs)$dtad %>% sum() }, .progress = T) %>% unlist() num <- sum(o$dtad[o$dneg]) p <- sum(nums >= num) / length(nums) ptxt <- tibble(x = -Inf, y = Inf, p = sprintf('p = %.3f', p)) p <- ggplot(tibble(x = nums, ttl = 'Permutation test on \'TAD\''), aes(x)) + geom_histogram(binwidth = 1, fill = 'dodgerblue4') + geom_vline(xintercept = num, color = 'firebrick3') + geom_label(aes(x, y, label = p), data = ptxt, vjust = 1.5, hjust = -0.1) + labs(x = sprintf("# genes in TAD with \u2193%s", 'H3K36me2 bin'), y = "Frequency") + facet_grid(ttl ~ .) + scale_y_continuous(expand = expansion(mult = c(0,0.1))) + theme(plot.background = element_blank(), panel.background = element_blank(), panel.grid = element_blank(), legend.position = c(.025, .90), legend.justification = c(0, 1), legend.title = element_text(family = 'Arial', size = 9), legend.background = element_blank(), legend.key = element_blank(), axis.title = element_text(family = 'Arial'), strip.background = element_rect(fill = 'black'), strip.text = element_text(color = 'white'), axis.line = element_line(color = 'black'), axis.text = element_text(color = 'black'), #axis.line.y = element_blank(), panel.grid.major = element_line(color = 'grey80', linetype = 'dashed'), axis.ticks = element_line(color = 'black')) ggsave('figs/4d.pdf', p, height = 2.1, width = 3.6, device = cairo_pdf)
# Collapsed samples overlap # Tahel Ronel, June 2021 # This script calculates the TCR overlap (using the 5-part Decombinator id, DCR) between any two samples produced using Collapsinator from Decombinator V4. # The overlap is calculated as follows: # Let A be the overlap matrix. Then for any two samples i,j, # A_{i,j}, the overlap with respect to row i, is # (Number of distinct DCRs found in both i and j) / (number of unique DCRs in i). # Note this is in general asymmetric (A_{i,j} is not equal to A_{j,i}). # The overlap matrix is then plotted as a heatmap, with red squares marking an overlap greater than (mean + 3 standard deviations). # If comparing all samples in a particular sequencing run, note that as some runs contain several samples from the same individual/s, # the absolute expected 'background' overlap will differ between runs. # The script calculates and plots the overlap of the alpha files first followed by beta. library(pheatmap) library(RColorBrewer) library(ggplot2) # Change this to the path to the directory containing the collapsed (.freq) files to be compared input<-'/path/to/collapsed/files' dir<-dir(input) # Alpha alpha_list<-list() alpha_idx<-grep('alpha',dir) alpha_dir<-dir[alpha_idx] # Reading in all alpha collapsed files for (i in 1:length(alpha_dir)){ alpha_list[[i]]<-read.csv(paste(input,alpha_dir[i],sep=""),header=FALSE) } # Defining the sample names (removing 'dcr' prefix and chain+file suffix to shorten) s1<-strsplit(alpha_dir, '_alpha.freq.gz') s2<-strsplit(unlist(s1), 'dcr_') names_alpha<-lapply(1:length(alpha_dir), function(x){(s2[[x]][2])}) names(alpha_list)<-names_alpha # Calculating the overlap matrix: alpha_mat<-matrix(ncol=length(alpha_dir),nrow=length(alpha_dir)) len_alpha<-length(alpha_dir) for (i in 1:len_alpha){ for (j in 1:len_alpha){ dcr_i<-paste(alpha_list[[i]][,1],alpha_list[[i]][,2],alpha_list[[i]][,3],alpha_list[[i]][,4],alpha_list[[i]][,5],sep=" ") dcr_j<-paste(alpha_list[[j]][,1],alpha_list[[j]][,2],alpha_list[[j]][,3],alpha_list[[j]][,4],alpha_list[[j]][,5],sep=" ") y1<-c(dcr_i,dcr_j) total_i<-length(dcr_i)#nrow(alpha_list[[i]]) total_ij<-length(y1) unique_ij<-length(unique(y1)) C_ij<-total_ij-unique_ij alpha_mat[i,j]<-C_ij/total_i }} row.names(alpha_mat)<-names_alpha colnames(alpha_mat)<-names_alpha alpha_mat_df<-data.frame(alpha_mat) # Defining the accepted background threshold as mean + 3 std. devs.: alpha_1<-which(alpha_mat==1) alpha_mat_nondiag<-alpha_mat[-alpha_1] mean_alpha<-mean(alpha_mat_nondiag) sd_alpha<-sd(alpha_mat_nondiag) outliers3sd<-mean_alpha+3*sd_alpha outliers3<-which(alpha_mat_df>=outliers3sd) outliers3<-setdiff(outliers3,alpha_1) # Setting parameters for heatmap: border_colours_alpha<-matrix(ncol=len_alpha, nrow=len_alpha) border_colours_alpha[-outliers3]<-"grey" border_colours_alpha[outliers3]<-"red" bk1 <- c(seq(0,outliers3sd,by=0.005),outliers3sd) bk2 <- c(outliers3sd+0.0001,seq(outliers3sd+0.0002,0.99,by=0.005)) bk <- c(bk1,bk2) #combine the break limits for purpose of graphing my_palette <- c(colorRampPalette(colors = c("lightyellow", "lightblue"))(n = length(bk1)-1), "gray38", "gray38", c(colorRampPalette(colors = c("red", "darkred"))(n = length(bk2)-1))) # Plotting the heatmap: pheatmap(alpha_mat_df,cluster_method="Ward.D",clustering_distance_row ="euclidean" ,main=paste("Sample Overlap, alpha"),treeheight_row=0, cluster_cols = FALSE,cluster_rows = FALSE, col= my_palette, breaks=bk, fontsize = 11,fontsize_row=10,show_rownames = TRUE, border_color = border_colours_alpha) # Save heatmap image as pdf #dev.off() #pdf(paste("/path/to/folder/overlap_alpha_",Sys.Date(),".pdf",sep="")) #pheatmap(alpha_mat_df,cluster_method="Ward.D",clustering_distance_row ="euclidean" ,main=paste("Sample Overlap, alpha"),treeheight_row=0, cluster_cols = FALSE,cluster_rows = FALSE, col= my_palette, breaks=bk, fontsize = 11,fontsize_row=10,show_rownames = TRUE, border_color = border_colours_alpha) #dev.off() # Beta beta_list<-list() beta_idx<-grep('beta',dir) beta_dir<-dir[beta_idx] # Reading in all beta collapsed files for (i in 1:length(beta_dir)){ beta_list[[i]]<-read.csv(paste(input,beta_dir[i],sep=""),header=FALSE) } # Defining the sample names (removing 'dcr' prefix and chain+file suffix to shorten) s1<-strsplit(beta_dir, '_beta.freq.gz') s2<-strsplit(unlist(s1), 'dcr_') names_beta<-lapply(1:length(beta_dir), function(x){(s2[[x]][2])}) names(beta_list)<-names_beta # Calculating the overlap matrix beta_mat<-matrix(ncol=length(beta_dir),nrow=length(beta_dir)) len_beta<-length(beta_dir) for (i in 1:len_beta){ for (j in 1:len_beta){ dcr_i<-paste(beta_list[[i]][,1],beta_list[[i]][,2],beta_list[[i]][,3],beta_list[[i]][,4],beta_list[[i]][,5],sep=" ") dcr_j<-paste(beta_list[[j]][,1],beta_list[[j]][,2],beta_list[[j]][,3],beta_list[[j]][,4],beta_list[[j]][,5],sep=" ") y1<-c(dcr_i,dcr_j) total_i<-length(dcr_i)#nrow(beta_list[[i]]) total_ij<-length(y1) unique_ij<-length(unique(y1)) C_ij<-total_ij-unique_ij beta_mat[i,j]<-C_ij/total_i }} row.names(beta_mat)<-names_beta colnames(beta_mat)<-names_beta beta_mat_df<-data.frame(beta_mat) # Defining the accepted background threshold as mean + 3 std. devs.: beta_1<-which(beta_mat==1) beta_mat_nondiag<-beta_mat[-beta_1] mean_beta<-mean(beta_mat_nondiag) sd_beta<-sd(beta_mat_nondiag) outliers3sd<-mean_beta+3*sd_beta outliers3<-which(beta_mat_df>=outliers3sd) outliers3<-setdiff(outliers3,beta_1) # Setting parameters for heatmap: border_colours_beta<-matrix(ncol=len_beta, nrow=len_beta) border_colours_beta[-outliers3]<-"grey" border_colours_beta[outliers3]<-"red" bk1 <- c(seq(0,outliers3sd,by=0.005),outliers3sd) bk2 <- c(outliers3sd+0.0001,seq(outliers3sd+0.0002,0.99,by=0.005)) bk <- c(bk1,bk2) #combine the break limits for purpose of graphing my_palette <- c(colorRampPalette(colors = c("lightyellow", "lightblue"))(n = length(bk1)-1), "gray38", "gray38", c(colorRampPalette(colors = c("red", "darkred"))(n = length(bk2)-1))) # Plotting the heatmap: pheatmap(beta_mat_df,cluster_method="Ward.D",clustering_distance_row ="euclidean" ,main=paste("Sample Overlap, beta"),treeheight_row=0, cluster_cols = FALSE,cluster_rows = FALSE, col= my_palette, breaks=bk, fontsize = 11,fontsize_row=10,show_rownames = TRUE, border_color = border_colours_beta) # Save heatmap image as pdf #dev.off() #pdf(paste("/path/to/folder/overlap_beta_",Sys.Date(),".pdf",sep="")) #pheatmap(beta_mat_df,cluster_method="Ward.D",clustering_distance_row ="euclidean" ,main=paste("Sample Overlap, beta"),treeheight_row=0, cluster_cols = FALSE,cluster_rows = FALSE, col= my_palette, breaks=bk, fontsize = 11,fontsize_row=10,show_rownames = TRUE, border_color = border_colours_beta) #dev.off()
/collapsed_sample_overlap/collapsed_sample_overlap.R
no_license
innate2adaptive/Decombinator-Tools
R
false
false
6,856
r
# Collapsed samples overlap # Tahel Ronel, June 2021 # This script calculates the TCR overlap (using the 5-part Decombinator id, DCR) between any two samples produced using Collapsinator from Decombinator V4. # The overlap is calculated as follows: # Let A be the overlap matrix. Then for any two samples i,j, # A_{i,j}, the overlap with respect to row i, is # (Number of distinct DCRs found in both i and j) / (number of unique DCRs in i). # Note this is in general asymmetric (A_{i,j} is not equal to A_{j,i}). # The overlap matrix is then plotted as a heatmap, with red squares marking an overlap greater than (mean + 3 standard deviations). # If comparing all samples in a particular sequencing run, note that as some runs contain several samples from the same individual/s, # the absolute expected 'background' overlap will differ between runs. # The script calculates and plots the overlap of the alpha files first followed by beta. library(pheatmap) library(RColorBrewer) library(ggplot2) # Change this to the path to the directory containing the collapsed (.freq) files to be compared input<-'/path/to/collapsed/files' dir<-dir(input) # Alpha alpha_list<-list() alpha_idx<-grep('alpha',dir) alpha_dir<-dir[alpha_idx] # Reading in all alpha collapsed files for (i in 1:length(alpha_dir)){ alpha_list[[i]]<-read.csv(paste(input,alpha_dir[i],sep=""),header=FALSE) } # Defining the sample names (removing 'dcr' prefix and chain+file suffix to shorten) s1<-strsplit(alpha_dir, '_alpha.freq.gz') s2<-strsplit(unlist(s1), 'dcr_') names_alpha<-lapply(1:length(alpha_dir), function(x){(s2[[x]][2])}) names(alpha_list)<-names_alpha # Calculating the overlap matrix: alpha_mat<-matrix(ncol=length(alpha_dir),nrow=length(alpha_dir)) len_alpha<-length(alpha_dir) for (i in 1:len_alpha){ for (j in 1:len_alpha){ dcr_i<-paste(alpha_list[[i]][,1],alpha_list[[i]][,2],alpha_list[[i]][,3],alpha_list[[i]][,4],alpha_list[[i]][,5],sep=" ") dcr_j<-paste(alpha_list[[j]][,1],alpha_list[[j]][,2],alpha_list[[j]][,3],alpha_list[[j]][,4],alpha_list[[j]][,5],sep=" ") y1<-c(dcr_i,dcr_j) total_i<-length(dcr_i)#nrow(alpha_list[[i]]) total_ij<-length(y1) unique_ij<-length(unique(y1)) C_ij<-total_ij-unique_ij alpha_mat[i,j]<-C_ij/total_i }} row.names(alpha_mat)<-names_alpha colnames(alpha_mat)<-names_alpha alpha_mat_df<-data.frame(alpha_mat) # Defining the accepted background threshold as mean + 3 std. devs.: alpha_1<-which(alpha_mat==1) alpha_mat_nondiag<-alpha_mat[-alpha_1] mean_alpha<-mean(alpha_mat_nondiag) sd_alpha<-sd(alpha_mat_nondiag) outliers3sd<-mean_alpha+3*sd_alpha outliers3<-which(alpha_mat_df>=outliers3sd) outliers3<-setdiff(outliers3,alpha_1) # Setting parameters for heatmap: border_colours_alpha<-matrix(ncol=len_alpha, nrow=len_alpha) border_colours_alpha[-outliers3]<-"grey" border_colours_alpha[outliers3]<-"red" bk1 <- c(seq(0,outliers3sd,by=0.005),outliers3sd) bk2 <- c(outliers3sd+0.0001,seq(outliers3sd+0.0002,0.99,by=0.005)) bk <- c(bk1,bk2) #combine the break limits for purpose of graphing my_palette <- c(colorRampPalette(colors = c("lightyellow", "lightblue"))(n = length(bk1)-1), "gray38", "gray38", c(colorRampPalette(colors = c("red", "darkred"))(n = length(bk2)-1))) # Plotting the heatmap: pheatmap(alpha_mat_df,cluster_method="Ward.D",clustering_distance_row ="euclidean" ,main=paste("Sample Overlap, alpha"),treeheight_row=0, cluster_cols = FALSE,cluster_rows = FALSE, col= my_palette, breaks=bk, fontsize = 11,fontsize_row=10,show_rownames = TRUE, border_color = border_colours_alpha) # Save heatmap image as pdf #dev.off() #pdf(paste("/path/to/folder/overlap_alpha_",Sys.Date(),".pdf",sep="")) #pheatmap(alpha_mat_df,cluster_method="Ward.D",clustering_distance_row ="euclidean" ,main=paste("Sample Overlap, alpha"),treeheight_row=0, cluster_cols = FALSE,cluster_rows = FALSE, col= my_palette, breaks=bk, fontsize = 11,fontsize_row=10,show_rownames = TRUE, border_color = border_colours_alpha) #dev.off() # Beta beta_list<-list() beta_idx<-grep('beta',dir) beta_dir<-dir[beta_idx] # Reading in all beta collapsed files for (i in 1:length(beta_dir)){ beta_list[[i]]<-read.csv(paste(input,beta_dir[i],sep=""),header=FALSE) } # Defining the sample names (removing 'dcr' prefix and chain+file suffix to shorten) s1<-strsplit(beta_dir, '_beta.freq.gz') s2<-strsplit(unlist(s1), 'dcr_') names_beta<-lapply(1:length(beta_dir), function(x){(s2[[x]][2])}) names(beta_list)<-names_beta # Calculating the overlap matrix beta_mat<-matrix(ncol=length(beta_dir),nrow=length(beta_dir)) len_beta<-length(beta_dir) for (i in 1:len_beta){ for (j in 1:len_beta){ dcr_i<-paste(beta_list[[i]][,1],beta_list[[i]][,2],beta_list[[i]][,3],beta_list[[i]][,4],beta_list[[i]][,5],sep=" ") dcr_j<-paste(beta_list[[j]][,1],beta_list[[j]][,2],beta_list[[j]][,3],beta_list[[j]][,4],beta_list[[j]][,5],sep=" ") y1<-c(dcr_i,dcr_j) total_i<-length(dcr_i)#nrow(beta_list[[i]]) total_ij<-length(y1) unique_ij<-length(unique(y1)) C_ij<-total_ij-unique_ij beta_mat[i,j]<-C_ij/total_i }} row.names(beta_mat)<-names_beta colnames(beta_mat)<-names_beta beta_mat_df<-data.frame(beta_mat) # Defining the accepted background threshold as mean + 3 std. devs.: beta_1<-which(beta_mat==1) beta_mat_nondiag<-beta_mat[-beta_1] mean_beta<-mean(beta_mat_nondiag) sd_beta<-sd(beta_mat_nondiag) outliers3sd<-mean_beta+3*sd_beta outliers3<-which(beta_mat_df>=outliers3sd) outliers3<-setdiff(outliers3,beta_1) # Setting parameters for heatmap: border_colours_beta<-matrix(ncol=len_beta, nrow=len_beta) border_colours_beta[-outliers3]<-"grey" border_colours_beta[outliers3]<-"red" bk1 <- c(seq(0,outliers3sd,by=0.005),outliers3sd) bk2 <- c(outliers3sd+0.0001,seq(outliers3sd+0.0002,0.99,by=0.005)) bk <- c(bk1,bk2) #combine the break limits for purpose of graphing my_palette <- c(colorRampPalette(colors = c("lightyellow", "lightblue"))(n = length(bk1)-1), "gray38", "gray38", c(colorRampPalette(colors = c("red", "darkred"))(n = length(bk2)-1))) # Plotting the heatmap: pheatmap(beta_mat_df,cluster_method="Ward.D",clustering_distance_row ="euclidean" ,main=paste("Sample Overlap, beta"),treeheight_row=0, cluster_cols = FALSE,cluster_rows = FALSE, col= my_palette, breaks=bk, fontsize = 11,fontsize_row=10,show_rownames = TRUE, border_color = border_colours_beta) # Save heatmap image as pdf #dev.off() #pdf(paste("/path/to/folder/overlap_beta_",Sys.Date(),".pdf",sep="")) #pheatmap(beta_mat_df,cluster_method="Ward.D",clustering_distance_row ="euclidean" ,main=paste("Sample Overlap, beta"),treeheight_row=0, cluster_cols = FALSE,cluster_rows = FALSE, col= my_palette, breaks=bk, fontsize = 11,fontsize_row=10,show_rownames = TRUE, border_color = border_colours_beta) #dev.off()
################################################################################ ##' @title Analyze log size - LODI ##' ##' @author Robin Elahi ##' @contact elahi.robin@gmail.com ##' ##' @date 2017-12-17 ##' ##' @log ################################################################################ ##### PACKAGES, DATA ##### source("3_analyse_data/01_sbs_bayes_data.R") source("R/truncate_data.R") library(rjags) ##### PREPARE DATA FOR JAGS ##### ##' x1 = era ##' x2 = density ##' x3 = tide height ## My data statDat <- hexDF ## My quantile for size threshold my_quantile <- 0 statDat <- truncate_data(statDat, era = "past", quant = my_quantile) statDat <- statDat %>% mutate(era01 = ifelse(era == "past", 0, 1)) ## My species my_species <- "LODI" ## My data type my_data <- "raw" # Get means and sd of continuous variables x2_mu <- mean(statDat$density_m2) x2_sd <- sd(statDat$density_m2) x3_mu <- mean(statDat$tideHTm) x3_sd <- sd(statDat$tideHTm) # Standardize continuous variables statDat$x2z <- as.numeric(scale(statDat$density_m2)) statDat$x3z <- as.numeric(scale(statDat$tideHTm)) make_predict_vector <- function(my_vector, predict_length = 100){ my_min <- min(my_vector) my_max <- max(my_vector) my_vector_pred <- seq(my_min, my_max, length.out = predict_length) return(my_vector_pred) } x2z_pred <- make_predict_vector(statDat$x2z, predict_length = 100) x3z_pred <- make_predict_vector(statDat$x3z, predict_length = 100) # For prediction era_predict <- c(0,1) pred_df <- expand.grid(x2z_pred, era_predict) %>% rename(x2z = Var1, x1 = Var2) %>% tbl_df() pred_df$x3z <- 0 # Get data data = list( N = nrow(statDat), y = as.double(statDat$size_log), x1 = as.double(statDat$era01), x2 = as.double(statDat$x2z), x3 = as.double(statDat$x3z), x1_pred = as.double(pred_df$x1), x2_pred = as.double(pred_df$x2z), x3_pred = as.double(pred_df$x3z) ) ##### MODEL 1: ERA + DENSITY + TIDE #### my_model <- "eraPdensityPtide" output_location <- "3_analyse_data/bayes_output/by_species/" # JAGS model sink("3_analyse_data/bayes_models/modelJags.R") cat(" model{ # priors b0 ~ dnorm(0, 1/10^2) b1 ~ dnorm(0, 1/10^2) b2 ~ dnorm(0, 1/10^2) b3 ~ dnorm(0, 1/10^2) sigma ~ dunif(0, 5) tau <- 1/sigma^2 # likelihood for (i in 1:N){ mu[i] <- b0 + b1*x1[i] + b2*x2[i] + b3*x3[i] y[i] ~ dnorm(mu[i], tau) y.new[i] ~ dnorm(mu[i], tau) sq.error.data[i] <- (y[i] - mu[i])^2 sq.error.new[i] <- (y.new[i] - mu[i])^2 } # bayesian p-values sd.data <- sd(y) sd.new <- sd(y.new) p.sd <- step(sd.new - sd.data) mean.data <- mean(y) mean.new <- mean(y.new) p.mean <- step(mean.new - mean.data) discrep.data <- sum(sq.error.data) discrep.new <- sum(sq.error.new) p.discrep <- step(discrep.new - discrep.data) } ", fill = TRUE) sink() inits = list( list(b0 = 1, b1 = 0, b2 = 0, b3 = 0, sigma = 4), list(b0 = 0.5, b1 = 0.1, b2 = -0.1, b3 = 0.2, sigma = 2), list(b0 = 2, b1 = -0.1, b2 = 0.1, b3 = -0.1, sigma = 1)) # Number of iterations n.adapt <- 1000 n.update <- 1000 n.iter <- 1000 ## Run model jm <- jags.model("3_analyse_data/bayes_models/modelJags.R", data = data, inits = inits, n.chains = length(inits), n.adapt = n.adapt) update(jm, n.iter = n.update) zm = coda.samples(jm, variable.names = c("b0", "b1", "b2", "b3", "sigma"), n.iter = n.iter, n.thin = 10) zj = jags.samples(jm, variable.names = c("b0", "b1","p.mean", "p.sd", "p.discrep"), n.iter = n.iter, n.thin = 10) #Produce a summary table for the parameters. summary(zm) 10^(summary(zm)$stat[1]) # intercept # Save trace plots trace_file <- paste(output_location, my_species, my_data, my_model, my_quantile, "trace", sep = "_") png(filename = paste(trace_file, "png", sep = "."), height = 5, width = 5, units = "in", res = 150) par(mfrow = c(3,2)) traceplot(zm) dev.off() # Save density plots density_file <- paste(output_location, my_species, my_data, my_model, my_quantile, "dens", sep = "_") png(filename = paste(density_file, "png", sep = "."), height = 5, width = 5, units = "in", res = 150) par(mfrow = c(3,2)) densplot(zm) dev.off() # Test for convergence using the Gelman diagnostic. gd <- gelman.diag(zm, multivariate = F)[[1]] # Check Bayesian pvals pvals <- c(p.mean = mean(zj$p.mean), p.sd = mean(zj$p.sd), p.discrep = mean(zj$p.discrep)) # Get proportional change [assumes all other variable are at mean] str(zj) zj_b0 <- zj$b0 head(zj_b0) zj_b1 <- zj$b1 past_size <- 10^zj_b0 present_size <- 10^(zj_b0 + zj_b1) prop_change <- (present_size - past_size)/past_size prop_change_vec <- as.numeric(prop_change) prop_change_quantile <- t(quantile(prop_change_vec, probs = c(0.025, 0.25, 0.5, 0.75, 0.975))) rownames(prop_change_quantile) <- "prop_change" # Save coda summary coda_summary <- summary(zm) coda_quantile <- data.frame(rbind(coda_summary$quantile, prop_change_quantile)) params <- rownames(coda_quantile) coda_quantile <- coda_quantile %>% mutate(spp = my_species, data = my_data, model = my_model, param = params) ##### SAVE OUTPUT ##### my_file <- paste(output_location, my_species, my_data, my_model, my_quantile, sep = "_") ## Coda quantile summary write.csv(x = coda_quantile, file = paste(my_file, "csv", sep = ".")) ## Pvals write.csv(x = pvals, file = paste(my_file, "pvals", "csv", sep = ".")) ## Gelman write.csv(x = gd, file = paste(my_file, "gd", "csv", sep = "."))
/3_analyse_data/02_analyse_logsize_lodi.R
permissive
elahi/sbs_analysis
R
false
false
5,753
r
################################################################################ ##' @title Analyze log size - LODI ##' ##' @author Robin Elahi ##' @contact elahi.robin@gmail.com ##' ##' @date 2017-12-17 ##' ##' @log ################################################################################ ##### PACKAGES, DATA ##### source("3_analyse_data/01_sbs_bayes_data.R") source("R/truncate_data.R") library(rjags) ##### PREPARE DATA FOR JAGS ##### ##' x1 = era ##' x2 = density ##' x3 = tide height ## My data statDat <- hexDF ## My quantile for size threshold my_quantile <- 0 statDat <- truncate_data(statDat, era = "past", quant = my_quantile) statDat <- statDat %>% mutate(era01 = ifelse(era == "past", 0, 1)) ## My species my_species <- "LODI" ## My data type my_data <- "raw" # Get means and sd of continuous variables x2_mu <- mean(statDat$density_m2) x2_sd <- sd(statDat$density_m2) x3_mu <- mean(statDat$tideHTm) x3_sd <- sd(statDat$tideHTm) # Standardize continuous variables statDat$x2z <- as.numeric(scale(statDat$density_m2)) statDat$x3z <- as.numeric(scale(statDat$tideHTm)) make_predict_vector <- function(my_vector, predict_length = 100){ my_min <- min(my_vector) my_max <- max(my_vector) my_vector_pred <- seq(my_min, my_max, length.out = predict_length) return(my_vector_pred) } x2z_pred <- make_predict_vector(statDat$x2z, predict_length = 100) x3z_pred <- make_predict_vector(statDat$x3z, predict_length = 100) # For prediction era_predict <- c(0,1) pred_df <- expand.grid(x2z_pred, era_predict) %>% rename(x2z = Var1, x1 = Var2) %>% tbl_df() pred_df$x3z <- 0 # Get data data = list( N = nrow(statDat), y = as.double(statDat$size_log), x1 = as.double(statDat$era01), x2 = as.double(statDat$x2z), x3 = as.double(statDat$x3z), x1_pred = as.double(pred_df$x1), x2_pred = as.double(pred_df$x2z), x3_pred = as.double(pred_df$x3z) ) ##### MODEL 1: ERA + DENSITY + TIDE #### my_model <- "eraPdensityPtide" output_location <- "3_analyse_data/bayes_output/by_species/" # JAGS model sink("3_analyse_data/bayes_models/modelJags.R") cat(" model{ # priors b0 ~ dnorm(0, 1/10^2) b1 ~ dnorm(0, 1/10^2) b2 ~ dnorm(0, 1/10^2) b3 ~ dnorm(0, 1/10^2) sigma ~ dunif(0, 5) tau <- 1/sigma^2 # likelihood for (i in 1:N){ mu[i] <- b0 + b1*x1[i] + b2*x2[i] + b3*x3[i] y[i] ~ dnorm(mu[i], tau) y.new[i] ~ dnorm(mu[i], tau) sq.error.data[i] <- (y[i] - mu[i])^2 sq.error.new[i] <- (y.new[i] - mu[i])^2 } # bayesian p-values sd.data <- sd(y) sd.new <- sd(y.new) p.sd <- step(sd.new - sd.data) mean.data <- mean(y) mean.new <- mean(y.new) p.mean <- step(mean.new - mean.data) discrep.data <- sum(sq.error.data) discrep.new <- sum(sq.error.new) p.discrep <- step(discrep.new - discrep.data) } ", fill = TRUE) sink() inits = list( list(b0 = 1, b1 = 0, b2 = 0, b3 = 0, sigma = 4), list(b0 = 0.5, b1 = 0.1, b2 = -0.1, b3 = 0.2, sigma = 2), list(b0 = 2, b1 = -0.1, b2 = 0.1, b3 = -0.1, sigma = 1)) # Number of iterations n.adapt <- 1000 n.update <- 1000 n.iter <- 1000 ## Run model jm <- jags.model("3_analyse_data/bayes_models/modelJags.R", data = data, inits = inits, n.chains = length(inits), n.adapt = n.adapt) update(jm, n.iter = n.update) zm = coda.samples(jm, variable.names = c("b0", "b1", "b2", "b3", "sigma"), n.iter = n.iter, n.thin = 10) zj = jags.samples(jm, variable.names = c("b0", "b1","p.mean", "p.sd", "p.discrep"), n.iter = n.iter, n.thin = 10) #Produce a summary table for the parameters. summary(zm) 10^(summary(zm)$stat[1]) # intercept # Save trace plots trace_file <- paste(output_location, my_species, my_data, my_model, my_quantile, "trace", sep = "_") png(filename = paste(trace_file, "png", sep = "."), height = 5, width = 5, units = "in", res = 150) par(mfrow = c(3,2)) traceplot(zm) dev.off() # Save density plots density_file <- paste(output_location, my_species, my_data, my_model, my_quantile, "dens", sep = "_") png(filename = paste(density_file, "png", sep = "."), height = 5, width = 5, units = "in", res = 150) par(mfrow = c(3,2)) densplot(zm) dev.off() # Test for convergence using the Gelman diagnostic. gd <- gelman.diag(zm, multivariate = F)[[1]] # Check Bayesian pvals pvals <- c(p.mean = mean(zj$p.mean), p.sd = mean(zj$p.sd), p.discrep = mean(zj$p.discrep)) # Get proportional change [assumes all other variable are at mean] str(zj) zj_b0 <- zj$b0 head(zj_b0) zj_b1 <- zj$b1 past_size <- 10^zj_b0 present_size <- 10^(zj_b0 + zj_b1) prop_change <- (present_size - past_size)/past_size prop_change_vec <- as.numeric(prop_change) prop_change_quantile <- t(quantile(prop_change_vec, probs = c(0.025, 0.25, 0.5, 0.75, 0.975))) rownames(prop_change_quantile) <- "prop_change" # Save coda summary coda_summary <- summary(zm) coda_quantile <- data.frame(rbind(coda_summary$quantile, prop_change_quantile)) params <- rownames(coda_quantile) coda_quantile <- coda_quantile %>% mutate(spp = my_species, data = my_data, model = my_model, param = params) ##### SAVE OUTPUT ##### my_file <- paste(output_location, my_species, my_data, my_model, my_quantile, sep = "_") ## Coda quantile summary write.csv(x = coda_quantile, file = paste(my_file, "csv", sep = ".")) ## Pvals write.csv(x = pvals, file = paste(my_file, "pvals", "csv", sep = ".")) ## Gelman write.csv(x = gd, file = paste(my_file, "gd", "csv", sep = "."))
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/properties.R \name{sol_set_property} \alias{sol_set_property} \alias{sol_get_property} \title{Set or get the property name} \usage{ sol_set_property(x, prop, with_units, ...) sol_get_property(x) } \arguments{ \item{x}{vector: data} \item{prop}{string: property name} \item{with_units}{string: units of measurement to use. If missing, the default units for the property will be used} \item{...}{: extra arguments, currently ignored} } \value{ x with additional class set } \description{ Set or get the property name } \examples{ x <- data.frame(LRL=c(11.3,13.9),species=c("Architeuthis dux"), stringsAsFactors=FALSE) ## it doesn't matter what the column names are, but we ## need to set the property types correctly x$LRL <- sol_set_property(x$LRL,"lower rostral length") ## remove the property x$LRL <- sol_set_property(x$LRL,NULL) } \seealso{ \code{\link{sol_properties}} }
/man/sol_set_property.Rd
permissive
SCAR/solong
R
false
true
1,001
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/properties.R \name{sol_set_property} \alias{sol_set_property} \alias{sol_get_property} \title{Set or get the property name} \usage{ sol_set_property(x, prop, with_units, ...) sol_get_property(x) } \arguments{ \item{x}{vector: data} \item{prop}{string: property name} \item{with_units}{string: units of measurement to use. If missing, the default units for the property will be used} \item{...}{: extra arguments, currently ignored} } \value{ x with additional class set } \description{ Set or get the property name } \examples{ x <- data.frame(LRL=c(11.3,13.9),species=c("Architeuthis dux"), stringsAsFactors=FALSE) ## it doesn't matter what the column names are, but we ## need to set the property types correctly x$LRL <- sol_set_property(x$LRL,"lower rostral length") ## remove the property x$LRL <- sol_set_property(x$LRL,NULL) } \seealso{ \code{\link{sol_properties}} }
# This file implemented all the classifiers with feature selection # This file will use the variables from the other 3 files to plot the graph # Please run the other 3 files first # Setup ---- rm(list=ls()) # !!CHANGE WORKING DIR TO MATCH YOUR CASE!! setwd("/Users/shuqishang/Documents/courses/Statistical_Learning/proj/data/") require(RWeka) # C4.5 require(e1071) # SVM, Naive Bayes require(class) # KNN require(randomForest) # Random Forest require(ipred) # Bagging require(MASS) # lda, qda # Different datasets should have different preprocessing for these several lines # In the latter part, V9 should be changed to other dependent variables in other datasets # The title of the graphs should also be changed for different datasets # Selected features should be changed for different datasets cancer = read.table('ecoli.data.txt', sep = '', header = F) row_to_delete = c() for (row in 1:nrow(cancer)) { if ('imS' %in% cancer[row, 'V9'] || 'imL' %in% cancer[row, 'V9'] || 'omL' %in% cancer[row, 'V9']) { row_to_delete = union(row_to_delete, row) } } cancer = cancer[-row_to_delete,] cancer$V9 = factor(cancer$V9) cancer_without_id = cancer[, !(names(cancer) %in% c('V1'))] independ_var = cancer[, !(names(cancer) %in% c('V1', 'V9'))] select_var = cancer[, (names(cancer) %in% c('V7', 'V2', 'V8', 'V3', 'V6'))] n_samples = nrow(cancer_without_id) sknn_3_acc = rep(0, 80) sknn_5_acc = rep(0, 80) sknn_10_acc = rep(0, 80) ssvm_acc = rep(0, 80) slda_acc = rep(0, 80) sqda_acc = rep(0, 70) # Run all the classifiers with feature selection for (i in 11:90) { for (j in 1:15) { cat('i =', i, 'j =', j, '\n') set.seed(j) train = sample(n_samples, n_samples / 100 * i) test = -train X_train = cancer_without_id[train,] X_test = cancer_without_id[test,] sknn_X_train = select_var[train,] sknn_X_test = select_var[test,] sknn_3_pred = knn(train = sknn_X_train, test = sknn_X_test, cl = X_train$V9, k = 3) sknn_3_acc[i-10] = sknn_3_acc[i-10] + sum(sknn_3_pred == X_test$V9) / length(sknn_3_pred) sknn_5_pred = knn(train = sknn_X_train, test = sknn_X_test, cl = X_train$V9, k = 5) sknn_5_acc[i-10] = sknn_5_acc[i-10] + sum(sknn_5_pred == X_test$V9) / length(sknn_5_pred) sknn_10_pred = knn(train = sknn_X_train, test = sknn_X_test, cl = X_train$V9, k = 10) sknn_10_acc[i-10] = sknn_10_acc[i-10] + sum(sknn_10_pred == X_test$V9) / length(sknn_10_pred) ssvm_model = svm(V9 ~ V7 + V2 + V8 + V3 + V6, data = X_train) ssvm_pred = predict(ssvm_model, X_test) ssvm_acc[i-10] = ssvm_acc[i-10] + sum(ssvm_pred == X_test$V9) / length(ssvm_pred) # slda_model = lda(V9 ~ V7 + V2 + V8 + V3 + V6, data = X_train) # slda_pred = predict(slda_model, X_test)$class # slda_acc[i-10] = slda_acc[i-10] + sum(slda_pred == X_test$V9) / length(slda_pred) # # if (i > 20) { # if i < 20, some group is too small for 'qda' # sqda_model = qda(V9 ~ V7 + V2 + V8 + V3 + V6, data = X_train) # sqda_pred = predict(sqda_model, X_test)$class # sqda_acc[i-20] = sqda_acc[i-20] + sum(sqda_pred == X_test$V9) / length(sqda_pred) # } } sknn_3_acc[i-10] = sknn_3_acc[i-10] / 15 sknn_5_acc[i-10] = sknn_5_acc[i-10] / 15 sknn_10_acc[i-10] = sknn_10_acc[i-10] / 15 ssvm_acc[i-10] = ssvm_acc[i-10] / 15 # slda_acc[i-10] = slda_acc[i-10] / 15 # sqda_acc[i-20] = sqda_acc[i-20] / 15 } # KNN, SKNN plot(knn_3_acc~c(11:90), col = 'red', cex = 0.3, main = "Ecoli", xlab = 'Training Data (%)', ylab = 'Accuracy', ylim = c(0.73, 0.9)) points(c(11:90), knn_5_acc, col = 'blue', cex = 0.3) points(c(11:90), knn_10_acc, col = 'darkgreen', cex = 0.3) points(c(11:90), sknn_3_acc, col = 'darkred', cex = 0.3) points(c(11:90), sknn_5_acc, col = 'darkblue', cex = 0.3) points(c(11:90), sknn_10_acc, col = 'black', cex = 0.3) lines(knn_3_acc~c(11:90), col = 'red') lines(knn_5_acc~c(11:90), col = 'blue') lines(knn_10_acc~c(11:90), col = 'darkgreen') lines(sknn_3_acc~c(11:90), col = 'darkred') lines(sknn_5_acc~c(11:90), col = 'darkblue') lines(sknn_10_acc~c(11:90), col = 'black') legend("bottomright", ncol = 2, c("KNN(k=3)", "KNN(k=5)", "KNN(k=10)", "SKNN(k=3)", "SKNN(k=5)", "SKNN(k=10)"), col = c("red", "blue", "darkgreen", "darkred", "darkblue", "black"), text.col = c("red", "blue", "darkgreen", "darkred", "darkblue", "black"), lty = c(1, 1, 1, 1, 1, 1)) # SVM, LDA, QDA, SSVM, SLDA, SQDA plot(svm_acc~c(11:90), col = 'red', cex = 0.3, main = "Ecoli", xlab = 'Training Data (%)', ylab = 'Accuracy', ylim = c(0.5, 0.88)) # points(c(11:90), lda_acc, col = 'blue', cex = 0.3) # points(c(21:90), qda_acc, col = 'darkgreen', cex = 0.3) points(c(11:90), ssvm_acc, col = 'darkred', cex = 0.3) # points(c(11:90), slda_acc, col = 'darkblue', cex = 0.3) # points(c(21:90), sqda_acc, col = 'black', cex = 0.3) lines(svm_acc~c(11:90), col = 'red') # lines(lda_acc~c(11:90), col = 'blue') # lines(qda_acc~c(21:90), col = 'darkgreen') lines(ssvm_acc~c(11:90), col = 'darkred') # lines(slda_acc~c(11:90), col = 'darkblue') # lines(sqda_acc~c(21:90), col = 'black') legend("bottomright", c("SVM", "SSVM"), col = c("red", "darkred"), text.col = c("red", "darkred"), lty = c(1, 1)) # Best few methods comparison plot(ssvm_acc~c(11:90), col = 'red', cex = 0.3, main = "Ecoli", xlab = 'Training Data (%)', ylab = 'Accuracy', ylim = c(0.77, 0.91)) points(c(11:90), forest_acc, col = 'blue', cex = 0.3) points(c(11:90), sbc_acc, col = 'darkgreen', cex = 0.3) points(c(11:90), knn_5_acc, col = 'purple', cex = 0.3) lines(ssvm_acc~c(11:90), col = 'red') lines(forest_acc~c(11:90), col = 'blue') lines(sbc_acc~c(11:90), col = 'darkgreen') lines(knn_5_acc~c(11:90), col = 'purple') legend("bottomright", c("SSVM", "Random Forest", "SBC", "KNN(k=5)"), col = c("red", "blue", "darkgreen", "purple"), text.col = c("red", "blue", "darkgreen", "purple"), lty = c(1, 1, 1, 1))
/Ecoli/selective_all_methods.R
no_license
sshang0309/Statistical-Learning-in-Biology-Information-Systems
R
false
false
5,955
r
# This file implemented all the classifiers with feature selection # This file will use the variables from the other 3 files to plot the graph # Please run the other 3 files first # Setup ---- rm(list=ls()) # !!CHANGE WORKING DIR TO MATCH YOUR CASE!! setwd("/Users/shuqishang/Documents/courses/Statistical_Learning/proj/data/") require(RWeka) # C4.5 require(e1071) # SVM, Naive Bayes require(class) # KNN require(randomForest) # Random Forest require(ipred) # Bagging require(MASS) # lda, qda # Different datasets should have different preprocessing for these several lines # In the latter part, V9 should be changed to other dependent variables in other datasets # The title of the graphs should also be changed for different datasets # Selected features should be changed for different datasets cancer = read.table('ecoli.data.txt', sep = '', header = F) row_to_delete = c() for (row in 1:nrow(cancer)) { if ('imS' %in% cancer[row, 'V9'] || 'imL' %in% cancer[row, 'V9'] || 'omL' %in% cancer[row, 'V9']) { row_to_delete = union(row_to_delete, row) } } cancer = cancer[-row_to_delete,] cancer$V9 = factor(cancer$V9) cancer_without_id = cancer[, !(names(cancer) %in% c('V1'))] independ_var = cancer[, !(names(cancer) %in% c('V1', 'V9'))] select_var = cancer[, (names(cancer) %in% c('V7', 'V2', 'V8', 'V3', 'V6'))] n_samples = nrow(cancer_without_id) sknn_3_acc = rep(0, 80) sknn_5_acc = rep(0, 80) sknn_10_acc = rep(0, 80) ssvm_acc = rep(0, 80) slda_acc = rep(0, 80) sqda_acc = rep(0, 70) # Run all the classifiers with feature selection for (i in 11:90) { for (j in 1:15) { cat('i =', i, 'j =', j, '\n') set.seed(j) train = sample(n_samples, n_samples / 100 * i) test = -train X_train = cancer_without_id[train,] X_test = cancer_without_id[test,] sknn_X_train = select_var[train,] sknn_X_test = select_var[test,] sknn_3_pred = knn(train = sknn_X_train, test = sknn_X_test, cl = X_train$V9, k = 3) sknn_3_acc[i-10] = sknn_3_acc[i-10] + sum(sknn_3_pred == X_test$V9) / length(sknn_3_pred) sknn_5_pred = knn(train = sknn_X_train, test = sknn_X_test, cl = X_train$V9, k = 5) sknn_5_acc[i-10] = sknn_5_acc[i-10] + sum(sknn_5_pred == X_test$V9) / length(sknn_5_pred) sknn_10_pred = knn(train = sknn_X_train, test = sknn_X_test, cl = X_train$V9, k = 10) sknn_10_acc[i-10] = sknn_10_acc[i-10] + sum(sknn_10_pred == X_test$V9) / length(sknn_10_pred) ssvm_model = svm(V9 ~ V7 + V2 + V8 + V3 + V6, data = X_train) ssvm_pred = predict(ssvm_model, X_test) ssvm_acc[i-10] = ssvm_acc[i-10] + sum(ssvm_pred == X_test$V9) / length(ssvm_pred) # slda_model = lda(V9 ~ V7 + V2 + V8 + V3 + V6, data = X_train) # slda_pred = predict(slda_model, X_test)$class # slda_acc[i-10] = slda_acc[i-10] + sum(slda_pred == X_test$V9) / length(slda_pred) # # if (i > 20) { # if i < 20, some group is too small for 'qda' # sqda_model = qda(V9 ~ V7 + V2 + V8 + V3 + V6, data = X_train) # sqda_pred = predict(sqda_model, X_test)$class # sqda_acc[i-20] = sqda_acc[i-20] + sum(sqda_pred == X_test$V9) / length(sqda_pred) # } } sknn_3_acc[i-10] = sknn_3_acc[i-10] / 15 sknn_5_acc[i-10] = sknn_5_acc[i-10] / 15 sknn_10_acc[i-10] = sknn_10_acc[i-10] / 15 ssvm_acc[i-10] = ssvm_acc[i-10] / 15 # slda_acc[i-10] = slda_acc[i-10] / 15 # sqda_acc[i-20] = sqda_acc[i-20] / 15 } # KNN, SKNN plot(knn_3_acc~c(11:90), col = 'red', cex = 0.3, main = "Ecoli", xlab = 'Training Data (%)', ylab = 'Accuracy', ylim = c(0.73, 0.9)) points(c(11:90), knn_5_acc, col = 'blue', cex = 0.3) points(c(11:90), knn_10_acc, col = 'darkgreen', cex = 0.3) points(c(11:90), sknn_3_acc, col = 'darkred', cex = 0.3) points(c(11:90), sknn_5_acc, col = 'darkblue', cex = 0.3) points(c(11:90), sknn_10_acc, col = 'black', cex = 0.3) lines(knn_3_acc~c(11:90), col = 'red') lines(knn_5_acc~c(11:90), col = 'blue') lines(knn_10_acc~c(11:90), col = 'darkgreen') lines(sknn_3_acc~c(11:90), col = 'darkred') lines(sknn_5_acc~c(11:90), col = 'darkblue') lines(sknn_10_acc~c(11:90), col = 'black') legend("bottomright", ncol = 2, c("KNN(k=3)", "KNN(k=5)", "KNN(k=10)", "SKNN(k=3)", "SKNN(k=5)", "SKNN(k=10)"), col = c("red", "blue", "darkgreen", "darkred", "darkblue", "black"), text.col = c("red", "blue", "darkgreen", "darkred", "darkblue", "black"), lty = c(1, 1, 1, 1, 1, 1)) # SVM, LDA, QDA, SSVM, SLDA, SQDA plot(svm_acc~c(11:90), col = 'red', cex = 0.3, main = "Ecoli", xlab = 'Training Data (%)', ylab = 'Accuracy', ylim = c(0.5, 0.88)) # points(c(11:90), lda_acc, col = 'blue', cex = 0.3) # points(c(21:90), qda_acc, col = 'darkgreen', cex = 0.3) points(c(11:90), ssvm_acc, col = 'darkred', cex = 0.3) # points(c(11:90), slda_acc, col = 'darkblue', cex = 0.3) # points(c(21:90), sqda_acc, col = 'black', cex = 0.3) lines(svm_acc~c(11:90), col = 'red') # lines(lda_acc~c(11:90), col = 'blue') # lines(qda_acc~c(21:90), col = 'darkgreen') lines(ssvm_acc~c(11:90), col = 'darkred') # lines(slda_acc~c(11:90), col = 'darkblue') # lines(sqda_acc~c(21:90), col = 'black') legend("bottomright", c("SVM", "SSVM"), col = c("red", "darkred"), text.col = c("red", "darkred"), lty = c(1, 1)) # Best few methods comparison plot(ssvm_acc~c(11:90), col = 'red', cex = 0.3, main = "Ecoli", xlab = 'Training Data (%)', ylab = 'Accuracy', ylim = c(0.77, 0.91)) points(c(11:90), forest_acc, col = 'blue', cex = 0.3) points(c(11:90), sbc_acc, col = 'darkgreen', cex = 0.3) points(c(11:90), knn_5_acc, col = 'purple', cex = 0.3) lines(ssvm_acc~c(11:90), col = 'red') lines(forest_acc~c(11:90), col = 'blue') lines(sbc_acc~c(11:90), col = 'darkgreen') lines(knn_5_acc~c(11:90), col = 'purple') legend("bottomright", c("SSVM", "Random Forest", "SBC", "KNN(k=5)"), col = c("red", "blue", "darkgreen", "purple"), text.col = c("red", "blue", "darkgreen", "purple"), lty = c(1, 1, 1, 1))
\name{HMRF} \alias{HMRF} %- Also NEED an '\alias' for EACH other topic documented here. \title{Image Segmentation using Hidden Markov Random Field with EM Algorithm %% ~~function to do ... ~~ } \description{This function can be used to obtain the segmented image using HMRF-EM Algorithm. } %% ~~ A concise (1-5 lines) description of what the function does. ~~ \usage{ HMRF(X, Y, Z, em_iter, map_iter, beta = 2, epsilon_em = 0.00001, epsilon_map = 0.00001) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{X}{an m by n binary matrix of the inital labels for an image, which can be obtained using initital segmentation methods, such as K-means or thresholding methods. Note that X could be any binary matrix, for example, its element could be 0 & 1, or 1 & 2, or 2 & 3, ..., etc. %% ~~Describe \code{x} here~~ } \item{Y}{an m by n matrix of pixel intensity. For plant segmentation, we recommend to use relative green. } \item{Z}{ an m by n binary matrix, giving an estimate for the object edges in Y. We can obtain Z using the Canny edge detector: Z = t(cannEdges (Y) [ , , 1, 1]) from the package: imager. See the example for details. } \item{em_iter}{a positive integer, which is the number of iteration steps of the EM Algorithm. } \item{map_iter}{a positive integer, which is the number of iteration steps of calculating MAP (the maximum a posterior estimation). } \item{beta}{The clique potential parameter for neighbourhood dependence. In default, beta = 2. See details in the supplementary file on the HMRF Model. This beta is equivalent to the Psi in the supplentary file (see page 20, 21). } \item{epsilon_em}{a small positive number, which is the convergence criterion of the EM Algorithm. } \item{epsilon_map}{a small positive number, which is the convergence criterion of MAP (maximum a posterior estimation). } } \details{1. More detailed explanation about this method can be found in the supplymentary file: https://github.com/rwang14/implant/blob/master/vignettes/HMRF_EM.pdf 2. The arguement Z can be obatined by CannyEdge detector using function cannEdges( ) from the package: imager. However, since this package needs to involve Rcpp and other dependent packages which may increase installation complexity of our package, we recommend the users to install the package ``imager" by themselves if needed. %% ~~ If necessary, more details than the description above ~~ } \value{ \item{image_matrix}{A matrix giving labels for the segmented image. } } \references{Wang, Quan (2012), “Hmrf-em-image: implementation of the hidden markov random field model and its expectation-maximization algorithm.”arXivpreprintarXiv:1207.3510 } \author{ %% ~~who you are~~ } \note{ This function is modified based on the matlab code written by Quan Wang (see reference). %% ~~further notes~~ } \seealso{ \code{\link{image_kmeans}} } %% ~Make other sections like Warning with \section{Warning }{....} ~ \examples{ library(implant) library(png) orig = readPNG(system.file("extdata", "reduced.png", package = "implant", mustWork = TRUE)) #Define the response as relative green. Y = orig[ , , 2]/(orig[ , , 1] + orig[ , , 2] + orig[ , , 3]) #Z is a matrix obtained by CannyEdge detector Z = readPNG(system.file("extdata", "Z.png", package = "implant", mustWork = TRUE)) ##Note: Users can obtain Z using the package "imager" and the function #CannyEdges( ) for different images #Z = t(cannyEdges(orig)[ , , 1, 1]) #Take the initial label of EM algorithm using K-means X = image_kmeans(Y, k = 2)$X #Obtain the image produced by kmeans clustering output = matrix(as.numeric(X), nrow = nrow(X), ncol = ncol(X)) - 1 writePNG(output,"~/kmeans.png") #Run the HMRF Model. Note that it may take a lot of time ... img = HMRF(X, Y, Z, em_iter = 20, map_iter = 20, beta = 2, epsilon_em = 0.00001, epsilon_map = 0.00001) #Obtain the matrix of the segmented image image = img$image_matrix #Morphological Operations imageD = dilation(image) imageDE = erosion(imageD) imageDEE = erosion(imageDE) imageDEED = dilation(imageDEE) writePNG("~/HMRF.png") }
/man/HMRF.Rd
no_license
rwang14/implant
R
false
false
4,133
rd
\name{HMRF} \alias{HMRF} %- Also NEED an '\alias' for EACH other topic documented here. \title{Image Segmentation using Hidden Markov Random Field with EM Algorithm %% ~~function to do ... ~~ } \description{This function can be used to obtain the segmented image using HMRF-EM Algorithm. } %% ~~ A concise (1-5 lines) description of what the function does. ~~ \usage{ HMRF(X, Y, Z, em_iter, map_iter, beta = 2, epsilon_em = 0.00001, epsilon_map = 0.00001) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{X}{an m by n binary matrix of the inital labels for an image, which can be obtained using initital segmentation methods, such as K-means or thresholding methods. Note that X could be any binary matrix, for example, its element could be 0 & 1, or 1 & 2, or 2 & 3, ..., etc. %% ~~Describe \code{x} here~~ } \item{Y}{an m by n matrix of pixel intensity. For plant segmentation, we recommend to use relative green. } \item{Z}{ an m by n binary matrix, giving an estimate for the object edges in Y. We can obtain Z using the Canny edge detector: Z = t(cannEdges (Y) [ , , 1, 1]) from the package: imager. See the example for details. } \item{em_iter}{a positive integer, which is the number of iteration steps of the EM Algorithm. } \item{map_iter}{a positive integer, which is the number of iteration steps of calculating MAP (the maximum a posterior estimation). } \item{beta}{The clique potential parameter for neighbourhood dependence. In default, beta = 2. See details in the supplementary file on the HMRF Model. This beta is equivalent to the Psi in the supplentary file (see page 20, 21). } \item{epsilon_em}{a small positive number, which is the convergence criterion of the EM Algorithm. } \item{epsilon_map}{a small positive number, which is the convergence criterion of MAP (maximum a posterior estimation). } } \details{1. More detailed explanation about this method can be found in the supplymentary file: https://github.com/rwang14/implant/blob/master/vignettes/HMRF_EM.pdf 2. The arguement Z can be obatined by CannyEdge detector using function cannEdges( ) from the package: imager. However, since this package needs to involve Rcpp and other dependent packages which may increase installation complexity of our package, we recommend the users to install the package ``imager" by themselves if needed. %% ~~ If necessary, more details than the description above ~~ } \value{ \item{image_matrix}{A matrix giving labels for the segmented image. } } \references{Wang, Quan (2012), “Hmrf-em-image: implementation of the hidden markov random field model and its expectation-maximization algorithm.”arXivpreprintarXiv:1207.3510 } \author{ %% ~~who you are~~ } \note{ This function is modified based on the matlab code written by Quan Wang (see reference). %% ~~further notes~~ } \seealso{ \code{\link{image_kmeans}} } %% ~Make other sections like Warning with \section{Warning }{....} ~ \examples{ library(implant) library(png) orig = readPNG(system.file("extdata", "reduced.png", package = "implant", mustWork = TRUE)) #Define the response as relative green. Y = orig[ , , 2]/(orig[ , , 1] + orig[ , , 2] + orig[ , , 3]) #Z is a matrix obtained by CannyEdge detector Z = readPNG(system.file("extdata", "Z.png", package = "implant", mustWork = TRUE)) ##Note: Users can obtain Z using the package "imager" and the function #CannyEdges( ) for different images #Z = t(cannyEdges(orig)[ , , 1, 1]) #Take the initial label of EM algorithm using K-means X = image_kmeans(Y, k = 2)$X #Obtain the image produced by kmeans clustering output = matrix(as.numeric(X), nrow = nrow(X), ncol = ncol(X)) - 1 writePNG(output,"~/kmeans.png") #Run the HMRF Model. Note that it may take a lot of time ... img = HMRF(X, Y, Z, em_iter = 20, map_iter = 20, beta = 2, epsilon_em = 0.00001, epsilon_map = 0.00001) #Obtain the matrix of the segmented image image = img$image_matrix #Morphological Operations imageD = dilation(image) imageDE = erosion(imageD) imageDEE = erosion(imageDE) imageDEED = dilation(imageDEE) writePNG("~/HMRF.png") }
# evaluate post.predictive checks library(readr) library(ggplot2) library(tidyr) library(dplyr) source("R/martin.R") # simulated based on posteriors all_checks1 <- read_delim("output/model_evaluation/check5_postpred/sims_10000kbot500_post_pred_checks2.txt", delim = " ") all_checks2 <- read_delim("output/model_evaluation/check5_postpred/sims_10000kbot500_post_pred_checks1.txt", delim = " ") all_checks <- rbind(all_checks1, all_checks2) head(all_checks) # compare these summary statistics sumstats <- c("num_alleles_mean", "exp_het_mean", "mratio_mean", "prop_low_afs_mean", "mean_allele_range") # empirical summary stats all_stats <- read_csv("data/processed/all_stats_30_modeling.csv") %>% dplyr::select(species, common, sumstats, bot) # long format for plotting all_checks_long <- all_checks %>% left_join(all_stats[c("species", "common")], by = "species") %>% dplyr::select(common, sumstats) %>% gather(sumstat, value, -common) # observed sumstats long format all_sumstats_full_long <- all_stats %>% gather(sumstat, value, -species, -common, -bot) # lookup_table <- paste(all_stats$species, " = ", all_stats$common) sumstat_names <- c( exp_het_mean = "Expected\nhetetozygosity", mean_allele_range = "Allelic range", mratio_mean = "M-ratio", num_alleles_mean = "Allelic richness", prop_low_afs_mean = "Prop. of low\nfrequency alleles" ) # bottlenecked or not bottlenecked all_stats$mod <- ifelse(all_stats$bot > 0.5, "Bottleneck", "Non-bottleneck") all_data <- all_checks_long %>% left_join(all_stats[c("common", "mod")]) p <- ggplot(all_data, aes(value)) + geom_histogram(aes(fill = mod)) + geom_vline(aes(xintercept = value), all_sumstats_full_long) + facet_grid(common ~ sumstat, scales = "free", labeller = labeller( sumstat = sumstat_names )) + theme_martin() + scale_fill_manual(values = c("#fc8d62","#8da0cb")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), strip.text.y = element_text(angle = 0), axis.text= element_text(size = 9.5), axis.text.y = element_blank(), legend.position = "bottom", legend.title=element_blank(), axis.line.x = element_line(color="black", size = 0.5)) ggsave(filename = "post_pred_checks.jpg", plot = p, width = 10, height = 10)
/R/posterior_predictive_checks.R
no_license
mastoffel/pinniped_bottlenecks
R
false
false
2,388
r
# evaluate post.predictive checks library(readr) library(ggplot2) library(tidyr) library(dplyr) source("R/martin.R") # simulated based on posteriors all_checks1 <- read_delim("output/model_evaluation/check5_postpred/sims_10000kbot500_post_pred_checks2.txt", delim = " ") all_checks2 <- read_delim("output/model_evaluation/check5_postpred/sims_10000kbot500_post_pred_checks1.txt", delim = " ") all_checks <- rbind(all_checks1, all_checks2) head(all_checks) # compare these summary statistics sumstats <- c("num_alleles_mean", "exp_het_mean", "mratio_mean", "prop_low_afs_mean", "mean_allele_range") # empirical summary stats all_stats <- read_csv("data/processed/all_stats_30_modeling.csv") %>% dplyr::select(species, common, sumstats, bot) # long format for plotting all_checks_long <- all_checks %>% left_join(all_stats[c("species", "common")], by = "species") %>% dplyr::select(common, sumstats) %>% gather(sumstat, value, -common) # observed sumstats long format all_sumstats_full_long <- all_stats %>% gather(sumstat, value, -species, -common, -bot) # lookup_table <- paste(all_stats$species, " = ", all_stats$common) sumstat_names <- c( exp_het_mean = "Expected\nhetetozygosity", mean_allele_range = "Allelic range", mratio_mean = "M-ratio", num_alleles_mean = "Allelic richness", prop_low_afs_mean = "Prop. of low\nfrequency alleles" ) # bottlenecked or not bottlenecked all_stats$mod <- ifelse(all_stats$bot > 0.5, "Bottleneck", "Non-bottleneck") all_data <- all_checks_long %>% left_join(all_stats[c("common", "mod")]) p <- ggplot(all_data, aes(value)) + geom_histogram(aes(fill = mod)) + geom_vline(aes(xintercept = value), all_sumstats_full_long) + facet_grid(common ~ sumstat, scales = "free", labeller = labeller( sumstat = sumstat_names )) + theme_martin() + scale_fill_manual(values = c("#fc8d62","#8da0cb")) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), strip.text.y = element_text(angle = 0), axis.text= element_text(size = 9.5), axis.text.y = element_blank(), legend.position = "bottom", legend.title=element_blank(), axis.line.x = element_line(color="black", size = 0.5)) ggsave(filename = "post_pred_checks.jpg", plot = p, width = 10, height = 10)
# Title : TODO # Objective : TODO # Created by: yz # Created on: 2018/9/19 library(tidyverse) getSub <- function(data, filterPeak, response) { subData = subset(data, SEC >= filterPeak$rtmin & SEC <= filterPeak$rtmax) if (response == "height") { index <- order(abs(subData$SEC - filterPeak$rt))[1] subData <- subData[index,] } subData } getFirstPeak <- function(filterPeak, compoundRow) { minDif = 0 for (i in 1:nrow(filterPeak)) { dif = filterPeak[i, "rt"] - compoundRow$rtLeft if (dif <= minDif) { firstRow = filterPeak[i,] minDif = dif }else if (minDif == 0) { minDif = dif firstRow = filterPeak[i,] } } firstRow } getLargestPeak <- function(filterPeak, data, compoundRow) { maxArea = 0 response = dealStr(compoundRow$response) for (i in 1:nrow(filterPeak)) { subData = getSub(data, filterPeak[i,], response) area = getArea(subData) if (area >= maxArea || maxArea == 0) { maxArea = area firstRow = filterPeak[i,] } } firstRow } getNearestPeak <- function(filterPeak, compoundRow) { firstRow <- as_tibble(filterPeak) %>% mutate(min = abs(rt - compoundRow$rt)) %>% arrange(min) %>% head(1) %>% select(-"min") %>% as.data.frame() # for (i in 1 : nrow(filterPeak)) { # dif = abs(filterPeak[i, "rt"] - compoundRow$rt) # if (dif <= minDif || minDif == 0) { # firstRow = filterPeak[i,] # minDif = dif # } # } firstRow } myRound <- function(value) { int = floor(value) double = value - int if (double > 0.5) { int = int + 1 }else if (double == 0.5) { int = int + 0.5 }else { int = int } int } plotSlightCorrect <- function(data, compoundRow) { plot(data$SEC, data$INT, col = "red", cex = 0.5, xlab = "RT(m)", main = paste("peak area | window size:", compoundRow$dfl, " BLine: ", compoundRow$bline, sep = ""), ylab = "Intensity", xaxt = "n") at <- seq(from = myRound(min(data$SEC)), to = myRound(max(data$SEC)), by = 0.5) axis(side = 1, at = at) lines(data$SEC, data$INT, col = "grey") } plotArea <- function(subData, response) { if (response == "height") { lines(x = c(subData$SEC, subData$SEC), y = c(0, subData$INT), col = "green", lwd = 1.5) }else { n = length(subData$SEC) polygon(c(subData$SEC[1], subData$SEC, subData$SEC[n]), c(0, subData$INT, 0), col = "green") } } getArea <- function(subData) { area = 0 if (nrow(subData) == 1) { area = subData$INT }else { for (i in 2:nrow(subData)) { currentRow <- subData[i,] beforeRow <- subData[i - 1,] curArea = (currentRow$INT + beforeRow$INT) * (currentRow$SEC - beforeRow$SEC) / 2 if (curArea < 0) { curArea = 0 } area = curArea + area } } area } plotAndReturnTotalInt <- function(filterPeak, data, compoundRow) { totalInt = 0 intensityMethod = tolower(compoundRow$peakMethod) intensityMethod <- as.character(intensityMethod) response = dealStr(compoundRow$response) if (intensityMethod == "all") { for (i in 1:nrow(filterPeak)) { row <- filterPeak[i,] subData = getSub(data, row, response) totalInt = getArea(subData) + totalInt } row <- filterPeak }else if (intensityMethod == "first") { row = getFirstPeak(filterPeak, compoundRow) subData = getSub(data, row, response) totalInt = getArea(subData) + totalInt }else if (intensityMethod == "largest") { row = getLargestPeak(filterPeak, data, compoundRow) subData = getSub(data, row, response) totalInt = getArea(subData) + totalInt }else if (intensityMethod == "nearest") { row <- getNearestPeak(filterPeak, compoundRow) subData = getSub(data, row, response) totalInt = getArea(subData) + totalInt } abline(v = row$rt) abline(v = row$rtmin, col = "red") abline(v = row$rtmax, col = "red") print(row) print(min(subData$SEC)) print(max(subData$SEC)) plotSlightCorrect(data, compoundRow) if (intensityMethod == "all") { for (i in 1:nrow(filterPeak)) { row <- filterPeak[i,] subData = getSub(data, row, response) plotArea(subData, response) } }else { plotArea(subData, response) } if (totalInt < 0) { totalInt = 0 } list(totalInt = totalInt, firstRow = row) } getMedian <- function(originalData, times) { tmpVec = Filter(function(f) f >= 0, originalData) vec = c() for (i in 1:times) { vec = c(vec, min(sample(tmpVec, length(tmpVec) / 10))) } median(vec) } getFilterPeak <- function(peak, compoundRow) { colnames(peak) = c("INT", "rt", "rtmin", "rtmax") peak$rt = data$SEC[peak$rt] peak$rtmin = data$SEC[peak$rtmin] peak$rtmax = data$SEC[peak$rtmax] filterPeak = subset(peak, rt >= compoundRow$rtLeft & rt <= compoundRow$rtRight) filterPeak } createWhenNoExist <- function(f) { !dir.exists(f) && dir.create(f) } getColorByRow <- function(firstRow, compoundRow) { if (abs(compoundRow$rt - firstRow$rt) > 0.2) { "red" }else { "NA" } } getColor <- function(compoundRow, list) { colorStr = "NA" intensityMethod = tolower(compoundRow$peakMethod) if (intensityMethod != "all") { colorStr <- getColorByRow(list$firstRow, compoundRow) } colorStr } changeRtTime <- function(compoundRow) { compoundRow$rtLeft <- (compoundRow$rt - compoundRow$rtLeft) compoundRow$rtRight <- (compoundRow$rt + compoundRow$rtRight) compoundRow$rt <- compoundRow$rt compoundRow } library(optparse) library(pracma) library(baseline) source("base.R") library(xlsx) option_list <- list( make_option("--ci", default = "is_0/compoundName.xlsx", type = "character", help = "compound name file"), make_option("--si", default = "sample_config.xlsx", type = "character", help = "sample config input file"), make_option("--co", default = "is_0/color.txt", type = "character", help = "color output file"), make_option("--io", default = "is_0/intensity.txt", type = "character", help = "intensity output file") ) opt <- parse_args(OptionParser(option_list = option_list)) sampleConfig <- read.xlsx(opt$si, 1, check.names = F) sampleConfig <- setSampleConfigHeader(sampleConfig) sampleConfig$fileName <- tolower(sampleConfig$fileName) compoundConfig <- read.xlsx("compound_config.xlsx", 1, check.names = F) compoundConfig <- setCompoundConfigHeader(compoundConfig) compoundConfig <- changeRtTime(compoundConfig) intensity = data.frame(sample = sampleConfig$fileName) color = data.frame(sample = sampleConfig$fileName) uniqBatch = unique(sampleConfig$batch) compoundNameData <- read.xlsx(opt$ci, 1, check.names = F) # for (compoundName in compoundConfig$compound) { for (compoundName in compoundNameData$CompoundName) { print(compoundName) dirName = "plot_peaks" createWhenNoExist(dirName) compoundRow <- compoundConfig[which(tolower(compoundConfig$compound) == compoundName),] pdf(file = paste(dirName, "/", compoundName, ".pdf", sep = ""), width = 15, height = 9) for (bat in uniqBatch) { config = subset(sampleConfig, batch == bat) fileNames = config$fileName for (fileName in fileNames) { data <- read.table(quote = "", paste("dta/", compoundName, "/", fileName, ".dta", sep = ""), header = T, com = '', sep = "\t", check.names = F) # print(fileName) # print(paste("dta/", compoundName, "/", fileName, ".dta", sep = "")) colnames(data) = c("SEC", "MZ", "INT") par(mfrow = c(3, 1)) originalData = data$INT slightSmoothData <- savgol(data$INT, compoundRow$dfl) smoothData <- data$INT for (i in 1:compoundRow$iteration) { smoothData <- savgol(smoothData, compoundRow$fl) } if (compoundRow$bline == "no") { data$INT <- slightSmoothData slightCorrectValue <- slightSmoothData correctValue <- smoothData }else { baseLineFrame <- data.frame(Date = data$SEC, Visits = slightSmoothData) baseLineFrame <- t(baseLineFrame$Visits) slightBaseLine <- baseline(baseLineFrame, method = 'irls') slightCorrectValue = c(getCorrected(slightBaseLine)) data$INT = slightCorrectValue baseLineFrame <- data.frame(Date = data$SEC, Visits = smoothData) baseLineFrame <- t(baseLineFrame$Visits) baseLine <- baseline(baseLineFrame, method = 'irls') correctValue = c(getCorrected(baseLine)) } median = getMedian(slightCorrectValue, 1000) std <- as.character(compoundRow$std) std <- tolower(std) index <- dealStr(compoundRow$index) if (myStartsWith(index, "is")) { mic <- compoundRow$std }else { mic <- sampleConfig[which(sampleConfig$fileName == fileName), std] } plot(data$SEC, originalData, col = "red", cex = 0.5, main = paste("raw chromatogram | batch: ", bat, " sample: ", fileName, " conc: ", mic, " function: ", compoundRow$fc, " mass: ", compoundRow$mz, sep = ""), xlab = "RT(m)", ylab = "Intensity", xaxt = "n") at <- seq(from = myRound(min(data$SEC)), to = myRound(max(data$SEC)), by = 0.5) axis(side = 1, at = at) lines(data$SEC, originalData, col = "grey") noiseStr <- signif(median, 3) plot2 = plot(data$SEC, correctValue, col = "red", cex = 0.5, xlab = "RT(m)", main = paste("peak picking | window size: ", compoundRow$fl, " iteration: ", compoundRow$iteration, " lp: ", compoundRow$nups, " rp: ", compoundRow$ndowns, " snr: ", compoundRow$snr, " peak location: ", compoundRow$peakMethod, " noise: ", noiseStr, " BLine: ", compoundRow$bline, sep = ""), ylab = "Intensity", xaxt = "n") at <- seq(from = myRound(min(data$SEC)), to = myRound(max(data$SEC)), by = 0.5) axis(side = 1, at = at) lines(data$SEC, correctValue, col = "grey") plot2 + abline(h = median, col = "blue") plot2 + abline(h = median * compoundRow$snr, col = "blue") peak = findpeaks(correctValue, threshold = median * compoundRow$snr, nups = compoundRow$nups, ndowns = compoundRow$ndowns) peak = as.data.frame(peak) valid <- nrow(peak) != 0 filterPeak <- data.frame() if (valid) { filterPeak <- getFilterPeak(peak, compoundRow) } abline(v = c(compoundRow$rt, compoundRow$rtLeft, compoundRow$rtRight), col = "blue", lty = 3) valid <- nrow(filterPeak) != 0 if (!valid) { intensity[which(intensity$sample == fileName), "batch"] = bat intensity[which(intensity$sample == fileName), compoundName] = 0 color[which(color$sample == fileName), "batch"] = bat color[which(color$sample == fileName), compoundName] = "NA" plotSlightCorrect(data, compoundRow) next } list <- plotAndReturnTotalInt(filterPeak, data, compoundRow) totalInt <- list$totalInt colorStr <- getColor(compoundRow, list) intensity[which(intensity$sample == fileName), "batch"] = bat intensity[which(intensity$sample == fileName), compoundName] = totalInt color[which(color$sample == fileName), "batch"] = bat color[which(color$sample == fileName), compoundName] = colorStr } } dev.off() } write.table(intensity, opt$io, quote = FALSE, sep = "\t", row.names = F) write.table(color, opt$co, quote = FALSE, sep = "\t", row.names = F)
/server/rScripts/findPeak.R
no_license
yz8169/product_tmbq
R
false
false
11,502
r
# Title : TODO # Objective : TODO # Created by: yz # Created on: 2018/9/19 library(tidyverse) getSub <- function(data, filterPeak, response) { subData = subset(data, SEC >= filterPeak$rtmin & SEC <= filterPeak$rtmax) if (response == "height") { index <- order(abs(subData$SEC - filterPeak$rt))[1] subData <- subData[index,] } subData } getFirstPeak <- function(filterPeak, compoundRow) { minDif = 0 for (i in 1:nrow(filterPeak)) { dif = filterPeak[i, "rt"] - compoundRow$rtLeft if (dif <= minDif) { firstRow = filterPeak[i,] minDif = dif }else if (minDif == 0) { minDif = dif firstRow = filterPeak[i,] } } firstRow } getLargestPeak <- function(filterPeak, data, compoundRow) { maxArea = 0 response = dealStr(compoundRow$response) for (i in 1:nrow(filterPeak)) { subData = getSub(data, filterPeak[i,], response) area = getArea(subData) if (area >= maxArea || maxArea == 0) { maxArea = area firstRow = filterPeak[i,] } } firstRow } getNearestPeak <- function(filterPeak, compoundRow) { firstRow <- as_tibble(filterPeak) %>% mutate(min = abs(rt - compoundRow$rt)) %>% arrange(min) %>% head(1) %>% select(-"min") %>% as.data.frame() # for (i in 1 : nrow(filterPeak)) { # dif = abs(filterPeak[i, "rt"] - compoundRow$rt) # if (dif <= minDif || minDif == 0) { # firstRow = filterPeak[i,] # minDif = dif # } # } firstRow } myRound <- function(value) { int = floor(value) double = value - int if (double > 0.5) { int = int + 1 }else if (double == 0.5) { int = int + 0.5 }else { int = int } int } plotSlightCorrect <- function(data, compoundRow) { plot(data$SEC, data$INT, col = "red", cex = 0.5, xlab = "RT(m)", main = paste("peak area | window size:", compoundRow$dfl, " BLine: ", compoundRow$bline, sep = ""), ylab = "Intensity", xaxt = "n") at <- seq(from = myRound(min(data$SEC)), to = myRound(max(data$SEC)), by = 0.5) axis(side = 1, at = at) lines(data$SEC, data$INT, col = "grey") } plotArea <- function(subData, response) { if (response == "height") { lines(x = c(subData$SEC, subData$SEC), y = c(0, subData$INT), col = "green", lwd = 1.5) }else { n = length(subData$SEC) polygon(c(subData$SEC[1], subData$SEC, subData$SEC[n]), c(0, subData$INT, 0), col = "green") } } getArea <- function(subData) { area = 0 if (nrow(subData) == 1) { area = subData$INT }else { for (i in 2:nrow(subData)) { currentRow <- subData[i,] beforeRow <- subData[i - 1,] curArea = (currentRow$INT + beforeRow$INT) * (currentRow$SEC - beforeRow$SEC) / 2 if (curArea < 0) { curArea = 0 } area = curArea + area } } area } plotAndReturnTotalInt <- function(filterPeak, data, compoundRow) { totalInt = 0 intensityMethod = tolower(compoundRow$peakMethod) intensityMethod <- as.character(intensityMethod) response = dealStr(compoundRow$response) if (intensityMethod == "all") { for (i in 1:nrow(filterPeak)) { row <- filterPeak[i,] subData = getSub(data, row, response) totalInt = getArea(subData) + totalInt } row <- filterPeak }else if (intensityMethod == "first") { row = getFirstPeak(filterPeak, compoundRow) subData = getSub(data, row, response) totalInt = getArea(subData) + totalInt }else if (intensityMethod == "largest") { row = getLargestPeak(filterPeak, data, compoundRow) subData = getSub(data, row, response) totalInt = getArea(subData) + totalInt }else if (intensityMethod == "nearest") { row <- getNearestPeak(filterPeak, compoundRow) subData = getSub(data, row, response) totalInt = getArea(subData) + totalInt } abline(v = row$rt) abline(v = row$rtmin, col = "red") abline(v = row$rtmax, col = "red") print(row) print(min(subData$SEC)) print(max(subData$SEC)) plotSlightCorrect(data, compoundRow) if (intensityMethod == "all") { for (i in 1:nrow(filterPeak)) { row <- filterPeak[i,] subData = getSub(data, row, response) plotArea(subData, response) } }else { plotArea(subData, response) } if (totalInt < 0) { totalInt = 0 } list(totalInt = totalInt, firstRow = row) } getMedian <- function(originalData, times) { tmpVec = Filter(function(f) f >= 0, originalData) vec = c() for (i in 1:times) { vec = c(vec, min(sample(tmpVec, length(tmpVec) / 10))) } median(vec) } getFilterPeak <- function(peak, compoundRow) { colnames(peak) = c("INT", "rt", "rtmin", "rtmax") peak$rt = data$SEC[peak$rt] peak$rtmin = data$SEC[peak$rtmin] peak$rtmax = data$SEC[peak$rtmax] filterPeak = subset(peak, rt >= compoundRow$rtLeft & rt <= compoundRow$rtRight) filterPeak } createWhenNoExist <- function(f) { !dir.exists(f) && dir.create(f) } getColorByRow <- function(firstRow, compoundRow) { if (abs(compoundRow$rt - firstRow$rt) > 0.2) { "red" }else { "NA" } } getColor <- function(compoundRow, list) { colorStr = "NA" intensityMethod = tolower(compoundRow$peakMethod) if (intensityMethod != "all") { colorStr <- getColorByRow(list$firstRow, compoundRow) } colorStr } changeRtTime <- function(compoundRow) { compoundRow$rtLeft <- (compoundRow$rt - compoundRow$rtLeft) compoundRow$rtRight <- (compoundRow$rt + compoundRow$rtRight) compoundRow$rt <- compoundRow$rt compoundRow } library(optparse) library(pracma) library(baseline) source("base.R") library(xlsx) option_list <- list( make_option("--ci", default = "is_0/compoundName.xlsx", type = "character", help = "compound name file"), make_option("--si", default = "sample_config.xlsx", type = "character", help = "sample config input file"), make_option("--co", default = "is_0/color.txt", type = "character", help = "color output file"), make_option("--io", default = "is_0/intensity.txt", type = "character", help = "intensity output file") ) opt <- parse_args(OptionParser(option_list = option_list)) sampleConfig <- read.xlsx(opt$si, 1, check.names = F) sampleConfig <- setSampleConfigHeader(sampleConfig) sampleConfig$fileName <- tolower(sampleConfig$fileName) compoundConfig <- read.xlsx("compound_config.xlsx", 1, check.names = F) compoundConfig <- setCompoundConfigHeader(compoundConfig) compoundConfig <- changeRtTime(compoundConfig) intensity = data.frame(sample = sampleConfig$fileName) color = data.frame(sample = sampleConfig$fileName) uniqBatch = unique(sampleConfig$batch) compoundNameData <- read.xlsx(opt$ci, 1, check.names = F) # for (compoundName in compoundConfig$compound) { for (compoundName in compoundNameData$CompoundName) { print(compoundName) dirName = "plot_peaks" createWhenNoExist(dirName) compoundRow <- compoundConfig[which(tolower(compoundConfig$compound) == compoundName),] pdf(file = paste(dirName, "/", compoundName, ".pdf", sep = ""), width = 15, height = 9) for (bat in uniqBatch) { config = subset(sampleConfig, batch == bat) fileNames = config$fileName for (fileName in fileNames) { data <- read.table(quote = "", paste("dta/", compoundName, "/", fileName, ".dta", sep = ""), header = T, com = '', sep = "\t", check.names = F) # print(fileName) # print(paste("dta/", compoundName, "/", fileName, ".dta", sep = "")) colnames(data) = c("SEC", "MZ", "INT") par(mfrow = c(3, 1)) originalData = data$INT slightSmoothData <- savgol(data$INT, compoundRow$dfl) smoothData <- data$INT for (i in 1:compoundRow$iteration) { smoothData <- savgol(smoothData, compoundRow$fl) } if (compoundRow$bline == "no") { data$INT <- slightSmoothData slightCorrectValue <- slightSmoothData correctValue <- smoothData }else { baseLineFrame <- data.frame(Date = data$SEC, Visits = slightSmoothData) baseLineFrame <- t(baseLineFrame$Visits) slightBaseLine <- baseline(baseLineFrame, method = 'irls') slightCorrectValue = c(getCorrected(slightBaseLine)) data$INT = slightCorrectValue baseLineFrame <- data.frame(Date = data$SEC, Visits = smoothData) baseLineFrame <- t(baseLineFrame$Visits) baseLine <- baseline(baseLineFrame, method = 'irls') correctValue = c(getCorrected(baseLine)) } median = getMedian(slightCorrectValue, 1000) std <- as.character(compoundRow$std) std <- tolower(std) index <- dealStr(compoundRow$index) if (myStartsWith(index, "is")) { mic <- compoundRow$std }else { mic <- sampleConfig[which(sampleConfig$fileName == fileName), std] } plot(data$SEC, originalData, col = "red", cex = 0.5, main = paste("raw chromatogram | batch: ", bat, " sample: ", fileName, " conc: ", mic, " function: ", compoundRow$fc, " mass: ", compoundRow$mz, sep = ""), xlab = "RT(m)", ylab = "Intensity", xaxt = "n") at <- seq(from = myRound(min(data$SEC)), to = myRound(max(data$SEC)), by = 0.5) axis(side = 1, at = at) lines(data$SEC, originalData, col = "grey") noiseStr <- signif(median, 3) plot2 = plot(data$SEC, correctValue, col = "red", cex = 0.5, xlab = "RT(m)", main = paste("peak picking | window size: ", compoundRow$fl, " iteration: ", compoundRow$iteration, " lp: ", compoundRow$nups, " rp: ", compoundRow$ndowns, " snr: ", compoundRow$snr, " peak location: ", compoundRow$peakMethod, " noise: ", noiseStr, " BLine: ", compoundRow$bline, sep = ""), ylab = "Intensity", xaxt = "n") at <- seq(from = myRound(min(data$SEC)), to = myRound(max(data$SEC)), by = 0.5) axis(side = 1, at = at) lines(data$SEC, correctValue, col = "grey") plot2 + abline(h = median, col = "blue") plot2 + abline(h = median * compoundRow$snr, col = "blue") peak = findpeaks(correctValue, threshold = median * compoundRow$snr, nups = compoundRow$nups, ndowns = compoundRow$ndowns) peak = as.data.frame(peak) valid <- nrow(peak) != 0 filterPeak <- data.frame() if (valid) { filterPeak <- getFilterPeak(peak, compoundRow) } abline(v = c(compoundRow$rt, compoundRow$rtLeft, compoundRow$rtRight), col = "blue", lty = 3) valid <- nrow(filterPeak) != 0 if (!valid) { intensity[which(intensity$sample == fileName), "batch"] = bat intensity[which(intensity$sample == fileName), compoundName] = 0 color[which(color$sample == fileName), "batch"] = bat color[which(color$sample == fileName), compoundName] = "NA" plotSlightCorrect(data, compoundRow) next } list <- plotAndReturnTotalInt(filterPeak, data, compoundRow) totalInt <- list$totalInt colorStr <- getColor(compoundRow, list) intensity[which(intensity$sample == fileName), "batch"] = bat intensity[which(intensity$sample == fileName), compoundName] = totalInt color[which(color$sample == fileName), "batch"] = bat color[which(color$sample == fileName), compoundName] = colorStr } } dev.off() } write.table(intensity, opt$io, quote = FALSE, sep = "\t", row.names = F) write.table(color, opt$co, quote = FALSE, sep = "\t", row.names = F)
library(mcp) library(tidybayes) library(changepoint) library(dplyr) library(tidyr) library(lubridate) library(readr) library(hrbrthemes) library(ggplot2) library(stringr) library(RcppRoll) library(ragg) plot_county <- function(the_state, the_county, counties=my_counties) { state <- counties %>% filter(state == the_state) one_county <- state %>% filter(county == the_county) print(paste(the_state, the_county, nrow(one_county))) one_county <- one_county %>% mutate(sequence = as.numeric(date)) %>% arrange(date) %>% mutate(daily_deaths = deaths - lag(deaths), daily_cases = cases - lag(cases)) %>% replace_na(list(daily_deaths = 0, daily_cases = 0)) %>% mutate(mean_cases_7 = roll_mean(daily_cases, 7, fill=0, align="right"), mean_deaths_7 = roll_mean(daily_deaths, 7, fill=0, align="right")) %>% ungroup() # use two-phase changepoint detection: # 1) changepoint package for quick search # 2) build model from quick search and use # that model in mcp package for more # thorough search fit_changepoint = cpt.meanvar(one_county$mean_cases_7, method = "PELT", minseglen = 30) # plot(fit_changepoint) #str(fit_changepoint) cps <- cpts(fit_changepoint) # maybe add the change point locations as priors, somehow? Right now, # just the number of changepoints is a "prior" of sorts # # using 1 + number of changepoints above as an aggressive attempt # to find changepoints. Not sure if sound... model <- c(mean_cases_7 ~ sequence, rep_len(c(1~1), 1 + ncpts(fit_changepoint))) %>% as.list() # model fit <- mcp(model, data = one_county) # plot(fit) #fit cp_df <- fit$mcmc_post %>% tidy_draws() %>% summarize_all(mean) %>% select(starts_with("cp_")) %>% pivot_longer(cols = starts_with("cp_"), names_to = "changepoint", values_to = "sequence") %>% mutate(sequence = floor(sequence)) one_county <- one_county %>% left_join(cp_df) %>% fill(changepoint, .direction="up") %>% replace_na(list(changepoint = "cp_n")) %>% group_by(changepoint) %>% mutate(mean_7_mean = mean(mean_cases_7)) %>% ungroup() %>% mutate(cummax = cummax(daily_cases), is_highpoint = cummax == daily_cases) the_plot <- one_county %>% pivot_longer(cols = c(mean_cases_7, daily_cases), names_to = "type", values_to = "count") %>% ggplot() + geom_rect(data = extract_segments, aes(xmin = xmin, xmax=xmax, fill = as.factor(shade)), ymin=0, ymax=Inf, color=NA, alpha=0.5) + scale_fill_manual(guide=FALSE, values = c("white", "#e0e0e0")) + geom_line(aes(x=date, y=count, color=type)) + scale_color_manual(NULL,values = c("gray", "black"), labels = c("Daily", "7-day average")) + geom_point(aes(x=date, y=count, shape = is_highpoint, size = type), color="black", show.legend = FALSE) + scale_size_manual(NULL, values = c(1.5,0)) + # zero-sized if on the average line scale_shape_manual(NULL, values = c(NA,1)) + # no shape if not a highpoint labs( title = paste(min(one_county$county), "County", min(one_county$state)), subtitle = max(one_county$date), caption = str_wrap("Shading shows changes in data, circles are new highpoints",60), y = "Cases", x = "Date" ) + theme_ipsum_rc() + theme( #legend.position="none" ) + ylim(0,NA) dpi=200 img_name <- paste(the_county, the_state, "case-wide.png", sep="-") agg_png(here::here("county_plots", img_name), width = 1600, height = 900 , res=dpi) print(the_plot) invisible(dev.off()) return(the_plot) } extract_segments <- function(one_county) { one_county %>% group_by(changepoint) %>% summarize(xmin = min(date)-days(1), xmax=max(date))%>% mutate(changepoint = factor(changepoint)) %>% mutate(shade = as.numeric(changepoint) %%2) } my_counties <- read_csv("https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv") tib <- tribble( ~state, ~county, ~note, # "Washington", "Whitman","", "Texas", "Travis", "", "Texas", "Lubbock","", "Montana", "Lewis and Clark","", "Montana", "Yellowstone","", "Montana", "Missoula","", "Arizona", "Maricopa","", "Oregon", "Multnomah","", "Massachusetts", "Hampshire","" , "Texas","Tarrant", "", "Texas","El Paso", "", "Texas","Midland", "", "Texas","Harris", "", # "Georgia", "Bulloch", "", # "Mississippi", "Lafayette","", # "Missouri","Greene","", # "Illinois", "Champaign","", # "Colorado", "Summit","", # "Florida", "Leon","", "Oklahoma", "Garfield","", "Oklahoma", "Payne","", "Oklahoma", "Muskogee","", # "Iowa", "Story","", # "Iowa", "Johnson","", # "North Carolina", "Orange","", # "Indiana", "Delaware", "Ball State University" ) %>% arrange(state, county) future::plan(future::multisession, workers = 4) furrr::future_map2(tib$state, tib$county, ~plot_county(.x, .y, counties = my_counties))
/any-county.R
no_license
schnee/covid-19
R
false
false
5,073
r
library(mcp) library(tidybayes) library(changepoint) library(dplyr) library(tidyr) library(lubridate) library(readr) library(hrbrthemes) library(ggplot2) library(stringr) library(RcppRoll) library(ragg) plot_county <- function(the_state, the_county, counties=my_counties) { state <- counties %>% filter(state == the_state) one_county <- state %>% filter(county == the_county) print(paste(the_state, the_county, nrow(one_county))) one_county <- one_county %>% mutate(sequence = as.numeric(date)) %>% arrange(date) %>% mutate(daily_deaths = deaths - lag(deaths), daily_cases = cases - lag(cases)) %>% replace_na(list(daily_deaths = 0, daily_cases = 0)) %>% mutate(mean_cases_7 = roll_mean(daily_cases, 7, fill=0, align="right"), mean_deaths_7 = roll_mean(daily_deaths, 7, fill=0, align="right")) %>% ungroup() # use two-phase changepoint detection: # 1) changepoint package for quick search # 2) build model from quick search and use # that model in mcp package for more # thorough search fit_changepoint = cpt.meanvar(one_county$mean_cases_7, method = "PELT", minseglen = 30) # plot(fit_changepoint) #str(fit_changepoint) cps <- cpts(fit_changepoint) # maybe add the change point locations as priors, somehow? Right now, # just the number of changepoints is a "prior" of sorts # # using 1 + number of changepoints above as an aggressive attempt # to find changepoints. Not sure if sound... model <- c(mean_cases_7 ~ sequence, rep_len(c(1~1), 1 + ncpts(fit_changepoint))) %>% as.list() # model fit <- mcp(model, data = one_county) # plot(fit) #fit cp_df <- fit$mcmc_post %>% tidy_draws() %>% summarize_all(mean) %>% select(starts_with("cp_")) %>% pivot_longer(cols = starts_with("cp_"), names_to = "changepoint", values_to = "sequence") %>% mutate(sequence = floor(sequence)) one_county <- one_county %>% left_join(cp_df) %>% fill(changepoint, .direction="up") %>% replace_na(list(changepoint = "cp_n")) %>% group_by(changepoint) %>% mutate(mean_7_mean = mean(mean_cases_7)) %>% ungroup() %>% mutate(cummax = cummax(daily_cases), is_highpoint = cummax == daily_cases) the_plot <- one_county %>% pivot_longer(cols = c(mean_cases_7, daily_cases), names_to = "type", values_to = "count") %>% ggplot() + geom_rect(data = extract_segments, aes(xmin = xmin, xmax=xmax, fill = as.factor(shade)), ymin=0, ymax=Inf, color=NA, alpha=0.5) + scale_fill_manual(guide=FALSE, values = c("white", "#e0e0e0")) + geom_line(aes(x=date, y=count, color=type)) + scale_color_manual(NULL,values = c("gray", "black"), labels = c("Daily", "7-day average")) + geom_point(aes(x=date, y=count, shape = is_highpoint, size = type), color="black", show.legend = FALSE) + scale_size_manual(NULL, values = c(1.5,0)) + # zero-sized if on the average line scale_shape_manual(NULL, values = c(NA,1)) + # no shape if not a highpoint labs( title = paste(min(one_county$county), "County", min(one_county$state)), subtitle = max(one_county$date), caption = str_wrap("Shading shows changes in data, circles are new highpoints",60), y = "Cases", x = "Date" ) + theme_ipsum_rc() + theme( #legend.position="none" ) + ylim(0,NA) dpi=200 img_name <- paste(the_county, the_state, "case-wide.png", sep="-") agg_png(here::here("county_plots", img_name), width = 1600, height = 900 , res=dpi) print(the_plot) invisible(dev.off()) return(the_plot) } extract_segments <- function(one_county) { one_county %>% group_by(changepoint) %>% summarize(xmin = min(date)-days(1), xmax=max(date))%>% mutate(changepoint = factor(changepoint)) %>% mutate(shade = as.numeric(changepoint) %%2) } my_counties <- read_csv("https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv") tib <- tribble( ~state, ~county, ~note, # "Washington", "Whitman","", "Texas", "Travis", "", "Texas", "Lubbock","", "Montana", "Lewis and Clark","", "Montana", "Yellowstone","", "Montana", "Missoula","", "Arizona", "Maricopa","", "Oregon", "Multnomah","", "Massachusetts", "Hampshire","" , "Texas","Tarrant", "", "Texas","El Paso", "", "Texas","Midland", "", "Texas","Harris", "", # "Georgia", "Bulloch", "", # "Mississippi", "Lafayette","", # "Missouri","Greene","", # "Illinois", "Champaign","", # "Colorado", "Summit","", # "Florida", "Leon","", "Oklahoma", "Garfield","", "Oklahoma", "Payne","", "Oklahoma", "Muskogee","", # "Iowa", "Story","", # "Iowa", "Johnson","", # "North Carolina", "Orange","", # "Indiana", "Delaware", "Ball State University" ) %>% arrange(state, county) future::plan(future::multisession, workers = 4) furrr::future_map2(tib$state, tib$county, ~plot_county(.x, .y, counties = my_counties))
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/app.R \name{plot_clustering} \alias{plot_clustering} \title{Graphic representation of the evaluation measures.} \usage{ plot_clustering(df, metric) } \arguments{ \item{df}{data matrix or data frame with the result of running the clustering algorithm.} \item{metric}{it's a string with the name of the metric select to evaluate.} } \description{ Graphical representation of the evaluation measures grouped by cluster. } \details{ In certain cases the review or filtering of the data is necessary to select the data, that is why thanks to the graphic representations this task is much easier. Therefore with this method we will be able to filter the data by metrics and see the data in a graphical way. } \examples{ result = clustering( df = cluster::agriculture, min = 4, max = 5, algorithm='gmm', metrics=c("precision"), attributes = TRUE ) plot_clustering(result,c("precision")) }
/man/plot_clustering.Rd
no_license
minghao2016/Clustering-1
R
false
true
1,063
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/app.R \name{plot_clustering} \alias{plot_clustering} \title{Graphic representation of the evaluation measures.} \usage{ plot_clustering(df, metric) } \arguments{ \item{df}{data matrix or data frame with the result of running the clustering algorithm.} \item{metric}{it's a string with the name of the metric select to evaluate.} } \description{ Graphical representation of the evaluation measures grouped by cluster. } \details{ In certain cases the review or filtering of the data is necessary to select the data, that is why thanks to the graphic representations this task is much easier. Therefore with this method we will be able to filter the data by metrics and see the data in a graphical way. } \examples{ result = clustering( df = cluster::agriculture, min = 4, max = 5, algorithm='gmm', metrics=c("precision"), attributes = TRUE ) plot_clustering(result,c("precision")) }
#' @import chromote #' @import later #' @import promises #' NULL #' Take a screenshot of a URL #' #' @param url A vector of URLs to visit. If multiple URLs are provided, it will #' load and take screenshots of those web pages in parallel. #' @param file A vector of names of output files. Should end with \code{.png} or #' \code{.pdf}. If several screenshots have to be taken and only one filename #' is provided, then the function appends the index number of the screenshot #' to the file name. For PDF output, it is just like printing the page to PDF #' in a browser; \code{selector}, \code{cliprect}, \code{expand}, and #' \code{zoom} will not be used for PDFs. #' @param vwidth Viewport width. This is the width of the browser "window". #' @param vheight Viewport height This is the height of the browser "window". #' @param selector One or more CSS selectors specifying a DOM element to set the #' clipping rectangle to. The screenshot will contain these DOM elements. For #' a given selector, if it has more than one match, all matching elements will #' be used. This option is not compatible with \code{cliprect}. When taking #' screenshots of multiple URLs, this parameter can also be a list with same #' length as \code{url} with each element of the list containing a vector of #' CSS selectors to use for the corresponding URL. #' @param cliprect Clipping rectangle. If \code{cliprect} and \code{selector} #' are both unspecified, the clipping rectangle will contain the entire page. #' This can be the string \code{"viewport"}, in which case the clipping #' rectangle matches the viewport size, or it can be a four-element numeric #' vector specifying the top, left, width, and height. When taking screenshots #' of multiple URLs, this parameter can also be a list with same length as #' \code{url} with each element of the list being "viewport" or a #' four-elements numeric vector. This option is not compatible with #' \code{selector}. #' @param delay Time to wait before taking screenshot, in seconds. Sometimes a #' longer delay is needed for all assets to display properly. #' @param expand A numeric vector specifying how many pixels to expand the #' clipping rectangle by. If one number, the rectangle will be expanded by #' that many pixels on all sides. If four numbers, they specify the top, #' right, bottom, and left, in that order. When taking screenshots of multiple #' URLs, this parameter can also be a list with same length as \code{url} with #' each element of the list containing a single number or four numbers to use #' for the corresponding URL. #' @param zoom A number specifying the zoom factor. A zoom factor of 2 will #' result in twice as many pixels vertically and horizontally. Note that using #' 2 is not exactly the same as taking a screenshot on a HiDPI (Retina) #' device: it is like increasing the zoom to 200% in a desktop browser and #' doubling the height and width of the browser window. This differs from #' using a HiDPI device because some web pages load different, #' higher-resolution images when they know they will be displayed on a HiDPI #' device (but using zoom will not report that there is a HiDPI device). #' @param useragent The User-Agent header used to request the URL. #' #' @examples #' if (interactive()) { #' #' # Whole web page #' webshot("https://github.com/rstudio/shiny") #' #' # Might need a delay for all assets to display #' webshot("http://rstudio.github.io/leaflet", delay = 0.5) #' #' # One can also take screenshots of several URLs with only one command. #' # This is more efficient than calling 'webshot' multiple times. #' webshot(c("https://github.com/rstudio/shiny", #' "http://rstudio.github.io/leaflet"), #' delay = 0.5) #' #' # Clip to the viewport #' webshot("http://rstudio.github.io/leaflet", "leaflet-viewport.png", #' cliprect = "viewport") #' #' # Specific size #' webshot("https://www.r-project.org", vwidth = 1600, vheight = 900, #' cliprect = "viewport") #' #' # Manual clipping rectangle #' webshot("http://rstudio.github.io/leaflet", "leaflet-clip.png", #' cliprect = c(200, 5, 400, 300)) #' #' # Using CSS selectors to pick out regions #' webshot("http://rstudio.github.io/leaflet", "leaflet-menu.png", selector = ".list-group") #' # With multiple selectors, the screenshot will contain all selected elements #' webshot("http://reddit.com/", "reddit-top.png", #' selector = c("[aria-label='Home']", "input[type='search']")) #' #' # Expand selection region #' webshot("http://rstudio.github.io/leaflet", "leaflet-boxes.png", #' selector = "#installation", expand = c(10, 50, 0, 50)) #' #' # If multiple matches for a given selector, it will take a screenshot that #' # contains all matching elements. #' webshot("http://rstudio.github.io/leaflet", "leaflet-p.png", selector = "p") #' webshot("https://github.com/rstudio/shiny/", "shiny-stats.png", #' selector = "ul.numbers-summary") #' #' # Result can be piped to other commands like resize() and shrink() #' webshot("https://www.r-project.org/", "r-small.png") %>% #' resize("75%") %>% #' shrink() #' #' } #' #' @export webshot <- function( url = NULL, file = "webshot.png", vwidth = 992, vheight = 744, selector = NULL, cliprect = NULL, expand = NULL, delay = 0.2, zoom = 1, useragent = NULL, max_concurrent = getOption("webshot.concurrent", default = 6) ) { if (length(url) == 0) { stop("Need url.") } # Ensure urls are either web URLs or local file URLs. url <- vapply(url, function(x) { if (!is_url(x)) { # `url` is a filename, not an actual URL. Convert to file:// format. file_url(x) } else { x } }, character(1) ) # Convert params cliprect, selector and expand to list if necessary, because # they can be vectors. if(!is.null(cliprect) && !is.list(cliprect)) cliprect <- list(cliprect) if(!is.null(selector) && !is.list(selector)) selector <- list(selector) if(!is.null(expand) && !is.list(expand)) expand <- list(expand) if (is.null(selector)) { selector <- "html" } # If user provides only one file name but wants several screenshots, then the # below code generates as many file names as URLs following the pattern # "filename001.png", "filename002.png", ... (or whatever extension it is) if (length(url) > 1 && length(file) == 1) { file <- vapply(1:length(url), FUN.VALUE = character(1), function(i) { replacement <- sprintf("%03d.\\1", i) gsub("\\.(.{3,4})$", replacement, file) }) } # Check length of arguments and replicate if necessary args_all <- list( url = url, file = file, vwidth = vwidth, vheight = vheight, selector = selector, cliprect = cliprect, expand = expand, delay = delay, zoom = zoom, useragent = useragent ) n_urls <- length(url) args_all <- mapply(args_all, names(args_all), FUN = function(arg, name) { if (length(arg) == 0) { return(vector(mode = "list", n_urls)) } else if (length(arg) == 1) { return(rep(arg, n_urls)) } else if (length(arg) == n_urls) { return(arg) } else { stop("Argument `", name, "` should be NULL, length 1, or same length as `url`.") } }, SIMPLIFY = FALSE ) args_all <- long_to_wide(args_all) cm <- default_chromote_object() # A list of promises for the screenshots res <- lapply(args_all, function(args) { new_session_screenshot(cm, args$url, args$file, args$vwidth, args$vheight, args$selector, args$cliprect, args$expand, args$delay, args$zoom, args$useragent ) } ) p <- promise_all(.list = res) res <- cm$wait_for(p) res <- structure(unlist(res), class = "webshot") res } new_session_screenshot <- function( chromote, url, file, vwidth, vheight, selector, cliprect, expand, delay, zoom, useragent ) { filetype <- tolower(tools::file_ext(file)) if (filetype != "png" && filetype != "pdf") { stop("File extension must be 'png' or 'pdf'") } if (is.null(selector)) { selector <- "html" } if (is.character(cliprect)) { if (cliprect == "viewport") { cliprect <- c(0, 0, vwidth, vheight) } else { stop("Invalid value for cliprect: ", cliprect) } } else { if (!is.null(cliprect) && !(is.numeric(cliprect) && length(cliprect) == 4)) { stop("`cliprect` must be a vector with four numbers, or a list of such vectors") } } s <- NULL p <- chromote$new_session(wait_ = FALSE, width = vwidth, height = vheight )$ then(function(session) { s <<- session if (!is.null(useragent)) { s$Network$setUserAgentOverride(userAgent = useragent) } s$Page$navigate(url, wait_ = FALSE) s$Page$loadEventFired(wait_ = FALSE) })$ then(function(value) { if (delay > 0) { promise(function(resolve, reject) { later( function() { resolve(value) }, delay ) }) } else { value } })$ then(function(value) { if (filetype == "png") { s$screenshot( filename = file, selector = selector, cliprect = cliprect, expand = expand, scale = zoom, show = FALSE, wait_ = FALSE ) } else if (filetype == "pdf") { s$screenshot_pdf(filename = file, wait_ = FALSE) } })$ then(function(value) { message(url, " screenshot completed") normalizePath(value) })$ finally(function() { s$close() }) p } #' @export find_phantom <- function() TRUE knit_print.webshot <- function(x, ...) { lapply(x, function(filename) { res <- readBin(filename, "raw", file.size(filename)) ext <- gsub(".*[.]", "", basename(filename)) structure(list(image = res, extension = ext), class = "html_screenshot") }) } #' @export print.webshot <- function(x, ...) { invisible(x) }
/R/webshot.R
no_license
LouisStAmour/webshot2
R
false
false
10,127
r
#' @import chromote #' @import later #' @import promises #' NULL #' Take a screenshot of a URL #' #' @param url A vector of URLs to visit. If multiple URLs are provided, it will #' load and take screenshots of those web pages in parallel. #' @param file A vector of names of output files. Should end with \code{.png} or #' \code{.pdf}. If several screenshots have to be taken and only one filename #' is provided, then the function appends the index number of the screenshot #' to the file name. For PDF output, it is just like printing the page to PDF #' in a browser; \code{selector}, \code{cliprect}, \code{expand}, and #' \code{zoom} will not be used for PDFs. #' @param vwidth Viewport width. This is the width of the browser "window". #' @param vheight Viewport height This is the height of the browser "window". #' @param selector One or more CSS selectors specifying a DOM element to set the #' clipping rectangle to. The screenshot will contain these DOM elements. For #' a given selector, if it has more than one match, all matching elements will #' be used. This option is not compatible with \code{cliprect}. When taking #' screenshots of multiple URLs, this parameter can also be a list with same #' length as \code{url} with each element of the list containing a vector of #' CSS selectors to use for the corresponding URL. #' @param cliprect Clipping rectangle. If \code{cliprect} and \code{selector} #' are both unspecified, the clipping rectangle will contain the entire page. #' This can be the string \code{"viewport"}, in which case the clipping #' rectangle matches the viewport size, or it can be a four-element numeric #' vector specifying the top, left, width, and height. When taking screenshots #' of multiple URLs, this parameter can also be a list with same length as #' \code{url} with each element of the list being "viewport" or a #' four-elements numeric vector. This option is not compatible with #' \code{selector}. #' @param delay Time to wait before taking screenshot, in seconds. Sometimes a #' longer delay is needed for all assets to display properly. #' @param expand A numeric vector specifying how many pixels to expand the #' clipping rectangle by. If one number, the rectangle will be expanded by #' that many pixels on all sides. If four numbers, they specify the top, #' right, bottom, and left, in that order. When taking screenshots of multiple #' URLs, this parameter can also be a list with same length as \code{url} with #' each element of the list containing a single number or four numbers to use #' for the corresponding URL. #' @param zoom A number specifying the zoom factor. A zoom factor of 2 will #' result in twice as many pixels vertically and horizontally. Note that using #' 2 is not exactly the same as taking a screenshot on a HiDPI (Retina) #' device: it is like increasing the zoom to 200% in a desktop browser and #' doubling the height and width of the browser window. This differs from #' using a HiDPI device because some web pages load different, #' higher-resolution images when they know they will be displayed on a HiDPI #' device (but using zoom will not report that there is a HiDPI device). #' @param useragent The User-Agent header used to request the URL. #' #' @examples #' if (interactive()) { #' #' # Whole web page #' webshot("https://github.com/rstudio/shiny") #' #' # Might need a delay for all assets to display #' webshot("http://rstudio.github.io/leaflet", delay = 0.5) #' #' # One can also take screenshots of several URLs with only one command. #' # This is more efficient than calling 'webshot' multiple times. #' webshot(c("https://github.com/rstudio/shiny", #' "http://rstudio.github.io/leaflet"), #' delay = 0.5) #' #' # Clip to the viewport #' webshot("http://rstudio.github.io/leaflet", "leaflet-viewport.png", #' cliprect = "viewport") #' #' # Specific size #' webshot("https://www.r-project.org", vwidth = 1600, vheight = 900, #' cliprect = "viewport") #' #' # Manual clipping rectangle #' webshot("http://rstudio.github.io/leaflet", "leaflet-clip.png", #' cliprect = c(200, 5, 400, 300)) #' #' # Using CSS selectors to pick out regions #' webshot("http://rstudio.github.io/leaflet", "leaflet-menu.png", selector = ".list-group") #' # With multiple selectors, the screenshot will contain all selected elements #' webshot("http://reddit.com/", "reddit-top.png", #' selector = c("[aria-label='Home']", "input[type='search']")) #' #' # Expand selection region #' webshot("http://rstudio.github.io/leaflet", "leaflet-boxes.png", #' selector = "#installation", expand = c(10, 50, 0, 50)) #' #' # If multiple matches for a given selector, it will take a screenshot that #' # contains all matching elements. #' webshot("http://rstudio.github.io/leaflet", "leaflet-p.png", selector = "p") #' webshot("https://github.com/rstudio/shiny/", "shiny-stats.png", #' selector = "ul.numbers-summary") #' #' # Result can be piped to other commands like resize() and shrink() #' webshot("https://www.r-project.org/", "r-small.png") %>% #' resize("75%") %>% #' shrink() #' #' } #' #' @export webshot <- function( url = NULL, file = "webshot.png", vwidth = 992, vheight = 744, selector = NULL, cliprect = NULL, expand = NULL, delay = 0.2, zoom = 1, useragent = NULL, max_concurrent = getOption("webshot.concurrent", default = 6) ) { if (length(url) == 0) { stop("Need url.") } # Ensure urls are either web URLs or local file URLs. url <- vapply(url, function(x) { if (!is_url(x)) { # `url` is a filename, not an actual URL. Convert to file:// format. file_url(x) } else { x } }, character(1) ) # Convert params cliprect, selector and expand to list if necessary, because # they can be vectors. if(!is.null(cliprect) && !is.list(cliprect)) cliprect <- list(cliprect) if(!is.null(selector) && !is.list(selector)) selector <- list(selector) if(!is.null(expand) && !is.list(expand)) expand <- list(expand) if (is.null(selector)) { selector <- "html" } # If user provides only one file name but wants several screenshots, then the # below code generates as many file names as URLs following the pattern # "filename001.png", "filename002.png", ... (or whatever extension it is) if (length(url) > 1 && length(file) == 1) { file <- vapply(1:length(url), FUN.VALUE = character(1), function(i) { replacement <- sprintf("%03d.\\1", i) gsub("\\.(.{3,4})$", replacement, file) }) } # Check length of arguments and replicate if necessary args_all <- list( url = url, file = file, vwidth = vwidth, vheight = vheight, selector = selector, cliprect = cliprect, expand = expand, delay = delay, zoom = zoom, useragent = useragent ) n_urls <- length(url) args_all <- mapply(args_all, names(args_all), FUN = function(arg, name) { if (length(arg) == 0) { return(vector(mode = "list", n_urls)) } else if (length(arg) == 1) { return(rep(arg, n_urls)) } else if (length(arg) == n_urls) { return(arg) } else { stop("Argument `", name, "` should be NULL, length 1, or same length as `url`.") } }, SIMPLIFY = FALSE ) args_all <- long_to_wide(args_all) cm <- default_chromote_object() # A list of promises for the screenshots res <- lapply(args_all, function(args) { new_session_screenshot(cm, args$url, args$file, args$vwidth, args$vheight, args$selector, args$cliprect, args$expand, args$delay, args$zoom, args$useragent ) } ) p <- promise_all(.list = res) res <- cm$wait_for(p) res <- structure(unlist(res), class = "webshot") res } new_session_screenshot <- function( chromote, url, file, vwidth, vheight, selector, cliprect, expand, delay, zoom, useragent ) { filetype <- tolower(tools::file_ext(file)) if (filetype != "png" && filetype != "pdf") { stop("File extension must be 'png' or 'pdf'") } if (is.null(selector)) { selector <- "html" } if (is.character(cliprect)) { if (cliprect == "viewport") { cliprect <- c(0, 0, vwidth, vheight) } else { stop("Invalid value for cliprect: ", cliprect) } } else { if (!is.null(cliprect) && !(is.numeric(cliprect) && length(cliprect) == 4)) { stop("`cliprect` must be a vector with four numbers, or a list of such vectors") } } s <- NULL p <- chromote$new_session(wait_ = FALSE, width = vwidth, height = vheight )$ then(function(session) { s <<- session if (!is.null(useragent)) { s$Network$setUserAgentOverride(userAgent = useragent) } s$Page$navigate(url, wait_ = FALSE) s$Page$loadEventFired(wait_ = FALSE) })$ then(function(value) { if (delay > 0) { promise(function(resolve, reject) { later( function() { resolve(value) }, delay ) }) } else { value } })$ then(function(value) { if (filetype == "png") { s$screenshot( filename = file, selector = selector, cliprect = cliprect, expand = expand, scale = zoom, show = FALSE, wait_ = FALSE ) } else if (filetype == "pdf") { s$screenshot_pdf(filename = file, wait_ = FALSE) } })$ then(function(value) { message(url, " screenshot completed") normalizePath(value) })$ finally(function() { s$close() }) p } #' @export find_phantom <- function() TRUE knit_print.webshot <- function(x, ...) { lapply(x, function(filename) { res <- readBin(filename, "raw", file.size(filename)) ext <- gsub(".*[.]", "", basename(filename)) structure(list(image = res, extension = ext), class = "html_screenshot") }) } #' @export print.webshot <- function(x, ...) { invisible(x) }
# The script below estimates selection coefficients of L1 from the # 1000 genome data using insertion estimates obtained by MELT # ########################################## # # # Load packages # # # ########################################## # Source start script source('D:/L1polymORFgit/Scripts/_Start_L1polymORF.R') # Load packages library(GenomicRanges) library(pracma) library(rtracklayer) library(TxDb.Hsapiens.UCSC.hg19.knownGene) ########################################## # # # Set parameters # # # ########################################## # Specify file paths DataPath <- 'D:/L1polymORF/Data/' MeltInsPath <- "D:/L1polymORF/Data/nstd144.GRCh37.variant_call.vcf" MeltDelPath <- "D:/L1polymORF/Data/DEL.final_comp.vcf" ChrLPath <- 'D:/L1polymORF/Data/ChromLengthsHg19.Rdata' InputPath <- 'D:/L1polymORF/Data/SingletonAnalysis_unphased.RData' L1RefPath <- 'D:/L1polymORF/Data/L1HS_repeat_table_Hg19.csv' L1RefRangePath <- 'D:/L1polymORF/Data/L1RefRanges_hg19.Rdata' RegrOutputPath <- "D:/L1polymORF/Data/L1RegressionResults.RData" SelectTabOutPath <- "D:/L1polymORF/Data/L1SelectionResults_MELT.csv" SelectGenTabOutPath <- "D:/L1polymORF/Data/L1SelectionGeneResults_MELT.csv" SelectResultOutPath <- "D:/L1polymORF/Data/L1SelectionResults_MELT.RData" SelectWithinGenTabOutPath <- "D:/L1polymORF/Data/L1SelectionWithinGeneResults_MELT.csv" SelectSingletonTabOutPath <- "D:/L1polymORF/Data/L1SelectionSingletonResults_MELT.csv" # False discovery rate for selected L1 FDR <- 0.1 # Specify range width for DNAse analysis RangeWidth <- 10^6 # Human effective population size PopSize <- 10^5 # Minimum length for a full L1 MinLengthFullL1 <- 6000 # Sample size for ME insertion calls MEInsSamplesize <- 2453 ########################################## # # # Load and process data # # # ########################################## cat("\n\nLoading and processing data ...") # Read in vcf file with MELT insertion calls MEInsCall <- read.table(MeltInsPath, as.is = T, col.names = c("Chrom", "Pos", "ID", "Alt", "Type", "V6", "V7", "Info")) MEInsCall <- MEInsCall[MEInsCall$Type == "<INS:ME:LINE1>",] # Extract allele frequency from info column GetAF <- function(x){ xSplit <- strsplit(x, ";")[[1]] AFch <- strsplit(xSplit[length(xSplit)], "=")[[1]][2] as.numeric(AFch) } GetLength <- function(x){ xSplit <- strsplit(x, ";")[[1]] LengthCh <- strsplit(xSplit[grep("SVLEN=", xSplit)], "=")[[1]][2] as.numeric(LengthCh) } # Add columns necessary for analysis MEInsCall$AF <- sapply(MEInsCall$Info, GetAF) MEInsCall <- MEInsCall[!is.na(MEInsCall$AF), ] MEInsCall$L1width <- sapply(MEInsCall$Info, GetLength) MEInsCall$SampleSize <- 1/min(MEInsCall$AF) # MEInsCall$SampleSize <- 2 * MEInsSamplesize MEInsCall$Freq <- MEInsCall$SampleSize * MEInsCall$AF MEInsCall$blnFull <- MEInsCall$L1width >= MinLengthFullL1 # Create GRanges object for MEInsCall MEInsCall$ChromName <- paste("chr", MEInsCall$Chrom, sep = "") MEIns_GR <- makeGRangesFromDataFrame(df = MEInsCall, seqnames.field = "ChromName", start.field = "Pos", end.field = "Pos") # Read in vcf file with MELT deletion calls MEDelCall <- ReadVCF(MeltDelPath) MEDelCall$chromosome <- paste("chr", MEDelCall$X.CHROM, sep = "") MEDel_GR <- makeGRangesFromDataFrame(df = MEDelCall, start.field = "POS", end.field = "POS") colnames(MEDelCall) # function to get numeric genotype GetNumericGenotype <- function(x){ Split1 <- strsplit(x, ":")[[1]][1] Split2 <- strsplit(Split1, "/")[[1]] sum(as.numeric(Split2)) } # Get numeric genotype of all reference L1 deletions GTCols <- grep("L1Filtered", colnames(MEDelCall)) L1RefNumGen <- 2 - sapply(GTCols, function(x){ sapply(1:nrow(MEDelCall), function(y) GetNumericGenotype(MEDelCall[y,x])) }) # Add columns for frequency and sample size MEDelCall$Freq <- rowSums(L1RefNumGen, na.rm = T) MEDelCall$SampleSize <- apply(L1RefNumGen, 1, function(x) 2*sum(!is.na(x))) # Load previously generated objects load(InputPath) load(L1GRPath) load(ChrLPath) load(L1RefRangePath) load(RegrOutputPath) load("D:/L1polymORF/Data/DelVsL1Length.RData") # Create genomic ranges of reference L1 with 100 bp added on each side L1NeighborRanges <- GRanges(seqnames = seqnames(L1GRanges), IRanges(start = start(L1GRanges) - 100, end = end(L1GRanges) + 100)) # Create a data frame of reference L1 RefL1Data <- data.frame(L1width = width(L1GRanges), Freq = 30, SampleSize = 30) OL_MEDelRefL1 <- findOverlaps(L1NeighborRanges, MEDel_GR) RefL1Data$Freq[OL_MEDelRefL1@from] <- MEDelCall$Freq[OL_MEDelRefL1@to] RefL1Data$SampleSize[OL_MEDelRefL1@from] <- MEDelCall$SampleSize[OL_MEDelRefL1@to] RefL1Data$blnFull <- RefL1Data$L1width >= MinLengthFullL1 # Number of L1 that are fixed at proportion 1 N1 <- length(L1GRanges) - length(OL_MEDelRefL1@from) RefL1Data <- RefL1Data[OL_MEDelRefL1@from, ] L1GRanges <- L1GRanges[OL_MEDelRefL1@from] # Put data of non-reference L1 (insertions) and reference L1 (deletions) # together L1TotData <- rbind(MEInsCall[ ,c("L1width", "Freq", "SampleSize", "blnFull")], RefL1Data) L1TotData$blnIns <- c(rep(T, nrow(MEInsCall)), rep(F, nrow(RefL1Data))) L1TotData$L1Freq <- NA L1TotData$L1Freq[L1TotData$blnIns] <- L1TotData$Freq[L1TotData$blnIns] / L1TotData$SampleSize[L1TotData$blnIns] L1TotData$L1Freq[!L1TotData$blnIns] <- 1 - L1TotData$Freq[!L1TotData$blnIns] / L1TotData$SampleSize[!L1TotData$blnIns] L1TotData$DetectProb <- 0.85 L1TotData$DetectProb[L1TotData$blnIns] <- 0.9 # Perform logistic regression for the probability of reference L1 as function # of L1 frequency L1TotData$blnRef <- !L1TotData$blnIns LogRegL1Ref <- glm(blnRef ~ L1Freq, family = binomial, data = L1TotData) LogRegL1Ref$coefficients # Combine genomic ranges L1TotGR <- c(MEIns_GR, L1GRanges) # Create a predictor variable for involvement in ectopic recombination # L1Width <- width(L1TotGR) # hist(L1Width, breaks = seq(0, 6500, 100)) # idxWidth <- which(!is.na(L1TotData$L1width)) # L1TotData$RecPredict <- NA # L1TotData$RecPredict[idxWidth] <- 150000*sapply(L1TotData$L1width[idxWidth], function(x){ # idxMatch <- which.min(abs(x - DelVsL1Length$x)) # DelVsL1Length$y[idxMatch] # }) # # L1Width <- L1TotData$L1width[idxWidth] # L1Width[L1Width >= 4500] <- 4500 # L1WidthOrder <- order(L1Width, decreasing = T) # OrderMatch <- match(1:length(idxWidth), L1WidthOrder) # Deltas <- c(L1Width[L1WidthOrder[-length(L1Width)]] - L1Width[L1WidthOrder[-1]], # L1Width[L1WidthOrder[length(L1Width)]]) # DeltasSqProd <- 10^-7*Deltas^2 * (L1WidthOrder - 1) # Rev <- length(idxWidth):1 # L1WidthProd <- cumsum(DeltasSqProd[Rev])[Rev] # L1TotData$RecPredict[idxWidth] <- L1WidthProd[OrderMatch] # max(L1TotData$RecPredict[idxWidth]) # plot(L1TotData$L1width, L1TotData$RecPredict) # Number of L1 that are not fixed Nnf <- nrow(L1TotData) # Make genomic ranges for L1SingletonCoeffs L1SingletonCoeffs$chromosome <- paste("chr", L1SingletonCoeffs$Chrom, sep = "") L1SingletonCoeffs_GR <- makeGRangesFromDataFrame(L1SingletonCoeffs, seqnames.field = "chromosome", start.field = "Pos", end.field = "Pos") # Read information about 1000 genome samples SampleInfo <- read.table(G1000SamplePath, header = T) SampleMatch <- match(SampleColumns, SampleInfo$sample) Pops <- SampleInfo$super_pop[SampleMatch] NrS <- length(SampleColumns) # Define more genomic ranges GeneGR <- genes(TxDb.Hsapiens.UCSC.hg19.knownGene) ExonGR <- exons(TxDb.Hsapiens.UCSC.hg19.knownGene) PromGR <- promoters(TxDb.Hsapiens.UCSC.hg19.knownGene, upstream = 10000) CDSGR <- cds(TxDb.Hsapiens.UCSC.hg19.knownGene) IntronGRList <- intronsByTranscript(TxDb.Hsapiens.UCSC.hg19.knownGene, use.names = T) FiveUTRGRList <- fiveUTRsByTranscript(TxDb.Hsapiens.UCSC.hg19.knownGene, use.names = T) ThreeUTRGRList <- threeUTRsByTranscript(TxDb.Hsapiens.UCSC.hg19.knownGene, use.names = T) sum(width(GeneGR)/10^6) / sum(ChromLengthsHg19/10^6) # Among overlapping genomic ranges, retain the longest GeneGR <- UniqueGRanges(GeneGR) cat("done!\n") ########################################## # # # Add columns to L1SingletonCoeffs # # # ########################################## cat("Add columns to L1SingletonCoeffs ...") # Turn factors into numeric values L1SingletonCoeffs$L1Start <- as.numeric(as.character(L1SingletonCoeffs$L1Start)) L1SingletonCoeffs$L1End <- as.numeric(as.character(L1SingletonCoeffs$L1End)) # Indicator for full-length L1SingletonCoeffs$blnFull <- L1SingletonCoeffs$L1Start <= 3 & L1SingletonCoeffs$L1End >= MinLengthFullL1 sum(L1SingletonCoeffs$InsLength <= 100) # Indicator for significant effect L1SingletonCoeffs$blnSig <- p.adjust(L1SingletonCoeffs$Pr...z..) < FDR hist(L1SingletonCoeffs$Pr...z.., breaks = seq(0, 1, 0.005)) # Indicator for positive selection L1SingletonCoeffs$blnSelect <- L1SingletonCoeffs$blnSig & L1SingletonCoeffs$coef < 0 # Indicator for negative selection L1SingletonCoeffs$blnNegSelect <- L1SingletonCoeffs$blnSig & L1SingletonCoeffs$coef > 0 sum(L1SingletonCoeffs$blnNegSelect) sum(L1SingletonCoeffs$blnSelect) # Indicator fo selection (+1 = positive, -1 = negative, 0 = neutral) L1SingletonCoeffs$SelectInd <- 0 L1SingletonCoeffs$SelectInd[L1SingletonCoeffs$blnSelect] <- 1 L1SingletonCoeffs$SelectInd[L1SingletonCoeffs$blnNegSelect] <- -1 # Caclulate distance to genes L1SingletonCoeffs$Dist2Gene <- Dist2Closest(L1SingletonCoeffs_GR, GeneGR) L1SingletonCoeffs$blnOLGene <- L1SingletonCoeffs$Dist2Gene == 0 # Caclulate logarithm of distance to genes L1SingletonCoeffs$LogDist2Gene <- log(L1SingletonCoeffs$Dist2Gene + 0.1) # Standardize SE ratio to one L1SingletonCoeffs$SE_RatioSt <- 1/L1SingletonCoeffs$se.coef./ mean(1/L1SingletonCoeffs$se.coef.) # Add boolean indicators for overlap L1SingletonCoeffs$blnOLGene <- overlapsAny(L1SingletonCoeffs_GR, GeneGR, ignore.strand = T) L1SingletonCoeffs$blnOLProm <- overlapsAny(L1SingletonCoeffs_GR, PromGR, ignore.strand = T) L1SingletonCoeffs$blnOLExon <- overlapsAny(L1SingletonCoeffs_GR, ExonGR, ignore.strand = T) L1SingletonCoeffs$blnOLIntron <- L1SingletonCoeffs$blnOLGene & (!L1SingletonCoeffs$blnOLExon) L1SingletonCoeffs$blnOLIntergen <- !(L1SingletonCoeffs$blnOLGene | L1SingletonCoeffs$blnOLProm) L1SingletonCoeffs$L1StartNum <- as.numeric(as.character(L1SingletonCoeffs$L1Start)) L1SingletonCoeffs$L1EndNum <- as.numeric(as.character(L1SingletonCoeffs$L1End)) L1SingletonCoeffs$blnFull <- L1SingletonCoeffs$L1StartNum <= 1 & L1SingletonCoeffs$L1EndNum >= 6000 # Add info about overlapping genes L1coeff_Gene_OL <- findOverlaps(L1SingletonCoeffs_GR, GeneGR, ignore.strand = T) L1SingletonCoeffs$idxGene <- NA L1SingletonCoeffs$GeneWidth <- NA L1SingletonCoeffs$GeneID <- NA L1SingletonCoeffs$blnOLGeneSameStrand <- NA L1SingletonCoeffs$idxGene[L1coeff_Gene_OL@from] <- L1coeff_Gene_OL@to L1SingletonCoeffs$GeneWidth[L1coeff_Gene_OL@from] <- width(GeneGR)[L1coeff_Gene_OL@to] L1SingletonCoeffs$GeneID[L1coeff_Gene_OL@from] <- GeneGR@elementMetadata@listData$gene_id[L1coeff_Gene_OL@to] L1SingletonCoeffs$blnOLGeneSameStrand[L1coeff_Gene_OL@from] <- L1SingletonCoeffs$L1Strand[L1coeff_Gene_OL@from] == as.vector(strand(GeneGR))[L1coeff_Gene_OL@to] # Check out properties of L1 with signal of positive selectiom L1SingletonCoeffs[L1SingletonCoeffs$blnSelect,] fisher.test(L1SingletonCoeffs$blnSelect, (L1SingletonCoeffs$blnOLIntron & L1SingletonCoeffs$blnOLGeneSameStrand)) mean((L1SingletonCoeffs$blnOLIntron & L1SingletonCoeffs$blnOLGeneSameStrand)) # Standardize selection coefficients CoeffAggMean <- aggregate(coef ~ Freq, data = L1SingletonCoeffs, FUN = mean) CoeffAggVar <- aggregate(coef ~ Freq, data = L1SingletonCoeffs, FUN = var) CoeffAggN <- aggregate(coef ~ Freq, data = L1SingletonCoeffs, FUN = length) CoeffAggMerge <- merge(CoeffAggMean, CoeffAggVar, by = 'Freq') CoeffAggMerge <- merge(CoeffAggMerge, CoeffAggN, by = 'Freq') colnames(CoeffAggMerge)[2:4] <- c("Mean", "Var", "N") CoeffAggMerge$StDev <- sqrt(CoeffAggMerge$Var) FreqMatch <- match(L1SingletonCoeffs$Freq, CoeffAggMerge$Freq) L1SingletonCoeffs$MeanCof <- CoeffAggMerge$Mean[FreqMatch] L1SingletonCoeffs$StDevCof <- CoeffAggMerge$StDev[FreqMatch] L1SingletonCoeffs$CoefSt <- (L1SingletonCoeffs$coef - L1SingletonCoeffs$MeanCof) / L1SingletonCoeffs$StDevCof cat("done!\n") #################################################### # # # Overview of L1 intersection with features # # # #################################################### # Indicator variable for intersection with various GRanges L1TotData$blnOLGene <- overlapsAny(L1TotGR, GeneGR, ignore.strand = T) L1TotData$blnOLGeneSameStrand <- overlapsAny(L1TotGR, GeneGR) L1TotData$blnOLProm <- overlapsAny(L1TotGR, PromGR, ignore.strand = T) L1TotData$blnOLExon <- overlapsAny(L1TotGR, ExonGR, ignore.strand = T) L1TotData$blnOLIntron <- L1TotData$blnOLGene & (!L1TotData$blnOLExon) L1TotData$blnOLIntergen <- !(L1TotData$blnOLGene | L1TotData$blnOLProm) # Create a variable indicating insertion type L1TotData$InsType <- "Intergenic" L1TotData$InsType[L1TotData$blnOLProm] <- "Promoter" L1TotData$InsType[L1TotData$blnOLExon] <- "Exon" L1TotData$InsType[L1TotData$blnOLIntron] <- "Intron" # Perform pairwise Wilcoxon test for differences in L1 frequencies pairwise.wilcox.test(L1TotData$L1Freq, L1TotData$InsType, p.adjust.method = "BH") # Average mean frequency MeanFreqAgg <- aggregate(L1Freq ~ InsType, data = L1TotData, FUN = mean) VarFreqAgg <- aggregate(L1Freq ~ InsType, data = L1TotData, FUN = var) L1TotData$Dummy <- 1 NAgg <- aggregate(Dummy ~ InsType, data = L1TotData, FUN = sum) StErr <- sqrt(VarFreqAgg$Frequency / NAgg$Dummy) # Indicator variable for intersection with reference L1 blnOLGene_RefL1 <- overlapsAny(L1GRanges, GeneGR, ignore.strand = T) blnOLGeneSameStrand_RefL1 <- overlapsAny(L1GRanges, GeneGR) blnOLProm_RefL1 <- overlapsAny(L1GRanges, PromGR, ignore.strand = T) blnOLExon_RefL1 <- overlapsAny(L1GRanges, ExonGR, ignore.strand = T) blnOLIntron_RefL1 <- blnOLGene_RefL1 & (!blnOLExon_RefL1) # Get number of insertions per bp GeneTot <- sum(width(GeneGR)) ExonTot <- sum(width(ExonGR)) IntronTot <- GeneTot - ExonTot PromTot <- sum(width(PromGR)) IntergenTot <- sum(as.numeric(ChromLengthsHg19)) - GeneTot - PromTot #- EnhancerTot # Get mean frequency of L1 in different functional regions MeanFreqs <- c( Promoter = mean(L1TotData$L1Freq[L1TotData$blnOLProm], na.rm = T), Exon = mean(L1TotData$L1Freq[L1TotData$blnOLExon], na.rm = T), Intron = mean(L1TotData$L1Freq[L1TotData$blnOLIntron], na.rm = T), Intergenic = mean(L1TotData$L1Freq[L1TotData$blnOLIntergen], na.rm = T) ) # Plot distn of frequency of L1 in different functional regions par(mfrow = c(1, 1)) hist(L1TotData$L1Freq[L1TotData$blnOLProm], breaks = seq(0, 1, 0.01)) hist(L1TotData$L1Freq[L1TotData$blnOLExon], breaks = seq(0, 1, 0.01)) hist(L1TotData$L1Freq[L1TotData$blnOLIntron], breaks = seq(0, 1, 0.01)) hist(L1TotData$L1Freq[L1TotData$blnOLIntergen], breaks = seq(0, 1, 0.01)) hist(sqrt(-log10(L1TotData$L1Freq[L1TotData$blnOLProm]))) hist(-log10(L1TotData$L1Freq[L1TotData$blnOLExon])) hist(log10(L1TotData$L1Freq[L1TotData$blnOLIntron])) hist(log10(L1TotData$L1Freq[L1TotData$blnOLIntergen])) # Get number of L1 per Mb in different functional regions InsPerbp <- 10^6 * rbind( c( Promoter = sum(blnOLProm_RefL1) / PromTot, Exon = sum(blnOLExon_RefL1) / ExonTot, Intron = sum(blnOLIntron_RefL1) / IntronTot, Intergenic = sum(!(blnOLGene_RefL1 | blnOLProm_RefL1)) / IntergenTot ), c( Promoter = sum(L1TotData$blnOLProm) / PromTot, Exon = sum(L1TotData$blnOLExon) / ExonTot, Intron = sum(L1TotData$blnOLIntron) / IntronTot, Intergenic = sum(!(L1TotData$blnOLGene | L1TotData$blnOLProm)) / IntergenTot ) ) InsPerbp[1,] / InsPerbp[2,] ################################################### # # # Fit effect of insertion length on selection # # # ################################################### cat("\n******** Estimating effect of insertion length **********\n") # Match summary ranges to L1 ranges of 1000 genome data L1SummaryOL <- findOverlaps(L1TotGR, SummaryGR) all(L1SummaryOL@from %in% 1:nrow(L1TotData)) blnNoDupl <- !duplicated(L1SummaryOL@from) L1TotData$L1Count <- NA L1TotData$L1Count[L1SummaryOL@from[blnNoDupl]] <- DataPerSummaryGR$L1Count[L1SummaryOL@to[blnNoDupl]] # Get distance to nearest other L1 Dist2Nearest <- distanceToNearest(L1TotGR) L1TotData$Dist2Nearest <- Dist2Nearest@elementMetadata@listData$distance max(L1TotData$Dist2Nearest) # Create a matrix of predictor variables (L1 start and boolean variable for) PredictMat <- L1TotData[, c("L1Count", "L1width", "blnFull", "RecPredict", "Freq", "SampleSize", "blnIns")] blnNA <- sapply(1:nrow(L1TotData), function(x) any(is.na(PredictMat[x,]))) sum(!blnNA) max(L1TotData$Freq / L1TotData$SampleSize, na.rm = T) max(PredictMat$RecPredict) # Plot log-likelihood for different selection coefficients # aVals <- seq(-0.0021, 0.003, 0.0001) # LikVals <- sapply(aVals, function(x) { # print(x) # LL_FPrime = AlleleFreqLogLik_4Par( # Freqs = round(L1TotData$Freq[!blnNA], 0), # Counts = rep(1, sum(!blnNA)), # Predict = PredictMat[!blnNA, 1:3], # a = x, b = 0, c = 0, d = 0, N = PopSize, # SampleSize = L1TotData$SampleSize[!blnNA], # blnIns = L1TotData$blnIns[!blnNA], # DetectProb = 0.9) # }) # par(mfrow = c(1, 1)) # plot(aVals, LikVals, type = "l", col = "red") # plot(aVals, LikVals, type = "l", col = "red", # xlim = c(-0.0005, 0), ylim) # Estimate maximum likelihood for a single selection coefficient cat("Estimate maximum likelihood for a single selection coefficient\n") ML_1Par <- constrOptim(theta = c(a = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 1:3], a = x[1], b = 0, c = 0, d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(1,-1), ci = c(a = -0.03, a = -0.03), method = "Nelder-Mead") cat("done!\n") # Get maximum likelihood estimate for effect of L1 start on selection cat("Estimate effect of L1 start on selections ...") ML_L1width <- constrOptim(theta = c(a = ML_1Par$par, c = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 1:3], a = x[1], b = 0, c = x[2], d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0), c(0, 1), c(-1, 0), c(0, -1)), ci = c(a = -0.02, c = -10^(-6), a = -0.02, c = -10^(-6)), method = "Nelder-Mead") cat("done!\n") # Get maximum likelihood estimate for effect of full-length L1 on selection cat("Estimate effect of L1 full-length on selections ...") ML_L1full <- constrOptim(theta = c(a = ML_1Par$par, d = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 1:3], a = x[1], b = 0, c = 0, d = x[2], N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0), c(0, 1), c(-1, 0), c(0, -1)), ci = c(a = -0.02, d = -10^(-3), a = -0.02, d = -10^(-3)), method = "Nelder-Mead") cat("done!\n") # Determine maximum likelihood with 3 parameters (selection coefficient as # function of L1 start and indicator for full-length) cat("Maximizing likelihood for three parameters ...") ML_L1widthL1full <- constrOptim(theta = c(a = ML_L1width$par[1], b = ML_L1width$par[2], c = ML_L1full$par[2]), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 1:3], a = x[1], b = 0, c = x[2], d = x[3], N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0, 0), c(0, 1, 0), c(0, 0, 1), c(-1, 0, 0), c(0, -1, 0), c(0, 0, -1)), ci = c(a = -0.01, b = -10^(-6), d = -10^(-3), a = -0.02, b = -10^(-6), d = -10^(-3)), method = "Nelder-Mead") cat("done!\n") # Determine maximum likelihood with 3 parameters (selection coefficient as # function of Recombination predictor and indicator for full-length) cat("Maximizing likelihood for three parameters ...") ML_L1RecL1full <- constrOptim(theta = c(a = ML_L1widthL1full$par[1], c = ML_L1widthL1full$par[3], d = ML_L1widthL1full$par[2]), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 2:4], a = x[1], b = 0, c = x[2], d = x[3], N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0, 0), c(0, 1, 0), c(0, 0, 1), c(-1, 0, 0), c(0, -1, 0), c(0, 0, -1)), ci = c(a = -0.01, b = -10^(-3), d = -10^(-6), a = -0.02, b = -10^(-3), d = -10^(-6)), method = "Nelder-Mead") cat("done!\n") ################################################### # # # Fit effect of L1 density on selection # # # ################################################### # Determine maximum likelihood with 3 parameters (selection coefficient as # function of L1 start and indicator for full-length) cat("Maximizing likelihood for L1 count ...") ML_2Pars_L1count <- constrOptim( theta = c(a = ML_1Par$par, b = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 1:3], a = x[1], b = x[2], c = 0, d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0), c(0, 1), c(-1, 0), c(0, -1)), # ci = c(a = -0.01, b = -10^(-3), # a = -0.01, b = -2*10^(-3)), ci = c(a = -0.01, b = -10^(-9), a = -0.01, b = -10^(-9)), method = "Nelder-Mead") # Maximum likelihood estimate for effect of L1 density and full-length L1 ML_3Pars_L1countL1full <- constrOptim( theta = c(a = ML_2Pars_L1count$par[1], ML_2Pars_L1count$par[2], d = ML_L1full$par[2]), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 1:3], a = x[1], b = x[2], c = 0, d = x[3], N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0, 0), c(0, 1, 0), c(0, 0, 1), c(-1, 0, 0), c(0, -1, 0), c(0, 0, -1)), ci = c(a = -0.02, b = -5*10^(-3), d = -10^(-3), a = -0.02, b = -5*10^(-3), d = -10^(-3)), method = "Nelder-Mead") # Maximum likelihood estimate for effect of L1 density and L1 start ML_3Pars_L1countL1width <- constrOptim( theta = c(a = ML_2Pars_L1count$par[1], ML_2Pars_L1count$par[2], c = ML_L1width$par[2]), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 1:3], a = x[1], b = x[2], c = x[3], d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0, 0), c(0, 1, 0), c(0, 0, 1), c(-1, 0, 0), c(0, -1, 0), c(0, 0, -1)), ci = c(a = -0.02, b = -5*10^(-3), c = -10^(-6), a = -0.02, b = -5*10^(-3), c = -10^(-6)), method = "Nelder-Mead") # Maximum likelihood estimate for effect of L1 density, L1 start, and # full-length L1 ML_4Pars_L1countL1widthL1full <- constrOptim( theta = c(a = ML_2Pars_L1count$par[1], b = 0, c = ML_L1widthL1full$par[2], d = ML_L1widthL1full$par[3]), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 1:3], a = x[1], b = x[2], c = x[3], d = x[4], N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0, 0, 0), c(0, 1, 0, 0), c(0, 0, 1, 0), c(0, 0, 0, 1), c(-1, 0, 0, 0), c(0, -1, 0, 0), c(0, 0, -1, 0), c(0, 0, 0, -1)), ci = c(a = -0.01, b = -2*10^(-3), c = -10^(-6), d = -10^(-3), a = -0.01, b = -2*10^(-3), c = -10^(-6), d = -10^(-3)), method = "Nelder-Mead") ################################################### # # # Compare estimated and observed frequencies # # # ################################################### # LogProbs <- AlleleFreqSampleProb(s = 0, N = PopSize, SampleSize = 2*2504) # sum(is.infinite(LogProbs)) # length(LogProbs) # min(LogProbs[!is.infinite(LogProbs)]) # idxFinite <- which(!is.infinite(LogProbs)) # plot(idxFinite, LogProbs[idxFinite]) # plot(idxFinite, LogProbs[idxFinite], xlim = c(4800, 5000)) # lchoose(5008, 1000) # k <- 200 # SampleSize = 5008 # integrate(function(x) AlleleFreqTime(x, s = 0, N = PopSize) * x^(k) * # (1 - x)^(SampleSize - k) , 0, 1)$value # integrate(function(x) log(AlleleFreqTime(x, s = 0, N = PopSize)) + # k * log(x) + (SampleSize - k) * log(1 - x), 0, 1)$value # ################################################### # # # Summarize results # # # ################################################### # Function to extract AIC from optim results GetAIC <- function(OptimResults){ round(2 * (length(OptimResults$par) + OptimResults$value), 2) } GetParVals <- function(OptimResults){ Results <- paste(names(OptimResults$par), format(OptimResults$par, digits = 2), sep = " = ", collapse = ", ") } GetNPar <- function(OptimResults){ length(OptimResults$par) } # Get columns of AIC and parameter values Cols2Append <- t(sapply(list(ML_1Par, ML_L1width, ML_L1full, # ML_2Pars_L1count, ML_L1widthL1full, # ML_3Pars_L1countL1width, # ML_3Pars_L1countL1full # ML_4Pars_L1countL1widthL1full ), function(x){ c(AIC = GetAIC(x), Pars = GetParVals(x)) })) # Combine AIC values into one vector AICTab <- cbind(data.frame( NrParameters = c(1, 2, 2, # 2, 3, # 3, # 3 # 4 ), Predictor = c("none", "L1 width", "L1 full-length", # "L1count", "L1 width and full-length", # "L1 count and L1 start", # "L1 count and L1 full" # "L1 start, L1 full-length, L1count" ), stringsAsFactors = F), Cols2Append) # Save table with AIC write.csv(AICTab, SelectTabOutPath) save.image(SelectResultOutPath) ################################################### # # # Fit effect of genic insertion on selection # # # ################################################### # Create a matrix of predictor variables (L1 start and boolean variable for) PredictMatGeneOL <- L1TotData[, c("blnOLExon", "blnOLIntron", "blnOLProm")] PredictMatGeneOL2 <- L1TotData[, c("blnOLGene", "blnOLIntron", "blnOLProm")] blnNA <- sapply(1:nrow(PredictMatGeneOL), function(x) any(is.na(PredictMatGeneOL[x,]))) | sapply(1:nrow(L1TotData), function(x) any(is.na(PredictMat[x,]))) # Get maximum likelihood estimate for effect of exonic L1 on selection cat("Estimate effect of exon overlap on selections ...") ML_L1Exon <- constrOptim(theta = c(a = ML_1Par$par, b = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMatGeneOL[!blnNA,], a = x[1], b = x[2], c = 0, d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0), c(0, 1), c(-1, 0), c(0, -1)), ci = c(a = -0.001, b = -10^(-2), a = -0.001, b = -10^(-2)), method = "Nelder-Mead") cat("done!\n") # Get maximum likelihood estimate for effect of intronic L1 on selection cat("Estimate effect of intron overlap on selections ...") ML_L1Intron <- constrOptim(theta = c(a = ML_1Par$par, c = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMatGeneOL[!blnNA,], a = x[1], b = 0, c = x[2], d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0), c(0, 1), c(-1, 0), c(0, -1)), ci = c(a = -0.01, c = -10^(-2), a = -0.01, c = -10^(-2)), method = "Nelder-Mead") cat("done!\n") # Get maximum likelihood estimate for effect of intronic L1 on selection cat("Estimate effect of promoter overlap on selections ...") ML_L1Prom <- constrOptim(theta = c(a = ML_1Par$par, d = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMatGeneOL[!blnNA,], a = x[1], b = 0, c = 0, d = x[2], N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0), c(0, 1), c(-1, 0), c(0, -1)), ci = c(a = -0.01, c = -10^(-2), a = -0.01, c = -10^(-2)), method = "Nelder-Mead") cat("done!\n") # Get maximum likelihood estimate for effect of exonic L1 on selection cat("Estimate effect of exon nad intron overlap on selections ...") ML_L1ExonIntron <- constrOptim( theta = c(a = ML_1Par$par, b = ML_L1Exon$par[2], c = ML_L1Intron$par[2]), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMatGeneOL[!blnNA,], a = x[1], b = x[2], c = x[3], d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0, 0), c(0, 1, 0), c(0, 0, 1), c(-1, 0, 0), c(0, -1, 0) , c(0, 0, -1)), ci = c(a = -0.01, b = -10^(-2), c = -10^(-2), a = -0.01, b = -10^(-2), c = -10^(-2)), method = "Nelder-Mead") cat("done!\n") # Get maximum likelihood estimate for effect of exonic L1 on selection cat("Estimate effect of exon nad intron overlap on selections ...") ML_L1ExonIntronProm <- constrOptim( theta = c(a = ML_L1ExonIntron$par[1], b = ML_L1ExonIntron$par[2], c = ML_L1ExonIntron$par[3], d = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMatGeneOL[!blnNA,], a = x[1], b = x[2], c = x[3], d = x[4], N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0, 0, 0), c(0, 1, 0, 0), c(0, 0, 1, 0), c(0, 0, 0, 1), c(-1, 0, 0, 0), c(0, -1, 0, 0) , c(0, 0, -1, 0), c(0, 0, 0, -1)), ci = c(a = -0.01, b = -10^(-2), c = -10^(-2), d = -10^(-2), a = -0.01, b = -10^(-2), c = -10^(-2), d = -10^(-2)), method = "Nelder-Mead") cat("done!\n") # Get maximum likelihood estimate for effect of exonic L1 on selection cat("Estimate effect of exon or intron overlap on selections ...") ML_L1PromOrIntron <- constrOptim(theta = c(a = ML_1Par$par, b = ML_L1Exon$par[2], c = ML_L1Intron$par[2]), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMatGeneOL[!blnNA,], a = x[1], b = x[2], c = x[3], d = x[3], N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0, 0), c(0, 1, 0), c(0, 0, 1), c(-1, 0, 0), c(0, -1, 0) , c(0, 0, -1)), ci = c(a = -0.01, b = -10^(-2), c = -10^(-2), a = -0.01, b = -10^(-2), c = -10^(-2)), method = "Nelder-Mead") cat("done!\n") # Get columns of AIC and parameter values Cols2Append <- t(sapply(list(ML_1Par, ML_L1Exon, ML_L1Intron, ML_L1Prom, ML_L1ExonIntron, ML_L1ExonIntronProm, ML_L1PromOrIntron), function(x){ c(NrParameters = GetNPar(x), AIC = GetAIC(x), Pars = GetParVals(x)) })) # Combine AIC values into one vector AICTabGene <- cbind(data.frame( Predictor = c("none", "Exon", "Intron", "Promoter", "Exon and intron", "Exon, intron, and promoter", "Exon, intron or promoter"), stringsAsFactors = F), Cols2Append) # Save table with AIC write.csv(AICTabGene, SelectGenTabOutPath) ################################################### # # # Plot density vs. selection coefficient # # # ################################################### # Create a vector of selection coefficients SCoeffVect <- c(Promoter = ML_L1ExonIntron$par[1], Exon = sum(ML_L1ExonIntron$par[c(1, 2)]), Intron = sum(ML_L1ExonIntron$par[c(1, 3)]), Intergenic = ML_L1ExonIntron$par[1]) names(SCoeffVect) <- sapply(names(SCoeffVect), function(x) strsplit(x, "\\.")[[1]][1]) # Plot selection coefficient against if (!all(names(SCoeffVect) == colnames(InsPerbp))){ stop("Selection coefficients and L1 densities are not in same order!") } if (!all(names(SCoeffVect) == names(MeanFreqs))){ stop("Selection coefficients and L1 frequencies are not in same order!") } # Get sample size and create a range of s-values SSize <- 2 * MEInsSamplesize SVals <- seq(-0.0025, -0.00001, 0.00001) # Plot probability for inclusion versus number of LINE-1 per Mb ProbL1 <- sapply(SVals, function(x) ProbAlleleIncluded(x,N = PopSize, SampleSize = 2*2504)) par(oma = c(7, 1, 0, 2), mfrow = c(2, 1), mai = c(0.5, 1, 0.5, 1)) plot(SCoeffVect, InsPerbp[2,], ylab = "LINE-1s per Mb", xlab = "", ylim = c(0, 3), xlim = c(-0.0025, 0), main = "A") text(SCoeffVect, InsPerbp[2,] + 2*10^(-1), names(SCoeffVect)) par(new = TRUE) plot(SVals, ProbL1, type = "l", axes = FALSE, bty = "n", xlab = "", ylab = "") axis(side = 4) mtext("Inclusion probability", 4, line = 3) # Plot expected frequency versus observed mean frequency ExpL1 <- sapply(SVals, function(x) ExpAlleleFreq(x, N = PopSize, SampleSize = 2*2504)) plot(SCoeffVect, MeanFreqs*SSize, ylab = "Mean LINE-1 frequency", xlab = "", xlim = c(-0.0025, 0.0001), main = "B") text(SCoeffVect + c(0.0002, 0, -0.0001, -0.0002), MeanFreqs*SSize + 10, names(SCoeffVect)) lines(SVals, ExpL1) mtext("Selection coefficient", 1, line = 3) CreateDisplayPdf('D:/L1polymORF/Figures/SelectionPerRegion_MELT.pdf', PdfProgramPath = '"C:\\Program Files (x86)\\Adobe\\Reader 11.0\\Reader\\AcroRd32"', height = 7, width = 7) ################################################### # # # Plot frequency vs. insertion length # # # ################################################### # # Create a vector of L1 start classes # L1TotData$L1widthClass <- cut(L1TotData$L1width, breaks = # seq(0, 7000, 1000)) # MEInsCall$L1widthClass <- cut(MEInsCall$L1width, breaks = # seq(0, 7000, 1000)) # # MEInsCall$Freq # # Get mean L1 frequency per start # L1widthAggregated <- aggregate(L1TotData[,c("L1width", "L1Freq")], # by = list(L1TotData$L1widthClass), # FUN = function(x) mean(x, na.rm = T)) # L1widthAggregated_Ins <- aggregate(MEInsCall[,c("L1width", "AF")], # by = list(MEInsCall$L1widthClass), # FUN = function(x) mean(x, na.rm = T)) # plot(L1widthAggregated_Ins$L1width, L1widthAggregated_Ins$AF) # # # Get sample size and create a range of s-values # SSize <- 2 * MEInsSamplesize # StartVals <- seq(0, 6000, 100) # Full <- StartVals == 6000 # SVals <- ML_L1widthL1full$par[1] + ML_L1widthL1full$par[2]*StartVals + # ML_L1widthL1full$par[3]*Full # # # Plot expected frequency versus observed mean frequency # ExpL1width <- sapply(SVals, function(x) ExpAlleleFreq(x, N = PopSize, # SampleSize = 2*MEInsSamplesize)) # par( mfrow = c(1, 1)) # plot(L1widthAggregated$L1width, # L1widthAggregated$L1Freq, xlab = "LINE-1 length", # ylab = "Mean LINE-1 frequency") # lines(StartVals, ExpL1width ) # mtext("Selection coefficient", 1, line = 3) # CreateDisplayPdf('D:/L1polymORF/Figures/FreqVsL1width_MELT.pdf', # PdfProgramPath = '"C:\\Program Files (x86)\\Adobe\\Reader 11.0\\Reader\\AcroRd32"', # height = 7, width = 7) ################################################### # # # Fit effect of strandedness on selection # # # ################################################### # Create a matrix of predictor variables (L1 start and boolean variable for) PredictMatWithinGene <- L1TotData[L1TotData$blnOLGene & !blnNA , c( "blnOLGeneSameStrand", "blnOLGene", "blnOLGene")] # Estimate maximum likelihood for a single selection coefficient sum(L1TotData$blnOLGene) colSums(PredictMatWithinGene) ML_1Par_gene <- constrOptim(theta = c(a = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[L1TotData$blnOLGene & !blnNA], 0), Counts = rep(1, sum(L1TotData$blnOLGene & !blnNA)), Predict = PredictMatWithinGene, a = x[1], b = 0, c = 0, d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[L1TotData$blnOLGene & !blnNA ], blnIns = L1TotData$blnIns[L1TotData$blnOLGene & !blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[L1TotData$blnOLGene & !blnNA]), grad = NULL, ui = rbind(1,-1), ci = c(a = -0.001, a = -0.001), method = "Nelder-Mead") # Get maximum likelihood estimate for effect of exonic L1 on selection cat("Estimate effect of same strand overlap on selections ...") ML_L1SameStrand <- constrOptim(theta = c(a = ML_1Par_gene$par, b = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[L1TotData$blnOLGene & !blnNA], 0), Counts = rep(1, sum(L1TotData$blnOLGene & !blnNA)), Predict = PredictMatWithinGene, a = x[1], b = x[2], c = 0, d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[L1TotData$blnOLGene & !blnNA ], blnIns = L1TotData$blnIns[L1TotData$blnOLGene & !blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[L1TotData$blnOLGene & !blnNA]), grad = NULL, ui = rbind(c(1, 0), c(0, 1), c(-1, 0), c(0, -1)), ci = c(a = -0.01, b = -10^(-2), a = -0.01, b = -10^(-2)), method = "Nelder-Mead") cat("done!\n") # Get columns of AIC and parameter values Cols2Append <- t(sapply(list(ML_1Par_gene, ML_L1SameStrand), function(x){ c(NrParameters = GetNPar(x), AIC = GetAIC(x), Pars = GetParVals(x)) })) # Combine AIC values into one vector AICTabWithinGene <- cbind(data.frame( Predictor = c("none", "SameStrand"), stringsAsFactors = F), Cols2Append) # Save table with AIC write.csv(AICTabWithinGene, SelectWithinGenTabOutPath) ################################################### # # # Fit effect of singleton coef. on selection # # # ################################################### # Create a matrix of predictor variables PredictMat <- L1SingletonCoeffs[, c("coef", "coef", "coef")] blnNA <- sapply(1:nrow(L1SingletonCoeffs), function(x) any(is.na(PredictMat[x,]))) # Determine maximum likelihood with one parameter (selection coefficient) cat("Maximizing likelihood for one parameter (selection coefficient) ...") ML_1Par_coef <- constrOptim( theta = c(a = ML_1Par$par), f = function(x) -AlleleFreqLogLik_4Par( Freqs = (L1SingletonCoeffs$Freq * 2*2504)[!blnNA], Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA,], a = x[1], b = 0, c = 0, d = 0, N = PopSize, SampleSize = rep(2*2504, sum(!blnNA)), blnIns = rep(T, sum(!blnNA)), LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = rep(0.9, sum(!blnNA))), grad = NULL, ui = rbind(1,-1), ci = c(a = -0.03, a = -0.03), method = "Nelder-Mead") # Determine maximum likelihood with an intercept and one parameter for thr # selection coefficient ML_2Pars_L1coef <- constrOptim( theta = c(a = ML_1Par_coef$par, b = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = (L1SingletonCoeffs$Freq * 2*2504)[!blnNA], Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA,], a = x[1], b = x[2], c = 0, d = 0, N = PopSize, SampleSize = rep(2*2504, sum(!blnNA)), blnIns = rep(T, sum(!blnNA)), LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = rep(0.9, sum(!blnNA))), grad = NULL, ui = rbind(c(1, 0), c(0, 1), c(-1, 0), c(0, -1)), ci = c(a = -0.01, b = -2*10^(-3), a = -0.01, b = -2*10^(-3)), method = "Nelder-Mead") cat("done!\n") # Get columns of AIC and parameter values Cols2Append <- t(sapply(list(ML_1Par_coef, ML_2Pars_L1coef), function(x){ c(NrParameters = GetNPar(x), AIC = GetAIC(x), Pars = GetParVals(x)) })) # Combine AIC values into one vector AICTabSingleton <- cbind(data.frame( Predictor = c("none", "Signleton coefficient"), stringsAsFactors = F), Cols2Append) # Save table with AIC write.csv(AICTabSingleton, SelectSingletonTabOutPath) # Save everything save.image(SelectResultOutPath)
/Scripts/EstimateL1SelectionPars_MELT.R
no_license
hdohna/L1polymORFgit
R
false
false
51,169
r
# The script below estimates selection coefficients of L1 from the # 1000 genome data using insertion estimates obtained by MELT # ########################################## # # # Load packages # # # ########################################## # Source start script source('D:/L1polymORFgit/Scripts/_Start_L1polymORF.R') # Load packages library(GenomicRanges) library(pracma) library(rtracklayer) library(TxDb.Hsapiens.UCSC.hg19.knownGene) ########################################## # # # Set parameters # # # ########################################## # Specify file paths DataPath <- 'D:/L1polymORF/Data/' MeltInsPath <- "D:/L1polymORF/Data/nstd144.GRCh37.variant_call.vcf" MeltDelPath <- "D:/L1polymORF/Data/DEL.final_comp.vcf" ChrLPath <- 'D:/L1polymORF/Data/ChromLengthsHg19.Rdata' InputPath <- 'D:/L1polymORF/Data/SingletonAnalysis_unphased.RData' L1RefPath <- 'D:/L1polymORF/Data/L1HS_repeat_table_Hg19.csv' L1RefRangePath <- 'D:/L1polymORF/Data/L1RefRanges_hg19.Rdata' RegrOutputPath <- "D:/L1polymORF/Data/L1RegressionResults.RData" SelectTabOutPath <- "D:/L1polymORF/Data/L1SelectionResults_MELT.csv" SelectGenTabOutPath <- "D:/L1polymORF/Data/L1SelectionGeneResults_MELT.csv" SelectResultOutPath <- "D:/L1polymORF/Data/L1SelectionResults_MELT.RData" SelectWithinGenTabOutPath <- "D:/L1polymORF/Data/L1SelectionWithinGeneResults_MELT.csv" SelectSingletonTabOutPath <- "D:/L1polymORF/Data/L1SelectionSingletonResults_MELT.csv" # False discovery rate for selected L1 FDR <- 0.1 # Specify range width for DNAse analysis RangeWidth <- 10^6 # Human effective population size PopSize <- 10^5 # Minimum length for a full L1 MinLengthFullL1 <- 6000 # Sample size for ME insertion calls MEInsSamplesize <- 2453 ########################################## # # # Load and process data # # # ########################################## cat("\n\nLoading and processing data ...") # Read in vcf file with MELT insertion calls MEInsCall <- read.table(MeltInsPath, as.is = T, col.names = c("Chrom", "Pos", "ID", "Alt", "Type", "V6", "V7", "Info")) MEInsCall <- MEInsCall[MEInsCall$Type == "<INS:ME:LINE1>",] # Extract allele frequency from info column GetAF <- function(x){ xSplit <- strsplit(x, ";")[[1]] AFch <- strsplit(xSplit[length(xSplit)], "=")[[1]][2] as.numeric(AFch) } GetLength <- function(x){ xSplit <- strsplit(x, ";")[[1]] LengthCh <- strsplit(xSplit[grep("SVLEN=", xSplit)], "=")[[1]][2] as.numeric(LengthCh) } # Add columns necessary for analysis MEInsCall$AF <- sapply(MEInsCall$Info, GetAF) MEInsCall <- MEInsCall[!is.na(MEInsCall$AF), ] MEInsCall$L1width <- sapply(MEInsCall$Info, GetLength) MEInsCall$SampleSize <- 1/min(MEInsCall$AF) # MEInsCall$SampleSize <- 2 * MEInsSamplesize MEInsCall$Freq <- MEInsCall$SampleSize * MEInsCall$AF MEInsCall$blnFull <- MEInsCall$L1width >= MinLengthFullL1 # Create GRanges object for MEInsCall MEInsCall$ChromName <- paste("chr", MEInsCall$Chrom, sep = "") MEIns_GR <- makeGRangesFromDataFrame(df = MEInsCall, seqnames.field = "ChromName", start.field = "Pos", end.field = "Pos") # Read in vcf file with MELT deletion calls MEDelCall <- ReadVCF(MeltDelPath) MEDelCall$chromosome <- paste("chr", MEDelCall$X.CHROM, sep = "") MEDel_GR <- makeGRangesFromDataFrame(df = MEDelCall, start.field = "POS", end.field = "POS") colnames(MEDelCall) # function to get numeric genotype GetNumericGenotype <- function(x){ Split1 <- strsplit(x, ":")[[1]][1] Split2 <- strsplit(Split1, "/")[[1]] sum(as.numeric(Split2)) } # Get numeric genotype of all reference L1 deletions GTCols <- grep("L1Filtered", colnames(MEDelCall)) L1RefNumGen <- 2 - sapply(GTCols, function(x){ sapply(1:nrow(MEDelCall), function(y) GetNumericGenotype(MEDelCall[y,x])) }) # Add columns for frequency and sample size MEDelCall$Freq <- rowSums(L1RefNumGen, na.rm = T) MEDelCall$SampleSize <- apply(L1RefNumGen, 1, function(x) 2*sum(!is.na(x))) # Load previously generated objects load(InputPath) load(L1GRPath) load(ChrLPath) load(L1RefRangePath) load(RegrOutputPath) load("D:/L1polymORF/Data/DelVsL1Length.RData") # Create genomic ranges of reference L1 with 100 bp added on each side L1NeighborRanges <- GRanges(seqnames = seqnames(L1GRanges), IRanges(start = start(L1GRanges) - 100, end = end(L1GRanges) + 100)) # Create a data frame of reference L1 RefL1Data <- data.frame(L1width = width(L1GRanges), Freq = 30, SampleSize = 30) OL_MEDelRefL1 <- findOverlaps(L1NeighborRanges, MEDel_GR) RefL1Data$Freq[OL_MEDelRefL1@from] <- MEDelCall$Freq[OL_MEDelRefL1@to] RefL1Data$SampleSize[OL_MEDelRefL1@from] <- MEDelCall$SampleSize[OL_MEDelRefL1@to] RefL1Data$blnFull <- RefL1Data$L1width >= MinLengthFullL1 # Number of L1 that are fixed at proportion 1 N1 <- length(L1GRanges) - length(OL_MEDelRefL1@from) RefL1Data <- RefL1Data[OL_MEDelRefL1@from, ] L1GRanges <- L1GRanges[OL_MEDelRefL1@from] # Put data of non-reference L1 (insertions) and reference L1 (deletions) # together L1TotData <- rbind(MEInsCall[ ,c("L1width", "Freq", "SampleSize", "blnFull")], RefL1Data) L1TotData$blnIns <- c(rep(T, nrow(MEInsCall)), rep(F, nrow(RefL1Data))) L1TotData$L1Freq <- NA L1TotData$L1Freq[L1TotData$blnIns] <- L1TotData$Freq[L1TotData$blnIns] / L1TotData$SampleSize[L1TotData$blnIns] L1TotData$L1Freq[!L1TotData$blnIns] <- 1 - L1TotData$Freq[!L1TotData$blnIns] / L1TotData$SampleSize[!L1TotData$blnIns] L1TotData$DetectProb <- 0.85 L1TotData$DetectProb[L1TotData$blnIns] <- 0.9 # Perform logistic regression for the probability of reference L1 as function # of L1 frequency L1TotData$blnRef <- !L1TotData$blnIns LogRegL1Ref <- glm(blnRef ~ L1Freq, family = binomial, data = L1TotData) LogRegL1Ref$coefficients # Combine genomic ranges L1TotGR <- c(MEIns_GR, L1GRanges) # Create a predictor variable for involvement in ectopic recombination # L1Width <- width(L1TotGR) # hist(L1Width, breaks = seq(0, 6500, 100)) # idxWidth <- which(!is.na(L1TotData$L1width)) # L1TotData$RecPredict <- NA # L1TotData$RecPredict[idxWidth] <- 150000*sapply(L1TotData$L1width[idxWidth], function(x){ # idxMatch <- which.min(abs(x - DelVsL1Length$x)) # DelVsL1Length$y[idxMatch] # }) # # L1Width <- L1TotData$L1width[idxWidth] # L1Width[L1Width >= 4500] <- 4500 # L1WidthOrder <- order(L1Width, decreasing = T) # OrderMatch <- match(1:length(idxWidth), L1WidthOrder) # Deltas <- c(L1Width[L1WidthOrder[-length(L1Width)]] - L1Width[L1WidthOrder[-1]], # L1Width[L1WidthOrder[length(L1Width)]]) # DeltasSqProd <- 10^-7*Deltas^2 * (L1WidthOrder - 1) # Rev <- length(idxWidth):1 # L1WidthProd <- cumsum(DeltasSqProd[Rev])[Rev] # L1TotData$RecPredict[idxWidth] <- L1WidthProd[OrderMatch] # max(L1TotData$RecPredict[idxWidth]) # plot(L1TotData$L1width, L1TotData$RecPredict) # Number of L1 that are not fixed Nnf <- nrow(L1TotData) # Make genomic ranges for L1SingletonCoeffs L1SingletonCoeffs$chromosome <- paste("chr", L1SingletonCoeffs$Chrom, sep = "") L1SingletonCoeffs_GR <- makeGRangesFromDataFrame(L1SingletonCoeffs, seqnames.field = "chromosome", start.field = "Pos", end.field = "Pos") # Read information about 1000 genome samples SampleInfo <- read.table(G1000SamplePath, header = T) SampleMatch <- match(SampleColumns, SampleInfo$sample) Pops <- SampleInfo$super_pop[SampleMatch] NrS <- length(SampleColumns) # Define more genomic ranges GeneGR <- genes(TxDb.Hsapiens.UCSC.hg19.knownGene) ExonGR <- exons(TxDb.Hsapiens.UCSC.hg19.knownGene) PromGR <- promoters(TxDb.Hsapiens.UCSC.hg19.knownGene, upstream = 10000) CDSGR <- cds(TxDb.Hsapiens.UCSC.hg19.knownGene) IntronGRList <- intronsByTranscript(TxDb.Hsapiens.UCSC.hg19.knownGene, use.names = T) FiveUTRGRList <- fiveUTRsByTranscript(TxDb.Hsapiens.UCSC.hg19.knownGene, use.names = T) ThreeUTRGRList <- threeUTRsByTranscript(TxDb.Hsapiens.UCSC.hg19.knownGene, use.names = T) sum(width(GeneGR)/10^6) / sum(ChromLengthsHg19/10^6) # Among overlapping genomic ranges, retain the longest GeneGR <- UniqueGRanges(GeneGR) cat("done!\n") ########################################## # # # Add columns to L1SingletonCoeffs # # # ########################################## cat("Add columns to L1SingletonCoeffs ...") # Turn factors into numeric values L1SingletonCoeffs$L1Start <- as.numeric(as.character(L1SingletonCoeffs$L1Start)) L1SingletonCoeffs$L1End <- as.numeric(as.character(L1SingletonCoeffs$L1End)) # Indicator for full-length L1SingletonCoeffs$blnFull <- L1SingletonCoeffs$L1Start <= 3 & L1SingletonCoeffs$L1End >= MinLengthFullL1 sum(L1SingletonCoeffs$InsLength <= 100) # Indicator for significant effect L1SingletonCoeffs$blnSig <- p.adjust(L1SingletonCoeffs$Pr...z..) < FDR hist(L1SingletonCoeffs$Pr...z.., breaks = seq(0, 1, 0.005)) # Indicator for positive selection L1SingletonCoeffs$blnSelect <- L1SingletonCoeffs$blnSig & L1SingletonCoeffs$coef < 0 # Indicator for negative selection L1SingletonCoeffs$blnNegSelect <- L1SingletonCoeffs$blnSig & L1SingletonCoeffs$coef > 0 sum(L1SingletonCoeffs$blnNegSelect) sum(L1SingletonCoeffs$blnSelect) # Indicator fo selection (+1 = positive, -1 = negative, 0 = neutral) L1SingletonCoeffs$SelectInd <- 0 L1SingletonCoeffs$SelectInd[L1SingletonCoeffs$blnSelect] <- 1 L1SingletonCoeffs$SelectInd[L1SingletonCoeffs$blnNegSelect] <- -1 # Caclulate distance to genes L1SingletonCoeffs$Dist2Gene <- Dist2Closest(L1SingletonCoeffs_GR, GeneGR) L1SingletonCoeffs$blnOLGene <- L1SingletonCoeffs$Dist2Gene == 0 # Caclulate logarithm of distance to genes L1SingletonCoeffs$LogDist2Gene <- log(L1SingletonCoeffs$Dist2Gene + 0.1) # Standardize SE ratio to one L1SingletonCoeffs$SE_RatioSt <- 1/L1SingletonCoeffs$se.coef./ mean(1/L1SingletonCoeffs$se.coef.) # Add boolean indicators for overlap L1SingletonCoeffs$blnOLGene <- overlapsAny(L1SingletonCoeffs_GR, GeneGR, ignore.strand = T) L1SingletonCoeffs$blnOLProm <- overlapsAny(L1SingletonCoeffs_GR, PromGR, ignore.strand = T) L1SingletonCoeffs$blnOLExon <- overlapsAny(L1SingletonCoeffs_GR, ExonGR, ignore.strand = T) L1SingletonCoeffs$blnOLIntron <- L1SingletonCoeffs$blnOLGene & (!L1SingletonCoeffs$blnOLExon) L1SingletonCoeffs$blnOLIntergen <- !(L1SingletonCoeffs$blnOLGene | L1SingletonCoeffs$blnOLProm) L1SingletonCoeffs$L1StartNum <- as.numeric(as.character(L1SingletonCoeffs$L1Start)) L1SingletonCoeffs$L1EndNum <- as.numeric(as.character(L1SingletonCoeffs$L1End)) L1SingletonCoeffs$blnFull <- L1SingletonCoeffs$L1StartNum <= 1 & L1SingletonCoeffs$L1EndNum >= 6000 # Add info about overlapping genes L1coeff_Gene_OL <- findOverlaps(L1SingletonCoeffs_GR, GeneGR, ignore.strand = T) L1SingletonCoeffs$idxGene <- NA L1SingletonCoeffs$GeneWidth <- NA L1SingletonCoeffs$GeneID <- NA L1SingletonCoeffs$blnOLGeneSameStrand <- NA L1SingletonCoeffs$idxGene[L1coeff_Gene_OL@from] <- L1coeff_Gene_OL@to L1SingletonCoeffs$GeneWidth[L1coeff_Gene_OL@from] <- width(GeneGR)[L1coeff_Gene_OL@to] L1SingletonCoeffs$GeneID[L1coeff_Gene_OL@from] <- GeneGR@elementMetadata@listData$gene_id[L1coeff_Gene_OL@to] L1SingletonCoeffs$blnOLGeneSameStrand[L1coeff_Gene_OL@from] <- L1SingletonCoeffs$L1Strand[L1coeff_Gene_OL@from] == as.vector(strand(GeneGR))[L1coeff_Gene_OL@to] # Check out properties of L1 with signal of positive selectiom L1SingletonCoeffs[L1SingletonCoeffs$blnSelect,] fisher.test(L1SingletonCoeffs$blnSelect, (L1SingletonCoeffs$blnOLIntron & L1SingletonCoeffs$blnOLGeneSameStrand)) mean((L1SingletonCoeffs$blnOLIntron & L1SingletonCoeffs$blnOLGeneSameStrand)) # Standardize selection coefficients CoeffAggMean <- aggregate(coef ~ Freq, data = L1SingletonCoeffs, FUN = mean) CoeffAggVar <- aggregate(coef ~ Freq, data = L1SingletonCoeffs, FUN = var) CoeffAggN <- aggregate(coef ~ Freq, data = L1SingletonCoeffs, FUN = length) CoeffAggMerge <- merge(CoeffAggMean, CoeffAggVar, by = 'Freq') CoeffAggMerge <- merge(CoeffAggMerge, CoeffAggN, by = 'Freq') colnames(CoeffAggMerge)[2:4] <- c("Mean", "Var", "N") CoeffAggMerge$StDev <- sqrt(CoeffAggMerge$Var) FreqMatch <- match(L1SingletonCoeffs$Freq, CoeffAggMerge$Freq) L1SingletonCoeffs$MeanCof <- CoeffAggMerge$Mean[FreqMatch] L1SingletonCoeffs$StDevCof <- CoeffAggMerge$StDev[FreqMatch] L1SingletonCoeffs$CoefSt <- (L1SingletonCoeffs$coef - L1SingletonCoeffs$MeanCof) / L1SingletonCoeffs$StDevCof cat("done!\n") #################################################### # # # Overview of L1 intersection with features # # # #################################################### # Indicator variable for intersection with various GRanges L1TotData$blnOLGene <- overlapsAny(L1TotGR, GeneGR, ignore.strand = T) L1TotData$blnOLGeneSameStrand <- overlapsAny(L1TotGR, GeneGR) L1TotData$blnOLProm <- overlapsAny(L1TotGR, PromGR, ignore.strand = T) L1TotData$blnOLExon <- overlapsAny(L1TotGR, ExonGR, ignore.strand = T) L1TotData$blnOLIntron <- L1TotData$blnOLGene & (!L1TotData$blnOLExon) L1TotData$blnOLIntergen <- !(L1TotData$blnOLGene | L1TotData$blnOLProm) # Create a variable indicating insertion type L1TotData$InsType <- "Intergenic" L1TotData$InsType[L1TotData$blnOLProm] <- "Promoter" L1TotData$InsType[L1TotData$blnOLExon] <- "Exon" L1TotData$InsType[L1TotData$blnOLIntron] <- "Intron" # Perform pairwise Wilcoxon test for differences in L1 frequencies pairwise.wilcox.test(L1TotData$L1Freq, L1TotData$InsType, p.adjust.method = "BH") # Average mean frequency MeanFreqAgg <- aggregate(L1Freq ~ InsType, data = L1TotData, FUN = mean) VarFreqAgg <- aggregate(L1Freq ~ InsType, data = L1TotData, FUN = var) L1TotData$Dummy <- 1 NAgg <- aggregate(Dummy ~ InsType, data = L1TotData, FUN = sum) StErr <- sqrt(VarFreqAgg$Frequency / NAgg$Dummy) # Indicator variable for intersection with reference L1 blnOLGene_RefL1 <- overlapsAny(L1GRanges, GeneGR, ignore.strand = T) blnOLGeneSameStrand_RefL1 <- overlapsAny(L1GRanges, GeneGR) blnOLProm_RefL1 <- overlapsAny(L1GRanges, PromGR, ignore.strand = T) blnOLExon_RefL1 <- overlapsAny(L1GRanges, ExonGR, ignore.strand = T) blnOLIntron_RefL1 <- blnOLGene_RefL1 & (!blnOLExon_RefL1) # Get number of insertions per bp GeneTot <- sum(width(GeneGR)) ExonTot <- sum(width(ExonGR)) IntronTot <- GeneTot - ExonTot PromTot <- sum(width(PromGR)) IntergenTot <- sum(as.numeric(ChromLengthsHg19)) - GeneTot - PromTot #- EnhancerTot # Get mean frequency of L1 in different functional regions MeanFreqs <- c( Promoter = mean(L1TotData$L1Freq[L1TotData$blnOLProm], na.rm = T), Exon = mean(L1TotData$L1Freq[L1TotData$blnOLExon], na.rm = T), Intron = mean(L1TotData$L1Freq[L1TotData$blnOLIntron], na.rm = T), Intergenic = mean(L1TotData$L1Freq[L1TotData$blnOLIntergen], na.rm = T) ) # Plot distn of frequency of L1 in different functional regions par(mfrow = c(1, 1)) hist(L1TotData$L1Freq[L1TotData$blnOLProm], breaks = seq(0, 1, 0.01)) hist(L1TotData$L1Freq[L1TotData$blnOLExon], breaks = seq(0, 1, 0.01)) hist(L1TotData$L1Freq[L1TotData$blnOLIntron], breaks = seq(0, 1, 0.01)) hist(L1TotData$L1Freq[L1TotData$blnOLIntergen], breaks = seq(0, 1, 0.01)) hist(sqrt(-log10(L1TotData$L1Freq[L1TotData$blnOLProm]))) hist(-log10(L1TotData$L1Freq[L1TotData$blnOLExon])) hist(log10(L1TotData$L1Freq[L1TotData$blnOLIntron])) hist(log10(L1TotData$L1Freq[L1TotData$blnOLIntergen])) # Get number of L1 per Mb in different functional regions InsPerbp <- 10^6 * rbind( c( Promoter = sum(blnOLProm_RefL1) / PromTot, Exon = sum(blnOLExon_RefL1) / ExonTot, Intron = sum(blnOLIntron_RefL1) / IntronTot, Intergenic = sum(!(blnOLGene_RefL1 | blnOLProm_RefL1)) / IntergenTot ), c( Promoter = sum(L1TotData$blnOLProm) / PromTot, Exon = sum(L1TotData$blnOLExon) / ExonTot, Intron = sum(L1TotData$blnOLIntron) / IntronTot, Intergenic = sum(!(L1TotData$blnOLGene | L1TotData$blnOLProm)) / IntergenTot ) ) InsPerbp[1,] / InsPerbp[2,] ################################################### # # # Fit effect of insertion length on selection # # # ################################################### cat("\n******** Estimating effect of insertion length **********\n") # Match summary ranges to L1 ranges of 1000 genome data L1SummaryOL <- findOverlaps(L1TotGR, SummaryGR) all(L1SummaryOL@from %in% 1:nrow(L1TotData)) blnNoDupl <- !duplicated(L1SummaryOL@from) L1TotData$L1Count <- NA L1TotData$L1Count[L1SummaryOL@from[blnNoDupl]] <- DataPerSummaryGR$L1Count[L1SummaryOL@to[blnNoDupl]] # Get distance to nearest other L1 Dist2Nearest <- distanceToNearest(L1TotGR) L1TotData$Dist2Nearest <- Dist2Nearest@elementMetadata@listData$distance max(L1TotData$Dist2Nearest) # Create a matrix of predictor variables (L1 start and boolean variable for) PredictMat <- L1TotData[, c("L1Count", "L1width", "blnFull", "RecPredict", "Freq", "SampleSize", "blnIns")] blnNA <- sapply(1:nrow(L1TotData), function(x) any(is.na(PredictMat[x,]))) sum(!blnNA) max(L1TotData$Freq / L1TotData$SampleSize, na.rm = T) max(PredictMat$RecPredict) # Plot log-likelihood for different selection coefficients # aVals <- seq(-0.0021, 0.003, 0.0001) # LikVals <- sapply(aVals, function(x) { # print(x) # LL_FPrime = AlleleFreqLogLik_4Par( # Freqs = round(L1TotData$Freq[!blnNA], 0), # Counts = rep(1, sum(!blnNA)), # Predict = PredictMat[!blnNA, 1:3], # a = x, b = 0, c = 0, d = 0, N = PopSize, # SampleSize = L1TotData$SampleSize[!blnNA], # blnIns = L1TotData$blnIns[!blnNA], # DetectProb = 0.9) # }) # par(mfrow = c(1, 1)) # plot(aVals, LikVals, type = "l", col = "red") # plot(aVals, LikVals, type = "l", col = "red", # xlim = c(-0.0005, 0), ylim) # Estimate maximum likelihood for a single selection coefficient cat("Estimate maximum likelihood for a single selection coefficient\n") ML_1Par <- constrOptim(theta = c(a = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 1:3], a = x[1], b = 0, c = 0, d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(1,-1), ci = c(a = -0.03, a = -0.03), method = "Nelder-Mead") cat("done!\n") # Get maximum likelihood estimate for effect of L1 start on selection cat("Estimate effect of L1 start on selections ...") ML_L1width <- constrOptim(theta = c(a = ML_1Par$par, c = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 1:3], a = x[1], b = 0, c = x[2], d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0), c(0, 1), c(-1, 0), c(0, -1)), ci = c(a = -0.02, c = -10^(-6), a = -0.02, c = -10^(-6)), method = "Nelder-Mead") cat("done!\n") # Get maximum likelihood estimate for effect of full-length L1 on selection cat("Estimate effect of L1 full-length on selections ...") ML_L1full <- constrOptim(theta = c(a = ML_1Par$par, d = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 1:3], a = x[1], b = 0, c = 0, d = x[2], N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0), c(0, 1), c(-1, 0), c(0, -1)), ci = c(a = -0.02, d = -10^(-3), a = -0.02, d = -10^(-3)), method = "Nelder-Mead") cat("done!\n") # Determine maximum likelihood with 3 parameters (selection coefficient as # function of L1 start and indicator for full-length) cat("Maximizing likelihood for three parameters ...") ML_L1widthL1full <- constrOptim(theta = c(a = ML_L1width$par[1], b = ML_L1width$par[2], c = ML_L1full$par[2]), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 1:3], a = x[1], b = 0, c = x[2], d = x[3], N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0, 0), c(0, 1, 0), c(0, 0, 1), c(-1, 0, 0), c(0, -1, 0), c(0, 0, -1)), ci = c(a = -0.01, b = -10^(-6), d = -10^(-3), a = -0.02, b = -10^(-6), d = -10^(-3)), method = "Nelder-Mead") cat("done!\n") # Determine maximum likelihood with 3 parameters (selection coefficient as # function of Recombination predictor and indicator for full-length) cat("Maximizing likelihood for three parameters ...") ML_L1RecL1full <- constrOptim(theta = c(a = ML_L1widthL1full$par[1], c = ML_L1widthL1full$par[3], d = ML_L1widthL1full$par[2]), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 2:4], a = x[1], b = 0, c = x[2], d = x[3], N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0, 0), c(0, 1, 0), c(0, 0, 1), c(-1, 0, 0), c(0, -1, 0), c(0, 0, -1)), ci = c(a = -0.01, b = -10^(-3), d = -10^(-6), a = -0.02, b = -10^(-3), d = -10^(-6)), method = "Nelder-Mead") cat("done!\n") ################################################### # # # Fit effect of L1 density on selection # # # ################################################### # Determine maximum likelihood with 3 parameters (selection coefficient as # function of L1 start and indicator for full-length) cat("Maximizing likelihood for L1 count ...") ML_2Pars_L1count <- constrOptim( theta = c(a = ML_1Par$par, b = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 1:3], a = x[1], b = x[2], c = 0, d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0), c(0, 1), c(-1, 0), c(0, -1)), # ci = c(a = -0.01, b = -10^(-3), # a = -0.01, b = -2*10^(-3)), ci = c(a = -0.01, b = -10^(-9), a = -0.01, b = -10^(-9)), method = "Nelder-Mead") # Maximum likelihood estimate for effect of L1 density and full-length L1 ML_3Pars_L1countL1full <- constrOptim( theta = c(a = ML_2Pars_L1count$par[1], ML_2Pars_L1count$par[2], d = ML_L1full$par[2]), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 1:3], a = x[1], b = x[2], c = 0, d = x[3], N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0, 0), c(0, 1, 0), c(0, 0, 1), c(-1, 0, 0), c(0, -1, 0), c(0, 0, -1)), ci = c(a = -0.02, b = -5*10^(-3), d = -10^(-3), a = -0.02, b = -5*10^(-3), d = -10^(-3)), method = "Nelder-Mead") # Maximum likelihood estimate for effect of L1 density and L1 start ML_3Pars_L1countL1width <- constrOptim( theta = c(a = ML_2Pars_L1count$par[1], ML_2Pars_L1count$par[2], c = ML_L1width$par[2]), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 1:3], a = x[1], b = x[2], c = x[3], d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0, 0), c(0, 1, 0), c(0, 0, 1), c(-1, 0, 0), c(0, -1, 0), c(0, 0, -1)), ci = c(a = -0.02, b = -5*10^(-3), c = -10^(-6), a = -0.02, b = -5*10^(-3), c = -10^(-6)), method = "Nelder-Mead") # Maximum likelihood estimate for effect of L1 density, L1 start, and # full-length L1 ML_4Pars_L1countL1widthL1full <- constrOptim( theta = c(a = ML_2Pars_L1count$par[1], b = 0, c = ML_L1widthL1full$par[2], d = ML_L1widthL1full$par[3]), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA, 1:3], a = x[1], b = x[2], c = x[3], d = x[4], N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0, 0, 0), c(0, 1, 0, 0), c(0, 0, 1, 0), c(0, 0, 0, 1), c(-1, 0, 0, 0), c(0, -1, 0, 0), c(0, 0, -1, 0), c(0, 0, 0, -1)), ci = c(a = -0.01, b = -2*10^(-3), c = -10^(-6), d = -10^(-3), a = -0.01, b = -2*10^(-3), c = -10^(-6), d = -10^(-3)), method = "Nelder-Mead") ################################################### # # # Compare estimated and observed frequencies # # # ################################################### # LogProbs <- AlleleFreqSampleProb(s = 0, N = PopSize, SampleSize = 2*2504) # sum(is.infinite(LogProbs)) # length(LogProbs) # min(LogProbs[!is.infinite(LogProbs)]) # idxFinite <- which(!is.infinite(LogProbs)) # plot(idxFinite, LogProbs[idxFinite]) # plot(idxFinite, LogProbs[idxFinite], xlim = c(4800, 5000)) # lchoose(5008, 1000) # k <- 200 # SampleSize = 5008 # integrate(function(x) AlleleFreqTime(x, s = 0, N = PopSize) * x^(k) * # (1 - x)^(SampleSize - k) , 0, 1)$value # integrate(function(x) log(AlleleFreqTime(x, s = 0, N = PopSize)) + # k * log(x) + (SampleSize - k) * log(1 - x), 0, 1)$value # ################################################### # # # Summarize results # # # ################################################### # Function to extract AIC from optim results GetAIC <- function(OptimResults){ round(2 * (length(OptimResults$par) + OptimResults$value), 2) } GetParVals <- function(OptimResults){ Results <- paste(names(OptimResults$par), format(OptimResults$par, digits = 2), sep = " = ", collapse = ", ") } GetNPar <- function(OptimResults){ length(OptimResults$par) } # Get columns of AIC and parameter values Cols2Append <- t(sapply(list(ML_1Par, ML_L1width, ML_L1full, # ML_2Pars_L1count, ML_L1widthL1full, # ML_3Pars_L1countL1width, # ML_3Pars_L1countL1full # ML_4Pars_L1countL1widthL1full ), function(x){ c(AIC = GetAIC(x), Pars = GetParVals(x)) })) # Combine AIC values into one vector AICTab <- cbind(data.frame( NrParameters = c(1, 2, 2, # 2, 3, # 3, # 3 # 4 ), Predictor = c("none", "L1 width", "L1 full-length", # "L1count", "L1 width and full-length", # "L1 count and L1 start", # "L1 count and L1 full" # "L1 start, L1 full-length, L1count" ), stringsAsFactors = F), Cols2Append) # Save table with AIC write.csv(AICTab, SelectTabOutPath) save.image(SelectResultOutPath) ################################################### # # # Fit effect of genic insertion on selection # # # ################################################### # Create a matrix of predictor variables (L1 start and boolean variable for) PredictMatGeneOL <- L1TotData[, c("blnOLExon", "blnOLIntron", "blnOLProm")] PredictMatGeneOL2 <- L1TotData[, c("blnOLGene", "blnOLIntron", "blnOLProm")] blnNA <- sapply(1:nrow(PredictMatGeneOL), function(x) any(is.na(PredictMatGeneOL[x,]))) | sapply(1:nrow(L1TotData), function(x) any(is.na(PredictMat[x,]))) # Get maximum likelihood estimate for effect of exonic L1 on selection cat("Estimate effect of exon overlap on selections ...") ML_L1Exon <- constrOptim(theta = c(a = ML_1Par$par, b = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMatGeneOL[!blnNA,], a = x[1], b = x[2], c = 0, d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0), c(0, 1), c(-1, 0), c(0, -1)), ci = c(a = -0.001, b = -10^(-2), a = -0.001, b = -10^(-2)), method = "Nelder-Mead") cat("done!\n") # Get maximum likelihood estimate for effect of intronic L1 on selection cat("Estimate effect of intron overlap on selections ...") ML_L1Intron <- constrOptim(theta = c(a = ML_1Par$par, c = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMatGeneOL[!blnNA,], a = x[1], b = 0, c = x[2], d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0), c(0, 1), c(-1, 0), c(0, -1)), ci = c(a = -0.01, c = -10^(-2), a = -0.01, c = -10^(-2)), method = "Nelder-Mead") cat("done!\n") # Get maximum likelihood estimate for effect of intronic L1 on selection cat("Estimate effect of promoter overlap on selections ...") ML_L1Prom <- constrOptim(theta = c(a = ML_1Par$par, d = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMatGeneOL[!blnNA,], a = x[1], b = 0, c = 0, d = x[2], N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0), c(0, 1), c(-1, 0), c(0, -1)), ci = c(a = -0.01, c = -10^(-2), a = -0.01, c = -10^(-2)), method = "Nelder-Mead") cat("done!\n") # Get maximum likelihood estimate for effect of exonic L1 on selection cat("Estimate effect of exon nad intron overlap on selections ...") ML_L1ExonIntron <- constrOptim( theta = c(a = ML_1Par$par, b = ML_L1Exon$par[2], c = ML_L1Intron$par[2]), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMatGeneOL[!blnNA,], a = x[1], b = x[2], c = x[3], d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0, 0), c(0, 1, 0), c(0, 0, 1), c(-1, 0, 0), c(0, -1, 0) , c(0, 0, -1)), ci = c(a = -0.01, b = -10^(-2), c = -10^(-2), a = -0.01, b = -10^(-2), c = -10^(-2)), method = "Nelder-Mead") cat("done!\n") # Get maximum likelihood estimate for effect of exonic L1 on selection cat("Estimate effect of exon nad intron overlap on selections ...") ML_L1ExonIntronProm <- constrOptim( theta = c(a = ML_L1ExonIntron$par[1], b = ML_L1ExonIntron$par[2], c = ML_L1ExonIntron$par[3], d = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMatGeneOL[!blnNA,], a = x[1], b = x[2], c = x[3], d = x[4], N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0, 0, 0), c(0, 1, 0, 0), c(0, 0, 1, 0), c(0, 0, 0, 1), c(-1, 0, 0, 0), c(0, -1, 0, 0) , c(0, 0, -1, 0), c(0, 0, 0, -1)), ci = c(a = -0.01, b = -10^(-2), c = -10^(-2), d = -10^(-2), a = -0.01, b = -10^(-2), c = -10^(-2), d = -10^(-2)), method = "Nelder-Mead") cat("done!\n") # Get maximum likelihood estimate for effect of exonic L1 on selection cat("Estimate effect of exon or intron overlap on selections ...") ML_L1PromOrIntron <- constrOptim(theta = c(a = ML_1Par$par, b = ML_L1Exon$par[2], c = ML_L1Intron$par[2]), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[!blnNA], 0), Counts = rep(1, sum(!blnNA)), Predict = PredictMatGeneOL[!blnNA,], a = x[1], b = x[2], c = x[3], d = x[3], N = PopSize, SampleSize = L1TotData$SampleSize[!blnNA], blnIns = L1TotData$blnIns[!blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[!blnNA]), grad = NULL, ui = rbind(c(1, 0, 0), c(0, 1, 0), c(0, 0, 1), c(-1, 0, 0), c(0, -1, 0) , c(0, 0, -1)), ci = c(a = -0.01, b = -10^(-2), c = -10^(-2), a = -0.01, b = -10^(-2), c = -10^(-2)), method = "Nelder-Mead") cat("done!\n") # Get columns of AIC and parameter values Cols2Append <- t(sapply(list(ML_1Par, ML_L1Exon, ML_L1Intron, ML_L1Prom, ML_L1ExonIntron, ML_L1ExonIntronProm, ML_L1PromOrIntron), function(x){ c(NrParameters = GetNPar(x), AIC = GetAIC(x), Pars = GetParVals(x)) })) # Combine AIC values into one vector AICTabGene <- cbind(data.frame( Predictor = c("none", "Exon", "Intron", "Promoter", "Exon and intron", "Exon, intron, and promoter", "Exon, intron or promoter"), stringsAsFactors = F), Cols2Append) # Save table with AIC write.csv(AICTabGene, SelectGenTabOutPath) ################################################### # # # Plot density vs. selection coefficient # # # ################################################### # Create a vector of selection coefficients SCoeffVect <- c(Promoter = ML_L1ExonIntron$par[1], Exon = sum(ML_L1ExonIntron$par[c(1, 2)]), Intron = sum(ML_L1ExonIntron$par[c(1, 3)]), Intergenic = ML_L1ExonIntron$par[1]) names(SCoeffVect) <- sapply(names(SCoeffVect), function(x) strsplit(x, "\\.")[[1]][1]) # Plot selection coefficient against if (!all(names(SCoeffVect) == colnames(InsPerbp))){ stop("Selection coefficients and L1 densities are not in same order!") } if (!all(names(SCoeffVect) == names(MeanFreqs))){ stop("Selection coefficients and L1 frequencies are not in same order!") } # Get sample size and create a range of s-values SSize <- 2 * MEInsSamplesize SVals <- seq(-0.0025, -0.00001, 0.00001) # Plot probability for inclusion versus number of LINE-1 per Mb ProbL1 <- sapply(SVals, function(x) ProbAlleleIncluded(x,N = PopSize, SampleSize = 2*2504)) par(oma = c(7, 1, 0, 2), mfrow = c(2, 1), mai = c(0.5, 1, 0.5, 1)) plot(SCoeffVect, InsPerbp[2,], ylab = "LINE-1s per Mb", xlab = "", ylim = c(0, 3), xlim = c(-0.0025, 0), main = "A") text(SCoeffVect, InsPerbp[2,] + 2*10^(-1), names(SCoeffVect)) par(new = TRUE) plot(SVals, ProbL1, type = "l", axes = FALSE, bty = "n", xlab = "", ylab = "") axis(side = 4) mtext("Inclusion probability", 4, line = 3) # Plot expected frequency versus observed mean frequency ExpL1 <- sapply(SVals, function(x) ExpAlleleFreq(x, N = PopSize, SampleSize = 2*2504)) plot(SCoeffVect, MeanFreqs*SSize, ylab = "Mean LINE-1 frequency", xlab = "", xlim = c(-0.0025, 0.0001), main = "B") text(SCoeffVect + c(0.0002, 0, -0.0001, -0.0002), MeanFreqs*SSize + 10, names(SCoeffVect)) lines(SVals, ExpL1) mtext("Selection coefficient", 1, line = 3) CreateDisplayPdf('D:/L1polymORF/Figures/SelectionPerRegion_MELT.pdf', PdfProgramPath = '"C:\\Program Files (x86)\\Adobe\\Reader 11.0\\Reader\\AcroRd32"', height = 7, width = 7) ################################################### # # # Plot frequency vs. insertion length # # # ################################################### # # Create a vector of L1 start classes # L1TotData$L1widthClass <- cut(L1TotData$L1width, breaks = # seq(0, 7000, 1000)) # MEInsCall$L1widthClass <- cut(MEInsCall$L1width, breaks = # seq(0, 7000, 1000)) # # MEInsCall$Freq # # Get mean L1 frequency per start # L1widthAggregated <- aggregate(L1TotData[,c("L1width", "L1Freq")], # by = list(L1TotData$L1widthClass), # FUN = function(x) mean(x, na.rm = T)) # L1widthAggregated_Ins <- aggregate(MEInsCall[,c("L1width", "AF")], # by = list(MEInsCall$L1widthClass), # FUN = function(x) mean(x, na.rm = T)) # plot(L1widthAggregated_Ins$L1width, L1widthAggregated_Ins$AF) # # # Get sample size and create a range of s-values # SSize <- 2 * MEInsSamplesize # StartVals <- seq(0, 6000, 100) # Full <- StartVals == 6000 # SVals <- ML_L1widthL1full$par[1] + ML_L1widthL1full$par[2]*StartVals + # ML_L1widthL1full$par[3]*Full # # # Plot expected frequency versus observed mean frequency # ExpL1width <- sapply(SVals, function(x) ExpAlleleFreq(x, N = PopSize, # SampleSize = 2*MEInsSamplesize)) # par( mfrow = c(1, 1)) # plot(L1widthAggregated$L1width, # L1widthAggregated$L1Freq, xlab = "LINE-1 length", # ylab = "Mean LINE-1 frequency") # lines(StartVals, ExpL1width ) # mtext("Selection coefficient", 1, line = 3) # CreateDisplayPdf('D:/L1polymORF/Figures/FreqVsL1width_MELT.pdf', # PdfProgramPath = '"C:\\Program Files (x86)\\Adobe\\Reader 11.0\\Reader\\AcroRd32"', # height = 7, width = 7) ################################################### # # # Fit effect of strandedness on selection # # # ################################################### # Create a matrix of predictor variables (L1 start and boolean variable for) PredictMatWithinGene <- L1TotData[L1TotData$blnOLGene & !blnNA , c( "blnOLGeneSameStrand", "blnOLGene", "blnOLGene")] # Estimate maximum likelihood for a single selection coefficient sum(L1TotData$blnOLGene) colSums(PredictMatWithinGene) ML_1Par_gene <- constrOptim(theta = c(a = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[L1TotData$blnOLGene & !blnNA], 0), Counts = rep(1, sum(L1TotData$blnOLGene & !blnNA)), Predict = PredictMatWithinGene, a = x[1], b = 0, c = 0, d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[L1TotData$blnOLGene & !blnNA ], blnIns = L1TotData$blnIns[L1TotData$blnOLGene & !blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[L1TotData$blnOLGene & !blnNA]), grad = NULL, ui = rbind(1,-1), ci = c(a = -0.001, a = -0.001), method = "Nelder-Mead") # Get maximum likelihood estimate for effect of exonic L1 on selection cat("Estimate effect of same strand overlap on selections ...") ML_L1SameStrand <- constrOptim(theta = c(a = ML_1Par_gene$par, b = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = round(L1TotData$Freq[L1TotData$blnOLGene & !blnNA], 0), Counts = rep(1, sum(L1TotData$blnOLGene & !blnNA)), Predict = PredictMatWithinGene, a = x[1], b = x[2], c = 0, d = 0, N = PopSize, SampleSize = L1TotData$SampleSize[L1TotData$blnOLGene & !blnNA ], blnIns = L1TotData$blnIns[L1TotData$blnOLGene & !blnNA], LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = L1TotData$DetectProb[L1TotData$blnOLGene & !blnNA]), grad = NULL, ui = rbind(c(1, 0), c(0, 1), c(-1, 0), c(0, -1)), ci = c(a = -0.01, b = -10^(-2), a = -0.01, b = -10^(-2)), method = "Nelder-Mead") cat("done!\n") # Get columns of AIC and parameter values Cols2Append <- t(sapply(list(ML_1Par_gene, ML_L1SameStrand), function(x){ c(NrParameters = GetNPar(x), AIC = GetAIC(x), Pars = GetParVals(x)) })) # Combine AIC values into one vector AICTabWithinGene <- cbind(data.frame( Predictor = c("none", "SameStrand"), stringsAsFactors = F), Cols2Append) # Save table with AIC write.csv(AICTabWithinGene, SelectWithinGenTabOutPath) ################################################### # # # Fit effect of singleton coef. on selection # # # ################################################### # Create a matrix of predictor variables PredictMat <- L1SingletonCoeffs[, c("coef", "coef", "coef")] blnNA <- sapply(1:nrow(L1SingletonCoeffs), function(x) any(is.na(PredictMat[x,]))) # Determine maximum likelihood with one parameter (selection coefficient) cat("Maximizing likelihood for one parameter (selection coefficient) ...") ML_1Par_coef <- constrOptim( theta = c(a = ML_1Par$par), f = function(x) -AlleleFreqLogLik_4Par( Freqs = (L1SingletonCoeffs$Freq * 2*2504)[!blnNA], Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA,], a = x[1], b = 0, c = 0, d = 0, N = PopSize, SampleSize = rep(2*2504, sum(!blnNA)), blnIns = rep(T, sum(!blnNA)), LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = rep(0.9, sum(!blnNA))), grad = NULL, ui = rbind(1,-1), ci = c(a = -0.03, a = -0.03), method = "Nelder-Mead") # Determine maximum likelihood with an intercept and one parameter for thr # selection coefficient ML_2Pars_L1coef <- constrOptim( theta = c(a = ML_1Par_coef$par, b = 0), f = function(x) -AlleleFreqLogLik_4Par( Freqs = (L1SingletonCoeffs$Freq * 2*2504)[!blnNA], Counts = rep(1, sum(!blnNA)), Predict = PredictMat[!blnNA,], a = x[1], b = x[2], c = 0, d = 0, N = PopSize, SampleSize = rep(2*2504, sum(!blnNA)), blnIns = rep(T, sum(!blnNA)), LogRegCoeff = LogRegL1Ref$coefficients, DetectProb = rep(0.9, sum(!blnNA))), grad = NULL, ui = rbind(c(1, 0), c(0, 1), c(-1, 0), c(0, -1)), ci = c(a = -0.01, b = -2*10^(-3), a = -0.01, b = -2*10^(-3)), method = "Nelder-Mead") cat("done!\n") # Get columns of AIC and parameter values Cols2Append <- t(sapply(list(ML_1Par_coef, ML_2Pars_L1coef), function(x){ c(NrParameters = GetNPar(x), AIC = GetAIC(x), Pars = GetParVals(x)) })) # Combine AIC values into one vector AICTabSingleton <- cbind(data.frame( Predictor = c("none", "Signleton coefficient"), stringsAsFactors = F), Cols2Append) # Save table with AIC write.csv(AICTabSingleton, SelectSingletonTabOutPath) # Save everything save.image(SelectResultOutPath)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/CreateRandom.R \name{CreateOneRandomMutSigProfile} \alias{CreateOneRandomMutSigProfile} \title{Create one "random" artificial signature profile.} \usage{ CreateOneRandomMutSigProfile(row.names) } \arguments{ \item{row.names}{One of the \code{\link{ICAMS}} package variable such as \code{catalog.row.order[["SBS96"]]}.} } \value{ A single column matrix with \code{rownames} \code{row.headers} and \code{colnames} \code{"RandSig"}. } \description{ Create one "random" artificial signature profile. } \keyword{internal}
/man/CreateOneRandomMutSigProfile.Rd
no_license
steverozen/SynSigGen
R
false
true
597
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/CreateRandom.R \name{CreateOneRandomMutSigProfile} \alias{CreateOneRandomMutSigProfile} \title{Create one "random" artificial signature profile.} \usage{ CreateOneRandomMutSigProfile(row.names) } \arguments{ \item{row.names}{One of the \code{\link{ICAMS}} package variable such as \code{catalog.row.order[["SBS96"]]}.} } \value{ A single column matrix with \code{rownames} \code{row.headers} and \code{colnames} \code{"RandSig"}. } \description{ Create one "random" artificial signature profile. } \keyword{internal}
## Merging files # Import Libraries library(plyr) library(tidyverse) library(lubridate) # work with dates mydir = "Stack_2" # Change this to direct to your data directory # List files A_K2 = list.files(path = mydir, pattern = "*A_K2.csv", full.names = TRUE) B_K2 = list.files(path = mydir, pattern = "*B_K2.csv", full.names = TRUE) Power = list.files(path = mydir, pattern = "*POWER.csv", full.names = TRUE) P_demand = list.files(path = mydir, pattern = "*.CSV", full.names = TRUE) # Read csv A_df = A_K2 %>% ldply(read.csv) %>% unique() %>% mutate(Time = as.POSIXct(Time, format="%d/%m/%Y %H:%M:%S")) B_df = B_K2 %>% ldply(read.csv) %>% unique() %>% mutate(Time = as.POSIXct(Time, format="%d/%m/%Y %H:%M:%S")) Power_df = Power %>% ldply(read.csv) %>% unique() %>% mutate(Time = as.POSIXct(Time, format="%d/%m/%Y %H:%M:%S")) # Combine the Date and Time columns into a timestamp column P_demand = P_demand %>% ldply(read.csv) %>% mutate(timestamp= paste(Date,Time)) %>% mutate(timestamp= as.POSIXct(timestamp, format="%Y/%m/%d %H:%M:%S")) # Removing columns that are not necessary or inaccurate according to "data_dictionary" # A_df A_df=A_df[,-1] # B_df B_df=B_df[,c(2:14,27:32)] # Power_df Power_df=Power_df[,c(2:5,12,14)] # Remove columns with legacy data from P_demand P_demand = P_demand[,c(3:12,21)] # Reorder Columns so "timestamp" is now first P_demand = P_demand[ , c(ncol(P_demand), 1:(ncol(P_demand)-1))] # rename "timestamp" to "Time" names(P_demand)[1] <- "Time" # Ordering dataframes by time A_df = arrange(A_df, Time) B_df = arrange(B_df, Time) Power_df = arrange(Power_df, Time) P_demand = arrange(P_demand, Time) # Save combine data as new csv write.csv(A_df, "A.csv", row.names = FALSE) write.csv(B_df, "B.csv", row.names = FALSE) write.csv(Power_df, "Pow.csv", row.names = FALSE) write.csv(P_demand, "P_demand.csv", row.names = FALSE)
/data-combining.R
no_license
nshyam97/Group-Project-CSC8633
R
false
false
1,869
r
## Merging files # Import Libraries library(plyr) library(tidyverse) library(lubridate) # work with dates mydir = "Stack_2" # Change this to direct to your data directory # List files A_K2 = list.files(path = mydir, pattern = "*A_K2.csv", full.names = TRUE) B_K2 = list.files(path = mydir, pattern = "*B_K2.csv", full.names = TRUE) Power = list.files(path = mydir, pattern = "*POWER.csv", full.names = TRUE) P_demand = list.files(path = mydir, pattern = "*.CSV", full.names = TRUE) # Read csv A_df = A_K2 %>% ldply(read.csv) %>% unique() %>% mutate(Time = as.POSIXct(Time, format="%d/%m/%Y %H:%M:%S")) B_df = B_K2 %>% ldply(read.csv) %>% unique() %>% mutate(Time = as.POSIXct(Time, format="%d/%m/%Y %H:%M:%S")) Power_df = Power %>% ldply(read.csv) %>% unique() %>% mutate(Time = as.POSIXct(Time, format="%d/%m/%Y %H:%M:%S")) # Combine the Date and Time columns into a timestamp column P_demand = P_demand %>% ldply(read.csv) %>% mutate(timestamp= paste(Date,Time)) %>% mutate(timestamp= as.POSIXct(timestamp, format="%Y/%m/%d %H:%M:%S")) # Removing columns that are not necessary or inaccurate according to "data_dictionary" # A_df A_df=A_df[,-1] # B_df B_df=B_df[,c(2:14,27:32)] # Power_df Power_df=Power_df[,c(2:5,12,14)] # Remove columns with legacy data from P_demand P_demand = P_demand[,c(3:12,21)] # Reorder Columns so "timestamp" is now first P_demand = P_demand[ , c(ncol(P_demand), 1:(ncol(P_demand)-1))] # rename "timestamp" to "Time" names(P_demand)[1] <- "Time" # Ordering dataframes by time A_df = arrange(A_df, Time) B_df = arrange(B_df, Time) Power_df = arrange(Power_df, Time) P_demand = arrange(P_demand, Time) # Save combine data as new csv write.csv(A_df, "A.csv", row.names = FALSE) write.csv(B_df, "B.csv", row.names = FALSE) write.csv(Power_df, "Pow.csv", row.names = FALSE) write.csv(P_demand, "P_demand.csv", row.names = FALSE)
plot3 <- function() { # step 1--Reading data hpcdata <- read.csv("./data/household_power_consumption.txt",TRUE,sep=";",na.strings="?",as.is = c(2) ) # step 2 - Subsetting 01-02/02/2007 dates hpcdatafilt <- hpcdata[hpcdata$Date %in% c("1/2/2007","2/2/2007"),] # adding datetime column hpcdatafilt$datetime <- strptime( paste(hpcdatafilt$Date,hpcdatafilt$Time), format="%d/%m/%Y %H:%M:%S") #step 3 -- Construct plot3 # initialize the plotting area # check device if (dev.cur() == 1) dev.new() #step 3 -- Construct plot3 par(oma=c(1,1,1,1),bg="white") with(hpcdatafilt, { plot(datetime,Sub_metering_1, type="l" ,xlab="", ylab="Energy sub metering", col="black") lines(datetime, Sub_metering_2, col = "red") lines(datetime, Sub_metering_3, col = "blue") legend("topright", lty=1, col = c("black","red","blue"),legend=c("Sub_metering_1","Sub_metering_2","Sub_metering_3")) } ) #copy it to PNG file dev.copy(png, file = "./plot3.png",width=480,height=480,pointsize=8) #close the png device dev.off() #close the window device dev.off() }
/plot3.R
no_license
paolobudroni/ExData_Plotting1
R
false
false
1,081
r
plot3 <- function() { # step 1--Reading data hpcdata <- read.csv("./data/household_power_consumption.txt",TRUE,sep=";",na.strings="?",as.is = c(2) ) # step 2 - Subsetting 01-02/02/2007 dates hpcdatafilt <- hpcdata[hpcdata$Date %in% c("1/2/2007","2/2/2007"),] # adding datetime column hpcdatafilt$datetime <- strptime( paste(hpcdatafilt$Date,hpcdatafilt$Time), format="%d/%m/%Y %H:%M:%S") #step 3 -- Construct plot3 # initialize the plotting area # check device if (dev.cur() == 1) dev.new() #step 3 -- Construct plot3 par(oma=c(1,1,1,1),bg="white") with(hpcdatafilt, { plot(datetime,Sub_metering_1, type="l" ,xlab="", ylab="Energy sub metering", col="black") lines(datetime, Sub_metering_2, col = "red") lines(datetime, Sub_metering_3, col = "blue") legend("topright", lty=1, col = c("black","red","blue"),legend=c("Sub_metering_1","Sub_metering_2","Sub_metering_3")) } ) #copy it to PNG file dev.copy(png, file = "./plot3.png",width=480,height=480,pointsize=8) #close the png device dev.off() #close the window device dev.off() }
testlist <- list(A = structure(c(2.31584307392677e+77, 9.53818251789663e+295, 1.22810536108214e+146, 4.12396251261199e-221, 0), .Dim = c(5L, 1L)), B = structure(0, .Dim = c(1L, 1L))) result <- do.call(multivariance:::match_rows,testlist) str(result)
/multivariance/inst/testfiles/match_rows/AFL_match_rows/match_rows_valgrind_files/1613112922-test.R
no_license
akhikolla/updatedatatype-list3
R
false
false
251
r
testlist <- list(A = structure(c(2.31584307392677e+77, 9.53818251789663e+295, 1.22810536108214e+146, 4.12396251261199e-221, 0), .Dim = c(5L, 1L)), B = structure(0, .Dim = c(1L, 1L))) result <- do.call(multivariance:::match_rows,testlist) str(result)
fitted.JMbayes <- function (object, process = c("Longitudinal", "longitudinal", "Event", "event"), type = c("Marginal", "marginal", "Subject", "subject"), nullY = FALSE, ...) { if (!inherits(object, "JMbayes")) stop("Use only with 'JMbayes' objects.\n") process <- match.arg(process) type <- match.arg(type) if (process == "Longitudinal" || process == "longitudinal") { fitY <- c(object$x$X %*% object$postMeans$betas) names(fitY) <- row.names(object$Data$data) if (type == "Subject" || type == "subject") fitY <- fitY + rowSums(object$x$Z * ranef(object)[object$y$id, ]) fitY } else { Data <- object$Data Funs <- object$Funs Forms <- object$Forms timeVar <- object$timeVar param <- object$param indFixed <- Forms$extraForm$indFixed indRandom <- Forms$extraForm$indRandom lag <- object$y$lag TermsX <- object$Terms$termsYx TermsZ <- object$Terms$termsYz TermsX.extra <- object$Terms$termsYx.extra TermsZ.extra <- object$Terms$termsYz.extra formYx <- reformulate(attr(delete.response(TermsX), "term.labels")) formYz <- Forms$formYz times <- Data$data[[timeVar]] GQsurv <- if (object$control$GQsurv == "GaussKronrod") gaussKronrod() else gaussLegendre(object$control$GQsurv.k) wk <- GQsurv$wk sk <- GQsurv$sk K <- length(sk) anyLeftTrunc <- object$y$anyLeftTrunc if (length(anyLeftTrunc)) { ni <- tapply(object$y$id, object$y$id, length) TimeL <- rep(object$y$TimeL, ni) P <- (times - TimeL) / 2 st <- outer(P, sk) + c(times + TimeL) / 2 } else { P <- times / 2 st <- outer(P, sk + 1) } id.GK <- rep(seq_along(times), each = K) indBetas <- object$y$indBetas data.id2 <- Data$data.id[rep(object$y$id, each = K), ] data.id2[[timeVar]] <- pmax(c(t(st)) - lag, 0) if (param %in% c("td-value", "td-both")) { mfX <- model.frame(TermsX, data = data.id2) mfZ <- model.frame(TermsZ, data = data.id2) Xs <- model.matrix(formYx, mfX) Zs <- model.matrix(formYz, mfZ) } if (param %in% c("td-extra", "td-both")) { mfX.extra <- model.frame(TermsX.extra, data = data.id2) mfZ.extra<- model.frame(TermsZ.extra, data = data.id2) Xs.extra <- model.matrix(Forms$extraForm$fixed, mfX.extra) Zs.extra <- model.matrix(Forms$extraForm$random, mfZ.extra) } betas <- object$postMeans$betas sigma <- object$postMeans$sigma D <- object$postMeans$D gammas <- object$postMeans$gammas alphas <- object$postMeans$alphas Dalphas <- object$postMeans$Dalphas if (nullY) { alphas <- rep(0, length.out = length(alphas)) Dalphas <- rep(0, length.out = length(Dalphas)) } Bs.gammas <- object$postMeans$Bs.gammas b <- ranef(object) idK <- rep(object$y$id, each = K) b <- b[idK, ] if (param %in% c("td-value", "td-both")) { Ys <- Funs$transFun.value(as.vector(Xs %*% betas + rowSums(Zs * b)), data.id2) } if (param %in% c("td-extra", "td-both")) { Ys.extra <- Funs$transFun.extra(as.vector(Xs.extra %*% betas[indFixed]) + rowSums(Zs.extra * b[, indRandom, drop = FALSE]), data.id2) } tt <- c(switch(param, "td-value" = as.matrix(Ys) %*% alphas, "td-extra" = as.matrix(Ys.extra) %*% Dalphas, "td-both" = as.matrix(Ys) %*% alphas + as.matrix(Ys.extra) %*% Dalphas, "shared-betasRE" = (rep(betas[indBetas], each = nrow(b)) + b) %*% alphas, "shared-RE" = b %*% alphas)) W <- object$x$W[object$y$id, seq_along(gammas), drop = FALSE] eta.tw <- if (!is.null(W)) c(W %*% gammas) else rep(0, length(object$y$id)) kn <- object$control$knots W2s <- splineDesign(unlist(kn, use.names = FALSE), c(t(st)), ord = object$control$ordSpline, outer.ok = TRUE) Vi <- exp(c(W2s %*% Bs.gammas) + tt) cumHaz <- exp(eta.tw) * P * tapply(rep(wk, length.out = length(Vi)) * Vi, id.GK, sum) names(cumHaz) <- row.names(Data$data) cumHaz } }
/R/fitted.JMbayes.R
no_license
guptashilpa/JMbayes
R
false
false
4,505
r
fitted.JMbayes <- function (object, process = c("Longitudinal", "longitudinal", "Event", "event"), type = c("Marginal", "marginal", "Subject", "subject"), nullY = FALSE, ...) { if (!inherits(object, "JMbayes")) stop("Use only with 'JMbayes' objects.\n") process <- match.arg(process) type <- match.arg(type) if (process == "Longitudinal" || process == "longitudinal") { fitY <- c(object$x$X %*% object$postMeans$betas) names(fitY) <- row.names(object$Data$data) if (type == "Subject" || type == "subject") fitY <- fitY + rowSums(object$x$Z * ranef(object)[object$y$id, ]) fitY } else { Data <- object$Data Funs <- object$Funs Forms <- object$Forms timeVar <- object$timeVar param <- object$param indFixed <- Forms$extraForm$indFixed indRandom <- Forms$extraForm$indRandom lag <- object$y$lag TermsX <- object$Terms$termsYx TermsZ <- object$Terms$termsYz TermsX.extra <- object$Terms$termsYx.extra TermsZ.extra <- object$Terms$termsYz.extra formYx <- reformulate(attr(delete.response(TermsX), "term.labels")) formYz <- Forms$formYz times <- Data$data[[timeVar]] GQsurv <- if (object$control$GQsurv == "GaussKronrod") gaussKronrod() else gaussLegendre(object$control$GQsurv.k) wk <- GQsurv$wk sk <- GQsurv$sk K <- length(sk) anyLeftTrunc <- object$y$anyLeftTrunc if (length(anyLeftTrunc)) { ni <- tapply(object$y$id, object$y$id, length) TimeL <- rep(object$y$TimeL, ni) P <- (times - TimeL) / 2 st <- outer(P, sk) + c(times + TimeL) / 2 } else { P <- times / 2 st <- outer(P, sk + 1) } id.GK <- rep(seq_along(times), each = K) indBetas <- object$y$indBetas data.id2 <- Data$data.id[rep(object$y$id, each = K), ] data.id2[[timeVar]] <- pmax(c(t(st)) - lag, 0) if (param %in% c("td-value", "td-both")) { mfX <- model.frame(TermsX, data = data.id2) mfZ <- model.frame(TermsZ, data = data.id2) Xs <- model.matrix(formYx, mfX) Zs <- model.matrix(formYz, mfZ) } if (param %in% c("td-extra", "td-both")) { mfX.extra <- model.frame(TermsX.extra, data = data.id2) mfZ.extra<- model.frame(TermsZ.extra, data = data.id2) Xs.extra <- model.matrix(Forms$extraForm$fixed, mfX.extra) Zs.extra <- model.matrix(Forms$extraForm$random, mfZ.extra) } betas <- object$postMeans$betas sigma <- object$postMeans$sigma D <- object$postMeans$D gammas <- object$postMeans$gammas alphas <- object$postMeans$alphas Dalphas <- object$postMeans$Dalphas if (nullY) { alphas <- rep(0, length.out = length(alphas)) Dalphas <- rep(0, length.out = length(Dalphas)) } Bs.gammas <- object$postMeans$Bs.gammas b <- ranef(object) idK <- rep(object$y$id, each = K) b <- b[idK, ] if (param %in% c("td-value", "td-both")) { Ys <- Funs$transFun.value(as.vector(Xs %*% betas + rowSums(Zs * b)), data.id2) } if (param %in% c("td-extra", "td-both")) { Ys.extra <- Funs$transFun.extra(as.vector(Xs.extra %*% betas[indFixed]) + rowSums(Zs.extra * b[, indRandom, drop = FALSE]), data.id2) } tt <- c(switch(param, "td-value" = as.matrix(Ys) %*% alphas, "td-extra" = as.matrix(Ys.extra) %*% Dalphas, "td-both" = as.matrix(Ys) %*% alphas + as.matrix(Ys.extra) %*% Dalphas, "shared-betasRE" = (rep(betas[indBetas], each = nrow(b)) + b) %*% alphas, "shared-RE" = b %*% alphas)) W <- object$x$W[object$y$id, seq_along(gammas), drop = FALSE] eta.tw <- if (!is.null(W)) c(W %*% gammas) else rep(0, length(object$y$id)) kn <- object$control$knots W2s <- splineDesign(unlist(kn, use.names = FALSE), c(t(st)), ord = object$control$ordSpline, outer.ok = TRUE) Vi <- exp(c(W2s %*% Bs.gammas) + tt) cumHaz <- exp(eta.tw) * P * tapply(rep(wk, length.out = length(Vi)) * Vi, id.GK, sum) names(cumHaz) <- row.names(Data$data) cumHaz } }
#!/usr/bin/Rscript library(rEDM) library(zoo) source( "helpers/helper.r" ) source( "helpers/mve.r" ) set.seed( 19 ) ## filename = paste0("http://science.sciencemag.org/highwire/filestream/683325/", ## "field_highwire_adjunct_files/1/aag0863_SupportingFile_Suppl._Excel_seq1_v2.xlsx") save_predictions <- function(dirname = stop("Directory name must be provided!"), target_column = 1, E = 3, ## Embedding dimension of the system. max_lag = E, ## 0,-1, ..., -max_lag n_samp = 100, ## Number of random libraries, should be in the hundreds lib = c(501,2000), ## Library set. pred = c(2500,2999), ## Prediciton set. lib_sizes = (1:25)*5, ## Library changes in size and is also random method = "mve", num_neighbors = E+1 ) { print( paste0( "Method: ", method, ", target: ", target_column) ) ## Load data raw_df <- read.csv(paste0( dirname, "/original.csv" ), header = TRUE, sep = "," ) raw_df$time <- NULL ## raw_df <- raw_df[1:3000, 1:3 ] if( dirname == "huisman" ) rel_err <- 0.1 else rel_err <- 0.01 ## ## Rescale the data frame and keep track of the normalizing ## ## factors. mus <- get_mus(raw_df) sigs <- get_sigs(raw_df) df <- data.frame(scale(raw_df)) noise <- rnorm( prod(dim(df)), mean=0, sd=sqrt(0.1)) df <- noise + df ## As long as first_column_time == FALSE filename <- paste0(dirname, "/runs/", method, "_", target_column, "_", num_neighbors,".csv") empty_file( filename = filename ) pred_func <- mve if( method == "uwe" ) pred_func <- uwe if( method == "hao" ) { pred_func <- multiview target_column <- which( names(raw_df) == target_column ) } ## Preallocate rhos <- numeric( n_samp ) for (lib_size in lib_sizes) { ## For every random library starting point for( smp in 1:n_samp ) { rand_lib <- random_lib(lib, lib_size) ## Find the MVE prediction output <- pred_func(df, lib = rand_lib, pred = pred, norm_type = c("L2 norm", "L1 norm", "P norm"), P = 0.5, E = E, tau = 1, tp = 1, max_lag = max_lag, num_neighbors = num_neighbors, k = "sqrt", na.rm = FALSE, target_column = target_column, stats_only = TRUE, first_column_time = FALSE, exclusion_radius = NULL, silent = FALSE) rhos[smp] <- output$rho if( smp %% 5 == 0 ) { avg <- mean(rhos[1:smp]) err <- sd( rhos[1:smp] )/ sqrt( smp ) print( paste0("Sample ", smp, "/", n_samp, ", lib size ", lib_size, " mean ", avg, " +/- ", err ) ) if (err < rel_err*avg ) break } } ## Closes for( smp in 1:n_samp ) ## Order agrees with order set in empty_file vec <- matrix( c( lib_size, mean(rhos), quantile(rhos, probs = c(0.25,0.5,0.75)) ), nrow = 1) write.table(vec, file = filename, sep = ",", append = TRUE, quote = FALSE, col.names = FALSE, row.names = FALSE) } ## Closes for (lib_size in lib_sizes) } ## Closes function save_predictions args <- commandArgs( trailingOnly = TRUE ) if( args[1] == "huisman" ) { dirname <-"huisman" max_lag <- 3 E <- 5 } else if( args[1] == "hp" ) { dirname <- "hp" max_lag <- 3 E <- 3 } else { stop( "Unknown model" ) } if( args[2] == "mve" ) { method <- "mve" } else if( args[2] == "uwe" ) { method <- "uwe" } else { stop( "Unknown method" ) } target_column <- args[3] num_neighbors <- as.numeric(args[4] ) if( args[length(args)] == "test" ) { print( "Testing..." ) n_samp <- 5 lib_sizes <- c(25) E <- 2 max_lag <- 2 } else if( args[3] == "long" ) { n_samp <- 50 lib_sizes <- c(25,50) } else { n_samp <- 150 lib_sizes <- (1:10)*10 } save_predictions(dirname = dirname, target_column = target_column, n_samp = n_samp, method = method, num_neighbors = num_neighbors, lib_sizes = lib_sizes, max_lag = max_lag, E = E )
/runnable.r
no_license
yairdaon/weight-pred
R
false
false
5,202
r
#!/usr/bin/Rscript library(rEDM) library(zoo) source( "helpers/helper.r" ) source( "helpers/mve.r" ) set.seed( 19 ) ## filename = paste0("http://science.sciencemag.org/highwire/filestream/683325/", ## "field_highwire_adjunct_files/1/aag0863_SupportingFile_Suppl._Excel_seq1_v2.xlsx") save_predictions <- function(dirname = stop("Directory name must be provided!"), target_column = 1, E = 3, ## Embedding dimension of the system. max_lag = E, ## 0,-1, ..., -max_lag n_samp = 100, ## Number of random libraries, should be in the hundreds lib = c(501,2000), ## Library set. pred = c(2500,2999), ## Prediciton set. lib_sizes = (1:25)*5, ## Library changes in size and is also random method = "mve", num_neighbors = E+1 ) { print( paste0( "Method: ", method, ", target: ", target_column) ) ## Load data raw_df <- read.csv(paste0( dirname, "/original.csv" ), header = TRUE, sep = "," ) raw_df$time <- NULL ## raw_df <- raw_df[1:3000, 1:3 ] if( dirname == "huisman" ) rel_err <- 0.1 else rel_err <- 0.01 ## ## Rescale the data frame and keep track of the normalizing ## ## factors. mus <- get_mus(raw_df) sigs <- get_sigs(raw_df) df <- data.frame(scale(raw_df)) noise <- rnorm( prod(dim(df)), mean=0, sd=sqrt(0.1)) df <- noise + df ## As long as first_column_time == FALSE filename <- paste0(dirname, "/runs/", method, "_", target_column, "_", num_neighbors,".csv") empty_file( filename = filename ) pred_func <- mve if( method == "uwe" ) pred_func <- uwe if( method == "hao" ) { pred_func <- multiview target_column <- which( names(raw_df) == target_column ) } ## Preallocate rhos <- numeric( n_samp ) for (lib_size in lib_sizes) { ## For every random library starting point for( smp in 1:n_samp ) { rand_lib <- random_lib(lib, lib_size) ## Find the MVE prediction output <- pred_func(df, lib = rand_lib, pred = pred, norm_type = c("L2 norm", "L1 norm", "P norm"), P = 0.5, E = E, tau = 1, tp = 1, max_lag = max_lag, num_neighbors = num_neighbors, k = "sqrt", na.rm = FALSE, target_column = target_column, stats_only = TRUE, first_column_time = FALSE, exclusion_radius = NULL, silent = FALSE) rhos[smp] <- output$rho if( smp %% 5 == 0 ) { avg <- mean(rhos[1:smp]) err <- sd( rhos[1:smp] )/ sqrt( smp ) print( paste0("Sample ", smp, "/", n_samp, ", lib size ", lib_size, " mean ", avg, " +/- ", err ) ) if (err < rel_err*avg ) break } } ## Closes for( smp in 1:n_samp ) ## Order agrees with order set in empty_file vec <- matrix( c( lib_size, mean(rhos), quantile(rhos, probs = c(0.25,0.5,0.75)) ), nrow = 1) write.table(vec, file = filename, sep = ",", append = TRUE, quote = FALSE, col.names = FALSE, row.names = FALSE) } ## Closes for (lib_size in lib_sizes) } ## Closes function save_predictions args <- commandArgs( trailingOnly = TRUE ) if( args[1] == "huisman" ) { dirname <-"huisman" max_lag <- 3 E <- 5 } else if( args[1] == "hp" ) { dirname <- "hp" max_lag <- 3 E <- 3 } else { stop( "Unknown model" ) } if( args[2] == "mve" ) { method <- "mve" } else if( args[2] == "uwe" ) { method <- "uwe" } else { stop( "Unknown method" ) } target_column <- args[3] num_neighbors <- as.numeric(args[4] ) if( args[length(args)] == "test" ) { print( "Testing..." ) n_samp <- 5 lib_sizes <- c(25) E <- 2 max_lag <- 2 } else if( args[3] == "long" ) { n_samp <- 50 lib_sizes <- c(25,50) } else { n_samp <- 150 lib_sizes <- (1:10)*10 } save_predictions(dirname = dirname, target_column = target_column, n_samp = n_samp, method = method, num_neighbors = num_neighbors, lib_sizes = lib_sizes, max_lag = max_lag, E = E )
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/unsupervised.R \name{mcoa} \alias{mcoa} \title{Multiple Co-Inertia Analysis - MCOA} \usage{ mcoa(X, ncomp = 2, scale = FALSE, verbose = FALSE, ...) } \arguments{ \item{X}{\code{list} of input blocks.} \item{ncomp}{\code{integer} number of components to extract.} \item{scale}{\code{logical} indicating if variables should be scaled.} \item{verbose}{\code{logical} indicating if diagnostic information should be printed.} \item{...}{additional arguments for RGCCA.} } \value{ \code{multiblock} object including relevant scores and loadings. Relevant plotting functions: \code{\link{multiblock_plots}} and result functions: \code{\link{multiblock_results}}. } \description{ This is a wrapper for the \code{RGCCA::rgcca} function for computing MCOA. } \details{ MCOA resembles GCA and MFA in that it creates a set of reference scores, for which each block's individual scores should correlate maximally too, but also the variance within each block should be taken into account. A single component solution is equivalent to a PCA on concatenated blocks scaled by the so called inverse inertia. } \examples{ data(potato) potList <- as.list(potato[c(1,2,9)]) pot.mcoa <- mcoa(potList) plot(scores(pot.mcoa), labels="names") } \references{ \itemize{ \item Le Roux; B. and H. Rouanet (2004). Geometric Data Analysis, From Correspondence Analysis to Structured Data Analysis. Dordrecht. Kluwer: p.180. \item Greenacre, Michael and Blasius, Jörg (editors) (2006). Multiple Correspondence Analysis and Related Methods. London: Chapman & Hall/CRC. } } \seealso{ Overviews of available methods, \code{\link{multiblock}}, and methods organised by main structure: \code{\link{basic}}, \code{\link{unsupervised}}, \code{\link{asca}}, \code{\link{supervised}} and \code{\link{complex}}. Common functions for computation and extraction of results and plotting are found in \code{\link{multiblock_results}} and \code{\link{multiblock_plots}}, respectively. }
/man/mcoa.Rd
no_license
minghao2016/multiblock
R
false
true
2,026
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/unsupervised.R \name{mcoa} \alias{mcoa} \title{Multiple Co-Inertia Analysis - MCOA} \usage{ mcoa(X, ncomp = 2, scale = FALSE, verbose = FALSE, ...) } \arguments{ \item{X}{\code{list} of input blocks.} \item{ncomp}{\code{integer} number of components to extract.} \item{scale}{\code{logical} indicating if variables should be scaled.} \item{verbose}{\code{logical} indicating if diagnostic information should be printed.} \item{...}{additional arguments for RGCCA.} } \value{ \code{multiblock} object including relevant scores and loadings. Relevant plotting functions: \code{\link{multiblock_plots}} and result functions: \code{\link{multiblock_results}}. } \description{ This is a wrapper for the \code{RGCCA::rgcca} function for computing MCOA. } \details{ MCOA resembles GCA and MFA in that it creates a set of reference scores, for which each block's individual scores should correlate maximally too, but also the variance within each block should be taken into account. A single component solution is equivalent to a PCA on concatenated blocks scaled by the so called inverse inertia. } \examples{ data(potato) potList <- as.list(potato[c(1,2,9)]) pot.mcoa <- mcoa(potList) plot(scores(pot.mcoa), labels="names") } \references{ \itemize{ \item Le Roux; B. and H. Rouanet (2004). Geometric Data Analysis, From Correspondence Analysis to Structured Data Analysis. Dordrecht. Kluwer: p.180. \item Greenacre, Michael and Blasius, Jörg (editors) (2006). Multiple Correspondence Analysis and Related Methods. London: Chapman & Hall/CRC. } } \seealso{ Overviews of available methods, \code{\link{multiblock}}, and methods organised by main structure: \code{\link{basic}}, \code{\link{unsupervised}}, \code{\link{asca}}, \code{\link{supervised}} and \code{\link{complex}}. Common functions for computation and extraction of results and plotting are found in \code{\link{multiblock_results}} and \code{\link{multiblock_plots}}, respectively. }
## Wynand van Staden ## Least-Squares Claibrtion method using the Peak prevalence data ## Copyright 2019 samSize <- 1000 # sir model returning infectious prevalences at 2 time points + the peak prevalence time point sirModelPeakPrev <- function(gamma, beta = 0.2, N = 10000, inf = 0.1, sampleSize = samSize){ library(SimInf) u0 <- data.frame(S=N*(1-inf), I=N*inf, R=0) model <- SIR(u0, tspan = seq(0,100,by=1), beta= beta, gamma=gamma) result <- run(model) peakIPrev <- which.max(result@U[2,]) individualsPeak <- c(rep("S", result@U[1, peakIPrev]), rep("I", result@U[2, peakIPrev]), rep("R", result@U[3, peakIPrev])) individuals50 <- c(rep("S", result@U[1, 50]), rep("I", result@U[2, 50]), rep("R", result@U[3, 50])) individuals65 <- c(rep("S", result@U[1, 65]), rep("I", result@U[2, 65]), rep("R", result@U[3, 65])) samplePop <- c(summary(as.factor(sample(individualsPeak, size = sampleSize))), summary(as.factor(sample(individuals50, size = sampleSize))), summary(as.factor(sample(individuals65, size = sampleSize)))) pop <- samplePop[names(samplePop) == "I"] #let it return zero instead of numeric(0) for(i in 1:3){ if(is.na(pop[i])){ pop[i] <- 0 } } return(pop/sampleSize) } ##################################################################### ## Model Calibration ##################################################################### trueGamma <- 0.02 calibModelRuns <- 1000 infPopPeak <- matrix(c(0, 0, 0), calibModelRuns, 3) resultPeak <- list() #to just store beta and gamma parameters from the reuslt LS.resultPeak <- c() #This step takes quite a long time print("Data Simulation Run Counter") for (i in 1:calibModelRuns) { infPopPeak[i,] <- sirModelPeakPrev(trueGamma) f.optPeak <- function(params) sum((sirModelPeakPrev(params)- infPopPeak[i,])^2 ) resultPeak[[i]] <- optim(c(runif(1, 0.01, 0.1)), f.optPeak, method = "Nelder-Mead",lower = 0.01, upper = 0.1, control=list(maxit=1000), hessian = T) LS.resultPeak[i] <- resultPeak[[i]]$par print(i) #to check number of runs } ##################################################################### ## Measuring performance ##################################################################### # Calculating the average calibrated parameteres avgParPeak <- round(mean(LS.resultPeak), 3) print("Average of the parameter estimates of gamma:") print(paste0('Model with 2 + Peak target features: gamma = ', avgParPeak)) #Calculating the Bias gBiasPeak <- avgParPeak - trueGamma print("The Percentage Bias of the parameter estimates of gamma:") print(paste0('Bias for Model with 2 + Peak target features: gamma Bias = ', gBiasPeak/trueGamma *100, '%' )) #Calculating the accuracy using the Root Mean Square Error gAccuPeak <- sqrt((sum((LS.resultPeak - trueGamma)^2)/calibModelRuns)) print("The accuracy of the parameter estimates for gamma using RMSE:") print(paste0('RMSE for Model with 2 + Peak target features: gamma = ', round(gAccuPeak, 3))) #Calculating the coverage using confidence intervals standErrorPeak <- c() for(i in 1:calibModelRuns){ standErrorPeak[i] <- sqrt(abs(diag(solve(resultPeak[[i]]$hessian)))) } # Now confidence intervals of the parameter estimates CI_Peak_g <- matrix(c(0, 0), calibModelRuns, 2) for(i in 1:calibModelRuns){ CI_Peak_g[i,] <- c(LS.resultPeak[i] - 1.96*standErrorPeak[i], LS.resultPeak[i] + 1.96*standErrorPeak[i]) } # Now to calculate coverage of the true estimate given the confidence intervals of the parameter estimates LSPeak_gcov <- sum((trueGamma >= CI_Peak_g[,1]) == TRUE & (trueGamma <= CI_Peak_g[,2]) == TRUE)/calibModelRuns * 100 print("The coverage of each parameter estimates of gamma given the CI's:") print(paste0('Coverage for Model with 2 + Peak target features: gamma = ', LSPeak_gcov, '%'))
/Wynand Masters Thesis R code/1 Parameter with Peak Prev/1 One parameter Peak Prev with LS.R
no_license
Wynand93/Wynand_Masters_R_Code
R
false
false
3,945
r
## Wynand van Staden ## Least-Squares Claibrtion method using the Peak prevalence data ## Copyright 2019 samSize <- 1000 # sir model returning infectious prevalences at 2 time points + the peak prevalence time point sirModelPeakPrev <- function(gamma, beta = 0.2, N = 10000, inf = 0.1, sampleSize = samSize){ library(SimInf) u0 <- data.frame(S=N*(1-inf), I=N*inf, R=0) model <- SIR(u0, tspan = seq(0,100,by=1), beta= beta, gamma=gamma) result <- run(model) peakIPrev <- which.max(result@U[2,]) individualsPeak <- c(rep("S", result@U[1, peakIPrev]), rep("I", result@U[2, peakIPrev]), rep("R", result@U[3, peakIPrev])) individuals50 <- c(rep("S", result@U[1, 50]), rep("I", result@U[2, 50]), rep("R", result@U[3, 50])) individuals65 <- c(rep("S", result@U[1, 65]), rep("I", result@U[2, 65]), rep("R", result@U[3, 65])) samplePop <- c(summary(as.factor(sample(individualsPeak, size = sampleSize))), summary(as.factor(sample(individuals50, size = sampleSize))), summary(as.factor(sample(individuals65, size = sampleSize)))) pop <- samplePop[names(samplePop) == "I"] #let it return zero instead of numeric(0) for(i in 1:3){ if(is.na(pop[i])){ pop[i] <- 0 } } return(pop/sampleSize) } ##################################################################### ## Model Calibration ##################################################################### trueGamma <- 0.02 calibModelRuns <- 1000 infPopPeak <- matrix(c(0, 0, 0), calibModelRuns, 3) resultPeak <- list() #to just store beta and gamma parameters from the reuslt LS.resultPeak <- c() #This step takes quite a long time print("Data Simulation Run Counter") for (i in 1:calibModelRuns) { infPopPeak[i,] <- sirModelPeakPrev(trueGamma) f.optPeak <- function(params) sum((sirModelPeakPrev(params)- infPopPeak[i,])^2 ) resultPeak[[i]] <- optim(c(runif(1, 0.01, 0.1)), f.optPeak, method = "Nelder-Mead",lower = 0.01, upper = 0.1, control=list(maxit=1000), hessian = T) LS.resultPeak[i] <- resultPeak[[i]]$par print(i) #to check number of runs } ##################################################################### ## Measuring performance ##################################################################### # Calculating the average calibrated parameteres avgParPeak <- round(mean(LS.resultPeak), 3) print("Average of the parameter estimates of gamma:") print(paste0('Model with 2 + Peak target features: gamma = ', avgParPeak)) #Calculating the Bias gBiasPeak <- avgParPeak - trueGamma print("The Percentage Bias of the parameter estimates of gamma:") print(paste0('Bias for Model with 2 + Peak target features: gamma Bias = ', gBiasPeak/trueGamma *100, '%' )) #Calculating the accuracy using the Root Mean Square Error gAccuPeak <- sqrt((sum((LS.resultPeak - trueGamma)^2)/calibModelRuns)) print("The accuracy of the parameter estimates for gamma using RMSE:") print(paste0('RMSE for Model with 2 + Peak target features: gamma = ', round(gAccuPeak, 3))) #Calculating the coverage using confidence intervals standErrorPeak <- c() for(i in 1:calibModelRuns){ standErrorPeak[i] <- sqrt(abs(diag(solve(resultPeak[[i]]$hessian)))) } # Now confidence intervals of the parameter estimates CI_Peak_g <- matrix(c(0, 0), calibModelRuns, 2) for(i in 1:calibModelRuns){ CI_Peak_g[i,] <- c(LS.resultPeak[i] - 1.96*standErrorPeak[i], LS.resultPeak[i] + 1.96*standErrorPeak[i]) } # Now to calculate coverage of the true estimate given the confidence intervals of the parameter estimates LSPeak_gcov <- sum((trueGamma >= CI_Peak_g[,1]) == TRUE & (trueGamma <= CI_Peak_g[,2]) == TRUE)/calibModelRuns * 100 print("The coverage of each parameter estimates of gamma given the CI's:") print(paste0('Coverage for Model with 2 + Peak target features: gamma = ', LSPeak_gcov, '%'))
require(dplyr) data <- read.table("household_power_consumption.txt", sep = ";", dec =".", stringsAsFactors = F, header = T) samp <- data %>% filter(Date %in% c("1/2/2007","2/2/2007")) datetime <- strptime(paste(samp$Date,samp$Time,sep = " "), format = "%d/%m/%Y %H:%M:%S") for (i in 3:8) { samp[, i] <- as.numeric(samp[, i]) } png("plot3.png", width = 480, height = 480) plot(datetime, samp[, 7], type = "l", xlab = " ", ylab = "Energy Sub Metering") lines(datetime, samp[, 8], type = "l", col = "red") lines(datetime, samp[, 9], type = "l", col = "blue") legend("topright", col = c("black", "red", "blue"), lty = 1, legend = c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3")) dev.off()
/plot3.R
no_license
kimlongngo/ExData_Plotting1
R
false
false
718
r
require(dplyr) data <- read.table("household_power_consumption.txt", sep = ";", dec =".", stringsAsFactors = F, header = T) samp <- data %>% filter(Date %in% c("1/2/2007","2/2/2007")) datetime <- strptime(paste(samp$Date,samp$Time,sep = " "), format = "%d/%m/%Y %H:%M:%S") for (i in 3:8) { samp[, i] <- as.numeric(samp[, i]) } png("plot3.png", width = 480, height = 480) plot(datetime, samp[, 7], type = "l", xlab = " ", ylab = "Energy Sub Metering") lines(datetime, samp[, 8], type = "l", col = "red") lines(datetime, samp[, 9], type = "l", col = "blue") legend("topright", col = c("black", "red", "blue"), lty = 1, legend = c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3")) dev.off()
install.packages(c("TTR", "forecast", "tseries")) # call libraries library(TTR) library(forecast) library(tseries) # read data wine <- read.csv("./dataset/timedata/AustralianWines.csv") head(wine) # 1980년 1월부터의 자료인 것을 확인할 수 있다. #====================================================== # Problem 1. Fortified, Red, Rose, Sparkling, Sweet white, 그리고 # Dry white 와인의 매출 자료의 시간변수를 생성하고 시계열 그림을 그려라. # make time series variables fortified <- wine$Fortified fortified.ts <- ts(fortified, frequency=12, start=c(1980, 1)) red <- wine$Red red.ts <- ts(red, frequency=12, start=c(1980, 1)) rose <- wine$Rose rose.ts <- ts(rose, frequency=12, start=c(1980, 1)) sparkling <- wine$sparkling sparkling.ts <- ts(sparkling, frequency=12, start=c(1980, 1)) sweetwhite <- wine$Sweet.white sweetwhite.ts <- ts(sweetwhite, frequency=12, start=c(1980, 1)) # timeseries plots layout(1:5) plot.ts(fortified.ts, main="Fortified wine") plot.ts(red.ts, main="Red wine") plot.ts(rose.ts, main="Rose wine") plot.ts(sparkling.ts, main="Sparkling wine") plot.ts(sweetwhite.ts, main="Dry white wine") #====================================================== # Problem 2. Red 와인 자료를 가지고 단순지수평활법과 Hold-Winter의 # 지수평활법을 적용하여 향후 1년의 매출을 예측해보아라. # 시계열 그림도 그려보아라. # Red wine: 단순지수평활법 red.ts.simple <- HoltWinters(red.ts, beta=FALSE, gamma=FALSE) red.ts.simple.forecasts <- forecast(red.ts.simple, h=12) red.ts.simple.forecasts # 1995년 매출 예측값 # Red wine: Holt-Winter 지수평활법 red.ts.hw <- HoltWinters(red.ts, gamma=FALSE) red.ts.hw.forecasts <- forecast(red.ts.hw, h=12) red.ts.hw.forecasts # 1995년 매출 예측값 # plots layout(1:2) plot(red.ts.simple.forecasts, main="단순지수평활법") plot(red.ts.hw.forecasts, main="Holt-Winter 지수평활법") #====================================================== # Problem 3. Sweet.white의 시계열 그림을 보고 정상성 여부를 확인하시오. # 또한 로그변환 후 정상성 여부를 확인해보시오. layout(1) plot.ts(sweetwhite.ts) adf.test(sweetwhite.ts) # p-value = 0.094, 유의수준 0.05에서 비정상적이다. plot.ts(log(sweetwhite.ts)) adf.test(log(sweetwhite.ts)) # p-value = 0.081, 유의수준 0.05에서 비정상적이다. #====================================================== # Problem 4. Sweet.white 자료를 1차 차분한 뒤 단위근 검정을 실애해보시오. sweetwhite.diff <- diff(sweetwhite.ts) plot.ts(sweetwhite.diff) adf.test(sweetwhite.diff) # p-value < 0.01, 정상성을 갖는 데이터로 변환되었다. #====================================================== # Problem 5. Sweet.white 자료에 ARIMA모형을 적합해 보아라. # ARMA(p, d, q) fitting # Problem 3-4에서 확인했듯이 정상성을 보장하기 인해 d=1로 놓는다. # 표본상관도표 layout(1:2) acf(sweetwhite.diff) pacf(sweetwhite.diff) # SACF, PACF 모두 첫 시차에서 시작해서 소멸하는 싸인함수 형태이므로 # p=q 라고 할 수 있다. # 첫 두 시차가 유의함을 볼 수 있으므로 p=q=2 라 하고, # ARMA(2, 1, 2)을 적합하자. sweetwhite.arima = arima(sweetwhite, order=c(2, 1, 2)) sweetwhite.arima sweetwhite.arima.forecasts <- forecast(sweetwhite.arima, h=12) layout(1) plot(sweetwhite.arima.forecasts)
/on_site_training/3. 고급 데이터 분석 - 정성규 교수님/Demo_Exercises/TimeSeries-exercise_sol.R
no_license
soykim-snail/Begas-BigDataTraining
R
false
false
3,445
r
install.packages(c("TTR", "forecast", "tseries")) # call libraries library(TTR) library(forecast) library(tseries) # read data wine <- read.csv("./dataset/timedata/AustralianWines.csv") head(wine) # 1980년 1월부터의 자료인 것을 확인할 수 있다. #====================================================== # Problem 1. Fortified, Red, Rose, Sparkling, Sweet white, 그리고 # Dry white 와인의 매출 자료의 시간변수를 생성하고 시계열 그림을 그려라. # make time series variables fortified <- wine$Fortified fortified.ts <- ts(fortified, frequency=12, start=c(1980, 1)) red <- wine$Red red.ts <- ts(red, frequency=12, start=c(1980, 1)) rose <- wine$Rose rose.ts <- ts(rose, frequency=12, start=c(1980, 1)) sparkling <- wine$sparkling sparkling.ts <- ts(sparkling, frequency=12, start=c(1980, 1)) sweetwhite <- wine$Sweet.white sweetwhite.ts <- ts(sweetwhite, frequency=12, start=c(1980, 1)) # timeseries plots layout(1:5) plot.ts(fortified.ts, main="Fortified wine") plot.ts(red.ts, main="Red wine") plot.ts(rose.ts, main="Rose wine") plot.ts(sparkling.ts, main="Sparkling wine") plot.ts(sweetwhite.ts, main="Dry white wine") #====================================================== # Problem 2. Red 와인 자료를 가지고 단순지수평활법과 Hold-Winter의 # 지수평활법을 적용하여 향후 1년의 매출을 예측해보아라. # 시계열 그림도 그려보아라. # Red wine: 단순지수평활법 red.ts.simple <- HoltWinters(red.ts, beta=FALSE, gamma=FALSE) red.ts.simple.forecasts <- forecast(red.ts.simple, h=12) red.ts.simple.forecasts # 1995년 매출 예측값 # Red wine: Holt-Winter 지수평활법 red.ts.hw <- HoltWinters(red.ts, gamma=FALSE) red.ts.hw.forecasts <- forecast(red.ts.hw, h=12) red.ts.hw.forecasts # 1995년 매출 예측값 # plots layout(1:2) plot(red.ts.simple.forecasts, main="단순지수평활법") plot(red.ts.hw.forecasts, main="Holt-Winter 지수평활법") #====================================================== # Problem 3. Sweet.white의 시계열 그림을 보고 정상성 여부를 확인하시오. # 또한 로그변환 후 정상성 여부를 확인해보시오. layout(1) plot.ts(sweetwhite.ts) adf.test(sweetwhite.ts) # p-value = 0.094, 유의수준 0.05에서 비정상적이다. plot.ts(log(sweetwhite.ts)) adf.test(log(sweetwhite.ts)) # p-value = 0.081, 유의수준 0.05에서 비정상적이다. #====================================================== # Problem 4. Sweet.white 자료를 1차 차분한 뒤 단위근 검정을 실애해보시오. sweetwhite.diff <- diff(sweetwhite.ts) plot.ts(sweetwhite.diff) adf.test(sweetwhite.diff) # p-value < 0.01, 정상성을 갖는 데이터로 변환되었다. #====================================================== # Problem 5. Sweet.white 자료에 ARIMA모형을 적합해 보아라. # ARMA(p, d, q) fitting # Problem 3-4에서 확인했듯이 정상성을 보장하기 인해 d=1로 놓는다. # 표본상관도표 layout(1:2) acf(sweetwhite.diff) pacf(sweetwhite.diff) # SACF, PACF 모두 첫 시차에서 시작해서 소멸하는 싸인함수 형태이므로 # p=q 라고 할 수 있다. # 첫 두 시차가 유의함을 볼 수 있으므로 p=q=2 라 하고, # ARMA(2, 1, 2)을 적합하자. sweetwhite.arima = arima(sweetwhite, order=c(2, 1, 2)) sweetwhite.arima sweetwhite.arima.forecasts <- forecast(sweetwhite.arima, h=12) layout(1) plot(sweetwhite.arima.forecasts)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/registry.R \name{add_credential_function} \alias{add_credential_function} \title{Add a new credential fetching function.} \usage{ add_credential_function(f) } \arguments{ \item{f}{A function with the right signature.} } \description{ Note that this implicitly adds \code{f} to the \emph{end} of the list. } \seealso{ Other registration: \code{\link{all_credential_functions}}, \code{\link{set_credential_functions}} }
/man/add_credential_function.Rd
permissive
sunivazquez/gauth
R
false
true
499
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/registry.R \name{add_credential_function} \alias{add_credential_function} \title{Add a new credential fetching function.} \usage{ add_credential_function(f) } \arguments{ \item{f}{A function with the right signature.} } \description{ Note that this implicitly adds \code{f} to the \emph{end} of the list. } \seealso{ Other registration: \code{\link{all_credential_functions}}, \code{\link{set_credential_functions}} }
library(rvest) washington <- read_html("https://www.washingtonian.com/2016/05/05/best-cheap-restaurants-in-washington-dc/") names <- washington %>% html_nodes(".styled-list a") %>% html_text() # build data frame numberToLoad <- 100 restaurants <- data.frame(matrix(nrow = length(names[1:numberToLoad]))) restaurants$Names <- names[1:numberToLoad] restaurants[1] <- NULL restaurants$Stars <- NA restaurants$Ratings <- NA restaurants$Addresses <- NA pb <- txtProgressBar(min = 0, max = length(restaurants$Names), style=3) for (i in 1:length(restaurants$Names)) { search <- read_html(paste("http://www.yelp.com/search?find_desc=", URLencode(restaurants$Names[i]), "&find_loc=Washington%2C+DC&ns=1", sep = "")) # record number of stars starSet <- search %>% html_nodes(".natural-search-result .star-img") %>% html_attr("class") stars <- as.numeric(gsub("_half", ".5", gsub("star-img stars_", "", starSet[1]) ) ) restaurants$Stars[i] <- stars # record number of ratings ratings <- search %>% html_node(".yloca-search-result+ .regular-search-result .rating-qualifier") %>% html_text() ratings <- gsub("\n ","",as.character(ratings)) ratings <- gsub("reviews","",as.character(ratings)) ratings <- as.numeric(ratings) restaurants$Ratings[i] <- ratings # record addresses addresses <- search %>% html_nodes(".yloca-search-result+ .regular-search-result address") addresses <- gsub("\n", "", addresses) addresses <- gsub("<address>", "", addresses) addresses <- gsub("</address>", "", addresses) addresses <- gsub("<br/>", " ", addresses) restaurants$Addresses[i] <- addresses # update progress bar setTxtProgressBar(pb, i) } # bayesian estimator populationRatings <- sum(restaurants$Ratings) / length(restaurants$Ratings) populationMean <- sum(restaurants$Stars) / length(restaurants$Stars) # squared bayesian removes errors but seems to give less of a spread # restaurants$BayesianSquared <- (restaurants$Ratings ^ 2) / (restaurants$Ratings ^ 2 + populationRatings ^ 2) * restaurants$Stars + # (populationRatings ^ 2) / (restaurants$Ratings ^ 2 + populationRatings ^ 2) * populationMean restaurants$Bayesian <- (restaurants$Ratings) / (restaurants$Ratings + populationRatings) * restaurants$Stars + (populationRatings) / (restaurants$Ratings + populationRatings) * populationMean restaurants$NormalizedBayes <- (restaurants$Bayesian - populationMean) / var(restaurants$Stars) library(ggmap) boozAddresses <- c("901 15th Street Northwest, Washington, DC 20005", "8283 Greensboro Drive, McLean, VA 22102", "1550 Crystal Drive, Arlington, VA 22202", "20 M Street Southeast 1000, Washington, DC 20003") boozPositions <- data.frame(matrix(nrow = 4)) for (i in 1:length(boozAddresses)) { position <- geocode(boozAddresses[i]); boozPositions$Latitudes[i] <- position$lat; boozPositions$Longitudes[i] <- position$lon; } boozPositions[1] <- NULL for (i in 1:length(restaurants$Addresses)) { position <- geocode(restaurants$Addresses[i]); restaurants$Latitudes[i] <- position$lat restaurants$Longitudes[i] <- position$lon restaurants$Distances[i] <- mapdist(boozAddresses[1], restaurants$Addresses[i], mode = "driving")$minutes } meanDistance <- sum(restaurants$Distances) / length(restaurants$Distances) restaurants$NormalizedDistances <- (restaurants$Distances - meanDistance) / var(restaurants$Distances) restaurants$WeightedRating <- restaurants$NormalizedBayes - restaurants$NormalizedDistances * 10 library(ggplot2) library(ggmap) # getting the map map <- get_map(location = c(lon = mean(restaurants$Longitudes), lat = mean(restaurants$Latitudes)), zoom = 12, maptype = "roadmap", scale = 2) # plotting the map with some points on it ggmap(map) + geom_point(data = restaurants, aes(x = Longitudes, y = Latitudes, fill = "red", alpha = 0.8), size = 5, shape = 21) + geom_point(data = boozPositions, aes(x = Longitudes, y = Latitudes, fill = "blue", alpha = 0.8), size = 5, shape = 21) + guides(fill=FALSE, alpha=FALSE, size=FALSE) library(leaflet) library(rgdal) pal <- colorNumeric( palette = "Blues", domain = restaurants$WeightedRating ) m <- leaflet() %>% addTiles() %>% # Add default OpenStreetMap map tiles addCircleMarkers(m, lng = restaurants$Longitudes, lat = restaurants$Latitudes, popup = restaurants$Names, color = pal(restaurants$WeightedRating)) %>% addCircleMarkers(m, lng = boozPositions$Longitudes, lat = boozPositions$Latitudes, popup = "Booz Allen Office", color = "red", fillColor = "red") m # Print the map
/restaurants.R
no_license
danielgwilson/RestaurantDC
R
false
false
4,700
r
library(rvest) washington <- read_html("https://www.washingtonian.com/2016/05/05/best-cheap-restaurants-in-washington-dc/") names <- washington %>% html_nodes(".styled-list a") %>% html_text() # build data frame numberToLoad <- 100 restaurants <- data.frame(matrix(nrow = length(names[1:numberToLoad]))) restaurants$Names <- names[1:numberToLoad] restaurants[1] <- NULL restaurants$Stars <- NA restaurants$Ratings <- NA restaurants$Addresses <- NA pb <- txtProgressBar(min = 0, max = length(restaurants$Names), style=3) for (i in 1:length(restaurants$Names)) { search <- read_html(paste("http://www.yelp.com/search?find_desc=", URLencode(restaurants$Names[i]), "&find_loc=Washington%2C+DC&ns=1", sep = "")) # record number of stars starSet <- search %>% html_nodes(".natural-search-result .star-img") %>% html_attr("class") stars <- as.numeric(gsub("_half", ".5", gsub("star-img stars_", "", starSet[1]) ) ) restaurants$Stars[i] <- stars # record number of ratings ratings <- search %>% html_node(".yloca-search-result+ .regular-search-result .rating-qualifier") %>% html_text() ratings <- gsub("\n ","",as.character(ratings)) ratings <- gsub("reviews","",as.character(ratings)) ratings <- as.numeric(ratings) restaurants$Ratings[i] <- ratings # record addresses addresses <- search %>% html_nodes(".yloca-search-result+ .regular-search-result address") addresses <- gsub("\n", "", addresses) addresses <- gsub("<address>", "", addresses) addresses <- gsub("</address>", "", addresses) addresses <- gsub("<br/>", " ", addresses) restaurants$Addresses[i] <- addresses # update progress bar setTxtProgressBar(pb, i) } # bayesian estimator populationRatings <- sum(restaurants$Ratings) / length(restaurants$Ratings) populationMean <- sum(restaurants$Stars) / length(restaurants$Stars) # squared bayesian removes errors but seems to give less of a spread # restaurants$BayesianSquared <- (restaurants$Ratings ^ 2) / (restaurants$Ratings ^ 2 + populationRatings ^ 2) * restaurants$Stars + # (populationRatings ^ 2) / (restaurants$Ratings ^ 2 + populationRatings ^ 2) * populationMean restaurants$Bayesian <- (restaurants$Ratings) / (restaurants$Ratings + populationRatings) * restaurants$Stars + (populationRatings) / (restaurants$Ratings + populationRatings) * populationMean restaurants$NormalizedBayes <- (restaurants$Bayesian - populationMean) / var(restaurants$Stars) library(ggmap) boozAddresses <- c("901 15th Street Northwest, Washington, DC 20005", "8283 Greensboro Drive, McLean, VA 22102", "1550 Crystal Drive, Arlington, VA 22202", "20 M Street Southeast 1000, Washington, DC 20003") boozPositions <- data.frame(matrix(nrow = 4)) for (i in 1:length(boozAddresses)) { position <- geocode(boozAddresses[i]); boozPositions$Latitudes[i] <- position$lat; boozPositions$Longitudes[i] <- position$lon; } boozPositions[1] <- NULL for (i in 1:length(restaurants$Addresses)) { position <- geocode(restaurants$Addresses[i]); restaurants$Latitudes[i] <- position$lat restaurants$Longitudes[i] <- position$lon restaurants$Distances[i] <- mapdist(boozAddresses[1], restaurants$Addresses[i], mode = "driving")$minutes } meanDistance <- sum(restaurants$Distances) / length(restaurants$Distances) restaurants$NormalizedDistances <- (restaurants$Distances - meanDistance) / var(restaurants$Distances) restaurants$WeightedRating <- restaurants$NormalizedBayes - restaurants$NormalizedDistances * 10 library(ggplot2) library(ggmap) # getting the map map <- get_map(location = c(lon = mean(restaurants$Longitudes), lat = mean(restaurants$Latitudes)), zoom = 12, maptype = "roadmap", scale = 2) # plotting the map with some points on it ggmap(map) + geom_point(data = restaurants, aes(x = Longitudes, y = Latitudes, fill = "red", alpha = 0.8), size = 5, shape = 21) + geom_point(data = boozPositions, aes(x = Longitudes, y = Latitudes, fill = "blue", alpha = 0.8), size = 5, shape = 21) + guides(fill=FALSE, alpha=FALSE, size=FALSE) library(leaflet) library(rgdal) pal <- colorNumeric( palette = "Blues", domain = restaurants$WeightedRating ) m <- leaflet() %>% addTiles() %>% # Add default OpenStreetMap map tiles addCircleMarkers(m, lng = restaurants$Longitudes, lat = restaurants$Latitudes, popup = restaurants$Names, color = pal(restaurants$WeightedRating)) %>% addCircleMarkers(m, lng = boozPositions$Longitudes, lat = boozPositions$Latitudes, popup = "Booz Allen Office", color = "red", fillColor = "red") m # Print the map
###########################################################################/** # @RdocFunction withCapture # @alias evalCapture # # @title "Evaluates an expression and captures the code and/or the output" # # \description{ # @get "title". # } # # @synopsis # # \arguments{ # \item{expr}{The R expression to be evaluated.} # \item{substitute}{An optional named @list used for substituting # symbols with other strings.} # \item{code}{If @TRUE, the deparsed code of the expression is echoed.} # \item{output}{If @TRUE, the output of each evaluated subexpression # is echoed.} # \item{...}{Additional arguments passed to @see "R.utils::sourceTo" # which in turn passes arguments to @see "base::source".} # \item{max.deparse.length}{A positive @integer specifying the maximum # length of a deparsed expression, before truncating it.} # \item{trim}{If @TRUE, the captured rows are trimmed.} # \item{newline}{If @TRUE and \code{collapse} is non-@NULL, a newline # is appended at the end.} # \item{collapse}{A @character string used for collapsing the captured # rows. If @NULL, the rows are not collapsed.} # \item{envir}{The @environment in which the expression is evaluated.} # } # # \value{ # Returns a @character string class 'CapturedEvaluation'. # } # # @examples "../incl/withCapture.Rex" # # @author # # \seealso{ # Internally, @see "base::eval" is used to evaluate the expression. # } # # @keyword utilities #*/########################################################################### withCapture <- function(expr, substitute=getOption("withCapture/substitute", ".x."), code=TRUE, output=code, ..., max.deparse.length=getOption("max.deparse.length", 10e3), trim=TRUE, newline=getOption("withCapture/newline", TRUE), collapse="\n", envir=parent.frame()) { # Get code/expression without evaluating it expr2 <- substitute(expr); # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Substitute? # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # (a) Substitute by "constant" symbols? if (is.list(substitute) && (length(substitute) > 0L)) { names <- names(substitute); if (is.null(names)) throw("Argument 'substitute' must be named."); expr2 <- do.call(base::substitute, args=list(expr2, substitute)) } # (b) Substitute code by regular expressions? if (is.character(substitute) && (length(substitute) > 0L)) { patterns <- names(substitute); replacements <- substitute; # Predefined rules? if (is.null(patterns)) { patterns <- rep(NA_character_, times=length(replacements)); for (kk in seq_along(replacements)) { replacement <- replacements[kk]; if (identical(replacement, ".x.")) { patterns[kk] <- "^[.]([a-zA-Z0-9_.]+)[.]$" replacements[kk] <- "\\1"; } else if (identical(replacement, "..x..")) { patterns[kk] <- "^[.][.]([a-zA-Z0-9_.]+)[.][.]$" replacements[kk] <- "\\1"; } } unknown <- replacements[is.na(patterns)]; if (length(unknown) > 0L) { throw("Unknown substitution rules: ", paste(sQuote(unknown), collapse=", ")); } } if (is.null(patterns)) throw("Argument 'substitute' must be named."); # (b) Substitute via regular expression for (kk in seq_along(replacements)) { pattern <- patterns[kk]; replacement <- replacements[kk]; expr2 <- egsub(pattern, replacement, expr2, envir=envir); } } # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Deparse # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # WAS: ## sourceCode <- capture.output(print(expr2)); sourceCode <- deparse(expr2, width.cutoff=getOption("deparse.cutoff", 60L)); # Nothing todo? if (length(sourceCode) == 0L) { ## Can this ever happen? /HB 2015-05-27 return(structure(character(0L), class=c("CapturedEvaluation", "character"))); } # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Trim code # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Trim of surrounding { ... } if (sourceCode[1L] == "{") { sourceCode <- sourceCode[-c(1L, length(sourceCode))]; # Nothing todo? if (length(sourceCode) == 0L) { return(structure(character(0L), class=c("CapturedEvaluation", "character"))); } # Drop shortest white space prefix prefix <- gsub("^([ \t]*).*", "\\1", sourceCode); minPrefix <- min(nchar(prefix), na.rm=TRUE); if (minPrefix > 0L) { sourceCode <- substring(sourceCode, first=minPrefix+1); } # WORKAROUND: Put standalone 'else':s together with previous statement. # This solves the problem described in R help thread "deparse() and the # 'else' statement" by Yihui Xie on 2009-11-09 # [http://tolstoy.newcastle.edu.au/R/e8/help/09/11/4204.html], where # deparse puts 'else' on a new line iff if-else statement is enclosed # in an { ... } expression, e.g. # cat(deparse(substitute({if (T) 1 else 2})), sep="\n") gives: # { # if (T) # 1 # else 2 # } # whereas deparse(substitute(if (T) 1 else 2)) gives: # if (T) 1 else 2 # /HB 2014-08-12 idxs <- grep("^[ ]*else[ ]*", sourceCode); if (length(idxs) > 0L) { if (any(idxs == 1L)) { stop("INTERNAL ERROR: Detected 'else' statement at the very beginning: ", paste(sourceCode, collapse="\n")); } sourceCode[idxs-1L] <- paste(sourceCode[idxs-1L], sourceCode[idxs], sep=" "); sourceCode <- sourceCode[-idxs]; } } # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Evalute code expression # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # WORKAROUND: The following will *not* evaluate in environment # 'envir' due to capture.output() *unless* we evaluate 'envir' # before. This sanity check will do that. /HB 2011-11-23 stopifnot(is.environment(envir)); # Evaluate the sourceCode via source() con <- textConnection(sourceCode, open="r"); res <- captureOutput({ sourceTo(file=con, echo=code, print.eval=output, max.deparse.length=max.deparse.length, ..., envir=envir); }); # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Cleanup captured output? # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Drop empty lines? if (trim) { res <- res[nchar(res) > 0L]; } if (!is.null(collapse)) { if (newline) res <- c(res, ""); res <- paste(res, collapse=collapse); } class(res) <- c("CapturedEvaluation", class(res)); res; } # withCapture() # BACKWARD COMPATIBIILTY evalCapture <- withCapture setMethodS3("print", "CapturedEvaluation", function(x, ...) { cat(x); }) ############################################################################## # HISTORY: # 2014-12-02 # o withCapture({}) no longer generates a warning. # 2014-08-12 # o BUG FIX: withCapture({ if (T) 1 else 2 }) would give a parse error on # "unexpected 'else'", because the internal deparsing puts the 'else' # statement on a new line whenever an if-else statement is enclosed # in an { ... } expression. This problem is also described in R help # thread "deparse() and the 'else' statement" by Yihui Xie on 2009-11-09 # [http://tolstoy.newcastle.edu.au/R/e8/help/09/11/4204.html]. The # workaround is to detect standalone 'else' statements and merge them # with the previous line. # 2014-05-06 # o Added support for expression substitution via regular expressions. # The default is now to substitute any '.x.' with gstring("${x}"). # 2014-05-01 # o Renamed evalCapture() to withCapture(). Old name kept for backward # compatibility, but will eventually be deprecated. # 2014-04-26 # o Added option "evalCapture/newline". # 2014-04-24 # o Added argument 'newline' to evalCapture(). # 2014-04-22 # o Added argument 'substitute' to evalCapture() for substituting symbols # "on the fly" in the expression before it is evaluated. # 2014-04-09 # o Added argument 'max.deparse.length' to evalCapture(). # 2014-04-06 # o Now evalCapture() utilizes deparse() to get the source code and # acknowledges options 'deparse.cutoff' to control the code wrapping. # Previously capture.output(print()) was used. # 2011-11-23 # o BUG FIX: evalCapture() with argument 'envir' defaulting to parent.frame() # would not be evaluated in the parent frame as it should. It appears # that the internal capture.output() prevents this from happening, unless # argument 'envir' is explictly evaluated within evalCapture(). # 2011-11-05 # o Added evalCapture(..., code=TRUE, output=TRUE), which is adopted from # evalWithEcho() in R.rsp v0.6.5. # # HISTORY of evalWithEcho() in R.rsp: # 2011-03-28 # o Rewrote evalWithEcho() so that it utilizes source(..., echo=TRUE). # o BUG FIX: evalWithEcho() would only add the prompt to the first line. # 2011-03-15 # o Added evalWithEcho(). # o Created. ##############################################################################
/R.utils/R/withCapture.R
no_license
ingted/R-Examples
R
false
false
9,176
r
###########################################################################/** # @RdocFunction withCapture # @alias evalCapture # # @title "Evaluates an expression and captures the code and/or the output" # # \description{ # @get "title". # } # # @synopsis # # \arguments{ # \item{expr}{The R expression to be evaluated.} # \item{substitute}{An optional named @list used for substituting # symbols with other strings.} # \item{code}{If @TRUE, the deparsed code of the expression is echoed.} # \item{output}{If @TRUE, the output of each evaluated subexpression # is echoed.} # \item{...}{Additional arguments passed to @see "R.utils::sourceTo" # which in turn passes arguments to @see "base::source".} # \item{max.deparse.length}{A positive @integer specifying the maximum # length of a deparsed expression, before truncating it.} # \item{trim}{If @TRUE, the captured rows are trimmed.} # \item{newline}{If @TRUE and \code{collapse} is non-@NULL, a newline # is appended at the end.} # \item{collapse}{A @character string used for collapsing the captured # rows. If @NULL, the rows are not collapsed.} # \item{envir}{The @environment in which the expression is evaluated.} # } # # \value{ # Returns a @character string class 'CapturedEvaluation'. # } # # @examples "../incl/withCapture.Rex" # # @author # # \seealso{ # Internally, @see "base::eval" is used to evaluate the expression. # } # # @keyword utilities #*/########################################################################### withCapture <- function(expr, substitute=getOption("withCapture/substitute", ".x."), code=TRUE, output=code, ..., max.deparse.length=getOption("max.deparse.length", 10e3), trim=TRUE, newline=getOption("withCapture/newline", TRUE), collapse="\n", envir=parent.frame()) { # Get code/expression without evaluating it expr2 <- substitute(expr); # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Substitute? # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # (a) Substitute by "constant" symbols? if (is.list(substitute) && (length(substitute) > 0L)) { names <- names(substitute); if (is.null(names)) throw("Argument 'substitute' must be named."); expr2 <- do.call(base::substitute, args=list(expr2, substitute)) } # (b) Substitute code by regular expressions? if (is.character(substitute) && (length(substitute) > 0L)) { patterns <- names(substitute); replacements <- substitute; # Predefined rules? if (is.null(patterns)) { patterns <- rep(NA_character_, times=length(replacements)); for (kk in seq_along(replacements)) { replacement <- replacements[kk]; if (identical(replacement, ".x.")) { patterns[kk] <- "^[.]([a-zA-Z0-9_.]+)[.]$" replacements[kk] <- "\\1"; } else if (identical(replacement, "..x..")) { patterns[kk] <- "^[.][.]([a-zA-Z0-9_.]+)[.][.]$" replacements[kk] <- "\\1"; } } unknown <- replacements[is.na(patterns)]; if (length(unknown) > 0L) { throw("Unknown substitution rules: ", paste(sQuote(unknown), collapse=", ")); } } if (is.null(patterns)) throw("Argument 'substitute' must be named."); # (b) Substitute via regular expression for (kk in seq_along(replacements)) { pattern <- patterns[kk]; replacement <- replacements[kk]; expr2 <- egsub(pattern, replacement, expr2, envir=envir); } } # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Deparse # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # WAS: ## sourceCode <- capture.output(print(expr2)); sourceCode <- deparse(expr2, width.cutoff=getOption("deparse.cutoff", 60L)); # Nothing todo? if (length(sourceCode) == 0L) { ## Can this ever happen? /HB 2015-05-27 return(structure(character(0L), class=c("CapturedEvaluation", "character"))); } # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Trim code # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Trim of surrounding { ... } if (sourceCode[1L] == "{") { sourceCode <- sourceCode[-c(1L, length(sourceCode))]; # Nothing todo? if (length(sourceCode) == 0L) { return(structure(character(0L), class=c("CapturedEvaluation", "character"))); } # Drop shortest white space prefix prefix <- gsub("^([ \t]*).*", "\\1", sourceCode); minPrefix <- min(nchar(prefix), na.rm=TRUE); if (minPrefix > 0L) { sourceCode <- substring(sourceCode, first=minPrefix+1); } # WORKAROUND: Put standalone 'else':s together with previous statement. # This solves the problem described in R help thread "deparse() and the # 'else' statement" by Yihui Xie on 2009-11-09 # [http://tolstoy.newcastle.edu.au/R/e8/help/09/11/4204.html], where # deparse puts 'else' on a new line iff if-else statement is enclosed # in an { ... } expression, e.g. # cat(deparse(substitute({if (T) 1 else 2})), sep="\n") gives: # { # if (T) # 1 # else 2 # } # whereas deparse(substitute(if (T) 1 else 2)) gives: # if (T) 1 else 2 # /HB 2014-08-12 idxs <- grep("^[ ]*else[ ]*", sourceCode); if (length(idxs) > 0L) { if (any(idxs == 1L)) { stop("INTERNAL ERROR: Detected 'else' statement at the very beginning: ", paste(sourceCode, collapse="\n")); } sourceCode[idxs-1L] <- paste(sourceCode[idxs-1L], sourceCode[idxs], sep=" "); sourceCode <- sourceCode[-idxs]; } } # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Evalute code expression # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # WORKAROUND: The following will *not* evaluate in environment # 'envir' due to capture.output() *unless* we evaluate 'envir' # before. This sanity check will do that. /HB 2011-11-23 stopifnot(is.environment(envir)); # Evaluate the sourceCode via source() con <- textConnection(sourceCode, open="r"); res <- captureOutput({ sourceTo(file=con, echo=code, print.eval=output, max.deparse.length=max.deparse.length, ..., envir=envir); }); # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Cleanup captured output? # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Drop empty lines? if (trim) { res <- res[nchar(res) > 0L]; } if (!is.null(collapse)) { if (newline) res <- c(res, ""); res <- paste(res, collapse=collapse); } class(res) <- c("CapturedEvaluation", class(res)); res; } # withCapture() # BACKWARD COMPATIBIILTY evalCapture <- withCapture setMethodS3("print", "CapturedEvaluation", function(x, ...) { cat(x); }) ############################################################################## # HISTORY: # 2014-12-02 # o withCapture({}) no longer generates a warning. # 2014-08-12 # o BUG FIX: withCapture({ if (T) 1 else 2 }) would give a parse error on # "unexpected 'else'", because the internal deparsing puts the 'else' # statement on a new line whenever an if-else statement is enclosed # in an { ... } expression. This problem is also described in R help # thread "deparse() and the 'else' statement" by Yihui Xie on 2009-11-09 # [http://tolstoy.newcastle.edu.au/R/e8/help/09/11/4204.html]. The # workaround is to detect standalone 'else' statements and merge them # with the previous line. # 2014-05-06 # o Added support for expression substitution via regular expressions. # The default is now to substitute any '.x.' with gstring("${x}"). # 2014-05-01 # o Renamed evalCapture() to withCapture(). Old name kept for backward # compatibility, but will eventually be deprecated. # 2014-04-26 # o Added option "evalCapture/newline". # 2014-04-24 # o Added argument 'newline' to evalCapture(). # 2014-04-22 # o Added argument 'substitute' to evalCapture() for substituting symbols # "on the fly" in the expression before it is evaluated. # 2014-04-09 # o Added argument 'max.deparse.length' to evalCapture(). # 2014-04-06 # o Now evalCapture() utilizes deparse() to get the source code and # acknowledges options 'deparse.cutoff' to control the code wrapping. # Previously capture.output(print()) was used. # 2011-11-23 # o BUG FIX: evalCapture() with argument 'envir' defaulting to parent.frame() # would not be evaluated in the parent frame as it should. It appears # that the internal capture.output() prevents this from happening, unless # argument 'envir' is explictly evaluated within evalCapture(). # 2011-11-05 # o Added evalCapture(..., code=TRUE, output=TRUE), which is adopted from # evalWithEcho() in R.rsp v0.6.5. # # HISTORY of evalWithEcho() in R.rsp: # 2011-03-28 # o Rewrote evalWithEcho() so that it utilizes source(..., echo=TRUE). # o BUG FIX: evalWithEcho() would only add the prompt to the first line. # 2011-03-15 # o Added evalWithEcho(). # o Created. ##############################################################################
pairs(NOISE ~., filter) # Plot data par(mfrow = c(1,2)) boxplot(NOISE ~ size, df, xlab = "Gender", ylab = "Distance", col = c(2,3)) boxplot(Distance ~ Grade, df, xlab = "Grade", ylab = "Distance") boxplot(Distance ~ Gender, df, xlab = "Gender", ylab = "Distance", col = c(2,3)) plot(as.numeric(df$Gender), df$Distance, col = as.numeric(df$Gender)+1, pch = as.numeric(df$Grade), xlab = "Gender", ylab = "Distance") legend("center", legend = c("Boys 7th", "Boys 8th", "Girls 7th", "Girls 8th"), col = c(2,2,3,3), pch = c(1,1,2,2))
/Exercises_AppliedStatisticsCourse/fertilizer.R
no_license
rebekabato/DTU-archive
R
false
false
536
r
pairs(NOISE ~., filter) # Plot data par(mfrow = c(1,2)) boxplot(NOISE ~ size, df, xlab = "Gender", ylab = "Distance", col = c(2,3)) boxplot(Distance ~ Grade, df, xlab = "Grade", ylab = "Distance") boxplot(Distance ~ Gender, df, xlab = "Gender", ylab = "Distance", col = c(2,3)) plot(as.numeric(df$Gender), df$Distance, col = as.numeric(df$Gender)+1, pch = as.numeric(df$Grade), xlab = "Gender", ylab = "Distance") legend("center", legend = c("Boys 7th", "Boys 8th", "Girls 7th", "Girls 8th"), col = c(2,2,3,3), pch = c(1,1,2,2))
\name{mUnits} \alias{mUnits} \title{Metric system} \description{This function control metric units.} \usage{mUnits(x, from = "mm", to = "mm")} \arguments{ \item{x}{\code{numeric} vector.} \item{from}{\code{character}. Initial metric unit.} \item{to}{\code{character}. Final metric unit.} } \details{Characters in \code{from} and \code{to} arguments have the form 'p_', where 'p' is the metric prefix and '_' is a base unit. Sixteen metric prefixes are supported: atto 'a', femto 'f', pico 'p', nano 'n', micro 'mm', mili 'm', centi 'c', deci 'd', deca 'da', hecto 'h', kilo 'k', mega 'M', giga 'G', tera 'T', peta 'P', and exa 'E'.} \value{\code{numeric} vector.} \author{Wilson Lara <wilarhen@gmail.com>, Felipe Bravo <fbravo@pvs.uva.es>} \examples{ ## Simulation of TRW data set.seed(1) w <- abs(rnorm(12,1,1)) trw <- ts(w,start = 1970) ## transforming metric units of trw vector from milimeters to meters sr <- mUnits(trw, from = 'mm', to = 'm') attributes(sr) }
/man/mUnits.Rd
no_license
cran/BIOdry
R
false
false
1,012
rd
\name{mUnits} \alias{mUnits} \title{Metric system} \description{This function control metric units.} \usage{mUnits(x, from = "mm", to = "mm")} \arguments{ \item{x}{\code{numeric} vector.} \item{from}{\code{character}. Initial metric unit.} \item{to}{\code{character}. Final metric unit.} } \details{Characters in \code{from} and \code{to} arguments have the form 'p_', where 'p' is the metric prefix and '_' is a base unit. Sixteen metric prefixes are supported: atto 'a', femto 'f', pico 'p', nano 'n', micro 'mm', mili 'm', centi 'c', deci 'd', deca 'da', hecto 'h', kilo 'k', mega 'M', giga 'G', tera 'T', peta 'P', and exa 'E'.} \value{\code{numeric} vector.} \author{Wilson Lara <wilarhen@gmail.com>, Felipe Bravo <fbravo@pvs.uva.es>} \examples{ ## Simulation of TRW data set.seed(1) w <- abs(rnorm(12,1,1)) trw <- ts(w,start = 1970) ## transforming metric units of trw vector from milimeters to meters sr <- mUnits(trw, from = 'mm', to = 'm') attributes(sr) }
# Obtenemos el directorio de trabajo actual currentWD <- getwd() # Obtenemos el directorio del proyecto dirProyect <- dirname(rstudioapi::getSourceEditorContext()$path) # Verificamos si estamos en el mismo directorio del proyecto if (dirProyect != currentWD) { setwd(dirProyect) # Ponemos el directorio del proyecto } # Obtenemos el directorio donde se guardaran los archivos dirDataFrame <- paste(dirProyect, "/data-postwork3", sep = "") # Ponemos el directorio de trabajo en la carpeta donde se guardaran nuestro archivos setwd(dirDataFrame) # URL de los datos u1718 <- "https://www.football-data.co.uk/mmz4281/1718/SP1.csv" u1819 <- "https://www.football-data.co.uk/mmz4281/1819/SP1.csv" u1920 <- "https://www.football-data.co.uk/mmz4281/1920/SP1.csv" # Obtenemos los datos y los almacenamos en los data frames. download.file(url = u1718, destfile = "sp1-esp-1718.csv", mode = "wb") download.file(url = u1819, destfile = "sp1-esp-1819.csv", mode = "wb") download.file(url = u1920, destfile = "sp1-esp-1920.csv", mode = "wb") # Revisamos los archivos en el directorio dir() # Cargamos los archivos en una lista files.sp1.esp <- lapply(dir(), read.csv) # Obtenemos sus caracteristicas # str nos sirve para conocer el tipo y el nombre de cada todo dentro de nuestro dataframe str(files.sp1.esp[1]) # head nos trae los primeros 6 elementos dentro nuestro data frame. head(files.sp1.esp[1]) # View nos muestra los datos en formato de tabla para visualizar el contenido View(files.sp1.esp[1]) # summary nos data un resumen de cada columna de nuestro data frame. summary(files.sp1.esp[1]) # Invocamos nuestra biblioteca dplyr library(dplyr) # Seleccionamos nuestras 6 variables de interes. files.sp1.esp <- lapply(files.sp1.esp, select, Date, HomeTeam, AwayTeam, FTHG, FTAG, FTR) str(files.sp1.esp) # Verificamos que nuestra salida sea la correcta # Cambiamos el tipo de nuestras variables de cada archivo en la lista files.sp1.esp <- lapply(files.sp1.esp, mutate, Date = as.Date(Date, "%Y-%m-%d")) str(files.sp1.esp) # Verificamos que nuestra salida sea correcta # Combinamos nuestros documentos en un solo data frame. sp1.esp.1720 <- do.call(rbind, files.sp1.esp) # Ordenamos nuestro dataframe de forma creciente. sp1.esp.1720 <- sp1.esp.1720[order(sp1.esp.1720$Date), ] str(sp1.esp.1720) # Verificamos nuestra salida dim(sp1.esp.1720) # Obtenemos las dimensiones head(sp1.esp.1720) # Vemos los primeros 6 elementos. tail(sp1.esp.1720) # Vemos los ultimos 6 elementos. # Guardamos nuestro nuestro nuevo data frame como csv. write.csv(sp1.esp.1720, "sp1-esp-1720.csv", row.names = F)
/Sesion 2/postwork/postwork-s2.R
no_license
Deltarios/bedu-postwork-e2p1
R
false
false
2,603
r
# Obtenemos el directorio de trabajo actual currentWD <- getwd() # Obtenemos el directorio del proyecto dirProyect <- dirname(rstudioapi::getSourceEditorContext()$path) # Verificamos si estamos en el mismo directorio del proyecto if (dirProyect != currentWD) { setwd(dirProyect) # Ponemos el directorio del proyecto } # Obtenemos el directorio donde se guardaran los archivos dirDataFrame <- paste(dirProyect, "/data-postwork3", sep = "") # Ponemos el directorio de trabajo en la carpeta donde se guardaran nuestro archivos setwd(dirDataFrame) # URL de los datos u1718 <- "https://www.football-data.co.uk/mmz4281/1718/SP1.csv" u1819 <- "https://www.football-data.co.uk/mmz4281/1819/SP1.csv" u1920 <- "https://www.football-data.co.uk/mmz4281/1920/SP1.csv" # Obtenemos los datos y los almacenamos en los data frames. download.file(url = u1718, destfile = "sp1-esp-1718.csv", mode = "wb") download.file(url = u1819, destfile = "sp1-esp-1819.csv", mode = "wb") download.file(url = u1920, destfile = "sp1-esp-1920.csv", mode = "wb") # Revisamos los archivos en el directorio dir() # Cargamos los archivos en una lista files.sp1.esp <- lapply(dir(), read.csv) # Obtenemos sus caracteristicas # str nos sirve para conocer el tipo y el nombre de cada todo dentro de nuestro dataframe str(files.sp1.esp[1]) # head nos trae los primeros 6 elementos dentro nuestro data frame. head(files.sp1.esp[1]) # View nos muestra los datos en formato de tabla para visualizar el contenido View(files.sp1.esp[1]) # summary nos data un resumen de cada columna de nuestro data frame. summary(files.sp1.esp[1]) # Invocamos nuestra biblioteca dplyr library(dplyr) # Seleccionamos nuestras 6 variables de interes. files.sp1.esp <- lapply(files.sp1.esp, select, Date, HomeTeam, AwayTeam, FTHG, FTAG, FTR) str(files.sp1.esp) # Verificamos que nuestra salida sea la correcta # Cambiamos el tipo de nuestras variables de cada archivo en la lista files.sp1.esp <- lapply(files.sp1.esp, mutate, Date = as.Date(Date, "%Y-%m-%d")) str(files.sp1.esp) # Verificamos que nuestra salida sea correcta # Combinamos nuestros documentos en un solo data frame. sp1.esp.1720 <- do.call(rbind, files.sp1.esp) # Ordenamos nuestro dataframe de forma creciente. sp1.esp.1720 <- sp1.esp.1720[order(sp1.esp.1720$Date), ] str(sp1.esp.1720) # Verificamos nuestra salida dim(sp1.esp.1720) # Obtenemos las dimensiones head(sp1.esp.1720) # Vemos los primeros 6 elementos. tail(sp1.esp.1720) # Vemos los ultimos 6 elementos. # Guardamos nuestro nuestro nuevo data frame como csv. write.csv(sp1.esp.1720, "sp1-esp-1720.csv", row.names = F)
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/customvision_imgs.R \name{browse_images} \alias{browse_images} \title{View images uploaded to a Custom Vision project} \usage{ browse_images(project, img_ids, which = c("resized", "original", "thumbnail"), max_images = 20, iteration = NULL) } \arguments{ \item{project}{A Custom Vision project.} \item{img_ids}{The IDs of the images to view. You can use \code{\link{list_images}} to get the image IDs for this project.} \item{which}{Which image to view: the resized version used for training (the default), the original uploaded image, or the thumbnail.} \item{max_images}{The maximum number of images to display.} \item{iteration}{The iteration ID (roughly, which model generation to use). Defaults to the latest iteration.} } \description{ View images uploaded to a Custom Vision project } \details{ Images in a Custom Vision project are stored in Azure Storage. This function gets the URLs for the uploaded images and displays them in your browser. } \seealso{ \code{\link{list_images}} }
/man/browse_images.Rd
permissive
isabella232/AzureVision
R
false
true
1,076
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/customvision_imgs.R \name{browse_images} \alias{browse_images} \title{View images uploaded to a Custom Vision project} \usage{ browse_images(project, img_ids, which = c("resized", "original", "thumbnail"), max_images = 20, iteration = NULL) } \arguments{ \item{project}{A Custom Vision project.} \item{img_ids}{The IDs of the images to view. You can use \code{\link{list_images}} to get the image IDs for this project.} \item{which}{Which image to view: the resized version used for training (the default), the original uploaded image, or the thumbnail.} \item{max_images}{The maximum number of images to display.} \item{iteration}{The iteration ID (roughly, which model generation to use). Defaults to the latest iteration.} } \description{ View images uploaded to a Custom Vision project } \details{ Images in a Custom Vision project are stored in Azure Storage. This function gets the URLs for the uploaded images and displays them in your browser. } \seealso{ \code{\link{list_images}} }
vwc.data.50cm <- read.csv('C:/Users/smdevine/Desktop/rangeland project/soilmoisture/all.sites.50cmVWC.csv', stringsAsFactors = FALSE) lapply(vwc.data.50cm, class) time.cols <- grepl('time', colnames(vwc.data.50cm)) vwc.cols <- grepl('VWC', colnames(vwc.data.50cm)) vwc.data.50cm[,time.cols] <- lapply(vwc.data.50cm[,time.cols], strptime, format="%m/%d/%Y %H:%M") head(vwc.data.50cm$Adelaida.time) lapply(vwc.data.50cm[,vwc.cols], summary) vwc.data.50cm[,vwc.cols] <- lapply(vwc.data.50cm[,vwc.cols], function(x) ifelse(x < 0, NA, x)) lapply(vwc.data.50cm[,vwc.cols], summary) plot(vwc.data.50cm$Adelaida.time, vwc.data.50cm$Adelaida.VWC.50cm) #full wet-up almost every winter plot(vwc.data.50cm$Bitterwater.time, vwc.data.50cm$Bitterwater.VWC.50cm) #no wet-up until 2017 plot(vwc.data.50cm$Cambria.time, vwc.data.50cm$Cambria.VWC.50cm) #no wet-up until WY2016 plot(vwc.data.50cm$MorroBayN.time, vwc.data.50cm$MorroBayN.VWC.50cm) #may be erroneous during summer/fall 2016; wet-ups in 2015, 2016, and 2017 plot(vwc.data.50cm$Shandon.time, vwc.data.50cm$Shandon.VWC.50cm) #no wet-up until 2017 plot(vwc.data.50cm$SodaLake.time, vwc.data.50cm$SodaLake.VWC.50cm) #no wet-up until 2017 sum(vwc.data.50cm$Cambria.VWC.50cm < 0.05, na.rm = TRUE) #150 sum(vwc.data.50cm$Cambria.VWC.50cm < 0.1, na.rm = TRUE) #150 sum(vwc.data.50cm$Cambria.VWC.50cm < 0.13, na.rm = TRUE) #150 sum(vwc.data.50cm$Cambria.VWC.50cm < 0.15, na.rm = TRUE) #3010 #so, change less than vwc.data.50cm$Cambria.time[which(vwc.data.50cm$Cambria.VWC.50cm < 0.05)] #2/16 to 2/26 in 2014 and 5/7 to 5/8 in 2015 vwc.data.50cm$Cambria.VWC.50cm[5000:5300] vwc.data.50cm$Cambria.VWC.50cm[4500:5000] vwc.data.50cm$Cambria.VWC.50cm[5300:6000]#clearly there were problems sum(vwc.data.50cm$MorroBayN.VWC.50cm < 0.05, na.rm = TRUE) #284 hist(vwc.data.50cm$MorroBayN.VWC.50cm) which(vwc.data.50cm$MorroBayN.VWC.50cm < 0.05) vwc.data.50cm$MorroBayN.time[18000:18500] vwc.data.50cm$MorroBayN.VWC.50cm[18000:18500] plot(vwc.data.50cm$MorroBayN.time, vwc.data.50cm$MorroBayN.VWC.50cm) soil_moisture_dfs[[i]]$date <- format(soil_moisture_dfs[[i]]$Measurement.Time, "%Y%m%d")
/analysis_dissertation/50cm.VWC.allsites.R
no_license
smdevine/RangelandTheta
R
false
false
2,122
r
vwc.data.50cm <- read.csv('C:/Users/smdevine/Desktop/rangeland project/soilmoisture/all.sites.50cmVWC.csv', stringsAsFactors = FALSE) lapply(vwc.data.50cm, class) time.cols <- grepl('time', colnames(vwc.data.50cm)) vwc.cols <- grepl('VWC', colnames(vwc.data.50cm)) vwc.data.50cm[,time.cols] <- lapply(vwc.data.50cm[,time.cols], strptime, format="%m/%d/%Y %H:%M") head(vwc.data.50cm$Adelaida.time) lapply(vwc.data.50cm[,vwc.cols], summary) vwc.data.50cm[,vwc.cols] <- lapply(vwc.data.50cm[,vwc.cols], function(x) ifelse(x < 0, NA, x)) lapply(vwc.data.50cm[,vwc.cols], summary) plot(vwc.data.50cm$Adelaida.time, vwc.data.50cm$Adelaida.VWC.50cm) #full wet-up almost every winter plot(vwc.data.50cm$Bitterwater.time, vwc.data.50cm$Bitterwater.VWC.50cm) #no wet-up until 2017 plot(vwc.data.50cm$Cambria.time, vwc.data.50cm$Cambria.VWC.50cm) #no wet-up until WY2016 plot(vwc.data.50cm$MorroBayN.time, vwc.data.50cm$MorroBayN.VWC.50cm) #may be erroneous during summer/fall 2016; wet-ups in 2015, 2016, and 2017 plot(vwc.data.50cm$Shandon.time, vwc.data.50cm$Shandon.VWC.50cm) #no wet-up until 2017 plot(vwc.data.50cm$SodaLake.time, vwc.data.50cm$SodaLake.VWC.50cm) #no wet-up until 2017 sum(vwc.data.50cm$Cambria.VWC.50cm < 0.05, na.rm = TRUE) #150 sum(vwc.data.50cm$Cambria.VWC.50cm < 0.1, na.rm = TRUE) #150 sum(vwc.data.50cm$Cambria.VWC.50cm < 0.13, na.rm = TRUE) #150 sum(vwc.data.50cm$Cambria.VWC.50cm < 0.15, na.rm = TRUE) #3010 #so, change less than vwc.data.50cm$Cambria.time[which(vwc.data.50cm$Cambria.VWC.50cm < 0.05)] #2/16 to 2/26 in 2014 and 5/7 to 5/8 in 2015 vwc.data.50cm$Cambria.VWC.50cm[5000:5300] vwc.data.50cm$Cambria.VWC.50cm[4500:5000] vwc.data.50cm$Cambria.VWC.50cm[5300:6000]#clearly there were problems sum(vwc.data.50cm$MorroBayN.VWC.50cm < 0.05, na.rm = TRUE) #284 hist(vwc.data.50cm$MorroBayN.VWC.50cm) which(vwc.data.50cm$MorroBayN.VWC.50cm < 0.05) vwc.data.50cm$MorroBayN.time[18000:18500] vwc.data.50cm$MorroBayN.VWC.50cm[18000:18500] plot(vwc.data.50cm$MorroBayN.time, vwc.data.50cm$MorroBayN.VWC.50cm) soil_moisture_dfs[[i]]$date <- format(soil_moisture_dfs[[i]]$Measurement.Time, "%Y%m%d")
fileUrl <- "https://data.baltimorecity.gov/api/views/dz54-2aru/rows.csv?accessType=DOWNLOAD" if(!file.exists("data")){ dir.create("data") } download.file(fileUrl, destfile="./data/cameras.csv", method="curl") dateDownloaded <- date() save(dateDownloaded, file="./data/downloadDate.rda")
/Workshop1/downloadData.R
no_license
lindsayrutter/SISBID
R
false
false
290
r
fileUrl <- "https://data.baltimorecity.gov/api/views/dz54-2aru/rows.csv?accessType=DOWNLOAD" if(!file.exists("data")){ dir.create("data") } download.file(fileUrl, destfile="./data/cameras.csv", method="curl") dateDownloaded <- date() save(dateDownloaded, file="./data/downloadDate.rda")
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/processData.R \name{correlationOmics} \alias{correlationOmics} \title{Correlation beetween omics data} \usage{ correlationOmics(dataOmics1, dataOmics2) } \arguments{ \item{dataOmics1}{} \item{dataOmics2}{} } \value{ } \description{ Get correlation of genes between different omics data }
/man/correlationOmics.Rd
no_license
miccec/CPTACBiolinks
R
false
true
368
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/processData.R \name{correlationOmics} \alias{correlationOmics} \title{Correlation beetween omics data} \usage{ correlationOmics(dataOmics1, dataOmics2) } \arguments{ \item{dataOmics1}{} \item{dataOmics2}{} } \value{ } \description{ Get correlation of genes between different omics data }
marfissci.simple.map<-function(rds, agg.by = "SPECIES_CODE", colour.by = "SUM_RND_WEIGHT_KGS", crs.out="+proj=utm +zone=20 +datum=WGS84", xlim=c(-68,-53), ylim=c(40,49), valid.only = T, show.legend = T, save.plot = T, plot.title="", name.det = NULL, nclasses=5, add.OCMD = c("St_Ann","Gully","Vazella_Emerald","Vazella_Sambro","Lophelia", "NE_Channel") ){ proj.metric = '+proj=aea +lat_1=20 +lat_2=60 +lat_0=23 +lon_0=-96 +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m' library(classInt) library(rgdal) limits = data.frame(X = xlim, Y = ylim) coordinates(limits) = c("X", "Y") proj4string(limits) = CRS("+proj=longlat +datum=WGS84") boundbox = SpatialPolygons(list(Polygons(list(Polygon(cbind( mm= c(limits$X[2], seq(limits$X[2],limits$X[1],length=200), seq(limits$X[1],limits$X[2],length=200)), nn = c(limits$Y[2], seq(limits$Y[1],limits$Y[1],length=200), seq(limits$Y[2],limits$Y[2],length=200))))), ID = "bb")), proj4str = CRS("+proj=longlat +datum=WGS84")) boundbox.pr = spTransform(boundbox,crs.out) #make slightly bigger bbox to reserve space in final boundbox2 = SpatialPolygons(list(Polygons(list(Polygon(cbind( mm= c(limits$X[2]+1, seq(limits$X[2]+1,limits$X[1]-1,length=200), seq(limits$X[1]-1,limits$X[2]+1,length=200)), nn = c(limits$Y[2]+1, seq(limits$Y[1]-1,limits$Y[1]-1,length=200), seq(limits$Y[2]+1,limits$Y[2]+1,length=200))))), ID = "bb2")), proj4str = CRS("+proj=longlat +datum=WGS84")) boundbox2.pr = spTransform(boundbox2,crs.out) #should clip the data to desired frame here so that classIntervals only works #on visible data! #Do nrow check AFTER that rds.clipped = rds[boundbox,] #clip data to bbox if (valid.only) rds.clipped = rds.clipped[rds.clipped@data$VALIDITY == 'VALID',] ncheck=length(unique(rds.clipped@data[,c(colour.by)])) #don't have enough data for requested number of classes if (ncheck<2) return(NULL) #can't classify on a single value if (nclasses>ncheck) nclasses=ncheck rds.clipped@data$ORD = seq.int(nrow(rds.clipped)) classes = classIntervals(rds.clipped@data[,c(colour.by)], n=nclasses, style= "quantile", dataPrecision=0) colcode = findColours(classes, c("#c7e9b4","#41b6c4","#225ea8","#081d58")) #colorblind-friendly yellow-blue #c("#deebf7", "#9ecae1","#3182bd")) #colorblind-friendly blues #c("#fee6ce","#fdae6b","#e6550d")) #colorblind-friendly oranges colour.df = as.data.frame(cbind(varname=classes$var,colcode)) names(colour.df)[names(colour.df)=="varname"] <- colour.by rds.clipped@data = merge( rds.clipped@data,unique(colour.df), all.x = T) #rds.clipped@data = rds.clipped@data[order(rds.clipped@data$ORD),] rds.clipped.pr = spTransform(rds.clipped, CRS(crs.out), match.ID=F) rds.clipped.pr@data = rds.clipped.pr@data[order(rds.clipped.pr@data$ORD),] if (!exists("coast.aea") || !exists("coast.clipped.aea") || !exists("coast.clipped.pr") || !exists("the.grid") || !exists("grid.pr") || !exists("these.gridlines") || !exists("these.gridlines.pr") ) { loadfunctions("coastline") writeLines("Building the coastline...") coast.aea <<- coastline.db( DS="gshhg coastline highres", crs=proj.metric, p=NULL, level=1, xlim=NULL, ylim=NULL ) library(rgeos) writeLines("Trimming the data to match the selected bounding box (so that data can be projected)") coast.clipped.aea <<- gIntersection(gBuffer(coast.aea, byid=TRUE, width=0), spTransform(boundbox,proj.metric)) coast.clipped.pr <<- spTransform(coast.clipped.aea,crs.out) #'using the clipped data (pre-projection), capture information for the grid, #'including information about the gridlines, as well as their labels the.grid <<- gridat(boundbox, easts=seq(boundbox@"bbox"[1],boundbox@"bbox"[3],by=2), norths=seq(boundbox@"bbox"[2],boundbox@"bbox"[4],by=2)) grid.pr <<- spTransform(the.grid, CRS(crs.out)) these.gridlines <<- gridlines(boundbox, easts=seq(boundbox@"bbox"[1],boundbox@"bbox"[3],by=1), norths=seq(boundbox@"bbox"[2],boundbox@"bbox"[4],by=1)) these.gridlines.pr <<- spTransform(these.gridlines, CRS(crs.out)) } if (!exists("clip.100") || !exists("clip.200") || !exists("clip.300") || !exists("clip.400") || !exists("clip.500") || !exists("clip.600") || !exists("clip.700") || !exists("clip.800") || !exists("clip.900")) { #bathy data writeLines("Generating contours") p = list( project.name = "bathymetry" ) p$project.root = project.datadirectory( p$project.name ) p$init.files = loadfunctions( c( "spacetime", "utility", "parallel", "bathymetry", "polygons" ) ) p$libs = RLibrary( "rgdal", "maps", "mapdata", "maptools", "lattice", "geosphere", "sp", "raster", "colorspace" ) p = spatial.parameters( type="canada.east.highres", p=p ) depths = c(100, 200, 300, 400, 500, 600, 700, 800, 900) #, 2000, 5000 ) plygn = isobath.db( p=p, DS="isobath", depths=depths ) #data must be clipped so it doesn't extend beyond the bounding box clip.100 <<- gIntersection(spTransform(plygn["100"], CRS(crs.out)), boundbox.pr) clip.200 <<- gIntersection(spTransform(plygn["200"], CRS(crs.out)), boundbox.pr) clip.300 <<- gIntersection(spTransform(plygn["300"], CRS(crs.out)), boundbox.pr) clip.400 <<- gIntersection(spTransform(plygn["400"], CRS(crs.out)), boundbox.pr) clip.500 <<- gIntersection(spTransform(plygn["500"], CRS(crs.out)), boundbox.pr) clip.600 <<- gIntersection(spTransform(plygn["600"], CRS(crs.out)), boundbox.pr) clip.700 <<- gIntersection(spTransform(plygn["700"], CRS(crs.out)), boundbox.pr) clip.800 <<- gIntersection(spTransform(plygn["800"], CRS(crs.out)), boundbox.pr) clip.900 <<- gIntersection(spTransform(plygn["900"], CRS(crs.out)), boundbox.pr) #clip.1000 <<- gIntersection(spTransform(plygn["1000"], CRS(crs.out)), boundbox.pr) } #get the desired OCMD areas if (length(add.OCMD)>0) OCMD.areas=get.ocmd.areas(add.OCMD) if (save.plot){ if (!is.null(name.det)){ name.detail=paste0(name.det,"_") }else{ name.detail="" } if (range(rds.clipped.pr@data[agg.by])[1] == range(rds.clipped.pr@data[agg.by])[2]) { the.filename = range(rds.clipped.pr@data[agg.by])[1] }else{ the.filename = paste(range(rds.clipped.pr@data[agg.by]),collapse = "_") } # plot.title.clean=gsub("(\\(|\\)|\\s|\\/|,)","_",plot.title) # plot.title.clean=gsub("__","_", plot.title.clean) # plot.title.clean=substr(plot.title.clean,1,15) # plot.title.clean=paste0(sub('_$', '', plot.title.clean),"_") agg.type=paste0(substr(agg.by, 1, 4),"_") the.filename=paste0(name.detail,agg.type,the.filename,".png") png(filename=paste0(project.datadirectory("mpa"),"/figures/",the.filename), width = 6, height = 4, units = "in", res= 300, pointsize = 4, bg = "white", family = "", restoreConsole = TRUE, type = c("windows", "cairo", "cairo-png")) } par(mar=c(2,2,1,1),xaxs = "i",yaxs = "i",cex.axis=1.3,cex.lab=1.4) plot(boundbox2.pr, border="transparent", add=F, lwd=1) #add transparent boundbox first to ensure all data shown plot(coast.clipped.pr, col="navajowhite2", border="navajowhite4", lwd=0.5, axes=F, add=T ) #add coastline # lines(clip.1000, col="#666666", lwd=0.5) lines(clip.900, col="#717171", lwd=0.5) lines(clip.800, col="#7C7C7C", lwd=0.5) lines(clip.700, col="#888888", lwd=0.5) lines(clip.600, col="#939393", lwd=0.5) lines(clip.500, col="#9E9E9E", lwd=0.5) lines(clip.400, col="#AAAAAA", lwd=0.5) lines(clip.300, col="#B5B5B5", lwd=0.5) lines(clip.200, col="#C0C0C0", lwd=0.5) lines(clip.100, col="#CCCCCC", lwd=0.5) for (o in 1:length(OCMD.areas)){ plot(spTransform(OCMD.areas[[o]], CRS(crs.out)), border="olivedrab4", lwd=0.5, add=T) } plot(these.gridlines.pr, col="grey77", lty=2, lwd=0.5, add=T) #gridlines points(rds.clipped.pr, col = rds.clipped.pr@data$colcode, pch = 15, cex = 0.5) text(coordinates(grid.pr), pos=grid.pr$pos, labels=parse(text=as.character(the.grid$labels)), offset=0.2, col="black", cex=1) plot(boundbox.pr, border="black", add=T, lwd=1) #add actual boundbox if (show.legend){ legend(title = plot.title ,min(boundbox.pr@bbox[1,])+(0.075*(max(boundbox.pr@bbox[1,])-min(boundbox.pr@bbox[1,]))), min(boundbox.pr@bbox[2,])+(0.95*(max(boundbox.pr@bbox[2,])-min(boundbox.pr@bbox[2,]))), cex=1, y.intersp=0.8, legend = c(gsub(",","-",names(attr(colcode, "table"))),"no data"), fill = c(attr(colcode, "palette"),"white")) } if (save.plot) dev.off() }
/mpa/src/_Rfunctions/marfissci.simple.map.r
no_license
surfcao/ecomod
R
false
false
9,209
r
marfissci.simple.map<-function(rds, agg.by = "SPECIES_CODE", colour.by = "SUM_RND_WEIGHT_KGS", crs.out="+proj=utm +zone=20 +datum=WGS84", xlim=c(-68,-53), ylim=c(40,49), valid.only = T, show.legend = T, save.plot = T, plot.title="", name.det = NULL, nclasses=5, add.OCMD = c("St_Ann","Gully","Vazella_Emerald","Vazella_Sambro","Lophelia", "NE_Channel") ){ proj.metric = '+proj=aea +lat_1=20 +lat_2=60 +lat_0=23 +lon_0=-96 +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m' library(classInt) library(rgdal) limits = data.frame(X = xlim, Y = ylim) coordinates(limits) = c("X", "Y") proj4string(limits) = CRS("+proj=longlat +datum=WGS84") boundbox = SpatialPolygons(list(Polygons(list(Polygon(cbind( mm= c(limits$X[2], seq(limits$X[2],limits$X[1],length=200), seq(limits$X[1],limits$X[2],length=200)), nn = c(limits$Y[2], seq(limits$Y[1],limits$Y[1],length=200), seq(limits$Y[2],limits$Y[2],length=200))))), ID = "bb")), proj4str = CRS("+proj=longlat +datum=WGS84")) boundbox.pr = spTransform(boundbox,crs.out) #make slightly bigger bbox to reserve space in final boundbox2 = SpatialPolygons(list(Polygons(list(Polygon(cbind( mm= c(limits$X[2]+1, seq(limits$X[2]+1,limits$X[1]-1,length=200), seq(limits$X[1]-1,limits$X[2]+1,length=200)), nn = c(limits$Y[2]+1, seq(limits$Y[1]-1,limits$Y[1]-1,length=200), seq(limits$Y[2]+1,limits$Y[2]+1,length=200))))), ID = "bb2")), proj4str = CRS("+proj=longlat +datum=WGS84")) boundbox2.pr = spTransform(boundbox2,crs.out) #should clip the data to desired frame here so that classIntervals only works #on visible data! #Do nrow check AFTER that rds.clipped = rds[boundbox,] #clip data to bbox if (valid.only) rds.clipped = rds.clipped[rds.clipped@data$VALIDITY == 'VALID',] ncheck=length(unique(rds.clipped@data[,c(colour.by)])) #don't have enough data for requested number of classes if (ncheck<2) return(NULL) #can't classify on a single value if (nclasses>ncheck) nclasses=ncheck rds.clipped@data$ORD = seq.int(nrow(rds.clipped)) classes = classIntervals(rds.clipped@data[,c(colour.by)], n=nclasses, style= "quantile", dataPrecision=0) colcode = findColours(classes, c("#c7e9b4","#41b6c4","#225ea8","#081d58")) #colorblind-friendly yellow-blue #c("#deebf7", "#9ecae1","#3182bd")) #colorblind-friendly blues #c("#fee6ce","#fdae6b","#e6550d")) #colorblind-friendly oranges colour.df = as.data.frame(cbind(varname=classes$var,colcode)) names(colour.df)[names(colour.df)=="varname"] <- colour.by rds.clipped@data = merge( rds.clipped@data,unique(colour.df), all.x = T) #rds.clipped@data = rds.clipped@data[order(rds.clipped@data$ORD),] rds.clipped.pr = spTransform(rds.clipped, CRS(crs.out), match.ID=F) rds.clipped.pr@data = rds.clipped.pr@data[order(rds.clipped.pr@data$ORD),] if (!exists("coast.aea") || !exists("coast.clipped.aea") || !exists("coast.clipped.pr") || !exists("the.grid") || !exists("grid.pr") || !exists("these.gridlines") || !exists("these.gridlines.pr") ) { loadfunctions("coastline") writeLines("Building the coastline...") coast.aea <<- coastline.db( DS="gshhg coastline highres", crs=proj.metric, p=NULL, level=1, xlim=NULL, ylim=NULL ) library(rgeos) writeLines("Trimming the data to match the selected bounding box (so that data can be projected)") coast.clipped.aea <<- gIntersection(gBuffer(coast.aea, byid=TRUE, width=0), spTransform(boundbox,proj.metric)) coast.clipped.pr <<- spTransform(coast.clipped.aea,crs.out) #'using the clipped data (pre-projection), capture information for the grid, #'including information about the gridlines, as well as their labels the.grid <<- gridat(boundbox, easts=seq(boundbox@"bbox"[1],boundbox@"bbox"[3],by=2), norths=seq(boundbox@"bbox"[2],boundbox@"bbox"[4],by=2)) grid.pr <<- spTransform(the.grid, CRS(crs.out)) these.gridlines <<- gridlines(boundbox, easts=seq(boundbox@"bbox"[1],boundbox@"bbox"[3],by=1), norths=seq(boundbox@"bbox"[2],boundbox@"bbox"[4],by=1)) these.gridlines.pr <<- spTransform(these.gridlines, CRS(crs.out)) } if (!exists("clip.100") || !exists("clip.200") || !exists("clip.300") || !exists("clip.400") || !exists("clip.500") || !exists("clip.600") || !exists("clip.700") || !exists("clip.800") || !exists("clip.900")) { #bathy data writeLines("Generating contours") p = list( project.name = "bathymetry" ) p$project.root = project.datadirectory( p$project.name ) p$init.files = loadfunctions( c( "spacetime", "utility", "parallel", "bathymetry", "polygons" ) ) p$libs = RLibrary( "rgdal", "maps", "mapdata", "maptools", "lattice", "geosphere", "sp", "raster", "colorspace" ) p = spatial.parameters( type="canada.east.highres", p=p ) depths = c(100, 200, 300, 400, 500, 600, 700, 800, 900) #, 2000, 5000 ) plygn = isobath.db( p=p, DS="isobath", depths=depths ) #data must be clipped so it doesn't extend beyond the bounding box clip.100 <<- gIntersection(spTransform(plygn["100"], CRS(crs.out)), boundbox.pr) clip.200 <<- gIntersection(spTransform(plygn["200"], CRS(crs.out)), boundbox.pr) clip.300 <<- gIntersection(spTransform(plygn["300"], CRS(crs.out)), boundbox.pr) clip.400 <<- gIntersection(spTransform(plygn["400"], CRS(crs.out)), boundbox.pr) clip.500 <<- gIntersection(spTransform(plygn["500"], CRS(crs.out)), boundbox.pr) clip.600 <<- gIntersection(spTransform(plygn["600"], CRS(crs.out)), boundbox.pr) clip.700 <<- gIntersection(spTransform(plygn["700"], CRS(crs.out)), boundbox.pr) clip.800 <<- gIntersection(spTransform(plygn["800"], CRS(crs.out)), boundbox.pr) clip.900 <<- gIntersection(spTransform(plygn["900"], CRS(crs.out)), boundbox.pr) #clip.1000 <<- gIntersection(spTransform(plygn["1000"], CRS(crs.out)), boundbox.pr) } #get the desired OCMD areas if (length(add.OCMD)>0) OCMD.areas=get.ocmd.areas(add.OCMD) if (save.plot){ if (!is.null(name.det)){ name.detail=paste0(name.det,"_") }else{ name.detail="" } if (range(rds.clipped.pr@data[agg.by])[1] == range(rds.clipped.pr@data[agg.by])[2]) { the.filename = range(rds.clipped.pr@data[agg.by])[1] }else{ the.filename = paste(range(rds.clipped.pr@data[agg.by]),collapse = "_") } # plot.title.clean=gsub("(\\(|\\)|\\s|\\/|,)","_",plot.title) # plot.title.clean=gsub("__","_", plot.title.clean) # plot.title.clean=substr(plot.title.clean,1,15) # plot.title.clean=paste0(sub('_$', '', plot.title.clean),"_") agg.type=paste0(substr(agg.by, 1, 4),"_") the.filename=paste0(name.detail,agg.type,the.filename,".png") png(filename=paste0(project.datadirectory("mpa"),"/figures/",the.filename), width = 6, height = 4, units = "in", res= 300, pointsize = 4, bg = "white", family = "", restoreConsole = TRUE, type = c("windows", "cairo", "cairo-png")) } par(mar=c(2,2,1,1),xaxs = "i",yaxs = "i",cex.axis=1.3,cex.lab=1.4) plot(boundbox2.pr, border="transparent", add=F, lwd=1) #add transparent boundbox first to ensure all data shown plot(coast.clipped.pr, col="navajowhite2", border="navajowhite4", lwd=0.5, axes=F, add=T ) #add coastline # lines(clip.1000, col="#666666", lwd=0.5) lines(clip.900, col="#717171", lwd=0.5) lines(clip.800, col="#7C7C7C", lwd=0.5) lines(clip.700, col="#888888", lwd=0.5) lines(clip.600, col="#939393", lwd=0.5) lines(clip.500, col="#9E9E9E", lwd=0.5) lines(clip.400, col="#AAAAAA", lwd=0.5) lines(clip.300, col="#B5B5B5", lwd=0.5) lines(clip.200, col="#C0C0C0", lwd=0.5) lines(clip.100, col="#CCCCCC", lwd=0.5) for (o in 1:length(OCMD.areas)){ plot(spTransform(OCMD.areas[[o]], CRS(crs.out)), border="olivedrab4", lwd=0.5, add=T) } plot(these.gridlines.pr, col="grey77", lty=2, lwd=0.5, add=T) #gridlines points(rds.clipped.pr, col = rds.clipped.pr@data$colcode, pch = 15, cex = 0.5) text(coordinates(grid.pr), pos=grid.pr$pos, labels=parse(text=as.character(the.grid$labels)), offset=0.2, col="black", cex=1) plot(boundbox.pr, border="black", add=T, lwd=1) #add actual boundbox if (show.legend){ legend(title = plot.title ,min(boundbox.pr@bbox[1,])+(0.075*(max(boundbox.pr@bbox[1,])-min(boundbox.pr@bbox[1,]))), min(boundbox.pr@bbox[2,])+(0.95*(max(boundbox.pr@bbox[2,])-min(boundbox.pr@bbox[2,]))), cex=1, y.intersp=0.8, legend = c(gsub(",","-",names(attr(colcode, "table"))),"no data"), fill = c(attr(colcode, "palette"),"white")) } if (save.plot) dev.off() }
# package umap # # UMAP stands for "Uniform Manifold Approximation and Projection" # UMAP is a method proposed by Leland McInnes and John Healy. # # The original implementation was written in python by Leland McInnes. # The original implementation is available at https://github.com/lmcinnes/umap # # This package is an interface to using the UMAP algorithm in R. This file # is the entrypoint to the package. It defines a configuration object # and a umap() function. # # These three lines required to use Rcpp; do not remove #' @useDynLib umap #' @importFrom Rcpp sourceCpp NULL # For interfacing with python and "umap-learn" #' @importFrom reticulate py_module_available import NULL # This implements a "soft" requirement for python and the umap module # i.e. the package should work when those components are absent # but gain additional functionality when those components are present #' interface to umap-learn via reticulate #' #' @keywords internal #' @noRd python.umap <- NULL .onLoad <- function(libname, pkgname) { # this "try" block is necessary because: # a system that has python but not umap-learn stops during the test suite # with the following sequence of commands (devtools) # document(); test(); test() # note that test() only fails at second round try({ python.umap <<- reticulate::import("umap", delay_load=TRUE) }, silent=TRUE) } #' Default configuration for umap #' #' A list with parameters customizing a UMAP embedding. Each component of the #' list is an effective argument for umap(). #' #' n_neighbors: integer; number of nearest neighbors #' #' n_components: integer; dimension of target (output) space #' #' metric: character or function; determines how distances between #' data points are computed. When using a string, available metrics are: #' euclidean, manhattan. Other available generalized metrics are: cosine, #' pearson, pearson2. Note the triangle inequality may not be satisfied by #' some generalized metrics, hence knn search may not be optimal. #' When using metric.function as a function, the signature must be #' function(matrix, origin, target) and should compute a distance between #' the origin column and the target columns #' #' n_epochs: integer; number of iterations performed during #' layout optimization #' #' input: character, use either "data" or "dist"; determines whether the #' primary input argument to umap() is treated as a data matrix or as a #' distance matrix #' #' init: character or matrix. The default string "spectral" computes an initial #' embedding using eigenvectors of the connectivity graph matrix. An #' alternative is the string "random", which creates an initial layout based on #' random coordinates. This setting.can also be set to a matrix, in which case #' layout optimization begins from the provided coordinates. #' #' min_dist: numeric; determines how close points appear in the final layout #' #' set_op_ratio_mix_ratio: numeric in range [0,1]; determines who the knn-graph #' is used to create a fuzzy simplicial graph #' #' local_connectivity: numeric; used during construction of fuzzy simplicial #' set #' #' bandwidth: numeric; used during construction of fuzzy simplicial set #' #' alpha: numeric; initial value of "learning rate" of layout optimization #' #' gamma: numeric; determines, together with alpha, the learning rate of #' layout optimization #' #' negative_sample_rate: integer; determines how many non-neighbor points are #' used per point and per iteration during layout optimization #' #' a: numeric; contributes to gradient calculations during layout optimization. #' When left at NA, a suitable value will be estimated automatically. #' #' b: numeric; contributes to gradient calculations during layout optimization. #' When left at NA, a suitable value will be estimated automatically. #' #' spread: numeric; used during automatic estimation of a/b parameters. #' #' random_state: integer; seed for random number generation used during umap() #' #' transform_state: integer; seed for random number generation used during #' predict() #' #' knn: object of class umap.knn; precomputed nearest neighbors #' #' knn.repeat: number of times to restart knn search #' #' verbose: logical or integer; determines whether to show progress messages #' #' umap_learn_args: vector of arguments to python package umap-learn #' #' @examples #' # display all default settings #' umap.defaults #' #' # create a new settings object with n_neighbors set to 5 #' custom.settings = umap.defaults #' custom.settings$n_neighbors = 5 #' custom.settings #' #' @export umap.defaults <- list( n_neighbors=15, n_components=2, metric="euclidean", n_epochs=200, input="data", init="spectral", min_dist=0.1, set_op_mix_ratio=1, local_connectivity=1, bandwidth=1.0, alpha=1, gamma=1.0, negative_sample_rate=5, a=NA, b=NA, spread=1, random_state=NA, transform_state=NA, knn=NA, knn_repeats=1, verbose=FALSE, umap_learn_args = NA ) class(umap.defaults) <- "umap.config" #' Computes a manifold approximation and projection #' #' @export #' @param d matrix, input data #' @param config object of class umap.config #' @param method character, implementation. Available methods are 'naive' #' (an implementation written in pure R) and 'umap-learn' (requires python #' package 'umap-learn') #' @param preserve.seed logical, leave TRUE to insulate external code from #' randomness within the umap algorithms; set FALSE to allow randomness used #' in umap algorithms to alter the external random-number generator #' @param ... list of settings; values overwrite defaults from config; #' see documentation of umap.default for details about available settings #' #' @return object of class umap, containing at least a component #' with an embedding and a component with configuration settings #' #' @examples #' # embedd iris dataset using default settings #' iris.umap = umap(iris[,1:4]) #' #' # display object summary #' iris.umap #' #' # display embedding coordinates #' head(iris.umap$layout) #' umap <- function(d, config=umap.defaults, method=c("naive", "umap-learn"), preserve.seed=TRUE, ...) { # save existing RNG seed, will use "internal" seed later old.seed <- get.global.seed() # prep - check inputs, configuration settings method <- config$method <- match.arg(method) config <- umap.prep.config(config, ...) d <- umap.prep.input(d, config) set.seed(config$random_state) # perform the actual work with a specific umap implementation if (nrow(d)<=2) { result <- umap.small(d, config) } else { implementations <- c(naive=umap.naive, "umap-learn"=umap.learn) if (method %in% names(implementations)) { result <- implementations[[method]](d, config) } } class(result) <- "umap" # restore state and finish if (preserve.seed) { set.global.seed(old.seed) } result } #' project data points onto an existing umap embedding #' #' @export #' @param object trained object of class umap #' @param data matrix with data #' @param ... additional arguments (not used) #' #' @return new matrix #' #' @examples #' # embedd iris dataset using default settings #' iris.umap = umap(iris[,1:4]) #' #' # create a dataset with structure like iris, but with perturbation #' iris.perturbed = iris[,1:4] + matrix(rnorm(nrow(iris)*4, 0, 0.1), ncol=4) #' #' # project perturbed dataset #' perturbed.embedding = predict(iris.umap, iris.perturbed) #' #' # output is a matrix with embedding coordinates #' head(perturbed.embedding) #' predict.umap <- function(object, data, ...) { umap.check.config.class(object$config) if (object$config$input == "dist") { umap.error("predict cannot work from object fitted by input='dist'") } if (nrow(object$layout)<=2) { umap.error("predict cannot work when too-small initial training set") } old.seed <- get.global.seed() if (!is.na(object$config$transform_state)) { set.seed(object$config$transform_state) } # extract method from the umap object method <- object$config$method implementations <- c(naive=umap.naive.predict, "umap-learn"=umap.learn.predict) if (!method %in% names(implementations)) { umap.error("unknown prediction method") } # carry out the predictions result <- implementations[[method]](object, data) # restore state and finish set.global.seed(old.seed) result }
/R/umap.R
permissive
tkonopka/umap
R
false
false
8,472
r
# package umap # # UMAP stands for "Uniform Manifold Approximation and Projection" # UMAP is a method proposed by Leland McInnes and John Healy. # # The original implementation was written in python by Leland McInnes. # The original implementation is available at https://github.com/lmcinnes/umap # # This package is an interface to using the UMAP algorithm in R. This file # is the entrypoint to the package. It defines a configuration object # and a umap() function. # # These three lines required to use Rcpp; do not remove #' @useDynLib umap #' @importFrom Rcpp sourceCpp NULL # For interfacing with python and "umap-learn" #' @importFrom reticulate py_module_available import NULL # This implements a "soft" requirement for python and the umap module # i.e. the package should work when those components are absent # but gain additional functionality when those components are present #' interface to umap-learn via reticulate #' #' @keywords internal #' @noRd python.umap <- NULL .onLoad <- function(libname, pkgname) { # this "try" block is necessary because: # a system that has python but not umap-learn stops during the test suite # with the following sequence of commands (devtools) # document(); test(); test() # note that test() only fails at second round try({ python.umap <<- reticulate::import("umap", delay_load=TRUE) }, silent=TRUE) } #' Default configuration for umap #' #' A list with parameters customizing a UMAP embedding. Each component of the #' list is an effective argument for umap(). #' #' n_neighbors: integer; number of nearest neighbors #' #' n_components: integer; dimension of target (output) space #' #' metric: character or function; determines how distances between #' data points are computed. When using a string, available metrics are: #' euclidean, manhattan. Other available generalized metrics are: cosine, #' pearson, pearson2. Note the triangle inequality may not be satisfied by #' some generalized metrics, hence knn search may not be optimal. #' When using metric.function as a function, the signature must be #' function(matrix, origin, target) and should compute a distance between #' the origin column and the target columns #' #' n_epochs: integer; number of iterations performed during #' layout optimization #' #' input: character, use either "data" or "dist"; determines whether the #' primary input argument to umap() is treated as a data matrix or as a #' distance matrix #' #' init: character or matrix. The default string "spectral" computes an initial #' embedding using eigenvectors of the connectivity graph matrix. An #' alternative is the string "random", which creates an initial layout based on #' random coordinates. This setting.can also be set to a matrix, in which case #' layout optimization begins from the provided coordinates. #' #' min_dist: numeric; determines how close points appear in the final layout #' #' set_op_ratio_mix_ratio: numeric in range [0,1]; determines who the knn-graph #' is used to create a fuzzy simplicial graph #' #' local_connectivity: numeric; used during construction of fuzzy simplicial #' set #' #' bandwidth: numeric; used during construction of fuzzy simplicial set #' #' alpha: numeric; initial value of "learning rate" of layout optimization #' #' gamma: numeric; determines, together with alpha, the learning rate of #' layout optimization #' #' negative_sample_rate: integer; determines how many non-neighbor points are #' used per point and per iteration during layout optimization #' #' a: numeric; contributes to gradient calculations during layout optimization. #' When left at NA, a suitable value will be estimated automatically. #' #' b: numeric; contributes to gradient calculations during layout optimization. #' When left at NA, a suitable value will be estimated automatically. #' #' spread: numeric; used during automatic estimation of a/b parameters. #' #' random_state: integer; seed for random number generation used during umap() #' #' transform_state: integer; seed for random number generation used during #' predict() #' #' knn: object of class umap.knn; precomputed nearest neighbors #' #' knn.repeat: number of times to restart knn search #' #' verbose: logical or integer; determines whether to show progress messages #' #' umap_learn_args: vector of arguments to python package umap-learn #' #' @examples #' # display all default settings #' umap.defaults #' #' # create a new settings object with n_neighbors set to 5 #' custom.settings = umap.defaults #' custom.settings$n_neighbors = 5 #' custom.settings #' #' @export umap.defaults <- list( n_neighbors=15, n_components=2, metric="euclidean", n_epochs=200, input="data", init="spectral", min_dist=0.1, set_op_mix_ratio=1, local_connectivity=1, bandwidth=1.0, alpha=1, gamma=1.0, negative_sample_rate=5, a=NA, b=NA, spread=1, random_state=NA, transform_state=NA, knn=NA, knn_repeats=1, verbose=FALSE, umap_learn_args = NA ) class(umap.defaults) <- "umap.config" #' Computes a manifold approximation and projection #' #' @export #' @param d matrix, input data #' @param config object of class umap.config #' @param method character, implementation. Available methods are 'naive' #' (an implementation written in pure R) and 'umap-learn' (requires python #' package 'umap-learn') #' @param preserve.seed logical, leave TRUE to insulate external code from #' randomness within the umap algorithms; set FALSE to allow randomness used #' in umap algorithms to alter the external random-number generator #' @param ... list of settings; values overwrite defaults from config; #' see documentation of umap.default for details about available settings #' #' @return object of class umap, containing at least a component #' with an embedding and a component with configuration settings #' #' @examples #' # embedd iris dataset using default settings #' iris.umap = umap(iris[,1:4]) #' #' # display object summary #' iris.umap #' #' # display embedding coordinates #' head(iris.umap$layout) #' umap <- function(d, config=umap.defaults, method=c("naive", "umap-learn"), preserve.seed=TRUE, ...) { # save existing RNG seed, will use "internal" seed later old.seed <- get.global.seed() # prep - check inputs, configuration settings method <- config$method <- match.arg(method) config <- umap.prep.config(config, ...) d <- umap.prep.input(d, config) set.seed(config$random_state) # perform the actual work with a specific umap implementation if (nrow(d)<=2) { result <- umap.small(d, config) } else { implementations <- c(naive=umap.naive, "umap-learn"=umap.learn) if (method %in% names(implementations)) { result <- implementations[[method]](d, config) } } class(result) <- "umap" # restore state and finish if (preserve.seed) { set.global.seed(old.seed) } result } #' project data points onto an existing umap embedding #' #' @export #' @param object trained object of class umap #' @param data matrix with data #' @param ... additional arguments (not used) #' #' @return new matrix #' #' @examples #' # embedd iris dataset using default settings #' iris.umap = umap(iris[,1:4]) #' #' # create a dataset with structure like iris, but with perturbation #' iris.perturbed = iris[,1:4] + matrix(rnorm(nrow(iris)*4, 0, 0.1), ncol=4) #' #' # project perturbed dataset #' perturbed.embedding = predict(iris.umap, iris.perturbed) #' #' # output is a matrix with embedding coordinates #' head(perturbed.embedding) #' predict.umap <- function(object, data, ...) { umap.check.config.class(object$config) if (object$config$input == "dist") { umap.error("predict cannot work from object fitted by input='dist'") } if (nrow(object$layout)<=2) { umap.error("predict cannot work when too-small initial training set") } old.seed <- get.global.seed() if (!is.na(object$config$transform_state)) { set.seed(object$config$transform_state) } # extract method from the umap object method <- object$config$method implementations <- c(naive=umap.naive.predict, "umap-learn"=umap.learn.predict) if (!method %in% names(implementations)) { umap.error("unknown prediction method") } # carry out the predictions result <- implementations[[method]](object, data) # restore state and finish set.global.seed(old.seed) result }
#### download file #### download.file("https://d396qusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCI%20HAR%20Dataset.zip", "project",method = "curl") #### unzip foleder#### unzip("project") #### view files in folders #### list.files(".") list.files("UCI HAR Dataset") list.files("UCI HAR Dataset/test") #### Read activity Data #### activities_labels <- read.table("UCI HAR Dataset/activity_labels.txt",stringsAsFactors = F) activities_labels str(activities_labels) features<-read.table("UCI HAR Dataset/features.txt",stringsAsFactors = F) str(features) #### which features are mean and standard deviation #### features_mean<-grep("mean()", features[,2],fixed = T) ### index of rows that are mean() features[features_mean,] features_std <- grep("std()",features[,2],fixed = T)### index of rows thar are std() features[features_std,] length(features_mean) ## checking the lenght of rows length(features_std) ################################################################ #### read in training data,only features meand and std #### train <- read.table("UCI HAR Dataset/train/X_train.txt",col.names = features[,2]) str(train) names(train) #### filter mean and std #### train <- train[,c(features_mean,features_std)] head(train) dim(train) #### Modifing columns names #### names(train) <- gsub(".","",names(train),fixed = T) names(train) <- sub("mean","Mean",names(train)) names(train)<-sub("std","Std",names(train)) #### Read in activities and subject for training data #### Subject_training <- read.table("UCI HAR Dataset/train/subject_train.txt",col.names = "Subject") dim(Subject_training) head(Subject_training) activities_training<-read.table("UCI HAR Dataset/train/y_train.txt",col.names = "activities") dim(activities_training) head(activities_training) ##### combine subjects,activities, and features, for training data #### train <- cbind(activities_training,Subject_training,train) dim(train) names(train) ########################################################## #### read in testing data,only features meand and std #### test <- read.table("UCI HAR Dataset/test/X_test.txt",col.names = features[,2]) str(test) names(test) #### filter mean and std #### test <- test[,c(features_mean,features_std)] head(test) dim(test) #### Modifing columns names #### names(test) <- gsub(".","",names(test),fixed = T) names(test) <- sub("mean","Mean",names(test)) names(test)<-sub("std","Std",names(test)) #### Read in activities and subject for testing data #### Subject_testing <- read.table("UCI HAR Dataset/test/subject_test.txt",col.names = "Subject") dim(Subject_testing) head(Subject_testing) activities_testing<-read.table("UCI HAR Dataset/test/y_test.txt",col.names = "activities") dim(activities_testing) head(activities_testing) ##### combine subjects,activities, and features, for testing data #### test <- cbind(activities_testing,Subject_testing,test) dim(test) names(test) #### Make a data tabel ##### ################################# #### combine train and test data ######## df<-rbind(train,test) dim(df) names(df) ######## Changing activities names #### df$activities<-as.factor(df$activities) #### convert to factor levels(df$activities)<-activities_labels$V2 #### change level names df$activities ################################## #### creating data summary and activities### require(dplyr) df_tidy<-tbl_df(df) df_tidy_summary<-df_tidy %>% group_by(Subject,activities) %>% summarise_all(funs(mean)) write.table(df_tidy_summary,file = "Tidy.txt",row.names = FALSE,quote = F)
/run_analysis.R
no_license
Rlopez3013/Tidy-Data
R
false
false
3,512
r
#### download file #### download.file("https://d396qusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCI%20HAR%20Dataset.zip", "project",method = "curl") #### unzip foleder#### unzip("project") #### view files in folders #### list.files(".") list.files("UCI HAR Dataset") list.files("UCI HAR Dataset/test") #### Read activity Data #### activities_labels <- read.table("UCI HAR Dataset/activity_labels.txt",stringsAsFactors = F) activities_labels str(activities_labels) features<-read.table("UCI HAR Dataset/features.txt",stringsAsFactors = F) str(features) #### which features are mean and standard deviation #### features_mean<-grep("mean()", features[,2],fixed = T) ### index of rows that are mean() features[features_mean,] features_std <- grep("std()",features[,2],fixed = T)### index of rows thar are std() features[features_std,] length(features_mean) ## checking the lenght of rows length(features_std) ################################################################ #### read in training data,only features meand and std #### train <- read.table("UCI HAR Dataset/train/X_train.txt",col.names = features[,2]) str(train) names(train) #### filter mean and std #### train <- train[,c(features_mean,features_std)] head(train) dim(train) #### Modifing columns names #### names(train) <- gsub(".","",names(train),fixed = T) names(train) <- sub("mean","Mean",names(train)) names(train)<-sub("std","Std",names(train)) #### Read in activities and subject for training data #### Subject_training <- read.table("UCI HAR Dataset/train/subject_train.txt",col.names = "Subject") dim(Subject_training) head(Subject_training) activities_training<-read.table("UCI HAR Dataset/train/y_train.txt",col.names = "activities") dim(activities_training) head(activities_training) ##### combine subjects,activities, and features, for training data #### train <- cbind(activities_training,Subject_training,train) dim(train) names(train) ########################################################## #### read in testing data,only features meand and std #### test <- read.table("UCI HAR Dataset/test/X_test.txt",col.names = features[,2]) str(test) names(test) #### filter mean and std #### test <- test[,c(features_mean,features_std)] head(test) dim(test) #### Modifing columns names #### names(test) <- gsub(".","",names(test),fixed = T) names(test) <- sub("mean","Mean",names(test)) names(test)<-sub("std","Std",names(test)) #### Read in activities and subject for testing data #### Subject_testing <- read.table("UCI HAR Dataset/test/subject_test.txt",col.names = "Subject") dim(Subject_testing) head(Subject_testing) activities_testing<-read.table("UCI HAR Dataset/test/y_test.txt",col.names = "activities") dim(activities_testing) head(activities_testing) ##### combine subjects,activities, and features, for testing data #### test <- cbind(activities_testing,Subject_testing,test) dim(test) names(test) #### Make a data tabel ##### ################################# #### combine train and test data ######## df<-rbind(train,test) dim(df) names(df) ######## Changing activities names #### df$activities<-as.factor(df$activities) #### convert to factor levels(df$activities)<-activities_labels$V2 #### change level names df$activities ################################## #### creating data summary and activities### require(dplyr) df_tidy<-tbl_df(df) df_tidy_summary<-df_tidy %>% group_by(Subject,activities) %>% summarise_all(funs(mean)) write.table(df_tidy_summary,file = "Tidy.txt",row.names = FALSE,quote = F)
# R_code_exam.r # Copernicus data: https://land.copernicus.vgt.vito.be/PDF/portal/Application.html # 1. 01_R_code_first.r # 2. 02_R_code_spatial.r # 3. 03_R_code_point_patterns.r # 4. 04_R_code_TeleRil.r # 5. 05_R_code_multitemp.r # 6. 06_R_code_multitemp_NO2.r # 7. 07_R_code_snow.r # 8. 08_R_code_patches.r # 9. 09_R_code_crop.r # 10. 10_R_code_species_distribution_modeling.r # 11. 11_R_code_examproject.r ############################################################################# ############################################################################# ############################################################################# ### 1. 01_R_code_first.r - Primo codice R Ecologia del Paesaggio # GZ pacchetti: "install.packages()" -> scaricare pacchetti (poi richiamabili con comando "library()" [o "require()]) install.packages("sp") library(sp) # GZ dataset e funzioni associate data("meuse") # GZ richiamo dataset "meuse" (dati su presenza metalli pesanti nel terreno), inserito nella libreria "sp" meuse # GZ visualizzare dati head(meuse) # GZ prime 6 righe del dataset names(meuse) # GZ nomi variabili (colonne del dataset) summary(meuse) # GZ riporta statistiche di base per le variabili del dataset # GZ grafici: "pairs()" per creare grafici a coppie tra variabili di un dataset pairs(meuse) # GZ grafici a coppie tra tutte le variabili pairs(~cadmium + copper + lead, data = meuse) # GZ grafici a coppie tra le variabili indicate # GZ esercizio: pairs() quattro variabili [cadmium, copper, lead, zinc] pairs(~cadmium+copper+lead+zinc,data=meuse) # GZ [,x:y] per selezionare subset composto da righe selezionate (3, 4, 5, 6 -> cadmium, copper, lead, zinc) pairs(meuse[,3:6]) # GZ visualizzazione: scelgo colori["col="], simboli["pch="] e dimensioni["cex="] => per simboli "pch=n" con 1<n<25 (ad ogni numero un diverso simbolo) pairs(meuse[,3:6],col="blue",pch=18,cex=3) # GZ "main=" per dare titolo al grafico pairs(meuse[,3:6],col="blue",pch=18,cex=3,main="Primo pairs") # GZ prendere funzioni esterne => "panel.correlations" indica coefficiente di correlazione tra variabili panel.correlations<-function(x,y,digits=1,prefix="",cex.cor) { usr <- par("usr"); on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) r1=cor(x,y,use="pairwise.complete.obs") r <- abs(cor(x, y,use="pairwise.complete.obs")) txt <- format(c(r1, 0.123456789), digits=digits)[1] txt <- paste(prefix, txt, sep="") if(missing(cex.cor)) cex <- 0.9/strwidth(txt) text(0.5, 0.5, txt, cex = cex * r) } # GZ "panel.smoothing" -> fa una specie di regressione tra variabili panel.smoothing <- function (x, y, col = par("col"), bg = NA, pch = par("pch"), cex = 1, col.smooth = "red", span = 2/3, iter = 3, ...) { points(x, y, pch = pch, col = col, bg = bg, cex = cex) ok <- is.finite(x) & is.finite(y) if (any(ok)) lines(stats::lowess(x[ok], y[ok], f = span, iter = iter), col = 1, ...) } # GZ "panel.histograms" -> crea istogramma di una variabile panel.histograms <- function(x, ...) { usr <- par("usr"); on.exit(par(usr)) par(usr = c(usr[1:2], 0, 1.5) ) h <- hist(x, plot = FALSE) breaks <- h$breaks; nB <- length(breaks) y <- h$counts; y <- y/max(y) rect(breaks[-nB], 0, breaks[-1], y, col="white", ...) } # GZ uso funzioni precedentemente create per costruire grafici a coppie fra le quattro variabili selezionate, in cui vengono mostrati anche coefficienti di correlazione tra le variabili # GZ lower.panel -> parte sopra la diagonale # GZ upper.panel -> parte sotto la diagonale # GZ diag.panel -> diagonale pairs(meuse[,3:6],lower.panel=panel.correlations,upper.panel=panel.smoothing,diag.panel=panel.histograms) # GZ esercizio: invertire posto rispetto alla diagonale di correlazione e interpolazione pairs(meuse[,3:6],lower.panel=panel.smoothing,upper.panel=panel.correlations,diag.panel=panel.histograms) ############################################################################# ############################################################################# ############################################################################# ### 2. 02_R_code_spatial.r - Funzioni sapziali in Ecologia del Paesaggio [24/03/2020] # GZ caricare pacchetti e dati library(sp) data(meuse) head(meuse) # GZ fissare dataframe -> attach() attach(meuse) # GZ plot cadmium e lead segliendo colori["col"], caratteri["pch"] e dimensioni["cex"] plot(cadmium,lead,col="red",pch=19,cex=1) # GZ esercizio: plot copper e zinc con carattere triangolo(17) e colore verde plot(copper,zinc,col="green",pch=17) # GZ cambiare etichette relative ad assi del grafico => "xlab","ylab" plot(copper,zinc,col="green",pch=17,xlab="rame",ylab="zinco") # GZ multiframe o multipanel => "par(mfrow=c(numero righe,numero colonne))"; a capo i plot che si vogliono mettere in una sola finestra par(mfrow=c(1,2)) # GZ "par(mfrow)" -> funzione per gestire aspetto dei grafici (creare diagramma a più riquadri); (1,2) indica una riga e due colonne plot(cadmium,lead,col="red",pch=19,cex=1) plot(copper,zinc,col="green",pch=17,xlab="rame",ylab="zinco") # GZ invertire grafici riga/colonna [(2,1) anzichè (1,2)] par(mfrow=c(2,1)) plot(cadmium,lead,col="red",pch=19,cex=1) plot(copper,zinc,col="green",pch=17,xlab="rame",ylab="zinco") # GZ multiframe automatico -> pacchetto "GGally" install.packages("GGally") library(GGally) ggpairs(meuse[,3:6]) # GZ "ggpairs" crea matrice di grafici con un determinato set di dati (in questo caso dalla terza alla sesta colonna del dataset "meuse") # GZ Spatial; "coordinates()" per indicare che i dati hanno coordinate (in meuse x e y => facendo ~x+y) head(meuse) gpairs coordinates(meuse)=x+y plot(meuse) # GZ "spplot()" -> distribuzione spaziale di una variabile (in questo caso "zinc") spplot(meuse,"zinc") # Spatial-2 [25/03/2020] # GZ installare pacchetto "sp", caricare dati "meuse" e fissare dataset ["attach()"] install.packages("sp") library(sp) data(meuse) attach(meuse) # GZ specificare coordinate del dataset => "coordinates(dataset)=~(coordinata,coordinata)" coordinates(meuse)=~x+y # GZ "spplot" dati zinco spplot(meuse,"zinc") # GZ esercizio: "spplot" dati rame spplot(meuse,"copper") # GZ "bubble(dataset,"variabile")" => rappresentazione spaziale come "spplot", crea un grafico a bolle di grandezza proporzionale a valore variabile bubble(meuse,"zinc") # GZ esercizio: bubble rame, colore rosso bubble(meuse,"copper",col="red") # GZ esempio: foraminiferi, carbon capture # GZ creare vettore che contenga dati di campionamento dei foraminiferi chiamandolo "foram" ["<-" per dare nome al vettore c] foram<-c(10,20,35,55,67,80) # GZ "carbon" per carbon stock carbon<-c(5,15,30,70,85,99) # GZ plot con questi vettori plot(foram,carbon,col="green",pch=19) # GZ prendere dati dall'esterno (dati "covid19agg.csv") # GZ settare cartella di lavoro -> wd("percorso") [in questo caso dico C, cartella lab] setwd("C:/lab") # GZ leggere tabella e usarla per costuire un dataframe; head=T per indicare a R che ci sono titoli delle colonne (prima riga è una stringa di testo) Covid19<-read.table("covid_agg.csv",head=T) # GZ intitolare tabella "Covid19" ############################################################################# ############################################################################# ############################################################################# ### 03_R_code_point_patterns.r - Analisi point patterns [25/03/2020] # GZ installare e richiamare pacchetti ("ggplot2", "spatstat") intall.packages("ggplot2") library(ggplot2) install.packages("spatstat) library(spatstat) # GZ set working directory setwd("C:/lab") # GZ importare tabella dati Covid19; "head=T" per indicare a R che ci sono i titoli delle colonne; dare alla tabella il nome Covid19 Covid19<-read.table("covid_agg.csv",head=T) head(Covid19) # comando per vedere tabella # GZ creare plot che associa Paesi e casi di Covid19 (anzichè "$" si può fare "attach(Covid19) plot(country,cases)") plot(Covid19$country,Covid19$cases) # GZ modificare struttura plot -> posizione etichette rispetto ad asse ("las=0" etichette parallele, 1 orizzontali, 2 perpendicolari, 3 verticali) plot(Covid19$country,Covid19$cases,las=0) plot(Covid19$country,Covid19$cases,las=1) plot(Covid19$country,Covid19$cases,las=2) plot(Covid19$country,Covid19$cases,las=3) plot(Covid19$country,Covid19$cases,las=3,cex.axis=0.5) # GZ "cex.axis" -> rimpicciolire dimensione etichette # GZ richiamare "ggplot2" (pacchetto per estetica e cura dei dettagli) library(ggplot2) # GZ dataframe "mpg" da pacchetto "ggplot2" ("mpg" raccoglie osservazioni US Environmental Protection Agency su 38 modelli di auto) data(mpg) head(mpg) # GZ esempio di plot con 2 variabili numeriche -> ggplot2 ha bisogno di 3 cose: dati ("mpg"), estetica del grafico ("aes", funzione di quotazione) e geometria ("geom_") ggplot(mpg,aes(x=displ,y=hwy))+geom_point() ggplot(mpg,aes(x=displ,y=hwy))+geom_line() # GZ linee anzichè punti nella visualizzazione ggplot(mpg,aes(x=displ,y=hwy))+geom_polygon() # GZ poligoni # GZ "ggplot2" per dati Covid19 -> usare longitudine e latitudine per avere i punti nello spazio, "size=cases" -> punti più grandi dove ci sono più casi ggplot(Covid19,aes(x=lon,y=lat,size=cases))+geom_point() # GZ richiamare pacchetto "spatstat" (mostra analisi dei modelli dei punti spaziali) e fissare dataframe library(spatstat) attach(covid) # GZ esercizio: zona con più alta densità casi di Covid19 # GZ creare dataset per spatstat -> "ppp" crea un oggetto che rappresenta un insieme di dati del pattern puntiforme nel piano bidimensionale covids<-ppp(lon,lat,c(-180,180),c(-90,90)) # GZ necessario specificare cosa indicano x e y ("lon","lat") e definirne il range d<-density(covids) # GZ comando per calcolare densità dei casi plot(d) # GZ plot (rappresentazione grafica) densità points(covids,pch=19) # GZ mostare i punti Covid19 sulla mappa di densità # point patterns-2 [01/04/20] # GZ settare wd, caricare file salvato, richiamare "spatstat" e mostrare grafico densità casi Covid setwd("C:/lab") load("point_pattern.RData") ls() # per vedere contenuto del file caricato library(spatstat) plot(d) # GZ palette -> modificare colori del plot d; (100) per dire a R quante sfumature deve avere la scala di colori cl<-colorRampPalette(c('yellow','orange','red')) (100) plot(d,col=cl) # GZ plot densità con nuovi colori # esercizio: plot densità dal verde al blu bluverde<-colorRampPalette(c('blue','grey','green')) (200) plot(d,col=bluverde) # GZ mostare punti Covid19 sulla mappa di densità points(covids) # GZ inserire nella mappa confini degli stati install.packages("rgdal") # GZ "rgdal" -> pacchetto necessario per usare il comando "readOGR" library(rgdal) coastlines<-readOGR("ne_10m_coastline.shp") # GZ "readOGR" -> funzione che legge origine dati OGR e un layer in un oggetto vettoriale spaziale adatto, serve per creare layer dei confini plot(coastlines,add=T) # GZ "add=T" per aggiungere confini al vecchio plot senza eliminarlo -> grafico completo # GZ esercizio: plot della mappa di densità con nuova colorazione e aggiunta coastlines clr<-colorRampPalette(c('light blue','blue','pink','purple')) (400) plot(d,col=clr) plot(coastlines,add=T) setwd("C:/lab") load("C:/lab/point_ppattern.RData") library(spatstat) ls() library(rgdal) # GZ esercizio: plot mappa di densità con nuova palette coastlines<-readOGR("ne_10m_coastline.shp") clr<-colorRampPalette(c('light blue','blue','pink','purple')) (400) plot(d,col=clr,main="density") plot(coastlines,add=T) points(covids) ### GZ INTERPOLATION covid marks(covids)<-covid$cases # "marks" -> associare dati categoria "cases" al pointpattern "covids" s<-Smooth(covids) # "Smooth" -> creare mappa con i dati appena costruiti plot(s) # plot mappa appena creata # GZ esercizio: plot(s) con coastlines e punti cls<-colorRampPalette(c('light blue','blue','green'))(100) plot(s,col=cls,main="Cases") points(covids) plot(coastlines,add=T) # GZ mappa finale (multiframe con entrambi i plot fatti) par(mfrow=c(2,1)) # GZ primo plot: densità clr<-colorRampPalette(c('light blue','blue','pink','purple')) (400) plot(d,col=clr,main="density") plot(coastlines,add=T) points(covids) # GZ secondo plot: interpolazione numero di casi cls<-colorRampPalette(c('light blue','blue','green'))(100) plot(s,col=cls,main="Cases") points(covids) plot(coastlines,add=T) # San Marino (lavorare con set di dati di una tesi su San Marino scaricati in "lab" ) setwd("C:/lab") load("C:/lab/Tesi.RData") ls() head(Tesi) library(spatstat) attach(Tesi) # GZ Point pattern: x,y,c(xmin,xmax),c(ymin,ymax) summary(Tesi) # sommario del dataset, posso trovare rapidamente le info principali # GZ "summary" -> longitudine: 12.42<x<12.46 e latitudine: 43.91<y<43.94 Tesippp<-ppp(Longitude,Latitude,c(12.41,12.47),c(43.90,43.95)) # GZ Mappa densità dT<-density(Tesippp) dev.off plot(dT) points(Tesippp,col="green") # GZ set wd e richiamo pacchetti setwd("C:/lab") load("C:/lab/Tesi.RData") library(spatstat) library(rgdal) # GZ dt=density map, Tesi=dataset, Tesippp=point pattern (coordinate longitudine e latitudine) head(Tesi) # GZ associare al point pattern il valore d'interesse (ricchezza di specie) e poi procedere con l'interpolazione marks(Tesippp)<-Tesi$Species_richness interpol<-Smooth(Tesippp) plot(interpol) # GZ mappa points(Tesippp) # GZ caricare il file vettoriale "San_Marino" e sovrapponiamo la mappa costruita prima (così da avere i confini) sanmarino<-readOGR("San_Marino.shp") plot(sanmarino) plot(interpol,add=T) # GZ "add=T" per indicare che mappa di interpolazione sovrapposta a mappa di San Marino points(Tesippp) plot(sanmarino,add=T) # GZ -> vedere nuovamente confini # GZ esercizio: plot multiframe densità e interpolazione (due righe, una colonna) par(mfrow=c(2,1)) plot(dT,main="Density of points") points(Tesippp) plot(interpol,main="Estimate of species richness") points(Tesippp) # GZ esercizio: come prima ma due colonne e una riga par(mfrow=c(1,2)) plot(dT,main="Density of points") points(Tesippp) plot(interpol,main="Estimate of species richness") points(Tesippp) ############################################################################# ############################################################################# ############################################################################# ### 4. 04_R_code_TeleRil.r - codice R per analisi satellitari (telerilevamento) # GZ set wd e pacchetti ("raster","RStoolbox") setwd("C:/lab") install.packages("raster") # "raster" per lettura, scrittura, analisi e modellizzazione di dati spaziali library(raster) install.packages("RStoolbox") # "RStoolbox" per analisi dati mediante telerilevamento # GZ funzione "brick" per importare immagine selezionata e creare ogetto "RasterBrick" (multistrato) p224r63_2011<-brick("p224r63_2011_masked.grd") # GZ plot oggetto appena creato plot(p224r63_2011) # 7 riquadri che mostrano un'immagine basata su riflettanza a varie lunghezze d'onda, come indicato sotto # B1: blue, B2: green, B3: red, B4: near infrared (nir), B5: medium infrared, B6: thermal infrared, B7: medium infrared # GZ RampPalette ("cl") per avere immagini con scala di colori da bianco a nero una volta rifatto il comando plot con specifica del colore cl<-colorRampPalette(c('black','grey','light grey'))(100) plot(p224r63_2011,col=cl) # GZ modifica scala cromatica (da 100 a 5 sfumature) cllow<-colorRampPalette(c('black','grey','light grey'))(5) plot(p224r63_2011,col=cllow) # GZ plot banda blu (B1) names(p224r63_2011) # GZ "names" -> visionare nomi oggetto # [1] "B1_sre" "B2_sre" "B3_sre" "B4_sre" "B5_sre" "B6_bt" "B7_sre" clb<-colorRampPalette(c('dark blue','blue','light blue'))(100) # GZ palette blu plot(p224r63_2011$B1_sre,col=clb) # GZ esercizio: plottare banda infrarosso vicino palette rosso-arancione-giallo clnir<-colorRampPalette(c('red','orange','yellow'))(100) plot(p224r63_2011$B4_sre,col=clnir) # GZ plot multiframe, quattro bande par(mfrow=c(2,2)) # blue clb<-colorRampPalette(c('dark blue','blue','light blue'))(100) plot(p224r63_2011$B1_sre,col=clb) # green clg<-colorRampPalette(c('dark green','green','light green'))(100) plot(p224r63_2011$B2_sre,col=clg) # red clr<-colorRampPalette(c('dark red','red','pink'))(100) plot(p224r63_2011$B3_sre,col=clr) # nir clnir<-colorRampPalette(c('red','orange','yellow'))(100) plot(p224r63_2011$B4_sre,col=clnir) dev.off() # GZ natural colours # 3 componenti: R G B # 3 bande: R = banda rosso, G = banda verde, B = banda blu # B1: blue - 1 # B2: green - 2 # B3: red - 3 # B4: near infrared (nir) - 4 # GZ "plotRGB" -> creare plot rosso-verde-blu su tre livelli (tre strati combinati per rappresentare bande rosso, verde e blu) plotRGB(p224r63_2011, r=3, g=2, b=1, stretch="Lin") # GZ stretch="Lin" per migliorare visibilità immagine # GZ nir => aggiunta banda infrarosso per rendere immagine più leggibile (necessario togliere una delle altre tre, in questo caso blu) plotRGB(p224r63_2011, r=4, g=3, b=2, stretch="Lin") # GZ permette di visualizzare vegetazione # GZ salvataggio immagine appena ottenuta pdf("primografico.pdf") plotRGB(p224r63_2011, r=4, g=3, b=2, stretch="Lin") dev.off() # GZ multiframe bande diverse par(mfrow=c(2,1)) plotRGB(p224r63_2011, r=3, g=2, b=1, stretch="Lin") plotRGB(p224r63_2011, r=4, g=3, b=2, stretch="Lin") dev.off() # GZ esercizio: nir nella compnente R(Red) plotRGB(p224r63_2011, r=4, g=3, b=2, stretch="Lin") # GZ esercizio: nir nella componente G(Green) plotRGB(p224r63_2011, r=3, g=4, b=2, stretch="Lin") # GZ esercizo: nir nella componente B(Blue) plotRGB(p224r63_2011, r=3, g=2, b=4, stretch="Lin") ### LANDCOVER # GZ setwd e pacchetti setwd("C:/lab/p224r63") library(raster) # GZ "brick" per importare immagine p224r63_2011<-brick("p224r63_2011_masked.grd") # GZ richiamare "RStoolbox" library(RStoolbox) # GZ plottare immagine in RGB plotRGB(p224r63_2011,r=4,g=3,b=2,stretch="Lin") # GZ classificazione dati raster con "unsuperClass", specificando numero di classi p224r63_2011c<-unsuperClass(p224r63_2011,nClasses = 4) # GZ visualizzare nuovo modello contenente anche mappa p224r63_2011c # GZ plot mappa (quattro colori -> quattro classi specificate) plot(p224r63_2011c$map) # GZ nuova palette (migliore visualizzazione del grafico) clclass <- colorRampPalette(c('green',"red","blue","black"))(100) plot(p224r63_2011c$map,col=clclass) # Day2 # GZ setwd e pacchetti library(raster) setwd("C:/lab") load("TeleRil.RData") ls() # GZ importare file 1988 e 2011 ("brick") p224r63_2011<-brick("p224r63_2011_masked.grd") p224r63_1988<-brick("p224r63_1988_masked.grd") # GZ immagine 1988, come 2011 ha sette bande (colori): # B1: blue - 1 # B2: green - 2 # B3: red - 3 # B4: near infrared (nir) - 4 # B4: near infrared (nir) # B5: medium infrared # B6: thermal infrared # B7: medium infrared # GZ plot oggetto 1988 e visualizzare campi plot(p224r63_1988) names(p224r63_1988) # GZ plot multiframe per banda blu (1), verde (2), rosso (3) e nir (4) par(mfrow=c(2,2)) clb<-colorRampPalette(c("dark blue","blue","light blue"))(100) # blue plot(p224r63_1988$B1_sre,col=clb) clg<-colorRampPalette(c("dark green","green","light green"))(100) # green plot(p224r63_1988$B2_sre,col=clg) clr<-colorRampPalette(c("red","orange","yellow"))(100) # red plot(p224r63_1988$B3_sre,col=clr) clnir<-colorRampPalette(c("purple","pink","light pink"))(100) # nir plot(p224r63_1988$B4_sre,col=clnir) dev.off() # GZ immagine con colori visibili (plotRGB "natural colours") plotRGB(p224r63_1988, r=3, g=2, b=1, stretch="Lin") # GZ grafico poco comprensibile => usare infrarosso (plotRGB "false colours" # GZ esercizio: plotRGB con componenete infrarossa plotRGB(p224r63_1988,r=4,g=3,b=2,stretch="Lin") # GZ richiamare immagine 2011 p224r63_2011 # GZ plot per confronto immagini 1988 e 2011 par(mfrow=c(2,1)) plotRGB(p224r63_1988,r=4,g=2,b=1,stretch="Lin") plotRGB(p224r63_2011,r=4,g=2,b=1,stretch="Lin") # GZ => territorio agricolo è molto più sviluppato nel 2011 # GZ nir indica la presenza di vegetazione, zolle di terra sono bianche o celeste dev.off() # GZ spectral indices (DVI) => verificare stato salute vegetazione (foglie sane riflettono infrarosso) # GZ DVI=nir-red -> es: dvi1988=nir1988-red1988 => risultati diversi in base a salute piante (sane=nir alto) # GZ DVI 1988 dvi1988<-p224r63_1988$B4_sre-p224r63_1988$B3_sre plot(dvi1988) # GZ esercizio: DVI 2011 dvi2011<-p224r63_2011$B4_sre-p224r63_2011$B3_sre plot(dvi2011) # GZ cambio palette cldvi<-colorRampPalette(c('light blue','light green','green'))(100) plot(dvi2011,col=cldvi) # GZ analisi multitemporale (differenza 2011-1988) => differenza tra DVI dei 2 anni mostra cambiamento stato vegetazione difdvi<-dvi2011-dvi1988 plot(difdvi) cldifdvi<-colorRampPalette(c('red','white','blue'))(100) plot(difdvi,col=cldifdvi) dev.off() # GZ visualize the output # GZ multiframe 1988RGB, 2011RGB, difdvi par(mfrow=c(3,1)) plotRGB(p224r63_1988,r=4,g=3,b=2,stretch="Lin") plotRGB(p224r63_2011,r=4,g=3,b=2,stretch="Lin") plot(difdvi,col=cldifdvi) dev.off() # GZ "aggregate" -> modificare risoluzione (grana) immagine creando nuovo RasterLayer con risoluzione più bassa quindi celle più grandi ("fact=n" è un moltiplicatore che ci dà dei pixel n volte più grandi dei precedenti) p224r63_2011lr<-aggregate(p224r63_2011,fact=10) # lr=lowresolution # GZ inserire i due oggetti per vedere caratteristiche dei pixel p224r63_2011 p224r63_2011lr # GZ plot multiframe confronto tra le due risoluzioni par(mfrow=c(2,1)) plotRGB(p224r63_2011, r=4, g=3, b=2, stretch="Lin") plotRGB(p224r63_2011lr, r=4, g=3, b=2, stretch="Lin") # GZ lower resolution ("fact=50") p224r63_2011lr50<-aggregate(p224r63_2011,fact=50) p224r63_2011lr50 # GZ plot multiframe comparativo (normale, lr, lr50) par(mfrow=c(3,1)) plotRGB(p224r63_2011, r=4, g=3, b=2, stretch="Lin") plotRGB(p224r63_2011lr, r=4, g=3, b=2, stretch="Lin") plotRGB(p224r63_2011lr50, r=4, g=3, b=2, stretch="Lin") # GZ DVI lr50 2011 dvi2011lr50<-p224r63_2011lr50$B4_sre-p224r63_2011lr50$B3_sre plot(dvi2011lr50) # GZ DVI lr50 1988 p224r63_1988lr50<-aggregate(p224r63_1988,fact=50) # GZ creare lr50 1988 dvi1988lr50<-p224r63_1988lr50$B4_sre-p224r63_1988lr50$B3_sre plot(dvi1988lr50) # GZ difdvi lr50 difdvilr50<-dvi2011lr50-dvi1988lr50 plot(difdvilr50,col=cldifdvi) # GZ riprendere palette "cldifdvi" creata in precedenza # GZ multiframe differenze DVI alle diverse risoluzioni par(mfrow=c(2,1)) plot(difdvi,col=cldifdvi) plot(difdvilr50,col=cldifdvi) ############################################################################# ############################################################################# ############################################################################# ### 5. 05_R_code_multitemp.r - Analisi multitemporale variazione landcover # GZ setwd e pacchetti setwd("C:/lab") library(raster) library(RStoolbox) library(ggplot2) # GZ importare immagini defor1 <-brick("defor1_.png") defor2 <-brick("defor2_.png") # GZ plotRGB "defor1" defor1 # GZ visualizzare i campi dell'oggetto # "defor1_.1" "defor1_.2" "defor1_.3" # defor1_.1 = NIR # defor1_.2 = red # defor1_.3 = green plotRGB(defor1,r=1,g=2,b=3,stretch="Lin") # GZ banda red->nir(r=1), green->red(g=2), blue->green(b=3) # GZ eserczio: plot seconda data plotRGB(defor2,r=1,g=2,b=3,stretch="Lin") # GZ confronto (multiframe) stessa area in momenti differenti (prima e dopo deforestazione) par(mfrow = c(2,1)) plotRGB(defor1,r=1,g=2,b=3,stretch="Lin") plotRGB(defor2,r=1,g=2,b=3,stretch="Lin") dev.off() # GZ classificazione non supervisionata d1c<-unsuperClass(defor1,nClasses=2) # GZ si creano classi di foresta e non foresta (suddivisione pixel in queste due categorie) plot(d1c$map) cl<-colorRampPalette(c('green','black'))(100) plot(d1c$map,col=cl) # GZ esercizio: come prima per "defor2" d2c<-unsuperClass(defor2,nClasses=2) plot(d2c$map,col=cl) dev.off() # GZ confronto tra i due momenti (multiframe) con pixel classificati # GZ due righe, una colonna par(mfrow=c(2,1)) plot(d1c$map,col=cl) plot(d2c$map,col=cl) # GZ due colonne, una riga par(mfrow=c(1,2)) plot(d1c$map,col=cl) plot(d2c$map,col=cl) dev.off() # GZ calcolo frequenza delle due classi di pixel nella prima immagine freq(d1c$map) # GZ aree aperte=37039 # GZ foresta=304253 # GZ numero di pixel totali nella prima immagine (necessario per calcolo percentuale) totd1<-37039+304253 totd1 # totd1=341292 # GZ calcolo frequenze percentuali percent1<-freq(d1c$map)*100/totd1 # GZ foreste: 89.1 % # GZ aree aperte: 10.9 % # GZ stesso procedimento per la seconda immagine freq(d2c$map) # GZ aree aperte=165055 # GZ foreste=177671 totd2<-165055+177671 totd2 # GZ totd2=342726 percent2<-freq(d2c$map)*100/totd2 # GZ aree aperte: 48.2 % # GZ foreste: 51.8 % # GZ creare vettori per analisi grafica cover<-c("Agriculture","Forest") before<-c(10.9,89.1) after<-c(48.2,51.8) # GZ creare nuovo dataset con i dati ottenuti output<-data.frame(cover,before,after) output # Day2 setwd("C:/lab") load("C:/lab/defor.RData") library(raster) library(ggplot2) install.packages("gridExtra") library(gridExtra) # GZ riprendere mappe par(mfrow=c(1,2)) cl<-colorRampPalette(c('black','green'))(100) plot(d1c$map,col=cl) plot(d2c$map,col=cl) ls() output # cover before after # 1 Agriculture 10.9 48.2 # 2 Forest 89.1 51.8 # GZ istogramma delle percentuali di copertura prima della deforestazione grafico1<-ggplot(output,aes(x=cover,y=before,color=cover)) + geom_bar(stat="identity",fill="white") grafico1 # GZ in ascissa "aes"(aree di foresta/aperte), in ordinata percentuale di copertura # GZ esercizio: istogramma dopo deforestazione grafico2<-ggplot(output,aes(x=cover,y=after,color=cover)) + geom_bar(stat="identity",fill="white") grafico2 # GZ esercizio: usare "grid.arrange" (funzione del pacchetto "gridExtra" che permette confronto tra istogrammi) per creare un plot con grafico1 e grafico2 # GZ grid.arrange=> grid.arrange(plot1,plot2,nrow=1), questa funzione crea un plot con più grafici grid.arrange(grafico1,grafico2,nrow=1) # GZ evidente cambiamento nelle percentuali di copertura # GZ per facilitare confronto uniformare sacla dei due istogrammi (imporre al grafico il limite y=100) grafico1<-ggplot(output,aes(x=cover,y=before,color=cover)) + geom_bar(stat="identity",fill="white") + ylim(0,100) grafico2 <- ggplot(output, aes(x=cover, y=after, color=cover)) + geom_bar(stat="identity", fill="white") + ylim(0, 100) grid.arrange(grafico1,grafico2,nrow=1) ############################################################################# ############################################################################# ############################################################################# ### 6. 06_R_code_multitemp_NO2.r - Codice per analisi dati ESA su NO2 (gennaio-marzo 2020 => lockdown) # GZ setwd e pacchetti setwd("C:/lab") library(raster) # GZ importare immagini -> "raster" perchè immagine con una sola banda (con più bande si usa "brick") EN01<-raster("EN_0001.png") plot(EN01) # GZ eserizio: importare tutte le immagini EN02<-raster("EN_0002.png") EN03<-raster("EN_0003.png") EN04<-raster("EN_0004.png") EN05<-raster("EN_0005.png") EN06<-raster("EN_0006.png") EN07<-raster("EN_0007.png") EN08<-raster("EN_0008.png") EN09<-raster("EN_0009.png") EN10<-raster("EN_0010.png") EN11<-raster("EN_0011.png") EN12<-raster("EN_0012.png") EN13<-raster("EN_0013.png") # GZ plot multiframe immagine inizale-finale => confronto cl<-colorRampPalette(c('red','orange',yellow'))(100) par(mfrow=c(1,2) plot(EN01,col=cl) plot(EN13,col=cl) dev.off() # GZ differenza "EN13" - "EN01" difno2<-EN13-EN01 cldif<-colorRampPalette(c('blue','black','yellow'))(100) plot(difno2,col=cldif) # GZ esercizio: plot multiframe tutte le immagini par(mfrow=c(4,4)) plot(EN01,col=cl) plot(EN02,col=cl) plot(EN03,col=cl) plot(EN04,col=cl) plot(EN05,col=cl) plot(EN06,col=cl) plot(EN07,col=cl) plot(EN08,col=cl) plot(EN09,col=cl) plot(EN10,col=cl) plot(EN11,col=cl) plot(EN12,col=cl) plot(EN13,col=cl) # GZ alternativa: plot(EN01,EN02,EN03,EN04,EN05,EN06,EN07,EN08,EN09,EN10,EN11,EN12,EN13,col=cl) # Day2 # setwd, pacchetti e load setwd("C:/lab") load("EN.RData") ls() library(raster) # GZ "list.files" (pacchetto "raster") -> vettore comprendente lista di file in una data directory (cartella creata appositamente - "esa_no2") setwd("C:/lab/esa_no2") rlist<-list.files(pattern=".png") rlist # GZ "lapply" -> applica funzione indicata ad una lista (anzichè ad un solo file) # GZ in questo caso "raster" -> importare lista di immagini listafinale<-lapply(rlist,raster) listafinale # GZ "stack" -> trasformare lista in una sorta di agglomerato di n bande (13 in questi caso), come fosse un set multitemporale EN<-stack(listafinale) cl<-colorRampPalette(c('red','orange',yellow'))(100) plot(EN,col=cl) # GZ -> visualizzare immagini contenute nello stack "EN" # GZ differenza marzo ("EN13") - gennaio ("EN01") difEN<-EN$EN_0013-EN$EN_0001 cld<-colorRampPalette(c('blue','white','red'))(100) plot(difEN,col=cld) # GZ boxplot EN -> confronto tra tutte le immagini creando diagramma a riquadri (indicando caratteristiche grafiche) boxplot(EN,horizontal=T, # barre boxplot orizzontali outline=F, # elimina outliners axes=T) # presenza assi nel plot # in media cambiamenti non clamorosi, cambiamenti più evidenti sui massimi ############################################################################# ############################################################################# ############################################################################# ### 7. 07_R_code_snow.r - Codice analisi copertura nevosa # GZ setwd e pacchetti setwd("C:/lab") install.packages("ncdf4") # pacchetto per fornire interfaccia R per file di dati binari library(ncdf4) library(raster) # GZ importare immagine scaricata da Copernicus (copertura nevosa 18/05/2020) snowmay<-raster("c_gls_SCE500_202005180000_CEURO_MODIS_V1.0.1.nc") # GZ plot "snowmay" cl<-colorRampPalette(c('darkblue','blue','light blue'))(100) plot(snowmay,col=cl) # GZ settare nuova wd (cartella "snow" => immagini copertura nevosa in diversi momenti) setwd("C:/lab/snow") # GZ importare file -> "rlist" library(raster) rlist<-list.files(pattern=".tif",full.names=T) # GZ "lapply" lista appena creata (ogni file "rlist" importato con"raster") list_rast<-lapply(rlist,raster) # GZ raggruppare raster in unico vettore -> "stack" (consente di plottarle semplicemente tutte assieme) snow.multitemp<-stack(list_rast) # GZ plottare (usare palette creata prima) plot(snow.multitemp,col=cl) # GZ multiframe (confronto) 2000 ("snow2000r") - 2020 ("snow2020r") par(mfrow=c(1,2)) plot(snow.multitemp$snow2000r,col=cl) plot(snow.multitemp$snow2020r,col=cl) # GZ limite ordinate uguale per entrambe le mappe => confronto più facile par(mfrow=c(1,2)) plot(snow.multitemp$snow2000r,col=cl,zlim=c(0,250)) plot(snow.multitemp$snow2020r,col=cl,zlim=c(0,250)) dev.off() # GZ differenza 2000-2020 difsnow<-snow.multitemp$snow2020r - snow.multitemp$snow2000r cldif<-colorRampPalette(c('blue','white','red'))(100) # GZ nuova palette plot(difsnow,col=cldif) # GZ pixel blu => diminuzione copertura, bianchi => stato stazionario, rossi => aumento # GZ "source" -> caricare codice da file esterni source("prediction.r") # GZ comando "lento" => caricare direttamente "predicted.snow.2025" # GZ previsione 2025 predicted.snow.2025.norm<-raster("predicted.snow.2025.norm.tif") plot(predicted.snow.2025.norm,col=cl) ############################################################################# ############################################################################# ############################################################################# ### 8. 08_R_code_patches.r # GZ setwd e pacchetti setwd("C:/lab") install.packages("igraph") library(igraph) library(ggplot2) library(raster) # GZ caricare immagini raster -> "raster" d1c<-raster("d1c.tif") d2c<-raster("d2c.tif") # GZ plot per distinguere aree di foresta (palette bicolore) cl<-colorRampPalette(c('green','black'))(100) par(mfrow=c(1,2)) plot(d1c,col=cl) plot(d2c,col=cl) cl<-colorRampPalette(c('black','green'))(100) # correzione mappa => inversione colori par(mfrow=c(1,2)) plot(d1c,col=cl) plot(d2c,col=cl) dev.off() # GZ valori 2 => foresta, 1 => aree agricole # GZ lasciare solo pixel aree forestali -> "reclassify" per riclassificare valori, "cbind" per trasformare valori 1 (agricoltura) in valori nulli ("NA" => valore mancante) d1c.for<-reclassify(d1c,cbind(1,NA)) d2c.for<-reclassify(d2c,cbind(1,NA)) # GZ multiframe di confronto (solo foreste, foreste+agricoltura) par(mfrow=c(1,2)) cl<-colorRampPalette(c('black','green'))(100) plot(d1c,col=cl) plot(d1c.for,col=cl) # GZ plot mappe solo foresta par(mfrow=c(1,2)) plot(d1c) plot(d2c) # GZ creare patches ("igraph") library(igraph) d1c.for.patches<-clump(d1c.for) # "clump"-> unire e raggruppare pixel vicini (creare patches) d2c.for.patches<-clump(d2c.for) # GZ "writerRaster" -> esportare il file in formato ".tif" all'esterno di R (in questo caso cartella "lab)) writeRaster(d1c.for.patches,"d1c.for.patches.tif") writeRaster(d2c.for.patches,"d2c.for.patches.tif") # GZ esercizio: plottare mappe una accanto all'altra par(mfrow=c(1,2)) clp<-colorRampPalette(c('darkblue','blue','green','orange','yellow','red'))(100) # GZ palette con più colori per visualizzare meglio patch di foresta plot(d1c.for.patches,col=clp) plot(d2c.for.patches,col=clp) # GZ numero patches creati nelle mappe d1c.for.patches # GZ => 301 patches d2c.for.patches # GZ => 1212 patches # GZ risultati in nuovo dataframe time<-c("Before deforestation","After deforestation") # GZ "time" -> dati prima e dopo deforestazione npatches<-c(301,1212) # GZ "npatches" -> numero patches # GZ creare dataframe "output" output<-data.frame(time,npatches) attach(output) # GZ plot finale ("ggplot") library(ggplot2) ggplot(output,aes(x=time,y=npatches,color="red"))+geom_bar(stat="identity",fill="white") ############################################################################# ############################################################################# ############################################################################# ### 9. 09_R_code_crop.r # GZ setwd (dati snow già usati => cartella "snow") setwd("C:/lab/snow") # GZ esercizio: caricare tutte le immagini della cartella library(raster) rlist<-list.files(pattern="snow") # GZ "pattern" -> permettere a R riconoscimento dei file list.rast<-lapply(rlist, raster) list.rast # GZ stack snow.multitemp<-stack(list.rast) # GZ plot clb<-colorRampPalette(c('dark blue','blue','light blue'))(100) plot(snow.multitemp,col=clb) # GZ analisi immagini multitemporali snow.multitemp plot(snow.multitemp$snow2010r, col=clb) # GZ plot immagine 2010 (Italia tra 6 e 20 gradi e tra 35 e 50) # GZ zoom su Italia -> "zoom", prima impostare nuova estensione ("extension") extension<-c(6,20,35,50) zoom(snow.multitemp$snow2010r,ext=extension) zoom(snow.multitemp$snow2010r,ext=extension,col=clb) # GZ plot 2010, zoom Italia, palette "clb" # GZ definire estensione tramite disegno ("drawExtent") plot(snow.multitemp$snow2010r, col=clb) # GZ riplottare immagine originale zoom(snow.multitemp$snow2010r,ext=drawExtent()) extension<-c(6,20,35,50) snow2010r.italy<-crop(snow.multitemp$snow2010r,extension) # GZ "crop" -> ottenere immagine zona ritagliata plot(snow2010r.italy,col=clb) # GZ plot immagine ottenuta # GZ esercizio: crop Italia con stack completo extension<-c(6,20,35,50) snow.multitemp.Italy<-crop(snow.multitemp,extension) plot(snow.multitemp.Italy,col=clb) # GZ impostare legenda uniforme snow.multitemp.Italy # GZ min->20, MAX->200 # GZ aggiungere limite => "zlim=c(20,200)" plot(snow.multitemp.Italy,col=clb,zlim=c(20,200)) # GZ boxplot => valore MAX copertura nevosa diminuisce nel tempo boxplot(snow.multitemp.Italy,horizontal=T,outline=F) ############################################################################# ############################################################################# ############################################################################# ### 10. 10_R_code_species_distribution_modeling.r - Species Distribution Modeling # GZ pacchetti (no setwd perchè dati presenti nel pacchetto "sdm") install.packages("sdm") library(sdm) library(raster) library(rgdal) # GZ "system.file" -> caricare file da utilizzare contenuto in "sdm" file<-system.file("external/species.shp",package="sdm") # GZ "shapefile" (pacchetto "raster") species<-shapefile(file) # GZ caratteristiche dataset species species$Occurrence # GZ valori "Occurrence" # ogni punto associato a presenza assenza specie => "Occurrence" = 0(assente) o 1(presente) # GZ plot dataset "species" plot(species) # GZ mostrate presenze e assenze # GZ diversificare assenze (rosso) da presenze (blu) plot(species[species$Occurrence==1,],col='blue',pch=16) points(species[species$Occurrence==0,],col='red',pch=16) # GZ variabili ambientali disponibili (cartella "external", pacchetto "sdm") path <- system.file("external",package="sdm") # GZ importare file per prevedere distribuzione spaziale in base a variabili ambientali lst<-list.files(path=path,pattern='asc$',full.names=T) lst # GZ variabili: elevation, precipitation, temperature, vegetation preds<-stack(lst) # GZ stack => predittore distribuzione cl<-colorRampPalette(c('yellow','orange','red'))(100) # GZ palette plot(preds,col=cl) # GZ distribuzione probabilmente relazionata a valori variabili # GZ plot elevation plot(preds$elevation,col=cl) points(species[species$Occurrence==1,],pch=16) # GZ aggiungere punti presenza => specie presente a bassa quota # GZ temperature plot(preds$temperature, col=cl) points(species[species$Occurrence==1,],pch=16) # GZ => specie non gradisce basse temperature # GZ precipitation plot(preds$precipitation, col=cl) points(species[species$Occurrence==1,],pch=16) # GZ => condizioni medie sono ottimali # GZ vegetation plot(preds$vegetation, col=cl) points(species[species$Occurrence==1,],pch=16) # GZ => elevata copertura vegetale è favorevole # GZ sintesi: bassa quota, temperatura medio-alta, piovosità media, buona copertura vegetale # GZ Generalized Linear Model (glm) d<-sdmData(train=species,predictors=preds) # GZ indicare a R dati relativi a specie e variabili da considerare d # GZ modello m1<-sdm(Occurrence~elevation+precipitation+temperature+vegetation,data=d,methods='glm') # GZ previsione (creare mappa predittiva distribuzione in base alle quattro variabili) -> "predict" p1<-predict(m1,newdata=preds) plot(p1,col=cl) points(species[species$Occurrence== 1,],pch=16) ############################################################################# ############################################################################# ############################################################################# ### 11_R_code_project.r # GZ setwd e pacchetti setwd("C:/lab/exam") library(ncdf4) library(raster) # GZ importare dati albedo e raggrupparli examlist<-list.files(pattern=".nc",full.names=T) list_rast<-lapply(examlist,raster) alb.multitemp<-stack(list_rast) # GZ rinominare file per praticità alb.jan2000<-alb.multitemp$Broadband.directional.albedo.over.total.spectrum.1 alb.jan2010<-alb.multitemp$Broadband.directional.albedo.over.total.spectrum.2 alb.jan2020<-alb.multitemp$Broadband.directional.albedo.over.total.spectrum.3 alb.jul2000<-alb.multitemp$Broadband.directional.albedo.over.total.spectrum.4 alb.jul2010<-alb.multitemp$Broadband.directional.albedo.over.total.spectrum.5 alb.jul2020<-alb.multitemp$Broadband.directional.albedo.over.total.spectrum.6 # GZ plot cl<-colorRampPalette(c('red','orange','yellow'))(100) plot(alb.multitemp,col=cl,zlim=c(0,1)) # GZ omesso, con sei grafici troppo complicato, la mia palette fa schifo # GZ confronto jan par(mfrow=c(1,3)) plot(alb.jan2000,zlim=c(0,1)) plot(alb.jan2010,zlim=c(0,1)) plot(alb.jan2020,zlim=c(0,1)) # GZ confronto jul par(mfrow=c(1,3)) plot(alb.jul2000,zlim=c(0,1)) plot(alb.jul2010,zlim=c(0,1)) plot(alb.jul2020,zlim=c(0,1)) # GZ crop arco alpino, inverno extension<-c(0,20,42,50) alb.alps.2000.jan<-crop(alb.jan2000,extension) alb.alps.2010.jan<-crop(alb.jan2010,extension) alb.alps.2020.jan<-crop(alb.jan2020,extension) par(mfrow=c(1,3)) plot(alb.alps.2000.jan,zlim=c(0,1)) plot(alb.alps.2010.jan,zlim=c(0,1)) plot(alb.alps.2020.jan,zlim=c(0,1)) # GZ crop arco apino estivo alb.alps.2000.jul<-crop(alb.jul2000,extension) alb.alps.2010.jul<-crop(alb.jul2010,extension) alb.alps.2020.jul<-crop(alb.jul2020,extension) par(mfrow=c(1,3)) plot(alb.alps.2000.jul,zlim=c(0,1)) plot(alb.alps.2010.jul,zlim=c(0,1)) plot(alb.alps.2020.jul,zlim=c(0,1)) # GZ differenze nell'albedo inverno-estate negli anni dif1<-albjan.2000-albjul.2000 dif2<-albjan.2020-albjul.2020 cldif<-colorRampPalette(c('blue','white','red'))(100) par(mfrow=c(1,2)) plot(dif1,col=cldif) plot(dif2,col=cldif) # mi spettavo differenze più evidenti, forse lettura errata # GZ confronto con copertura nevosa => attesi pattern in linea # GZ importare raster copertura nevosa snowlist<-list.files(pattern="snow",full.names=T) list_snow<-lapply(snowlist,raster) snow.multitemp<-stack(list_snow) # GZ confronto (uso mesi invernali per rendere confronto più visibile) clsnow<-colorRampPalette(c('darkblue','blue','light blue'))(100) par(mfrow=c(2,2)) plot(snow.multitemp$snow2000r,col=clsnow,zlim=c(0,250)) plot(snow.multitemp$snow2020r,col=clsnow,zlim=c(0,250)) plot(alb.jan2000,zlim=c(0,1)) plot(alb.jan2020,zlim=c(0,1)) # GZ crop arco alpino (albedo e snow) snow.alps.2000<-crop(snow.multitemp$snow2000r,extension) snow.alps.2020<-crop(snow.multitemp$snow2020r,extension) par(mfrow=c(2,2)) plot(alb.alps.2000.jan,zlim=c(0,1)) plot(alb.alps.2020.jan,zlim=c(0,1)) plot(snow.alps.2000,col=clsnow,zlim=c(0,250)) plot(snow.alps.2020,col=clsnow,zlim=c(0,250)) # GZ confronto tra differenze 2000-2020 albedo e snow dif3<-alb.jan2000-alb.jan2020 difsnow<-snow.multitemp$snow2000r-snow.multitemp$snow2020r par(mfrow=c(2,2)) plot(dif3,col=cldif) plot(difsnow,col=cldif) # GZ crop Alpi differenze alb.dif.alps<-crop(dif3,extension) snow.dif.alps<-crop(difsnow,extension) par(mfrow=c(1,2)) plot(alb.dif.alps,col=cldif) plot(snow.dif.alps,col=cldif) # GZ differenza molto più evidente a livello di copertura nevosa (ovvio, per albedo basta anche uno strato di neve sottile)
/R_code_exam.r
no_license
GiovanniZanfei/Ecologia_del_Paesaggio
R
false
false
43,455
r
# R_code_exam.r # Copernicus data: https://land.copernicus.vgt.vito.be/PDF/portal/Application.html # 1. 01_R_code_first.r # 2. 02_R_code_spatial.r # 3. 03_R_code_point_patterns.r # 4. 04_R_code_TeleRil.r # 5. 05_R_code_multitemp.r # 6. 06_R_code_multitemp_NO2.r # 7. 07_R_code_snow.r # 8. 08_R_code_patches.r # 9. 09_R_code_crop.r # 10. 10_R_code_species_distribution_modeling.r # 11. 11_R_code_examproject.r ############################################################################# ############################################################################# ############################################################################# ### 1. 01_R_code_first.r - Primo codice R Ecologia del Paesaggio # GZ pacchetti: "install.packages()" -> scaricare pacchetti (poi richiamabili con comando "library()" [o "require()]) install.packages("sp") library(sp) # GZ dataset e funzioni associate data("meuse") # GZ richiamo dataset "meuse" (dati su presenza metalli pesanti nel terreno), inserito nella libreria "sp" meuse # GZ visualizzare dati head(meuse) # GZ prime 6 righe del dataset names(meuse) # GZ nomi variabili (colonne del dataset) summary(meuse) # GZ riporta statistiche di base per le variabili del dataset # GZ grafici: "pairs()" per creare grafici a coppie tra variabili di un dataset pairs(meuse) # GZ grafici a coppie tra tutte le variabili pairs(~cadmium + copper + lead, data = meuse) # GZ grafici a coppie tra le variabili indicate # GZ esercizio: pairs() quattro variabili [cadmium, copper, lead, zinc] pairs(~cadmium+copper+lead+zinc,data=meuse) # GZ [,x:y] per selezionare subset composto da righe selezionate (3, 4, 5, 6 -> cadmium, copper, lead, zinc) pairs(meuse[,3:6]) # GZ visualizzazione: scelgo colori["col="], simboli["pch="] e dimensioni["cex="] => per simboli "pch=n" con 1<n<25 (ad ogni numero un diverso simbolo) pairs(meuse[,3:6],col="blue",pch=18,cex=3) # GZ "main=" per dare titolo al grafico pairs(meuse[,3:6],col="blue",pch=18,cex=3,main="Primo pairs") # GZ prendere funzioni esterne => "panel.correlations" indica coefficiente di correlazione tra variabili panel.correlations<-function(x,y,digits=1,prefix="",cex.cor) { usr <- par("usr"); on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) r1=cor(x,y,use="pairwise.complete.obs") r <- abs(cor(x, y,use="pairwise.complete.obs")) txt <- format(c(r1, 0.123456789), digits=digits)[1] txt <- paste(prefix, txt, sep="") if(missing(cex.cor)) cex <- 0.9/strwidth(txt) text(0.5, 0.5, txt, cex = cex * r) } # GZ "panel.smoothing" -> fa una specie di regressione tra variabili panel.smoothing <- function (x, y, col = par("col"), bg = NA, pch = par("pch"), cex = 1, col.smooth = "red", span = 2/3, iter = 3, ...) { points(x, y, pch = pch, col = col, bg = bg, cex = cex) ok <- is.finite(x) & is.finite(y) if (any(ok)) lines(stats::lowess(x[ok], y[ok], f = span, iter = iter), col = 1, ...) } # GZ "panel.histograms" -> crea istogramma di una variabile panel.histograms <- function(x, ...) { usr <- par("usr"); on.exit(par(usr)) par(usr = c(usr[1:2], 0, 1.5) ) h <- hist(x, plot = FALSE) breaks <- h$breaks; nB <- length(breaks) y <- h$counts; y <- y/max(y) rect(breaks[-nB], 0, breaks[-1], y, col="white", ...) } # GZ uso funzioni precedentemente create per costruire grafici a coppie fra le quattro variabili selezionate, in cui vengono mostrati anche coefficienti di correlazione tra le variabili # GZ lower.panel -> parte sopra la diagonale # GZ upper.panel -> parte sotto la diagonale # GZ diag.panel -> diagonale pairs(meuse[,3:6],lower.panel=panel.correlations,upper.panel=panel.smoothing,diag.panel=panel.histograms) # GZ esercizio: invertire posto rispetto alla diagonale di correlazione e interpolazione pairs(meuse[,3:6],lower.panel=panel.smoothing,upper.panel=panel.correlations,diag.panel=panel.histograms) ############################################################################# ############################################################################# ############################################################################# ### 2. 02_R_code_spatial.r - Funzioni sapziali in Ecologia del Paesaggio [24/03/2020] # GZ caricare pacchetti e dati library(sp) data(meuse) head(meuse) # GZ fissare dataframe -> attach() attach(meuse) # GZ plot cadmium e lead segliendo colori["col"], caratteri["pch"] e dimensioni["cex"] plot(cadmium,lead,col="red",pch=19,cex=1) # GZ esercizio: plot copper e zinc con carattere triangolo(17) e colore verde plot(copper,zinc,col="green",pch=17) # GZ cambiare etichette relative ad assi del grafico => "xlab","ylab" plot(copper,zinc,col="green",pch=17,xlab="rame",ylab="zinco") # GZ multiframe o multipanel => "par(mfrow=c(numero righe,numero colonne))"; a capo i plot che si vogliono mettere in una sola finestra par(mfrow=c(1,2)) # GZ "par(mfrow)" -> funzione per gestire aspetto dei grafici (creare diagramma a più riquadri); (1,2) indica una riga e due colonne plot(cadmium,lead,col="red",pch=19,cex=1) plot(copper,zinc,col="green",pch=17,xlab="rame",ylab="zinco") # GZ invertire grafici riga/colonna [(2,1) anzichè (1,2)] par(mfrow=c(2,1)) plot(cadmium,lead,col="red",pch=19,cex=1) plot(copper,zinc,col="green",pch=17,xlab="rame",ylab="zinco") # GZ multiframe automatico -> pacchetto "GGally" install.packages("GGally") library(GGally) ggpairs(meuse[,3:6]) # GZ "ggpairs" crea matrice di grafici con un determinato set di dati (in questo caso dalla terza alla sesta colonna del dataset "meuse") # GZ Spatial; "coordinates()" per indicare che i dati hanno coordinate (in meuse x e y => facendo ~x+y) head(meuse) gpairs coordinates(meuse)=x+y plot(meuse) # GZ "spplot()" -> distribuzione spaziale di una variabile (in questo caso "zinc") spplot(meuse,"zinc") # Spatial-2 [25/03/2020] # GZ installare pacchetto "sp", caricare dati "meuse" e fissare dataset ["attach()"] install.packages("sp") library(sp) data(meuse) attach(meuse) # GZ specificare coordinate del dataset => "coordinates(dataset)=~(coordinata,coordinata)" coordinates(meuse)=~x+y # GZ "spplot" dati zinco spplot(meuse,"zinc") # GZ esercizio: "spplot" dati rame spplot(meuse,"copper") # GZ "bubble(dataset,"variabile")" => rappresentazione spaziale come "spplot", crea un grafico a bolle di grandezza proporzionale a valore variabile bubble(meuse,"zinc") # GZ esercizio: bubble rame, colore rosso bubble(meuse,"copper",col="red") # GZ esempio: foraminiferi, carbon capture # GZ creare vettore che contenga dati di campionamento dei foraminiferi chiamandolo "foram" ["<-" per dare nome al vettore c] foram<-c(10,20,35,55,67,80) # GZ "carbon" per carbon stock carbon<-c(5,15,30,70,85,99) # GZ plot con questi vettori plot(foram,carbon,col="green",pch=19) # GZ prendere dati dall'esterno (dati "covid19agg.csv") # GZ settare cartella di lavoro -> wd("percorso") [in questo caso dico C, cartella lab] setwd("C:/lab") # GZ leggere tabella e usarla per costuire un dataframe; head=T per indicare a R che ci sono titoli delle colonne (prima riga è una stringa di testo) Covid19<-read.table("covid_agg.csv",head=T) # GZ intitolare tabella "Covid19" ############################################################################# ############################################################################# ############################################################################# ### 03_R_code_point_patterns.r - Analisi point patterns [25/03/2020] # GZ installare e richiamare pacchetti ("ggplot2", "spatstat") intall.packages("ggplot2") library(ggplot2) install.packages("spatstat) library(spatstat) # GZ set working directory setwd("C:/lab") # GZ importare tabella dati Covid19; "head=T" per indicare a R che ci sono i titoli delle colonne; dare alla tabella il nome Covid19 Covid19<-read.table("covid_agg.csv",head=T) head(Covid19) # comando per vedere tabella # GZ creare plot che associa Paesi e casi di Covid19 (anzichè "$" si può fare "attach(Covid19) plot(country,cases)") plot(Covid19$country,Covid19$cases) # GZ modificare struttura plot -> posizione etichette rispetto ad asse ("las=0" etichette parallele, 1 orizzontali, 2 perpendicolari, 3 verticali) plot(Covid19$country,Covid19$cases,las=0) plot(Covid19$country,Covid19$cases,las=1) plot(Covid19$country,Covid19$cases,las=2) plot(Covid19$country,Covid19$cases,las=3) plot(Covid19$country,Covid19$cases,las=3,cex.axis=0.5) # GZ "cex.axis" -> rimpicciolire dimensione etichette # GZ richiamare "ggplot2" (pacchetto per estetica e cura dei dettagli) library(ggplot2) # GZ dataframe "mpg" da pacchetto "ggplot2" ("mpg" raccoglie osservazioni US Environmental Protection Agency su 38 modelli di auto) data(mpg) head(mpg) # GZ esempio di plot con 2 variabili numeriche -> ggplot2 ha bisogno di 3 cose: dati ("mpg"), estetica del grafico ("aes", funzione di quotazione) e geometria ("geom_") ggplot(mpg,aes(x=displ,y=hwy))+geom_point() ggplot(mpg,aes(x=displ,y=hwy))+geom_line() # GZ linee anzichè punti nella visualizzazione ggplot(mpg,aes(x=displ,y=hwy))+geom_polygon() # GZ poligoni # GZ "ggplot2" per dati Covid19 -> usare longitudine e latitudine per avere i punti nello spazio, "size=cases" -> punti più grandi dove ci sono più casi ggplot(Covid19,aes(x=lon,y=lat,size=cases))+geom_point() # GZ richiamare pacchetto "spatstat" (mostra analisi dei modelli dei punti spaziali) e fissare dataframe library(spatstat) attach(covid) # GZ esercizio: zona con più alta densità casi di Covid19 # GZ creare dataset per spatstat -> "ppp" crea un oggetto che rappresenta un insieme di dati del pattern puntiforme nel piano bidimensionale covids<-ppp(lon,lat,c(-180,180),c(-90,90)) # GZ necessario specificare cosa indicano x e y ("lon","lat") e definirne il range d<-density(covids) # GZ comando per calcolare densità dei casi plot(d) # GZ plot (rappresentazione grafica) densità points(covids,pch=19) # GZ mostare i punti Covid19 sulla mappa di densità # point patterns-2 [01/04/20] # GZ settare wd, caricare file salvato, richiamare "spatstat" e mostrare grafico densità casi Covid setwd("C:/lab") load("point_pattern.RData") ls() # per vedere contenuto del file caricato library(spatstat) plot(d) # GZ palette -> modificare colori del plot d; (100) per dire a R quante sfumature deve avere la scala di colori cl<-colorRampPalette(c('yellow','orange','red')) (100) plot(d,col=cl) # GZ plot densità con nuovi colori # esercizio: plot densità dal verde al blu bluverde<-colorRampPalette(c('blue','grey','green')) (200) plot(d,col=bluverde) # GZ mostare punti Covid19 sulla mappa di densità points(covids) # GZ inserire nella mappa confini degli stati install.packages("rgdal") # GZ "rgdal" -> pacchetto necessario per usare il comando "readOGR" library(rgdal) coastlines<-readOGR("ne_10m_coastline.shp") # GZ "readOGR" -> funzione che legge origine dati OGR e un layer in un oggetto vettoriale spaziale adatto, serve per creare layer dei confini plot(coastlines,add=T) # GZ "add=T" per aggiungere confini al vecchio plot senza eliminarlo -> grafico completo # GZ esercizio: plot della mappa di densità con nuova colorazione e aggiunta coastlines clr<-colorRampPalette(c('light blue','blue','pink','purple')) (400) plot(d,col=clr) plot(coastlines,add=T) setwd("C:/lab") load("C:/lab/point_ppattern.RData") library(spatstat) ls() library(rgdal) # GZ esercizio: plot mappa di densità con nuova palette coastlines<-readOGR("ne_10m_coastline.shp") clr<-colorRampPalette(c('light blue','blue','pink','purple')) (400) plot(d,col=clr,main="density") plot(coastlines,add=T) points(covids) ### GZ INTERPOLATION covid marks(covids)<-covid$cases # "marks" -> associare dati categoria "cases" al pointpattern "covids" s<-Smooth(covids) # "Smooth" -> creare mappa con i dati appena costruiti plot(s) # plot mappa appena creata # GZ esercizio: plot(s) con coastlines e punti cls<-colorRampPalette(c('light blue','blue','green'))(100) plot(s,col=cls,main="Cases") points(covids) plot(coastlines,add=T) # GZ mappa finale (multiframe con entrambi i plot fatti) par(mfrow=c(2,1)) # GZ primo plot: densità clr<-colorRampPalette(c('light blue','blue','pink','purple')) (400) plot(d,col=clr,main="density") plot(coastlines,add=T) points(covids) # GZ secondo plot: interpolazione numero di casi cls<-colorRampPalette(c('light blue','blue','green'))(100) plot(s,col=cls,main="Cases") points(covids) plot(coastlines,add=T) # San Marino (lavorare con set di dati di una tesi su San Marino scaricati in "lab" ) setwd("C:/lab") load("C:/lab/Tesi.RData") ls() head(Tesi) library(spatstat) attach(Tesi) # GZ Point pattern: x,y,c(xmin,xmax),c(ymin,ymax) summary(Tesi) # sommario del dataset, posso trovare rapidamente le info principali # GZ "summary" -> longitudine: 12.42<x<12.46 e latitudine: 43.91<y<43.94 Tesippp<-ppp(Longitude,Latitude,c(12.41,12.47),c(43.90,43.95)) # GZ Mappa densità dT<-density(Tesippp) dev.off plot(dT) points(Tesippp,col="green") # GZ set wd e richiamo pacchetti setwd("C:/lab") load("C:/lab/Tesi.RData") library(spatstat) library(rgdal) # GZ dt=density map, Tesi=dataset, Tesippp=point pattern (coordinate longitudine e latitudine) head(Tesi) # GZ associare al point pattern il valore d'interesse (ricchezza di specie) e poi procedere con l'interpolazione marks(Tesippp)<-Tesi$Species_richness interpol<-Smooth(Tesippp) plot(interpol) # GZ mappa points(Tesippp) # GZ caricare il file vettoriale "San_Marino" e sovrapponiamo la mappa costruita prima (così da avere i confini) sanmarino<-readOGR("San_Marino.shp") plot(sanmarino) plot(interpol,add=T) # GZ "add=T" per indicare che mappa di interpolazione sovrapposta a mappa di San Marino points(Tesippp) plot(sanmarino,add=T) # GZ -> vedere nuovamente confini # GZ esercizio: plot multiframe densità e interpolazione (due righe, una colonna) par(mfrow=c(2,1)) plot(dT,main="Density of points") points(Tesippp) plot(interpol,main="Estimate of species richness") points(Tesippp) # GZ esercizio: come prima ma due colonne e una riga par(mfrow=c(1,2)) plot(dT,main="Density of points") points(Tesippp) plot(interpol,main="Estimate of species richness") points(Tesippp) ############################################################################# ############################################################################# ############################################################################# ### 4. 04_R_code_TeleRil.r - codice R per analisi satellitari (telerilevamento) # GZ set wd e pacchetti ("raster","RStoolbox") setwd("C:/lab") install.packages("raster") # "raster" per lettura, scrittura, analisi e modellizzazione di dati spaziali library(raster) install.packages("RStoolbox") # "RStoolbox" per analisi dati mediante telerilevamento # GZ funzione "brick" per importare immagine selezionata e creare ogetto "RasterBrick" (multistrato) p224r63_2011<-brick("p224r63_2011_masked.grd") # GZ plot oggetto appena creato plot(p224r63_2011) # 7 riquadri che mostrano un'immagine basata su riflettanza a varie lunghezze d'onda, come indicato sotto # B1: blue, B2: green, B3: red, B4: near infrared (nir), B5: medium infrared, B6: thermal infrared, B7: medium infrared # GZ RampPalette ("cl") per avere immagini con scala di colori da bianco a nero una volta rifatto il comando plot con specifica del colore cl<-colorRampPalette(c('black','grey','light grey'))(100) plot(p224r63_2011,col=cl) # GZ modifica scala cromatica (da 100 a 5 sfumature) cllow<-colorRampPalette(c('black','grey','light grey'))(5) plot(p224r63_2011,col=cllow) # GZ plot banda blu (B1) names(p224r63_2011) # GZ "names" -> visionare nomi oggetto # [1] "B1_sre" "B2_sre" "B3_sre" "B4_sre" "B5_sre" "B6_bt" "B7_sre" clb<-colorRampPalette(c('dark blue','blue','light blue'))(100) # GZ palette blu plot(p224r63_2011$B1_sre,col=clb) # GZ esercizio: plottare banda infrarosso vicino palette rosso-arancione-giallo clnir<-colorRampPalette(c('red','orange','yellow'))(100) plot(p224r63_2011$B4_sre,col=clnir) # GZ plot multiframe, quattro bande par(mfrow=c(2,2)) # blue clb<-colorRampPalette(c('dark blue','blue','light blue'))(100) plot(p224r63_2011$B1_sre,col=clb) # green clg<-colorRampPalette(c('dark green','green','light green'))(100) plot(p224r63_2011$B2_sre,col=clg) # red clr<-colorRampPalette(c('dark red','red','pink'))(100) plot(p224r63_2011$B3_sre,col=clr) # nir clnir<-colorRampPalette(c('red','orange','yellow'))(100) plot(p224r63_2011$B4_sre,col=clnir) dev.off() # GZ natural colours # 3 componenti: R G B # 3 bande: R = banda rosso, G = banda verde, B = banda blu # B1: blue - 1 # B2: green - 2 # B3: red - 3 # B4: near infrared (nir) - 4 # GZ "plotRGB" -> creare plot rosso-verde-blu su tre livelli (tre strati combinati per rappresentare bande rosso, verde e blu) plotRGB(p224r63_2011, r=3, g=2, b=1, stretch="Lin") # GZ stretch="Lin" per migliorare visibilità immagine # GZ nir => aggiunta banda infrarosso per rendere immagine più leggibile (necessario togliere una delle altre tre, in questo caso blu) plotRGB(p224r63_2011, r=4, g=3, b=2, stretch="Lin") # GZ permette di visualizzare vegetazione # GZ salvataggio immagine appena ottenuta pdf("primografico.pdf") plotRGB(p224r63_2011, r=4, g=3, b=2, stretch="Lin") dev.off() # GZ multiframe bande diverse par(mfrow=c(2,1)) plotRGB(p224r63_2011, r=3, g=2, b=1, stretch="Lin") plotRGB(p224r63_2011, r=4, g=3, b=2, stretch="Lin") dev.off() # GZ esercizio: nir nella compnente R(Red) plotRGB(p224r63_2011, r=4, g=3, b=2, stretch="Lin") # GZ esercizio: nir nella componente G(Green) plotRGB(p224r63_2011, r=3, g=4, b=2, stretch="Lin") # GZ esercizo: nir nella componente B(Blue) plotRGB(p224r63_2011, r=3, g=2, b=4, stretch="Lin") ### LANDCOVER # GZ setwd e pacchetti setwd("C:/lab/p224r63") library(raster) # GZ "brick" per importare immagine p224r63_2011<-brick("p224r63_2011_masked.grd") # GZ richiamare "RStoolbox" library(RStoolbox) # GZ plottare immagine in RGB plotRGB(p224r63_2011,r=4,g=3,b=2,stretch="Lin") # GZ classificazione dati raster con "unsuperClass", specificando numero di classi p224r63_2011c<-unsuperClass(p224r63_2011,nClasses = 4) # GZ visualizzare nuovo modello contenente anche mappa p224r63_2011c # GZ plot mappa (quattro colori -> quattro classi specificate) plot(p224r63_2011c$map) # GZ nuova palette (migliore visualizzazione del grafico) clclass <- colorRampPalette(c('green',"red","blue","black"))(100) plot(p224r63_2011c$map,col=clclass) # Day2 # GZ setwd e pacchetti library(raster) setwd("C:/lab") load("TeleRil.RData") ls() # GZ importare file 1988 e 2011 ("brick") p224r63_2011<-brick("p224r63_2011_masked.grd") p224r63_1988<-brick("p224r63_1988_masked.grd") # GZ immagine 1988, come 2011 ha sette bande (colori): # B1: blue - 1 # B2: green - 2 # B3: red - 3 # B4: near infrared (nir) - 4 # B4: near infrared (nir) # B5: medium infrared # B6: thermal infrared # B7: medium infrared # GZ plot oggetto 1988 e visualizzare campi plot(p224r63_1988) names(p224r63_1988) # GZ plot multiframe per banda blu (1), verde (2), rosso (3) e nir (4) par(mfrow=c(2,2)) clb<-colorRampPalette(c("dark blue","blue","light blue"))(100) # blue plot(p224r63_1988$B1_sre,col=clb) clg<-colorRampPalette(c("dark green","green","light green"))(100) # green plot(p224r63_1988$B2_sre,col=clg) clr<-colorRampPalette(c("red","orange","yellow"))(100) # red plot(p224r63_1988$B3_sre,col=clr) clnir<-colorRampPalette(c("purple","pink","light pink"))(100) # nir plot(p224r63_1988$B4_sre,col=clnir) dev.off() # GZ immagine con colori visibili (plotRGB "natural colours") plotRGB(p224r63_1988, r=3, g=2, b=1, stretch="Lin") # GZ grafico poco comprensibile => usare infrarosso (plotRGB "false colours" # GZ esercizio: plotRGB con componenete infrarossa plotRGB(p224r63_1988,r=4,g=3,b=2,stretch="Lin") # GZ richiamare immagine 2011 p224r63_2011 # GZ plot per confronto immagini 1988 e 2011 par(mfrow=c(2,1)) plotRGB(p224r63_1988,r=4,g=2,b=1,stretch="Lin") plotRGB(p224r63_2011,r=4,g=2,b=1,stretch="Lin") # GZ => territorio agricolo è molto più sviluppato nel 2011 # GZ nir indica la presenza di vegetazione, zolle di terra sono bianche o celeste dev.off() # GZ spectral indices (DVI) => verificare stato salute vegetazione (foglie sane riflettono infrarosso) # GZ DVI=nir-red -> es: dvi1988=nir1988-red1988 => risultati diversi in base a salute piante (sane=nir alto) # GZ DVI 1988 dvi1988<-p224r63_1988$B4_sre-p224r63_1988$B3_sre plot(dvi1988) # GZ esercizio: DVI 2011 dvi2011<-p224r63_2011$B4_sre-p224r63_2011$B3_sre plot(dvi2011) # GZ cambio palette cldvi<-colorRampPalette(c('light blue','light green','green'))(100) plot(dvi2011,col=cldvi) # GZ analisi multitemporale (differenza 2011-1988) => differenza tra DVI dei 2 anni mostra cambiamento stato vegetazione difdvi<-dvi2011-dvi1988 plot(difdvi) cldifdvi<-colorRampPalette(c('red','white','blue'))(100) plot(difdvi,col=cldifdvi) dev.off() # GZ visualize the output # GZ multiframe 1988RGB, 2011RGB, difdvi par(mfrow=c(3,1)) plotRGB(p224r63_1988,r=4,g=3,b=2,stretch="Lin") plotRGB(p224r63_2011,r=4,g=3,b=2,stretch="Lin") plot(difdvi,col=cldifdvi) dev.off() # GZ "aggregate" -> modificare risoluzione (grana) immagine creando nuovo RasterLayer con risoluzione più bassa quindi celle più grandi ("fact=n" è un moltiplicatore che ci dà dei pixel n volte più grandi dei precedenti) p224r63_2011lr<-aggregate(p224r63_2011,fact=10) # lr=lowresolution # GZ inserire i due oggetti per vedere caratteristiche dei pixel p224r63_2011 p224r63_2011lr # GZ plot multiframe confronto tra le due risoluzioni par(mfrow=c(2,1)) plotRGB(p224r63_2011, r=4, g=3, b=2, stretch="Lin") plotRGB(p224r63_2011lr, r=4, g=3, b=2, stretch="Lin") # GZ lower resolution ("fact=50") p224r63_2011lr50<-aggregate(p224r63_2011,fact=50) p224r63_2011lr50 # GZ plot multiframe comparativo (normale, lr, lr50) par(mfrow=c(3,1)) plotRGB(p224r63_2011, r=4, g=3, b=2, stretch="Lin") plotRGB(p224r63_2011lr, r=4, g=3, b=2, stretch="Lin") plotRGB(p224r63_2011lr50, r=4, g=3, b=2, stretch="Lin") # GZ DVI lr50 2011 dvi2011lr50<-p224r63_2011lr50$B4_sre-p224r63_2011lr50$B3_sre plot(dvi2011lr50) # GZ DVI lr50 1988 p224r63_1988lr50<-aggregate(p224r63_1988,fact=50) # GZ creare lr50 1988 dvi1988lr50<-p224r63_1988lr50$B4_sre-p224r63_1988lr50$B3_sre plot(dvi1988lr50) # GZ difdvi lr50 difdvilr50<-dvi2011lr50-dvi1988lr50 plot(difdvilr50,col=cldifdvi) # GZ riprendere palette "cldifdvi" creata in precedenza # GZ multiframe differenze DVI alle diverse risoluzioni par(mfrow=c(2,1)) plot(difdvi,col=cldifdvi) plot(difdvilr50,col=cldifdvi) ############################################################################# ############################################################################# ############################################################################# ### 5. 05_R_code_multitemp.r - Analisi multitemporale variazione landcover # GZ setwd e pacchetti setwd("C:/lab") library(raster) library(RStoolbox) library(ggplot2) # GZ importare immagini defor1 <-brick("defor1_.png") defor2 <-brick("defor2_.png") # GZ plotRGB "defor1" defor1 # GZ visualizzare i campi dell'oggetto # "defor1_.1" "defor1_.2" "defor1_.3" # defor1_.1 = NIR # defor1_.2 = red # defor1_.3 = green plotRGB(defor1,r=1,g=2,b=3,stretch="Lin") # GZ banda red->nir(r=1), green->red(g=2), blue->green(b=3) # GZ eserczio: plot seconda data plotRGB(defor2,r=1,g=2,b=3,stretch="Lin") # GZ confronto (multiframe) stessa area in momenti differenti (prima e dopo deforestazione) par(mfrow = c(2,1)) plotRGB(defor1,r=1,g=2,b=3,stretch="Lin") plotRGB(defor2,r=1,g=2,b=3,stretch="Lin") dev.off() # GZ classificazione non supervisionata d1c<-unsuperClass(defor1,nClasses=2) # GZ si creano classi di foresta e non foresta (suddivisione pixel in queste due categorie) plot(d1c$map) cl<-colorRampPalette(c('green','black'))(100) plot(d1c$map,col=cl) # GZ esercizio: come prima per "defor2" d2c<-unsuperClass(defor2,nClasses=2) plot(d2c$map,col=cl) dev.off() # GZ confronto tra i due momenti (multiframe) con pixel classificati # GZ due righe, una colonna par(mfrow=c(2,1)) plot(d1c$map,col=cl) plot(d2c$map,col=cl) # GZ due colonne, una riga par(mfrow=c(1,2)) plot(d1c$map,col=cl) plot(d2c$map,col=cl) dev.off() # GZ calcolo frequenza delle due classi di pixel nella prima immagine freq(d1c$map) # GZ aree aperte=37039 # GZ foresta=304253 # GZ numero di pixel totali nella prima immagine (necessario per calcolo percentuale) totd1<-37039+304253 totd1 # totd1=341292 # GZ calcolo frequenze percentuali percent1<-freq(d1c$map)*100/totd1 # GZ foreste: 89.1 % # GZ aree aperte: 10.9 % # GZ stesso procedimento per la seconda immagine freq(d2c$map) # GZ aree aperte=165055 # GZ foreste=177671 totd2<-165055+177671 totd2 # GZ totd2=342726 percent2<-freq(d2c$map)*100/totd2 # GZ aree aperte: 48.2 % # GZ foreste: 51.8 % # GZ creare vettori per analisi grafica cover<-c("Agriculture","Forest") before<-c(10.9,89.1) after<-c(48.2,51.8) # GZ creare nuovo dataset con i dati ottenuti output<-data.frame(cover,before,after) output # Day2 setwd("C:/lab") load("C:/lab/defor.RData") library(raster) library(ggplot2) install.packages("gridExtra") library(gridExtra) # GZ riprendere mappe par(mfrow=c(1,2)) cl<-colorRampPalette(c('black','green'))(100) plot(d1c$map,col=cl) plot(d2c$map,col=cl) ls() output # cover before after # 1 Agriculture 10.9 48.2 # 2 Forest 89.1 51.8 # GZ istogramma delle percentuali di copertura prima della deforestazione grafico1<-ggplot(output,aes(x=cover,y=before,color=cover)) + geom_bar(stat="identity",fill="white") grafico1 # GZ in ascissa "aes"(aree di foresta/aperte), in ordinata percentuale di copertura # GZ esercizio: istogramma dopo deforestazione grafico2<-ggplot(output,aes(x=cover,y=after,color=cover)) + geom_bar(stat="identity",fill="white") grafico2 # GZ esercizio: usare "grid.arrange" (funzione del pacchetto "gridExtra" che permette confronto tra istogrammi) per creare un plot con grafico1 e grafico2 # GZ grid.arrange=> grid.arrange(plot1,plot2,nrow=1), questa funzione crea un plot con più grafici grid.arrange(grafico1,grafico2,nrow=1) # GZ evidente cambiamento nelle percentuali di copertura # GZ per facilitare confronto uniformare sacla dei due istogrammi (imporre al grafico il limite y=100) grafico1<-ggplot(output,aes(x=cover,y=before,color=cover)) + geom_bar(stat="identity",fill="white") + ylim(0,100) grafico2 <- ggplot(output, aes(x=cover, y=after, color=cover)) + geom_bar(stat="identity", fill="white") + ylim(0, 100) grid.arrange(grafico1,grafico2,nrow=1) ############################################################################# ############################################################################# ############################################################################# ### 6. 06_R_code_multitemp_NO2.r - Codice per analisi dati ESA su NO2 (gennaio-marzo 2020 => lockdown) # GZ setwd e pacchetti setwd("C:/lab") library(raster) # GZ importare immagini -> "raster" perchè immagine con una sola banda (con più bande si usa "brick") EN01<-raster("EN_0001.png") plot(EN01) # GZ eserizio: importare tutte le immagini EN02<-raster("EN_0002.png") EN03<-raster("EN_0003.png") EN04<-raster("EN_0004.png") EN05<-raster("EN_0005.png") EN06<-raster("EN_0006.png") EN07<-raster("EN_0007.png") EN08<-raster("EN_0008.png") EN09<-raster("EN_0009.png") EN10<-raster("EN_0010.png") EN11<-raster("EN_0011.png") EN12<-raster("EN_0012.png") EN13<-raster("EN_0013.png") # GZ plot multiframe immagine inizale-finale => confronto cl<-colorRampPalette(c('red','orange',yellow'))(100) par(mfrow=c(1,2) plot(EN01,col=cl) plot(EN13,col=cl) dev.off() # GZ differenza "EN13" - "EN01" difno2<-EN13-EN01 cldif<-colorRampPalette(c('blue','black','yellow'))(100) plot(difno2,col=cldif) # GZ esercizio: plot multiframe tutte le immagini par(mfrow=c(4,4)) plot(EN01,col=cl) plot(EN02,col=cl) plot(EN03,col=cl) plot(EN04,col=cl) plot(EN05,col=cl) plot(EN06,col=cl) plot(EN07,col=cl) plot(EN08,col=cl) plot(EN09,col=cl) plot(EN10,col=cl) plot(EN11,col=cl) plot(EN12,col=cl) plot(EN13,col=cl) # GZ alternativa: plot(EN01,EN02,EN03,EN04,EN05,EN06,EN07,EN08,EN09,EN10,EN11,EN12,EN13,col=cl) # Day2 # setwd, pacchetti e load setwd("C:/lab") load("EN.RData") ls() library(raster) # GZ "list.files" (pacchetto "raster") -> vettore comprendente lista di file in una data directory (cartella creata appositamente - "esa_no2") setwd("C:/lab/esa_no2") rlist<-list.files(pattern=".png") rlist # GZ "lapply" -> applica funzione indicata ad una lista (anzichè ad un solo file) # GZ in questo caso "raster" -> importare lista di immagini listafinale<-lapply(rlist,raster) listafinale # GZ "stack" -> trasformare lista in una sorta di agglomerato di n bande (13 in questi caso), come fosse un set multitemporale EN<-stack(listafinale) cl<-colorRampPalette(c('red','orange',yellow'))(100) plot(EN,col=cl) # GZ -> visualizzare immagini contenute nello stack "EN" # GZ differenza marzo ("EN13") - gennaio ("EN01") difEN<-EN$EN_0013-EN$EN_0001 cld<-colorRampPalette(c('blue','white','red'))(100) plot(difEN,col=cld) # GZ boxplot EN -> confronto tra tutte le immagini creando diagramma a riquadri (indicando caratteristiche grafiche) boxplot(EN,horizontal=T, # barre boxplot orizzontali outline=F, # elimina outliners axes=T) # presenza assi nel plot # in media cambiamenti non clamorosi, cambiamenti più evidenti sui massimi ############################################################################# ############################################################################# ############################################################################# ### 7. 07_R_code_snow.r - Codice analisi copertura nevosa # GZ setwd e pacchetti setwd("C:/lab") install.packages("ncdf4") # pacchetto per fornire interfaccia R per file di dati binari library(ncdf4) library(raster) # GZ importare immagine scaricata da Copernicus (copertura nevosa 18/05/2020) snowmay<-raster("c_gls_SCE500_202005180000_CEURO_MODIS_V1.0.1.nc") # GZ plot "snowmay" cl<-colorRampPalette(c('darkblue','blue','light blue'))(100) plot(snowmay,col=cl) # GZ settare nuova wd (cartella "snow" => immagini copertura nevosa in diversi momenti) setwd("C:/lab/snow") # GZ importare file -> "rlist" library(raster) rlist<-list.files(pattern=".tif",full.names=T) # GZ "lapply" lista appena creata (ogni file "rlist" importato con"raster") list_rast<-lapply(rlist,raster) # GZ raggruppare raster in unico vettore -> "stack" (consente di plottarle semplicemente tutte assieme) snow.multitemp<-stack(list_rast) # GZ plottare (usare palette creata prima) plot(snow.multitemp,col=cl) # GZ multiframe (confronto) 2000 ("snow2000r") - 2020 ("snow2020r") par(mfrow=c(1,2)) plot(snow.multitemp$snow2000r,col=cl) plot(snow.multitemp$snow2020r,col=cl) # GZ limite ordinate uguale per entrambe le mappe => confronto più facile par(mfrow=c(1,2)) plot(snow.multitemp$snow2000r,col=cl,zlim=c(0,250)) plot(snow.multitemp$snow2020r,col=cl,zlim=c(0,250)) dev.off() # GZ differenza 2000-2020 difsnow<-snow.multitemp$snow2020r - snow.multitemp$snow2000r cldif<-colorRampPalette(c('blue','white','red'))(100) # GZ nuova palette plot(difsnow,col=cldif) # GZ pixel blu => diminuzione copertura, bianchi => stato stazionario, rossi => aumento # GZ "source" -> caricare codice da file esterni source("prediction.r") # GZ comando "lento" => caricare direttamente "predicted.snow.2025" # GZ previsione 2025 predicted.snow.2025.norm<-raster("predicted.snow.2025.norm.tif") plot(predicted.snow.2025.norm,col=cl) ############################################################################# ############################################################################# ############################################################################# ### 8. 08_R_code_patches.r # GZ setwd e pacchetti setwd("C:/lab") install.packages("igraph") library(igraph) library(ggplot2) library(raster) # GZ caricare immagini raster -> "raster" d1c<-raster("d1c.tif") d2c<-raster("d2c.tif") # GZ plot per distinguere aree di foresta (palette bicolore) cl<-colorRampPalette(c('green','black'))(100) par(mfrow=c(1,2)) plot(d1c,col=cl) plot(d2c,col=cl) cl<-colorRampPalette(c('black','green'))(100) # correzione mappa => inversione colori par(mfrow=c(1,2)) plot(d1c,col=cl) plot(d2c,col=cl) dev.off() # GZ valori 2 => foresta, 1 => aree agricole # GZ lasciare solo pixel aree forestali -> "reclassify" per riclassificare valori, "cbind" per trasformare valori 1 (agricoltura) in valori nulli ("NA" => valore mancante) d1c.for<-reclassify(d1c,cbind(1,NA)) d2c.for<-reclassify(d2c,cbind(1,NA)) # GZ multiframe di confronto (solo foreste, foreste+agricoltura) par(mfrow=c(1,2)) cl<-colorRampPalette(c('black','green'))(100) plot(d1c,col=cl) plot(d1c.for,col=cl) # GZ plot mappe solo foresta par(mfrow=c(1,2)) plot(d1c) plot(d2c) # GZ creare patches ("igraph") library(igraph) d1c.for.patches<-clump(d1c.for) # "clump"-> unire e raggruppare pixel vicini (creare patches) d2c.for.patches<-clump(d2c.for) # GZ "writerRaster" -> esportare il file in formato ".tif" all'esterno di R (in questo caso cartella "lab)) writeRaster(d1c.for.patches,"d1c.for.patches.tif") writeRaster(d2c.for.patches,"d2c.for.patches.tif") # GZ esercizio: plottare mappe una accanto all'altra par(mfrow=c(1,2)) clp<-colorRampPalette(c('darkblue','blue','green','orange','yellow','red'))(100) # GZ palette con più colori per visualizzare meglio patch di foresta plot(d1c.for.patches,col=clp) plot(d2c.for.patches,col=clp) # GZ numero patches creati nelle mappe d1c.for.patches # GZ => 301 patches d2c.for.patches # GZ => 1212 patches # GZ risultati in nuovo dataframe time<-c("Before deforestation","After deforestation") # GZ "time" -> dati prima e dopo deforestazione npatches<-c(301,1212) # GZ "npatches" -> numero patches # GZ creare dataframe "output" output<-data.frame(time,npatches) attach(output) # GZ plot finale ("ggplot") library(ggplot2) ggplot(output,aes(x=time,y=npatches,color="red"))+geom_bar(stat="identity",fill="white") ############################################################################# ############################################################################# ############################################################################# ### 9. 09_R_code_crop.r # GZ setwd (dati snow già usati => cartella "snow") setwd("C:/lab/snow") # GZ esercizio: caricare tutte le immagini della cartella library(raster) rlist<-list.files(pattern="snow") # GZ "pattern" -> permettere a R riconoscimento dei file list.rast<-lapply(rlist, raster) list.rast # GZ stack snow.multitemp<-stack(list.rast) # GZ plot clb<-colorRampPalette(c('dark blue','blue','light blue'))(100) plot(snow.multitemp,col=clb) # GZ analisi immagini multitemporali snow.multitemp plot(snow.multitemp$snow2010r, col=clb) # GZ plot immagine 2010 (Italia tra 6 e 20 gradi e tra 35 e 50) # GZ zoom su Italia -> "zoom", prima impostare nuova estensione ("extension") extension<-c(6,20,35,50) zoom(snow.multitemp$snow2010r,ext=extension) zoom(snow.multitemp$snow2010r,ext=extension,col=clb) # GZ plot 2010, zoom Italia, palette "clb" # GZ definire estensione tramite disegno ("drawExtent") plot(snow.multitemp$snow2010r, col=clb) # GZ riplottare immagine originale zoom(snow.multitemp$snow2010r,ext=drawExtent()) extension<-c(6,20,35,50) snow2010r.italy<-crop(snow.multitemp$snow2010r,extension) # GZ "crop" -> ottenere immagine zona ritagliata plot(snow2010r.italy,col=clb) # GZ plot immagine ottenuta # GZ esercizio: crop Italia con stack completo extension<-c(6,20,35,50) snow.multitemp.Italy<-crop(snow.multitemp,extension) plot(snow.multitemp.Italy,col=clb) # GZ impostare legenda uniforme snow.multitemp.Italy # GZ min->20, MAX->200 # GZ aggiungere limite => "zlim=c(20,200)" plot(snow.multitemp.Italy,col=clb,zlim=c(20,200)) # GZ boxplot => valore MAX copertura nevosa diminuisce nel tempo boxplot(snow.multitemp.Italy,horizontal=T,outline=F) ############################################################################# ############################################################################# ############################################################################# ### 10. 10_R_code_species_distribution_modeling.r - Species Distribution Modeling # GZ pacchetti (no setwd perchè dati presenti nel pacchetto "sdm") install.packages("sdm") library(sdm) library(raster) library(rgdal) # GZ "system.file" -> caricare file da utilizzare contenuto in "sdm" file<-system.file("external/species.shp",package="sdm") # GZ "shapefile" (pacchetto "raster") species<-shapefile(file) # GZ caratteristiche dataset species species$Occurrence # GZ valori "Occurrence" # ogni punto associato a presenza assenza specie => "Occurrence" = 0(assente) o 1(presente) # GZ plot dataset "species" plot(species) # GZ mostrate presenze e assenze # GZ diversificare assenze (rosso) da presenze (blu) plot(species[species$Occurrence==1,],col='blue',pch=16) points(species[species$Occurrence==0,],col='red',pch=16) # GZ variabili ambientali disponibili (cartella "external", pacchetto "sdm") path <- system.file("external",package="sdm") # GZ importare file per prevedere distribuzione spaziale in base a variabili ambientali lst<-list.files(path=path,pattern='asc$',full.names=T) lst # GZ variabili: elevation, precipitation, temperature, vegetation preds<-stack(lst) # GZ stack => predittore distribuzione cl<-colorRampPalette(c('yellow','orange','red'))(100) # GZ palette plot(preds,col=cl) # GZ distribuzione probabilmente relazionata a valori variabili # GZ plot elevation plot(preds$elevation,col=cl) points(species[species$Occurrence==1,],pch=16) # GZ aggiungere punti presenza => specie presente a bassa quota # GZ temperature plot(preds$temperature, col=cl) points(species[species$Occurrence==1,],pch=16) # GZ => specie non gradisce basse temperature # GZ precipitation plot(preds$precipitation, col=cl) points(species[species$Occurrence==1,],pch=16) # GZ => condizioni medie sono ottimali # GZ vegetation plot(preds$vegetation, col=cl) points(species[species$Occurrence==1,],pch=16) # GZ => elevata copertura vegetale è favorevole # GZ sintesi: bassa quota, temperatura medio-alta, piovosità media, buona copertura vegetale # GZ Generalized Linear Model (glm) d<-sdmData(train=species,predictors=preds) # GZ indicare a R dati relativi a specie e variabili da considerare d # GZ modello m1<-sdm(Occurrence~elevation+precipitation+temperature+vegetation,data=d,methods='glm') # GZ previsione (creare mappa predittiva distribuzione in base alle quattro variabili) -> "predict" p1<-predict(m1,newdata=preds) plot(p1,col=cl) points(species[species$Occurrence== 1,],pch=16) ############################################################################# ############################################################################# ############################################################################# ### 11_R_code_project.r # GZ setwd e pacchetti setwd("C:/lab/exam") library(ncdf4) library(raster) # GZ importare dati albedo e raggrupparli examlist<-list.files(pattern=".nc",full.names=T) list_rast<-lapply(examlist,raster) alb.multitemp<-stack(list_rast) # GZ rinominare file per praticità alb.jan2000<-alb.multitemp$Broadband.directional.albedo.over.total.spectrum.1 alb.jan2010<-alb.multitemp$Broadband.directional.albedo.over.total.spectrum.2 alb.jan2020<-alb.multitemp$Broadband.directional.albedo.over.total.spectrum.3 alb.jul2000<-alb.multitemp$Broadband.directional.albedo.over.total.spectrum.4 alb.jul2010<-alb.multitemp$Broadband.directional.albedo.over.total.spectrum.5 alb.jul2020<-alb.multitemp$Broadband.directional.albedo.over.total.spectrum.6 # GZ plot cl<-colorRampPalette(c('red','orange','yellow'))(100) plot(alb.multitemp,col=cl,zlim=c(0,1)) # GZ omesso, con sei grafici troppo complicato, la mia palette fa schifo # GZ confronto jan par(mfrow=c(1,3)) plot(alb.jan2000,zlim=c(0,1)) plot(alb.jan2010,zlim=c(0,1)) plot(alb.jan2020,zlim=c(0,1)) # GZ confronto jul par(mfrow=c(1,3)) plot(alb.jul2000,zlim=c(0,1)) plot(alb.jul2010,zlim=c(0,1)) plot(alb.jul2020,zlim=c(0,1)) # GZ crop arco alpino, inverno extension<-c(0,20,42,50) alb.alps.2000.jan<-crop(alb.jan2000,extension) alb.alps.2010.jan<-crop(alb.jan2010,extension) alb.alps.2020.jan<-crop(alb.jan2020,extension) par(mfrow=c(1,3)) plot(alb.alps.2000.jan,zlim=c(0,1)) plot(alb.alps.2010.jan,zlim=c(0,1)) plot(alb.alps.2020.jan,zlim=c(0,1)) # GZ crop arco apino estivo alb.alps.2000.jul<-crop(alb.jul2000,extension) alb.alps.2010.jul<-crop(alb.jul2010,extension) alb.alps.2020.jul<-crop(alb.jul2020,extension) par(mfrow=c(1,3)) plot(alb.alps.2000.jul,zlim=c(0,1)) plot(alb.alps.2010.jul,zlim=c(0,1)) plot(alb.alps.2020.jul,zlim=c(0,1)) # GZ differenze nell'albedo inverno-estate negli anni dif1<-albjan.2000-albjul.2000 dif2<-albjan.2020-albjul.2020 cldif<-colorRampPalette(c('blue','white','red'))(100) par(mfrow=c(1,2)) plot(dif1,col=cldif) plot(dif2,col=cldif) # mi spettavo differenze più evidenti, forse lettura errata # GZ confronto con copertura nevosa => attesi pattern in linea # GZ importare raster copertura nevosa snowlist<-list.files(pattern="snow",full.names=T) list_snow<-lapply(snowlist,raster) snow.multitemp<-stack(list_snow) # GZ confronto (uso mesi invernali per rendere confronto più visibile) clsnow<-colorRampPalette(c('darkblue','blue','light blue'))(100) par(mfrow=c(2,2)) plot(snow.multitemp$snow2000r,col=clsnow,zlim=c(0,250)) plot(snow.multitemp$snow2020r,col=clsnow,zlim=c(0,250)) plot(alb.jan2000,zlim=c(0,1)) plot(alb.jan2020,zlim=c(0,1)) # GZ crop arco alpino (albedo e snow) snow.alps.2000<-crop(snow.multitemp$snow2000r,extension) snow.alps.2020<-crop(snow.multitemp$snow2020r,extension) par(mfrow=c(2,2)) plot(alb.alps.2000.jan,zlim=c(0,1)) plot(alb.alps.2020.jan,zlim=c(0,1)) plot(snow.alps.2000,col=clsnow,zlim=c(0,250)) plot(snow.alps.2020,col=clsnow,zlim=c(0,250)) # GZ confronto tra differenze 2000-2020 albedo e snow dif3<-alb.jan2000-alb.jan2020 difsnow<-snow.multitemp$snow2000r-snow.multitemp$snow2020r par(mfrow=c(2,2)) plot(dif3,col=cldif) plot(difsnow,col=cldif) # GZ crop Alpi differenze alb.dif.alps<-crop(dif3,extension) snow.dif.alps<-crop(difsnow,extension) par(mfrow=c(1,2)) plot(alb.dif.alps,col=cldif) plot(snow.dif.alps,col=cldif) # GZ differenza molto più evidente a livello di copertura nevosa (ovvio, per albedo basta anche uno strato di neve sottile)
testlist <- list(Beta = 0, CVLinf = 86341236051411296, FM = 1.53632495265886e-311, L50 = 0, L95 = 0, LenBins = c(2.0975686864138e+162, -2.68131210337361e-144, -1.11215735981244e+199, -4.48649879577108e+143, 1.6611802228813e+218, 900371.947279558, 1.07063092954708e+238, 2.88003257377011e-142, 1.29554141202795e-89, -1.87294312860528e-75, 3.04319010211815e+31, 191.463561345044, 1.58785813294449e+217, 1.90326589719466e-118, -3.75494418025505e-296, -2.63346094087863e+200, -5.15510035957975e+44, 2.590269601728e+149, 1.60517426337473e+72, 1.74851929178852e+35, 1.32201752290843e-186, -1.29599553894715e-227, 3.20314220604904e+207, 584155875718587, 1.71017833066717e-283, -3.96505607598107e+51, 5.04440990041945e-163, -5.09127626480085e+268, 2.88137633290038e+175, 6.22724404181897e-256, 4.94195713773372e-295, 5.80049493946414e+160, -5612008.23597089, -2.68347267272935e-262, 1.28861520348431e-305, -5.05455182157157e-136, 4.44386438170367e+50, -2.07294901774837e+254, -3.56325845332496e+62, -1.38575911145229e-262, -1.19026551334786e-217, -3.54406233509625e-43, -4.15938611724176e-209, -3.06799941292011e-106, 1.78044357763692e+244, -1.24657398993838e+190, 1.14089212334828e-90, 136766.715673668, -1.47333345730049e-67, -2.92763930406321e+21 ), LenMids = c(-1.121210344879e+131, -1.121210344879e+131, NaN), Linf = 2.81991272491703e-308, MK = -2.08633459786369e-239, Ml = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Prob = structure(c(4.48157192325537e-103, 2.43305969276274e+59, 6.5730975202806e-96, 2.03987918888949e-104, 4.61871336464985e-39, 1.10811931066926e+139), .Dim = c(1L, 6L)), SL50 = 9.97941197291525e-316, SL95 = 2.12248160522076e-314, nage = 682962941L, nlen = 1623851345L, rLens = c(4.74956174024781e+199, -7.42049538387034e+278, -5.82966399158032e-71, -6.07988133887702e-34, 4.62037926128924e-295, -8.48833146280612e+43, 2.71954993859316e-126 )) result <- do.call(DLMtool::LBSPRgen,testlist) str(result)
/DLMtool/inst/testfiles/LBSPRgen/AFL_LBSPRgen/LBSPRgen_valgrind_files/1615833644-test.R
no_license
akhikolla/updatedatatype-list2
R
false
false
2,046
r
testlist <- list(Beta = 0, CVLinf = 86341236051411296, FM = 1.53632495265886e-311, L50 = 0, L95 = 0, LenBins = c(2.0975686864138e+162, -2.68131210337361e-144, -1.11215735981244e+199, -4.48649879577108e+143, 1.6611802228813e+218, 900371.947279558, 1.07063092954708e+238, 2.88003257377011e-142, 1.29554141202795e-89, -1.87294312860528e-75, 3.04319010211815e+31, 191.463561345044, 1.58785813294449e+217, 1.90326589719466e-118, -3.75494418025505e-296, -2.63346094087863e+200, -5.15510035957975e+44, 2.590269601728e+149, 1.60517426337473e+72, 1.74851929178852e+35, 1.32201752290843e-186, -1.29599553894715e-227, 3.20314220604904e+207, 584155875718587, 1.71017833066717e-283, -3.96505607598107e+51, 5.04440990041945e-163, -5.09127626480085e+268, 2.88137633290038e+175, 6.22724404181897e-256, 4.94195713773372e-295, 5.80049493946414e+160, -5612008.23597089, -2.68347267272935e-262, 1.28861520348431e-305, -5.05455182157157e-136, 4.44386438170367e+50, -2.07294901774837e+254, -3.56325845332496e+62, -1.38575911145229e-262, -1.19026551334786e-217, -3.54406233509625e-43, -4.15938611724176e-209, -3.06799941292011e-106, 1.78044357763692e+244, -1.24657398993838e+190, 1.14089212334828e-90, 136766.715673668, -1.47333345730049e-67, -2.92763930406321e+21 ), LenMids = c(-1.121210344879e+131, -1.121210344879e+131, NaN), Linf = 2.81991272491703e-308, MK = -2.08633459786369e-239, Ml = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Prob = structure(c(4.48157192325537e-103, 2.43305969276274e+59, 6.5730975202806e-96, 2.03987918888949e-104, 4.61871336464985e-39, 1.10811931066926e+139), .Dim = c(1L, 6L)), SL50 = 9.97941197291525e-316, SL95 = 2.12248160522076e-314, nage = 682962941L, nlen = 1623851345L, rLens = c(4.74956174024781e+199, -7.42049538387034e+278, -5.82966399158032e-71, -6.07988133887702e-34, 4.62037926128924e-295, -8.48833146280612e+43, 2.71954993859316e-126 )) result <- do.call(DLMtool::LBSPRgen,testlist) str(result)
library(httr) # Auth0 custom rule streams relevant user info to Keen.io after successful sign-in. Use a saved Keen.io query # to retrieve the latest streamed event to identify the user within Shiny. It's lame having to use these third-party # platforms, but as of now, unable to authenticate in open-source shiny-server AND read authentication credentials into # Shiny. This is still a janky solution (ie. what if 2 users sign-in at the same time?). Would rather use the # request IP to help identify the right user info in Keen.io but this is also not exposed in Shiny. # Awaiting resolution of https://github.com/rstudio/shiny/issues/141fu keenUser <- function() { Sys.sleep(5) # Allow time for KeenIO to register data-stream from Auth0 keen_req <- GET( url = paste("https://api.keen.io/3.0/projects", Sys.getenv("DIAGNOSTIC_KEEN_PROJECT_ID"), "queries/saved", tolower(Sys.getenv("DIAGNOSTIC_KEEN_QUERY")), "result", sep = "/"), add_headers("Authorization" = Sys.getenv("DIAGNOSTIC_KEEN_READKEY"), "Content-Type" = "application/json") ) print(keen_req$all_headers) res <- content(keen_req)[["result"]] if ( length(res) < 1) { res$name <- sQuote("Unknown") res$group <- "guest" res$id <- "00GUEST" } else if ( length(res) > 1) { timestamp <- strptime( sapply(res, function(x) x$keen$timestamp), "%Y-%m-%dT%H:%M:%OSZ") res <- res[[ which(timestamp == min(timestamp)) ]] } else { res <- res[[1]] } return(res) } capitalize <- function(x) paste0(toupper(substring(x, 0, 1)), substring(x, 2, nchar(x))) ENTITY_FIELDS <- c("symptoms", "conditions") EDIT_FIELDS <- c("add", "delete", "change")
/global.R
no_license
Chrisss93/Diagnostics
R
false
false
1,628
r
library(httr) # Auth0 custom rule streams relevant user info to Keen.io after successful sign-in. Use a saved Keen.io query # to retrieve the latest streamed event to identify the user within Shiny. It's lame having to use these third-party # platforms, but as of now, unable to authenticate in open-source shiny-server AND read authentication credentials into # Shiny. This is still a janky solution (ie. what if 2 users sign-in at the same time?). Would rather use the # request IP to help identify the right user info in Keen.io but this is also not exposed in Shiny. # Awaiting resolution of https://github.com/rstudio/shiny/issues/141fu keenUser <- function() { Sys.sleep(5) # Allow time for KeenIO to register data-stream from Auth0 keen_req <- GET( url = paste("https://api.keen.io/3.0/projects", Sys.getenv("DIAGNOSTIC_KEEN_PROJECT_ID"), "queries/saved", tolower(Sys.getenv("DIAGNOSTIC_KEEN_QUERY")), "result", sep = "/"), add_headers("Authorization" = Sys.getenv("DIAGNOSTIC_KEEN_READKEY"), "Content-Type" = "application/json") ) print(keen_req$all_headers) res <- content(keen_req)[["result"]] if ( length(res) < 1) { res$name <- sQuote("Unknown") res$group <- "guest" res$id <- "00GUEST" } else if ( length(res) > 1) { timestamp <- strptime( sapply(res, function(x) x$keen$timestamp), "%Y-%m-%dT%H:%M:%OSZ") res <- res[[ which(timestamp == min(timestamp)) ]] } else { res <- res[[1]] } return(res) } capitalize <- function(x) paste0(toupper(substring(x, 0, 1)), substring(x, 2, nchar(x))) ENTITY_FIELDS <- c("symptoms", "conditions") EDIT_FIELDS <- c("add", "delete", "change")
#' Create Related Numeric Columns #' #' Generate coumns that are related. #' #' @param x A starting column. #' @param j The number of columns to produce. #' @param name An optional prefix name to give to the columns. If \code{NULL} #' attepts to take from the \code{varname} attribute of \code{x}. If not found, #' "Variable" is used. #' @param operation A operation character vector of length 1; either #' \code{c("+", "-", "*", "/")}. This is the relationship between columns. #' @param mean Mean is the average vaule to add, subtract, multiple, or divide #' by. #' @param sd The amount of variability to allow in \code{mean}. Setting to 0 #' will constrain the operation between x_(n - 1) column and x_n to be exactly #' the mean value (see \bold{Examples} for a demonstration). #' @param rep.sep A separator to use for repeated variable names. For example #' if the \code{\link[wakefield]{age}} is used three times #' (\code{r_data_frame(age, age, age)}), the name "Age" will be assigned to all #' three columns. The resuts in column names \code{c("Age_1", "Age_2", "Age_3")}. #' @param digits The number of digits to round to. Defaults to the max number #' of significant digits in \code{x}. #' @return Returns a \code{\link[dplyr]{tbl_df}}. #' @keywords correlate related #' @export #' @seealso \code{\link[wakefield]{r_series}} #' @examples #' relate(1:10, 10) #' #' (x <- r_data_frame(10, id, relate(1:10, 10, "Time", mean = 2))) #' library(ggplot2) #' #' dat <- with(x, data.frame(ID = rep(ID, ncol(x[, -1])), stack(x[, -1]))) #' dat[["Time"]] <- factor(sub("Time_", "", dat[["ind"]]), levels = 1:10) #' ggplot(dat, aes(x = Time, y = values, color = ID, group = ID)) + #' geom_line(size=.8) #' #' relate(1:10, 10, name = "X", operation = "-") #' relate(1:10, 10, "X", mean = 1, sd = 0) #' relate(1:10, 10, "Var", "*") #' relate(1:10, 10, "Var", "/") #' #' relate(gpa(30), 5, mean = .1) #' relate(likert(10), 5, mean = .1, sd = .2) #' relate(date_stamp(10), 6) #' relate(time_stamp(10), 6) #' relate(rep(100, 10), 6, "Reaction", "-") relate <- function(x, j, name = NULL, operation = "+", mean = 5, sd = 1, rep.sep = "_", digits = max(nchar(sub("^[^.]*.", "", x)))){ if (is.null(name)) name <- attributes(x)[["varname"]] if (is.null(name)) name <- "Variable" if (is.factor(x) | inherits(x, c("Date", "POSIXct", "POSIXt"))) x <- as.numeric(x) if (!is.numeric(x)) warning("`x` is not numeric, date, or factor.", immediate. = TRUE) elems <- (j - 1) * length(x) seed_dat <- data.frame(x, matrix(rnorm(elems, mean = mean, sd = sd), nrow = length(x)), stringsAsFactors = FALSE) if (!is.null(digits)) seed_dat <- round(seed_dat, digits) for (i in 2:ncol(seed_dat)) { seed_dat[, i] <- match.fun(operation)(seed_dat[, i - 1], seed_dat[, i]) } out <- setNames(seed_dat, paste(name, seq_len(j), sep = rep.sep)) seriesname(dplyr::tbl_df(out), name) }
/R/relate.R
no_license
ds4ci/wakefield
R
false
false
2,931
r
#' Create Related Numeric Columns #' #' Generate coumns that are related. #' #' @param x A starting column. #' @param j The number of columns to produce. #' @param name An optional prefix name to give to the columns. If \code{NULL} #' attepts to take from the \code{varname} attribute of \code{x}. If not found, #' "Variable" is used. #' @param operation A operation character vector of length 1; either #' \code{c("+", "-", "*", "/")}. This is the relationship between columns. #' @param mean Mean is the average vaule to add, subtract, multiple, or divide #' by. #' @param sd The amount of variability to allow in \code{mean}. Setting to 0 #' will constrain the operation between x_(n - 1) column and x_n to be exactly #' the mean value (see \bold{Examples} for a demonstration). #' @param rep.sep A separator to use for repeated variable names. For example #' if the \code{\link[wakefield]{age}} is used three times #' (\code{r_data_frame(age, age, age)}), the name "Age" will be assigned to all #' three columns. The resuts in column names \code{c("Age_1", "Age_2", "Age_3")}. #' @param digits The number of digits to round to. Defaults to the max number #' of significant digits in \code{x}. #' @return Returns a \code{\link[dplyr]{tbl_df}}. #' @keywords correlate related #' @export #' @seealso \code{\link[wakefield]{r_series}} #' @examples #' relate(1:10, 10) #' #' (x <- r_data_frame(10, id, relate(1:10, 10, "Time", mean = 2))) #' library(ggplot2) #' #' dat <- with(x, data.frame(ID = rep(ID, ncol(x[, -1])), stack(x[, -1]))) #' dat[["Time"]] <- factor(sub("Time_", "", dat[["ind"]]), levels = 1:10) #' ggplot(dat, aes(x = Time, y = values, color = ID, group = ID)) + #' geom_line(size=.8) #' #' relate(1:10, 10, name = "X", operation = "-") #' relate(1:10, 10, "X", mean = 1, sd = 0) #' relate(1:10, 10, "Var", "*") #' relate(1:10, 10, "Var", "/") #' #' relate(gpa(30), 5, mean = .1) #' relate(likert(10), 5, mean = .1, sd = .2) #' relate(date_stamp(10), 6) #' relate(time_stamp(10), 6) #' relate(rep(100, 10), 6, "Reaction", "-") relate <- function(x, j, name = NULL, operation = "+", mean = 5, sd = 1, rep.sep = "_", digits = max(nchar(sub("^[^.]*.", "", x)))){ if (is.null(name)) name <- attributes(x)[["varname"]] if (is.null(name)) name <- "Variable" if (is.factor(x) | inherits(x, c("Date", "POSIXct", "POSIXt"))) x <- as.numeric(x) if (!is.numeric(x)) warning("`x` is not numeric, date, or factor.", immediate. = TRUE) elems <- (j - 1) * length(x) seed_dat <- data.frame(x, matrix(rnorm(elems, mean = mean, sd = sd), nrow = length(x)), stringsAsFactors = FALSE) if (!is.null(digits)) seed_dat <- round(seed_dat, digits) for (i in 2:ncol(seed_dat)) { seed_dat[, i] <- match.fun(operation)(seed_dat[, i - 1], seed_dat[, i]) } out <- setNames(seed_dat, paste(name, seq_len(j), sep = rep.sep)) seriesname(dplyr::tbl_df(out), name) }
#' Power calculations. #' #' This function simply counts the proportion of people who selected the data plot, #' in a set of lineups. It adjusts for multiple picks by the same individual, by weighting #' by the total number of choices. #' @param data summary of the results, containing columns id, pic_id, response, detected #' @param m size of the lineup #' @return vector of powers for each pic_id #' @export #' @examples #' data(turk_results) #' visual_power(turk_results) visual_power <- function(data, m=20) { data <- data %>% mutate( nchoices_wgt = (m-sapply(strsplit(as.character(data$response), ","), length))/19) visual_p <- data %>% group_by(pic_id) %>% summarise(power = sum(detected*nchoices_wgt)/length(detected), n=length(detected)) return(visual_p) }
/R/power.r
no_license
sa-lee/nullabor
R
false
false
781
r
#' Power calculations. #' #' This function simply counts the proportion of people who selected the data plot, #' in a set of lineups. It adjusts for multiple picks by the same individual, by weighting #' by the total number of choices. #' @param data summary of the results, containing columns id, pic_id, response, detected #' @param m size of the lineup #' @return vector of powers for each pic_id #' @export #' @examples #' data(turk_results) #' visual_power(turk_results) visual_power <- function(data, m=20) { data <- data %>% mutate( nchoices_wgt = (m-sapply(strsplit(as.character(data$response), ","), length))/19) visual_p <- data %>% group_by(pic_id) %>% summarise(power = sum(detected*nchoices_wgt)/length(detected), n=length(detected)) return(visual_p) }
# R script for Peak Model # -- generated by MACS p <- c(0.0414937466192,0.0489353039017,0.0560707211693,0.0635358276837,0.0698234726027,0.070247358777,0.0698705710665,0.0689521510222,0.0688815033264,0.0689286017903,0.0690934464136,0.0691405448774,0.0689757002541,0.0686460110074,0.0691169956455,0.0698941202984,0.0707418926471,0.0705299495599,0.0704357526323,0.0707418926471,0.0706476957194,0.0706476957194,0.0717074111552,0.0715190173,0.0717780588509,0.0713777219085,0.0705299495599,0.0720371004019,0.0721548465614,0.0722961419529,0.0720841988657,0.0712128772852,0.070011866458,0.0701060633856,0.0701531618494,0.0705299495599,0.0703651049366,0.0691405448774,0.0694466848922,0.069258291037,0.0695408818198,0.0698234726027,0.0702238095451,0.0701767110813,0.0701767110813,0.0699647679941,0.0717074111552,0.0714483696043,0.0711186803576,0.070506400328,0.0706476957194,0.070765441879,0.0697763741389,0.0699647679941,0.0697763741389,0.0697057264432,0.0689521510222,0.0697999233708,0.0706005972556,0.071000934198,0.0703886541685,0.070765441879,0.0725787327358,0.07250808504,0.073026168142,0.073026168142,0.0731203650696,0.0735678004758,0.0729555204463,0.0738032927949,0.0744155728245,0.0746510651435,0.0733323081568,0.0742271789692,0.0741094328097,0.0738503912587,0.0732145619972,0.0722490434891,0.0726258311996,0.071754509619,0.0719900019381,0.0715190173,0.0715661157638,0.0705299495599,0.0706241464875,0.0710715818937,0.071259975749,0.0719193542424,0.0722254942572,0.0719429034743,0.0714954680681,0.0716367634595,0.0716132142276,0.0714012711404,0.0708831880385,0.0701767110813,0.0703415557046,0.0703651049366,0.070011866458,0.0700354156899,0.0691169956455,0.0692818402689,0.0696586279794,0.0698941202984,0.0700825141537,0.069752824907,0.0692111925731,0.0693524879646,0.069258291037,0.069234741805,0.0696821772113,0.0687873063988,0.0686224617755,0.0693524879646,0.0695644310517,0.0703415557046,0.0715425665319,0.0713070742128,0.0706712449513,0.0706712449513,0.0708831880385,0.0718016080828,0.0715425665319,0.0711893280533,0.0713777219085,0.0717309603871,0.0715425665319,0.0714248203723,0.0719664527062,0.0727435773591,0.0732616604611,0.0726729296634,0.0729790696782,0.0729084219825,0.0725551835039,0.0718251573148,0.0710480326618,0.0713306234447,0.0709538357342,0.0700354156899,0.0693289387327,0.068999249486,0.0694466848922,0.0694702341241,0.0704357526323,0.0706476957194,0.0709067372704,0.0705534987918,0.0715661157638,0.0727200281272,0.0728142250548,0.0736619974035,0.0728848727505,0.0731203650696,0.071754509619,0.0715896649957,0.0711186803576,0.0714012711404,0.0711186803576,0.0703886541685,0.0706712449513,0.0705299495599,0.0714248203723,0.0716367634595,0.0718487065467,0.0720606496338,0.0742507282011,0.0742271789692,0.0738739404906,0.0743449251287,0.0746275159116,0.0738503912587,0.0734736035482,0.0737561943311,0.0738974897225,0.0740623343459,0.0725551835039,0.0726964788953,0.0726964788953,0.0726729296634,0.072767126591,0.0732145619972,0.0734971527801,0.0725787327358,0.0731674635334,0.0733794066206,0.0738503912587,0.0749336559264,0.0747688113031,0.0747452620712,0.0746981636073,0.0753339928688,0.0753104436369,0.0753104436369,0.074792360535,0.0743920235926,0.0743449251287,0.0739445881863,0.0740623343459,0.0740623343459,0.0737090958673,0.0736384481716,0.0737326450992,0.0735913497077,0.0733558573887,0.0734500543163,0.0728142250548,0.0722490434891,0.0721548465614,0.0715425665319,0.0718487065467,0.0713070742128,0.0712364265171,0.0710715818937,0.0712364265171,0.0710715818937,0.0712128772852,0.0711893280533,0.0711422295895,0.0718487065467,0.0719900019381,0.07250808504,0.0723667896486,0.0727435773591,0.0730026189101,0.0734971527801,0.0734736035482,0.0739681374182,0.0748865574626,0.0747688113031,0.0746981636073,0.0745804174478,0.0746746143754,0.0754281897964,0.0757107805793,0.0757578790431,0.0758285267389,0.0749807543902,0.0746039666797,0.0745097697521,0.0742978266649,0.0748865574626,0.075027852854,0.0745804174478,0.0746746143754,0.0744391220564,0.0740858835778,0.0739445881863,0.0744626712883,0.0741800805054,0.0746746143754,0.0749101066945,0.0750985005498,0.074792360535,0.0746275159116,0.0739916866502,0.0739210389544,0.0736619974035,0.0730968158377,0.0728613235186,0.0722490434891,0.0721312973295,0.0710480326618,0.0715425665319,0.0713777219085,0.0722490434891,0.0721077480976,0.0727200281272,0.0722961419529,0.0724374373443,0.0724374373443,0.0718958050105,0.0730497173739,0.0727200281272,0.0725551835039,0.0724138881124,0.0726022819677,0.0730497173739,0.0733558573887,0.0739445881863,0.0741565312735,0.0734029558525,0.0727200281272,0.0729555204463,0.0728848727505,0.0723903388805,0.07250808504,0.0721548465614,0.07250808504,0.072272592721,0.0732381112291,0.0743449251287,0.0752397959412,0.0749572051583,0.0752162467093,0.0758991744346,0.0766527498556,0.0773827760447,0.0773827760447,0.0786544345676,0.0790076730462,0.0801615854096,0.0810564562221,0.0830816901661,0.0844710948485,0.0869908626625,0.088121225794,0.0896048274041,0.0908293874633,0.0919597505948,0.0925955798563,0.0933256060454,0.0935375491325,0.0927839737115,0.0937494922197,0.0932785075816,0.0940320830026,0.0939378860749,0.0948563061193,0.0947385599598,0.0950682492064,0.0944559691769,0.0951153476703,0.0961279646422,0.0959631200189,0.0966695969761,0.0971170323823,0.09770576318,0.0973054262376,0.0972112293099,0.0978941570352,0.0976822139481,0.0980354524267,0.0979648047309,0.0977293124119,0.0969992862228,0.0968579908313,0.0965754000485,0.0962928092656,0.0963634569613,0.0952095445979,0.095445036917,0.0944559691769,0.0944088707131,0.0940556322345,0.0937730414516,0.0929723675668,0.0927368752477,0.0933256060454,0.0933727045092,0.0933256060454,0.093914336843,0.0945737153364,0.0939614353068,0.0944088707131,0.0935846475963,0.0939849845388,0.0939614353068,0.093419802973,0.0929488183349,0.0933727045092,0.0930430152625,0.0929959167987,0.0934433522049,0.0932078598858,0.0935846475963,0.0933020568135,0.0932078598858,0.0932314091177,0.0928075229434,0.0933020568135,0.0923836367691,0.09214814445,0.0923365383053,0.0916300613481,0.0920068490586,0.0918655536672,0.0917949059714,0.0917478075076,0.0926426783201,0.092171693682,0.0928310721753,0.0924542844648,0.0920774967543,0.0928310721753,0.0932078598858,0.0933256060454,0.0931843106539,0.0936081968282,0.093160761422,0.0935375491325,0.0938907876111,0.0940791814664,0.0943382230173,0.0947150107279,0.0941262799302,0.0941027306983,0.095421487685,0.0951388969022,0.0961515138741,0.0963399077294,0.0961515138741,0.0961750631061,0.0957511769317,0.0953272907574,0.0968344415994,0.0979177062671,0.0962928092656,0.0965754000485,0.0963399077294,0.0955863323084,0.0955627830765,0.0962457108018,0.0969050892952,0.0966695969761,0.0950917984384,0.0932785075816,0.0947150107279,0.0950446999745,0.0946208138002,0.0950446999745,0.0950917984384,0.0943146737854,0.0941262799302,0.0943146737854,0.0955627830765,0.0968579908313,0.0960573169465,0.0954685861489,0.0957747261636,0.0959160215551,0.0966224985123,0.0973525247014,0.0967402446718,0.0972583277738,0.0967637939037,0.096693146208,0.0971405816142,0.0976115662523,0.0976351154843,0.097941255499,0.096952187759,0.0966460477442,0.0966460477442,0.0969050892952,0.096198612338,0.095680529236,0.0950446999745,0.0952330938298,0.0948798553512,0.0938907876111,0.0938436891473,0.0938201399154,0.0940791814664,0.0935610983644,0.0937494922197,0.0932785075816,0.0928075229434,0.0932314091177,0.0940085337707,0.0945737153364,0.0953508399893,0.0942440260897,0.0945737153364,0.0949740522788,0.0943382230173,0.0950446999745,0.0959631200189,0.0952095445979,0.0948092076555,0.0938672383792,0.0932078598858,0.0943853214812,0.0947856584236,0.0944088707131,0.0949034045831,0.0950211507426,0.0938201399154,0.0935610983644,0.0927368752477,0.0937259429878,0.0941262799302,0.0940556322345,0.0934904506687,0.0938672383792,0.0948092076555,0.0950682492064,0.0971170323823,0.0981767478181,0.0993306601815,0.100154883298,0.101214598734,0.102227215706,0.102815946504,0.103357578838,0.104417294273,0.105006025071,0.104417294273,0.103922760403,0.104346646578,0.103781465012,0.103381128069,0.103169184982,0.103946309635,0.104982475839,0.104723434288,0.10437019581,0.104558589665,0.105335714318,0.105500558941,0.105641854332,0.106065740507,0.106678020536,0.105335714318,0.104464392737,0.10425244965,0.104558589665,0.105076672767,0.10535926355,0.104841180448,0.10486472968,0.105053123535,0.104888278911,0.106207035898,0.106630922073,0.105924445115,0.106489626681,0.107196103638,0.107667088276,0.108632606785,0.109362632974,0.109857166844,0.110022011467,0.110328151482,0.110704939192,0.111434965381,0.111552711541,0.111317219222,0.110869783816,0.110752037656,0.110775586888,0.111199473062,0.110752037656,0.111270120758,0.112023696179,0.112612426977,0.112235639266,0.113106960847,0.114166676283,0.114684759385,0.115556080965,0.115391236342,0.117086781039,0.118240693402,0.119041367287,0.121043051999,0.123633467509,0.124481239858,0.124952224496,0.125470307598,0.127001007672,0.130109506283,0.132087641763,0.134136424939,0.136114560419,0.138822722089,0.141460236062,0.146429123994,0.151609955014,0.158462781499,0.165080115664,0.170779029786,0.177773151662,0.185002765857,0.190819426138,0.196848029506,0.203630208295,0.207610028488,0.210247542461,0.212979253362,0.212861507203,0.211283708665,0.207821971575,0.202758886715,0.198096138797,0.1914552554,0.184343387364,0.177090223937,0.171344211352,0.163266824808,0.156249153699,0.150809281129,0.144804226993,0.140165028307,0.135667125013,0.131969895604,0.128390412354,0.125729349149,0.122220513595,0.118688128809,0.116757091792,0.113742790108,0.112212090034,0.109715871452,0.108138072915,0.106536725145,0.103710817316,0.101332344894,0.0990951678625,0.0968344415994,0.0952330938298,0.0935375491325,0.0922187921458,0.090900035159,0.0903113043613,0.088874801215,0.088874801215,0.0882860704174,0.0877208888516,0.088121225794,0.0875324949964,0.087367650373,0.0863550334011,0.0861666395458,0.0846359394719,0.0844239963847,0.0837646178913,0.0826813532236,0.0828226486151,0.0831523378618,0.0824223116727,0.0820455239622,0.0817629331793,0.0811506531497,0.0808680623668,0.0803028808011,0.079572854612,0.0804206269606,0.0801615854096,0.0795022069163,0.0791254192058,0.0783247453209,0.0787486314953,0.0798554453949,0.0803970777287,0.0804206269606,0.0810564562221,0.0810564562221,0.0803970777287,0.0804912746563,0.0818806793388,0.0835762240361,0.0836468717318,0.0829639440065,0.0830581409341,0.0837175194275,0.0841885040657,0.083340731717,0.084094307138,0.0849891779505,0.0848007840952,0.0848243333271,0.0849420794867,0.0861430903139,0.0861430903139,0.0856485564439,0.0850598256462,0.0858840487629,0.0862843857053,0.0860724426182,0.0859075979948,0.0855308102843,0.0863079349372,0.0849656287186,0.0854130641248,0.0860488933863,0.0859546964586,0.0848243333271,0.0844946440804,0.0837410686594,0.0839765609785,0.0833878301808,0.082092622426,0.0821161716579,0.0813625962369,0.0806561192797,0.0807267669754,0.0809387100626,0.0803028808011,0.0804441761925,0.0794551084525,0.0798083469311,0.080326430033,0.0805619223521,0.0805148238882,0.0813861454688,0.0809858085264,0.0816922854836,0.0822574670493,0.0821632701217,0.0821632701217,0.0819748762664,0.0822103685855,0.083105239398,0.0844475456166,0.0839294625147,0.0834349286446,0.0827520009194,0.0826342547598,0.0823752132089,0.083105239398,0.0833642809489,0.0828932963108,0.082092622426,0.0815038916283,0.0819277778026,0.0829168455427,0.0839765609785,0.0834584778766,0.0844239963847,0.0835526748042,0.0834820271085,0.0834820271085,0.0832465347894,0.0830110424703,0.0833171824851,0.0834820271085,0.0828932963108,0.0836468717318,0.0835526748042,0.0835291255723,0.0828932963108,0.0832465347894,0.083340731717,0.0827049024555,0.0824223116727,0.0818571301069,0.0825165086003,0.082092622426,0.0822103685855,0.083340731717,0.0843297994571,0.0848714317909,0.0847536856314,0.0859546964586,0.0853188671972,0.0855779087481,0.0854366133567,0.0851775718057,0.0843062502252,0.084353348689,0.0837410686594,0.082587156296,0.0819984254984,0.0811977516135,0.0812919485412,0.0815038916283,0.0801380361777,0.0805383731202,0.0813154977731,0.080820963903,0.0806796685116,0.0809387100626,0.0816451870198,0.0815038916283,0.0816687362517,0.081574539324,0.0820455239622,0.0814096947007,0.0808680623668,0.0809151608307,0.0811035546859,0.0807267669754,0.080820963903,0.0807267669754,0.0810329069902,0.0810329069902,0.0808916115988,0.0819984254984,0.0824458609046,0.0818100316431,0.0815509900921,0.0821632701217,0.0816687362517,0.0825165086003,0.0819748762664,0.0818100316431,0.0821632701217,0.0812213008454,0.080326430033,0.0807032177435,0.0811742023816,0.0807738654392,0.0811977516135,0.0805383731202,0.0803028808011,0.0811506531497,0.0810564562221,0.081339047005,0.081574539324,0.0815038916283,0.0809151608307,0.0808445131349,0.0814803423964,0.0818571301069,0.0819748762664,0.0815038916283,0.0817629331793,0.080820963903,0.0813625962369,0.0811035546859,0.0817393839474,0.0818806793388,0.0804206269606,0.0803970777287,0.0797847976991,0.0779244083785,0.0775711698999,0.0787721807272,0.0779008591466,0.0783718437848,0.07806570377,0.0784424914805,0.0792667145972,0.0787957299591,0.0797376992353,0.0809151608307,0.0811742023816,0.0803028808011,0.0807503162073,0.0807267669754,0.0809622592945,0.080820963903,0.0806325700478,0.0806796685116,0.0799967407863,0.0799025438587,0.0797376992353,0.0803970777287,0.080067388482,0.0792431653653,0.0787957299591,0.078819279191,0.0788428284229,0.079078320742,0.0791018699739,0.0791725176696,0.0787015330314,0.0781834499295,0.0779479576104,0.0779715068423,0.0776653668276,0.0773592268128,0.0766056513918,0.0763230606089,0.0764879052322,0.0765350036961,0.0764879052322,0.076299511377,0.0764408067684,0.0766762990875,0.0771001852618,0.0766527498556,0.0772179314213,0.0771472837256,0.0771472837256,0.0772414806532,0.0774534237404,0.0771943821894,0.076299511377,0.0757107805793,0.075804977507,0.0753575421007,0.0746039666797,0.0739210389544,0.0737326450992,0.0734500543163,0.0730732666058,0.0730497173739,0.0736619974035,0.074274277433,0.0738032927949,0.074274277433,0.0739916866502,0.0746275159116,0.0741800805054,0.0739445881863,0.074274277433,0.0742036297373,0.0740152358821,0.0737326450992,0.0741565312735,0.0735913497077,0.0743920235926,0.0736148989396,0.0735678004758,0.0739210389544,0.0735678004758,0.0738974897225,0.0738974897225,0.0742978266649,0.0734500543163,0.0739210389544,0.0742978266649,0.0749572051583,0.0751926974774,0.0748865574626,0.0746981636073,0.0738974897225,0.0743920235926,0.074533318984,0.0745568682159,0.0742036297373,0.0736384481716,0.0732145619972,0.0728848727505,0.0723903388805,0.072531634272,0.0736855466354,0.072767126591,0.0719429034743,0.0722254942572,0.0731439143015,0.0735442512439,0.0735442512439,0.073779743563,0.0744155728245,0.074274277433,0.0728613235186,0.0738268420268,0.0737090958673,0.0729790696782,0.0723432404167,0.0717074111552,0.0722019450253,0.0719664527062,0.0720371004019,0.0718487065467,0.0727200281272,0.0722019450253,0.0721783957934,0.0725787327358,0.0723196911848,0.0726493804315,0.0730732666058,0.0733794066206,0.0723667896486,0.0726964788953,0.0722961419529,0.0717780588509,0.0719193542424,0.0722254942572,0.0715425665319,0.0709067372704,0.0697763741389,0.0688815033264,0.0692111925731,0.0691169956455,0.0689286017903,0.0697999233708,0.0696821772113,0.0686224617755,0.0691405448774,0.0695644310517,0.0702709080089,0.0708596388066,0.0705770480237,0.0699883172261,0.0699412187622,0.0696350787475,0.0699647679941,0.0707889911109,0.0703651049366,0.0701296126175,0.0695879802836,0.0691169956455,0.0691640941093,0.0689050525584,0.0688344048626,0.0686931094712,0.0680337309778,0.0672566063249,0.0683163217607,0.0682221248331,0.0675627463397,0.0680101817459,0.0682692232969,0.0685518140798,0.0691640941093,0.0697057264432,0.0700354156899,0.0704122034004,0.070506400328,0.0705534987918,0.0704122034004,0.0701060633856,0.0697057264432,0.0700825141537,0.0703180064727,0.0701060633856,0.0693995864284,0.0694702341241,0.0691876433412,0.0696586279794,0.069752824907,0.0700354156899,0.0701767110813,0.0702709080089,0.0697057264432,0.0691876433412,0.0693289387327,0.0693289387327,0.0682927725288,0.0680808294416,0.0688108556307,0.0684576171521,0.068245674065,0.067492098644,0.0677746894268,0.0675156478759,0.0679395340502,0.0680808294416,0.0686460110074,0.0682221248331,0.0681043786735,0.0688108556307,0.069258291037,0.0699176695303,0.0698941202984,0.0696821772113,0.0703651049366,0.0696115295155,0.0699647679941,0.0698234726027,0.0699883172261,0.0694702341241,0.0690227987179,0.0684576171521,0.0689050525584,0.0691876433412,0.0683869694564,0.0691169956455,0.0690227987179,0.0697999233708,0.0697999233708,0.070247358777,0.0702944572408,0.0707889911109,0.0703415557046,0.0708596388066,0.0712128772852,0.0709538357342,0.0707418926471,0.0704122034004,0.0698705710665,0.0695879802836,0.0706476957194,0.0708831880385,0.0711422295895,0.0710480326618,0.0705770480237,0.0707889911109,0.0711657788214,0.0716132142276,0.0721312973295,0.0722961419529,0.0712835249809,0.0714012711404,0.0709773849661,0.0705534987918,0.0708831880385,0.0706947941832,0.0701531618494,0.0692111925731,0.0689757002541,0.0691405448774,0.0696586279794,0.0694466848922,0.070247358777,0.071259975749,0.0722019450253,0.0718722557786,0.0721548465614,0.0729319712144,0.0728142250548,0.0730497173739,0.0728377742867,0.0730968158377,0.0721548465614,0.0717780588509,0.0713306234447,0.0714012711404,0.0715896649957,0.0715661157638,0.0720606496338,0.0713070742128,0.0712364265171,0.071000934198,0.0714012711404,0.0720371004019,0.0716367634595,0.0719193542424,0.0712128772852,0.0708596388066,0.0706005972556,0.0708831880385,0.0709538357342,0.0709067372704,0.0710951311257,0.0705299495599,0.0708125403428,0.0712128772852,0.0720606496338,0.0719664527062,0.0718016080828,0.0717074111552,0.0714012711404,0.0714954680681,0.0714719188362,0.0711657788214,0.0710244834299,0.0704357526323,0.0700589649218,0.0699176695303,0.0693524879646,0.069258291037,0.0695408818198,0.0687873063988,0.0690698971817,0.0689757002541,0.0685989125436,0.0693524879646,0.0696350787475,0.0697292756751,0.0696350787475,0.0697763741389,0.0700589649218,0.0698234726027,0.0686224617755,0.0686224617755,0.0679395340502,0.0668562693825,0.0656788077872,0.0657494554829,0.0662675385848,0.0654904139319,0.0646661908152,0.0657494554829,0.0663617355125,0.0664088339763,0.0669504663101,0.0670682124696,0.067492098644,0.067727590963,0.0678453371226,0.0684340679202,0.0686224617755,0.0686931094712,0.0680337309778,0.0672801555568,0.0676098448035,0.0683634202245,0.0689286017903,0.0693053895008,0.0696821772113,0.0693760371965,0.0696821772113,0.0688344048626,0.0689286017903,0.0691640941093,0.0692111925731,0.0692111925731,0.0693289387327,0.0687166587031,0.0683163217607,0.068245674065,0.0677040417311,0.0679630832821,0.0686460110074,0.0692111925731,0.068481166384,0.067727590963,0.0672566063249,0.067492098644,0.0679395340502,0.0689286017903,0.069493783356,0.0694466848922,0.0693524879646,0.0693289387327,0.0693053895008,0.0698234726027,0.0699883172261,0.0697999233708,0.0690227987179,0.0689050525584,0.069493783356,0.0695173325879,0.0694702341241,0.0691405448774,0.0703180064727,0.0695408818198,0.0687873063988,0.0690698971817,0.068999249486,0.0688108556307,0.0612044537249,0.0544458241678,0.0474752515235,0.040787269662,0.0) m <- c(0.0405831966008,0.0480339269004,0.0547163006379,0.0619109120835,0.0688028376106,0.0684303010957,0.0698738800912,0.0705025354602,0.0695246271084,0.0705723860568,0.070595669589,0.0702697001384,0.0707120872499,0.0701998495418,0.070595669589,0.070851788443,0.0701998495418,0.0700601483487,0.0715735779408,0.0715735779408,0.0715037273443,0.0713873096833,0.0716201450052,0.0715037273443,0.0708052213787,0.0715037273443,0.071596861473,0.0710846237649,0.0702464166062,0.0690356729325,0.0687795540784,0.0689658223359,0.0686864199497,0.069594477705,0.0699902977521,0.0699902977521,0.0698273130268,0.0699437306878,0.0703861177993,0.0711311908293,0.0712708920224,0.0708052213787,0.0707353707821,0.0705723860568,0.0705258189924,0.0702697001384,0.0703628342671,0.0708983555074,0.0699902977521,0.0707353707821,0.0707819378465,0.0707586543143,0.0712708920224,0.0707819378465,0.0701532824774,0.0700368648165,0.0699902977521,0.0696643283015,0.0700135812843,0.0690589564647,0.068849404675,0.0693150753187,0.0690822399969,0.0687562705463,0.0692917917865,0.0692917917865,0.0698971636234,0.0694082094475,0.0687097034819,0.0684535846278,0.0690589564647,0.0689425388038,0.0691520905934,0.0690356729325,0.0690356729325,0.068593285821,0.0673592586151,0.0680577645807,0.0683837340313,0.0690589564647,0.0681508987094,0.0675222433404,0.0674058256795,0.0678016457266,0.0679646304519,0.0681508987094,0.0679180633876,0.0677783621944,0.0676619445335,0.0671729903576,0.067475676276,0.0682440328382,0.0681741822416,0.0690123894003,0.0687795540784,0.0690589564647,0.0697108953659,0.0698040294946,0.0708750719752,0.0713640261511,0.0722720839064,0.0724350686317,0.0711079072971,0.0701765660096,0.0698273130268,0.0700135812843,0.0712708920224,0.0706422366534,0.0704326848637,0.0699437306878,0.0691753741256,0.0691055235291,0.0696876118337,0.0698040294946,0.0705491025246,0.0710846237649,0.069594477705,0.0699437306878,0.0702464166062,0.0705491025246,0.0712476084902,0.0713873096833,0.0712010414258,0.0716899956017,0.0722022333098,0.0708285049108,0.0704792519281,0.0701765660096,0.0699437306878,0.0701067154131,0.0698040294946,0.069850596559,0.0704094013315,0.069850596559,0.0685467187566,0.0690123894003,0.0695479106406,0.0700601483487,0.070223133074,0.0700601483487,0.0697108953659,0.0692917917865,0.0689891058681,0.0692452247222,0.0694314929797,0.0705258189924,0.0707120872499,0.0707353707821,0.0707586543143,0.0710846237649,0.0709914896362,0.0709216390396,0.070595669589,0.0703395507349,0.0704326848637,0.0695479106406,0.0697108953659,0.0688726882072,0.0682905999025,0.06847686816,0.0685467187566,0.0691288070612,0.0696177612372,0.0704559683959,0.0703628342671,0.0704326848637,0.0700135812843,0.071224324958,0.0708983555074,0.0702929836706,0.0696643283015,0.0687562705463,0.0688028376106,0.0679879139841,0.0684303010957,0.068220749306,0.067848212791,0.0671264232932,0.0669401550357,0.0666840361817,0.0675222433404,0.0678249292588,0.0681741822416,0.0686398528853,0.0681508987094,0.0690822399969,0.0695246271084,0.0689891058681,0.0691055235291,0.0686631364175,0.0689425388038,0.0688726882072,0.0684070175635,0.067848212791,0.0676386610013,0.0673126915507,0.0672428409541,0.0683371669669,0.068220749306,0.0680810481129,0.0673126915507,0.0674291092116,0.0681276151772,0.0686864199497,0.0693616423831,0.0687562705463,0.0697574624303,0.0698040294946,0.0704094013315,0.0709914896362,0.0719228309236,0.0719926815202,0.0713640261511,0.0711544743615,0.0712941755546,0.0710380567005,0.0704326848637,0.0705025354602,0.0704326848637,0.0702929836706,0.0700601483487,0.0701067154131,0.0702929836706,0.0707120872499,0.0702929836706,0.070968206104,0.0707120872499,0.0706888037177,0.0702697001384,0.0705025354602,0.070223133074,0.0707353707821,0.070851788443,0.0709914896362,0.0713174590868,0.0706422366534,0.0700368648165,0.0700368648165,0.0712010414258,0.0717598461983,0.0713407426189,0.070851788443,0.0712941755546,0.0704094013315,0.0700601483487,0.0702464166062,0.0713174590868,0.0701765660096,0.0693383588509,0.0691288070612,0.0696876118337,0.0697574624303,0.0697108953659,0.0701299989453,0.0706655201855,0.070851788443,0.0704559683959,0.0713873096833,0.0720159650523,0.0721323827133,0.0711544743615,0.0714804438121,0.0712476084902,0.070851788443,0.0704792519281,0.0706888037177,0.0705491025246,0.0706655201855,0.0705723860568,0.0706422366534,0.0715270108764,0.0710613402327,0.0706422366534,0.070968206104,0.0712476084902,0.0714571602799,0.0716667120696,0.0715270108764,0.0716899956017,0.0714338767477,0.0715270108764,0.0714105932155,0.0718995473914,0.0720858156489,0.0713640261511,0.0704792519281,0.070595669589,0.0701299989453,0.0701299989453,0.0705025354602,0.0710846237649,0.0713174590868,0.070595669589,0.0705025354602,0.0713640261511,0.0720625321167,0.0724117850995,0.0722022333098,0.0715270108764,0.0713640261511,0.0704326848637,0.0701998495418,0.0708983555074,0.0708750719752,0.0710846237649,0.0708750719752,0.0696876118337,0.0703162672027,0.0710147731683,0.0700135812843,0.0702697001384,0.0701067154131,0.0704094013315,0.0708285049108,0.070223133074,0.0705025354602,0.0714105932155,0.0712708920224,0.0702697001384,0.0713407426189,0.0722720839064,0.0728076051467,0.0723186509708,0.0716667120696,0.0723186509708,0.0718762638592,0.0714571602799,0.0711311908293,0.0722022333098,0.0722953674386,0.0719461144558,0.0726911874858,0.0732965593226,0.073226708726,0.0725282027604,0.0729938734042,0.0731568581295,0.0737855134985,0.0734362605157,0.0736923793698,0.0723885015673,0.0713407426189,0.070595669589,0.071596861473,0.0721090991811,0.0714338767477,0.0718995473914,0.072225516842,0.0739950652882,0.0734595440479,0.0753920772194,0.0755550619447,0.0763699855712,0.0759508819918,0.0758810313953,0.0773711774552,0.0770452080046,0.0772780433265,0.0759043149275,0.0768123726827,0.0763932691034,0.0766726714896,0.0768356562149,0.0776505798414,0.0772780433265,0.0771383421333,0.078465503468,0.0780696834208,0.0783956528714,0.0779299822277,0.0772547597943,0.0771150586012,0.0774875951161,0.0770452080046,0.0776738633736,0.0776505798414,0.0769287903437,0.0777669975024,0.0779765492921,0.0780696834208,0.0791407259014,0.0788147564508,0.0781861010817,0.0781162504852,0.078349085807,0.0781628175495,0.0783956528714,0.0774177445196,0.0771616256655,0.0772780433265,0.0768123726827,0.0768822232793,0.0767658056184,0.0773246103908,0.0774410280518,0.0776505798414,0.0779299822277,0.0779066986955,0.0779299822277,0.078349085807,0.0780463998886,0.0783723693392,0.0785819211289,0.0778601316311,0.0779765492921,0.077720430438,0.077091775069,0.0769520738759,0.0767425220862,0.0760440161206,0.0770452080046,0.0783723693392,0.0783258022748,0.0783723693392,0.0784189364036,0.0776505798414,0.0777669975024,0.0792105764979,0.0795365459485,0.0798857989313,0.0788380399829,0.0781395340174,0.0782093846139,0.0785120705323,0.0782093846139,0.0789777411761,0.0791174423692,0.078349085807,0.0781861010817,0.0779765492921,0.0783956528714,0.0782792352105,0.0786517717255,0.0786052046611,0.0792105764979,0.0797693812704,0.0794899788842,0.079466695352,0.0791872929657,0.0796296800773,0.0803281860429,0.0798159483348,0.0792804270945,0.0792338600301,0.079350277691,0.0792105764979,0.0794201282876,0.0795132624164,0.0804213201716,0.0801419177854,0.0802117683819,0.0809801249441,0.0813060943947,0.0818648991672,0.0814923626522,0.081212960266,0.0811198261372,0.0806075884291,0.0800720671888,0.0808869908153,0.080467887236,0.0807938566866,0.0803281860429,0.0796296800773,0.0806541554935,0.0810034084763,0.081212960266,0.0816786309097,0.0823538533431,0.0818183321028,0.0819114662315,0.0815389297166,0.0821675850856,0.0827031063259,0.0820744509568,0.0809801249441,0.0815156461844,0.0813060943947,0.0800255001245,0.0798159483348,0.0799556495279,0.079350277691,0.0788846070473,0.0787681893864,0.0785819211289,0.0799323659957,0.0798857989313,0.0798857989313,0.0809335578797,0.08146907912,0.0808171402188,0.0815854967809,0.0819347497637,0.0813992285234,0.0809335578797,0.0801186342532,0.0803281860429,0.0814923626522,0.0811198261372,0.0805377378325,0.0803049025107,0.0807007225579,0.0805144543004,0.0804446037038,0.08072400609,0.0812362437981,0.0800487836566,0.0790475917726,0.0795132624164,0.0798159483348,0.0807007225579,0.080095350721,0.080467887236,0.0810034084763,0.0806774390257,0.0805144543004,0.081096542605,0.0815389297166,0.081096542605,0.0807007225579,0.0815622132487,0.0817484815062,0.0819580332959,0.0814923626522,0.0816553473775,0.0812828108625,0.0817019144419,0.0817251979741,0.08221415215,0.0823538533431,0.0815854967809,0.0822374356822,0.0814923626522,0.0825634051328,0.0830290757765,0.0837042982099,0.0831454934374,0.0826099721971,0.0825866886649,0.083098926373,0.083215344034,0.0828893745834,0.0838905664674,0.0834947464202,0.0840535511927,0.0837741488065,0.0845425053686,0.0846123559652,0.0834248958237,0.0838905664674,0.0835180299524,0.0836344476133,0.0830290757765,0.0836344476133,0.0829359416477,0.0833783287593,0.0833550452271,0.0833783287593,0.0843096700467,0.0831920605018,0.082842807519,0.0820278838925,0.082470271004,0.0823305698109,0.0823538533431,0.0821443015534,0.0814923626522,0.0817717650384,0.0827496733903,0.0836111640811,0.0833550452271,0.0836810146777,0.0833317616949,0.0827962404546,0.0825866886649,0.0823538533431,0.0827962404546,0.0833783287593,0.0821443015534,0.0820278838925,0.0832386275662,0.0832386275662,0.0841466853214,0.0853108619307,0.0851013101411,0.0858929502354,0.0857998161067,0.0859162337676,0.0877789163425,0.0880350351966,0.0885007058403,0.0897813001105,0.0907359249302,0.0908756261233,0.0925287569085,0.0938559182431,0.0956487502215,0.0956254666893,0.0964403903158,0.0973018810067,0.0981400881654,0.0997932189507,0.10000277074,0.101516200332,0.102633809877,0.103704852358,0.105474400804,0.108152007006,0.109642153065,0.113134682893,0.115556170241,0.118932282408,0.122401528704,0.127034951609,0.13141225566,0.134741800762,0.138257614122,0.14324029001,0.147524459933,0.152483852288,0.15793219882,0.16272860645,0.170062919089,0.176000219797,0.183241398306,0.189853921447,0.195767938623,0.200680763914,0.206129110446,0.20862044839,0.21139118872,0.212019844089,0.209924326192,0.205453888012,0.200471212124,0.195139283254,0.190273025027,0.184359007851,0.177490365856,0.17092440978,0.163659947738,0.158258168271,0.152483852288,0.148292816495,0.143729244186,0.140259997891,0.136557916273,0.133274938235,0.131156136806,0.128408680008,0.126476146836,0.123728690038,0.122797348751,0.121516754481,0.120445712,0.119630788373,0.118163925846,0.117488703412,0.11576572203,0.116464227996,0.115090499597,0.114811097211,0.113856472391,0.113227817022,0.112319759267,0.111644536834,0.111877372155,0.111528119173,0.111085732061,0.109874988387,0.11001468958,0.109246333018,0.108291708199,0.107500068104,0.108710811778,0.108897080036,0.108314991731,0.106894696267,0.107034397461,0.107267232782,0.107872604619,0.108803945907,0.108990214164,0.11022424137,0.108710811778,0.106871412735,0.106661860946,0.108058872877,0.107639769297,0.106848129203,0.1069179798,0.106266040898,0.107895888151,0.108012305812,0.108547827053,0.109944838984,0.11043379316,0.109432601276,0.109362750679,0.110457076692,0.110503643756,0.109805137791,0.108966930632,0.106848129203,0.106289324431,0.105567534933,0.104938879564,0.105311416079,0.105381266675,0.103658285294,0.102889928731,0.102587242813,0.102121572169,0.10265709341,0.102796794603,0.103914404148,0.104100672405,0.103844553551,0.103704852358,0.104170523002,0.104659477178,0.10500873016,0.103891120615,0.103541867633,0.103588434697,0.102400974556,0.102400974556,0.101003962624,0.100165755466,0.0993741153713,0.0980003869723,0.0966965091699,0.0961377043974,0.0964869573802,0.0950200948525,0.0944147230156,0.0928314428269,0.0940189029684,0.0941353206294,0.0944147230156,0.0947406924662,0.0949502442559,0.0959980032043,0.0953460643031,0.095835018479,0.0967896432986,0.097581283393,0.0971854633458,0.0972320304102,0.097581283393,0.0976744175217,0.0987221764701,0.0969991950883,0.0969991950883,0.0963705397193,0.0959281526077,0.0958583020112,0.0950200948525,0.0948105430628,0.0949269607237,0.0947639759984,0.0941818876937,0.0951132289812,0.0956720337537,0.0964171067836,0.0961377043974,0.0961377043974,0.0973950151355,0.0977908351826,0.0973717316033,0.0963938232514,0.0953227807709,0.0951830795778,0.0951597960456,0.0958583020112,0.0965102409124,0.0960445702687,0.0952994972387,0.0946941254018,0.094717408934,0.0944845736122,0.0953926313674,0.0958583020112,0.0955090490284,0.095835018479,0.0958117349468,0.0958815855433,0.0954857654962,0.0952762137065,0.0948571101271,0.0956720337537,0.0951365125134,0.0940654700328,0.0945777077409,0.0929944275522,0.0925520404407,0.0928314428269,0.0938559182431,0.0940421865006,0.0950200948525,0.0951132289812,0.095718600818,0.0970690456849,0.0968827774274,0.0975579998608,0.0976744175217,0.0974415821998,0.0959048690755,0.0957884514146,0.0949502442559,0.0947639759984,0.0949269607237,0.0943215888869,0.093832634711,0.0939024853075,0.0943215888869,0.0939956194363,0.0944380065478,0.0943215888869,0.0951365125134,0.0952994972387,0.0956021831571,0.0960445702687,0.0961842714618,0.0961144208652,0.0953926313674,0.0954159148996,0.0956953172859,0.0964171067836,0.0958117349468,0.0953693478352,0.0953693478352,0.0945078571444,0.0949968113203,0.09446129008,0.0939723359041,0.0937395005822,0.0939257688397,0.0940189029684,0.0948571101271,0.0951830795778,0.0941120370972,0.09446129008,0.0933203970029,0.0938792017753,0.0941120370972,0.0941120370972,0.0947406924662,0.0951830795778,0.0946242748053,0.0953693478352,0.0970690456849,0.0974881492642,0.0990248623885,0.0988153105988,0.0988851611954,0.0987221764701,0.0986523258735,0.0969991950883,0.096463673848,0.0959747196721,0.0946475583375,0.0948105430628,0.0936463664535,0.0943681559512,0.0949502442559,0.0950200948525,0.0944380065478,0.0950200948525,0.0945777077409,0.094833826595,0.0956487502215,0.0951365125134,0.0959980032043,0.0958815855433,0.0952529301743,0.0961377043974,0.0968129268308,0.0969759115561,0.0976278504573,0.0976278504573,0.0971621798136,0.0979538199079,0.0975579998608,0.0971854633458,0.0979771034401,0.0967430762342,0.0966965091699,0.0966499421055,0.0961377043974,0.0957884514146,0.0954857654962,0.0945544242087,0.0940421865006,0.0938792017753,0.0931574122775,0.0942517382903,0.093460098196,0.0934368146638,0.0925054733763,0.0924821898441,0.0915508485567,0.0910386108486,0.0898278671749,0.0876624986816,0.0867544409263,0.0849383254158,0.0842398194502,0.0828195239868,0.0838207158708,0.0823538533431,0.0821443015534,0.0817950485706,0.0818881826994,0.0815389297166,0.0811663932016,0.0815156461844,0.0808869908153,0.0805610213647,0.0797460977382,0.0793037106267,0.0789078905795,0.0786750552576,0.078092966953,0.0782559516783,0.0783025187427,0.0772780433265,0.0768822232793,0.0765562538287,0.0754619278159,0.075601629009,0.0755317784125,0.0740649158847,0.074344318271,0.0746470041894,0.0731335745973,0.0730404404685,0.0725282027604,0.0726911874858,0.0730637240007,0.0727843216145,0.0725514862926,0.0724117850995,0.0710147731683,0.0708285049108,0.071852980327,0.0721789497777,0.0723652180351,0.0722022333098,0.071852980327,0.0715037273443,0.0717831297305,0.0726679039536,0.0739019311594,0.0742511841422,0.073715662902,0.0745771535928,0.0748332724469,0.0751592418975,0.0757413302022,0.0761371502493,0.0760440161206,0.0758810313953,0.0758344643309,0.0758810313953,0.075345510155,0.0743676018032,0.074344318271,0.0736690958376,0.0735061111123,0.0737389464341,0.073226708726,0.0734129769835,0.0724816356961,0.0718064132627,0.0723885015673,0.0728308886789,0.072341934503,0.072225516842,0.0711544743615,0.0708052213787,0.0711311908293,0.0710380567005,0.0722488003742,0.0720625321167,0.0718762638592,0.0710147731683,0.0713640261511,0.0721090991811,0.0729473063398,0.0727144710179,0.0716899956017,0.0723186509708,0.0718296967949,0.0721323827133,0.072341934503,0.0729240228076,0.0730171569364,0.073599245241,0.0729938734042,0.0729938734042,0.0742744676744,0.0737855134985,0.074344318271,0.0743908853354,0.0738786476273,0.0734362605157,0.0732965593226,0.0726213368892,0.0725514862926,0.0723186509708,0.0716434285374,0.0718762638592,0.0715735779408,0.0709449225718,0.0715037273443,0.0716667120696,0.0716201450052,0.0709914896362,0.0724583521639,0.0727843216145,0.0728774557432,0.0724350686317,0.0724350686317,0.072598053357,0.0734595440479,0.0739252146916,0.0744141688675,0.0754153607516,0.0738087970307,0.0740183488204,0.0740881994169,0.0739019311594,0.073343126387,0.0739019311594,0.0723885015673,0.0722488003742,0.0715735779408,0.0713174590868,0.0720625321167,0.0715502944086,0.071852980327,0.0721556662455,0.0724117850995,0.0724117850995,0.0729007392754,0.0724350686317,0.072225516842,0.072341934503,0.0723885015673,0.0728774557432,0.0720858156489,0.0719926815202,0.0713640261511,0.0711079072971,0.0716434285374,0.0717365626661,0.0725049192283,0.0715735779408,0.071596861473,0.0710147731683,0.071596861473,0.0721090991811,0.0725282027604,0.071852980327,0.0717132791339,0.0710380567005,0.0710846237649,0.0717598461983,0.0713640261511,0.0714571602799,0.0714338767477,0.0709914896362,0.0719228309236,0.0721789497777,0.072225516842,0.0738553640951,0.0734362605157,0.0735293946445,0.073971781756,0.0741580500135,0.0736690958376,0.0735759617088,0.0728774557432,0.0728541722111,0.0728308886789,0.0716667120696,0.0716434285374,0.0720858156489,0.0724117850995,0.072970589872,0.0728774557432,0.0728076051467,0.0727377545501,0.0734362605157,0.0730404404685,0.0733896934513,0.0731801416617,0.0732965593226,0.0726213368892,0.0725049192283,0.0726446204214,0.0726213368892,0.0726446204214,0.0720625321167,0.0725049192283,0.0719228309236,0.071969397988,0.0708983555074,0.0709449225718,0.070595669589,0.0708285049108,0.0706655201855,0.0707819378465,0.0711311908293,0.0705723860568,0.0712941755546,0.0714338767477,0.071852980327,0.0718995473914,0.0722720839064,0.0726679039536,0.0727610380823,0.0726679039536,0.072225516842,0.0731335745973,0.0728541722111,0.0724816356961,0.0727144710179,0.0729938734042,0.0729240228076,0.0724350686317,0.0726679039536,0.0725282027604,0.0727610380823,0.0721090991811,0.0728076051467,0.0728774557432,0.0723186509708,0.072225516842,0.0724816356961,0.0730637240007,0.072341934503,0.0726213368892,0.0727610380823,0.0726911874858,0.0722953674386,0.0728076051467,0.0736225287732,0.0736225287732,0.0727144710179,0.0720392485845,0.0726213368892,0.0727843216145,0.0723885015673,0.0719926815202,0.0716667120696,0.0712708920224,0.0707819378465,0.0700834318809,0.0698273130268,0.070223133074,0.0704792519281,0.0704094013315,0.070851788443,0.0711777578936,0.0709449225718,0.0713407426189,0.0713407426189,0.0717598461983,0.0726911874858,0.0727144710179,0.072598053357,0.0719926815202,0.0717831297305,0.0719228309236,0.0720159650523,0.0715502944086,0.0718995473914,0.0724816356961,0.0721090991811,0.0722022333098,0.0720625321167,0.0725282027604,0.0725282027604,0.0727610380823,0.0731335745973,0.0739484982238,0.0738553640951,0.0733664099192,0.0739950652882,0.0739252146916,0.0736923793698,0.073715662902,0.0740183488204,0.0740183488204,0.0742279006101,0.0735759617088,0.0730870075329,0.0729240228076,0.0726213368892,0.0727377545501,0.0725282027604,0.072970589872,0.0728308886789,0.0726911874858,0.0651240395252,0.0580691292727,0.0509676519559,0.0439825923,0.0) ycorr <- c(-8.27358908567e-06,-8.66608098524e-06,-9.82701030176e-06,-1.17779831261e-05,-1.45428142131e-05,-1.81320491947e-05,-2.25739396861e-05,-2.7336738214e-05,-3.24282925172e-05,-3.78557354552e-05,-4.3625465525e-05,-4.97158737741e-05,-5.6100365226e-05,-6.27227186274e-05,-6.95288746118e-05,-7.64386113897e-05,-8.3348263303e-05,-9.01150002235e-05,-9.66619714788e-05,-0.000102876212786,-0.000108691068188,-0.00011404885968,-0.000118906360287,-0.000123222267144,-0.000126997139359,-0.000130238233983,-0.000132965627712,-0.000135262756553,-0.000137200784871,-0.000138864330236,-0.000140326040595,-0.000141632521634,-0.000142841047426,-0.000143995105989,-0.000145127783009,-0.000146268786687,-0.000147456026675,-0.000148723258692,-0.000150067703733,-0.000151488639471,-0.000152953024274,-0.000154465894296,-0.000156006139489,-0.000157579148975,-0.000159176664081,-0.00016080040738,-0.000162445821371,-0.000164080169322,-0.000165683213442,-0.000167250317846,-0.000168794028462,-0.000170317989924,-0.000171810762954,-0.000173278963077,-0.00017471401496,-0.000176122864801,-0.00017749908313,-0.000178857662117,-0.000180233361695,-0.000181641950226,-0.000183070455399,-0.000184502611471,-0.00018595742458,-0.000187443997276,-0.000188979678756,-0.000190564664381,-0.000192201537493,-0.000193903418081,-0.000195633901299,-0.000197343465988,-0.000199046649589,-0.000200770933939,-0.000202507753201,-0.000204240468269,-0.000205963726411,-0.000207653455293,-0.000209319388318,-0.000210951972625,-0.000212537581161,-0.000214110713323,-0.000215678267721,-0.000217202496049,-0.000218671859232,-0.000220106266719,-0.000221493142198,-0.000222815290002,-0.000224077885098,-0.00022522963304,-0.00022628967677,-0.000227262871482,-0.00022815132417,-0.000228973742015,-0.000229746552308,-0.00023044448429,-0.00023107233542,-0.000231652185989,-0.000232190490336,-0.000232709406786,-0.000233237481799,-0.000233774184886,-0.000234301370027,-0.000234800958871,-0.00023525519492,-0.000235666855918,-0.000236051640315,-0.000236402985414,-0.000236694193574,-0.00023693339424,-0.000237101800907,-0.000237190988161,-0.000237206056903,-0.000237152549204,-0.000237058822651,-0.000236939726798,-0.000236789402963,-0.000236603211318,-0.000236400110905,-0.0002362194884,-0.000236059284869,-0.000235930591034,-0.000235824299867,-0.000235763833888,-0.000235754519105,-0.000235780236558,-0.000235849805018,-0.000235982825724,-0.000236200250504,-0.000236472412332,-0.000236779318116,-0.000237125990974,-0.000237516972,-0.000237954916118,-0.000238407794934,-0.000238893695784,-0.000239407206639,-0.000239944735072,-0.000240462741195,-0.000240962221168,-0.000241459785786,-0.000241967353134,-0.000242491995066,-0.000243027049976,-0.000243593048665,-0.000244198010019,-0.000244829069484,-0.000245494045603,-0.000246205877102,-0.000246993174457,-0.000247848420939,-0.000248756994061,-0.000249707314519,-0.00025069229543,-0.000251698259309,-0.000252706538583,-0.000253699169377,-0.000254661410968,-0.000255591897875,-0.00025646847176,-0.000257304501136,-0.000258103103257,-0.000258870683403,-0.000259604801129,-0.000260309792418,-0.000260999187119,-0.000261683355979,-0.000262391149495,-0.00026314124502,-0.00026393332025,-0.000264777948014,-0.000265652814287,-0.000266543281915,-0.000267448285281,-0.000268372647397,-0.000269310875242,-0.000270274724756,-0.000271252801794,-0.000272218679309,-0.000273178948798,-0.000274106195153,-0.000275010548659,-0.000275923863844,-0.000276865774587,-0.000277836799211,-0.000278845329128,-0.000279886705693,-0.000280957559598,-0.000282083371473,-0.000283254898423,-0.000284473882159,-0.000285750620633,-0.000287044684008,-0.000288314867897,-0.000289552383852,-0.000290750355165,-0.00029190059098,-0.000293006062054,-0.000294039581848,-0.000294989124224,-0.000295866620955,-0.000296667808842,-0.000297407579932,-0.000298114940844,-0.000298805362135,-0.000299479379693,-0.000300141645632,-0.000300789384762,-0.00030142686084,-0.000302063215436,-0.000302695458046,-0.000303310231833,-0.000303895326316,-0.000304444439755,-0.000304953368308,-0.000305415358815,-0.000305813629669,-0.00030615787801,-0.000306429829885,-0.000306634001988,-0.000306764193973,-0.000306822557425,-0.000306827239613,-0.00030679330836,-0.000306732412054,-0.000306655324049,-0.000306582052098,-0.00030650617353,-0.000306441119522,-0.000306396210056,-0.000306387268033,-0.000306436894584,-0.00030654824602,-0.000306735128337,-0.000306988843659,-0.000307298490101,-0.000307665737616,-0.000308098138827,-0.0003086114617,-0.000309203365861,-0.000309863122474,-0.000310557380905,-0.000311270398202,-0.000311990304609,-0.000312679478768,-0.000313328665641,-0.000313936784037,-0.000314472572557,-0.000314930117471,-0.000315295607581,-0.000315578450764,-0.000315812113892,-0.000316005784611,-0.000316158552031,-0.000316291116318,-0.00031642404223,-0.000316565712633,-0.000316739354677,-0.000316946805922,-0.000317193897026,-0.00031748628963,-0.000317787626426,-0.000318105048605,-0.000318440136607,-0.000318791816832,-0.000319147846032,-0.000319502244124,-0.000319837757053,-0.000320145998773,-0.000320424089492,-0.000320646450503,-0.000320831832585,-0.000320961787372,-0.000321023874251,-0.000321012119115,-0.000320924789095,-0.000320768493021,-0.000320550486402,-0.000320280407411,-0.000319948270165,-0.000319575410562,-0.000319161519578,-0.000318728315857,-0.000318291576913,-0.000317859672113,-0.000317429076408,-0.000317014983238,-0.000316599465526,-0.00031617868269,-0.000315747977636,-0.000315288967775,-0.000314801721666,-0.000314273428986,-0.000313678081963,-0.000313016145234,-0.000312304911893,-0.000311533082683,-0.000310711771664,-0.000309856768384,-0.000308984715224,-0.000308103724307,-0.000307233010627,-0.000306374183616,-0.000305543383901,-0.000304741895341,-0.000303971610054,-0.000303194392197,-0.000302426431667,-0.000301653752954,-0.000300867501307,-0.00030006678533,-0.000299255134994,-0.000298426462991,-0.000297575271066,-0.000296708183644,-0.000295815243836,-0.000294928133677,-0.000294049817358,-0.000293165372101,-0.000292286143612,-0.000291422657396,-0.00029054599931,-0.000289665403477,-0.000288787796468,-0.000287918203141,-0.000287051025823,-0.000286186586506,-0.000285304251479,-0.00028440345754,-0.000283483906967,-0.000282527854949,-0.000281546292138,-0.000280549683978,-0.000279527665346,-0.000278472031305,-0.000277375202908,-0.000276234689925,-0.000275057989012,-0.00027385309052,-0.000272634992124,-0.000271418780678,-0.000270191053595,-0.000268946351493,-0.000267684851041,-0.000266404969931,-0.000265117067425,-0.000263816705149,-0.000262499756856,-0.000261157058825,-0.000259773626813,-0.000258333286067,-0.000256830827279,-0.000255272621521,-0.000253648427596,-0.00025195900614,-0.000250201550043,-0.000248376349942,-0.000246478827225,-0.000244525708078,-0.000242509271748,-0.000240436998389,-0.000238320250822,-0.000236165734282,-0.000233970868521,-0.000231728833088,-0.000229434913655,-0.000227094231806,-0.000224717305498,-0.00022231233117,-0.000219888210928,-0.000217448406154,-0.000214993918241,-0.000212507751047,-0.000210003387901,-0.000207502182149,-0.000205022115811,-0.00020256540975,-0.000200120121905,-0.000197688676331,-0.000195263717865,-0.000192844726565,-0.000190447964765,-0.000188086214614,-0.000185771348184,-0.000183503167249,-0.000181263832008,-0.000179053470299,-0.000176899870141,-0.000174808320923,-0.00017278151644,-0.000170832144793,-0.000168948790324,-0.000167122883852,-0.000165348611632,-0.000163624617934,-0.000161950954317,-0.000160343964211,-0.000158792481,-0.000157292040946,-0.000155848872816,-0.000154446898051,-0.000153096404333,-0.000151801804645,-0.000150563687586,-0.000149362178794,-0.000148215664792,-0.000147098380258,-0.00014599939828,-0.000144904296331,-0.000143795545165,-0.000142663255517,-0.000141510646949,-0.000140320312658,-0.000139088056785,-0.000137833457585,-0.000136538328934,-0.000135190941156,-0.000133806622376,-0.000132391169819,-0.000130956449696,-0.000129519226558,-0.00012807783156,-0.000126635737686,-0.000125187859592,-0.00012373338738,-0.000122269650718,-0.000120826652383,-0.000119400389189,-0.000117985397971,-0.000116584566686,-0.00011520040447,-0.000113811485342,-0.000112419242126,-0.000111016022067,-0.000109613247515,-0.000108206966663,-0.000106788479866,-0.000105349343662,-0.000103901372675,-0.000102441631213,-0.000100959970332,-9.94693716778e-05,-9.79776975023e-05,-9.65135639481e-05,-9.50558556982e-05,-9.3609024579e-05,-9.21623476419e-05,-9.07154844964e-05,-8.92721292933e-05,-8.78171658835e-05,-8.63510506809e-05,-8.48799517986e-05,-8.33829246819e-05,-8.18589357728e-05,-8.0301321692e-05,-7.87232668844e-05,-7.71222700978e-05,-7.55154149912e-05,-7.38921154279e-05,-7.22691009747e-05,-7.06414242481e-05,-6.90172190452e-05,-6.74162266103e-05,-6.58281304295e-05,-6.4247730196e-05,-6.26590175493e-05,-6.10714774826e-05,-5.94676529095e-05,-5.78414905184e-05,-5.61875292233e-05,-5.44990475308e-05,-5.2780752901e-05,-5.10168156648e-05,-4.91965013959e-05,-4.73535250023e-05,-4.5499685369e-05,-4.36387964435e-05,-4.17658106734e-05,-3.98954094874e-05,-3.80396078772e-05,-3.62253252729e-05,-3.44417580236e-05,-3.26969487514e-05,-3.10038727309e-05,-2.9357760087e-05,-2.77488141876e-05,-2.61901171609e-05,-2.46916752267e-05,-2.32657005752e-05,-2.19136023364e-05,-2.06204585401e-05,-1.9384208401e-05,-1.82086305033e-05,-1.7092192315e-05,-1.60233002363e-05,-1.49957365673e-05,-1.39975776374e-05,-1.30202469148e-05,-1.20457082407e-05,-1.10689461919e-05,-1.00864272594e-05,-9.08915832352e-06,-8.0757383222e-06,-7.04710400968e-06,-5.99973407346e-06,-4.94569652451e-06,-3.88817967953e-06,-2.83472462818e-06,-1.77750397346e-06,-7.21028103789e-07,3.42992049901e-07,1.40128164814e-06,2.44758585899e-06,3.49749504207e-06,4.53390398504e-06,5.55384784953e-06,6.55459762473e-06,7.54163854644e-06,8.5071282224e-06,9.46030337383e-06,1.03927273627e-05,1.13034230573e-05,1.21966311069e-05,1.30652487302e-05,1.39264508826e-05,1.47888239801e-05,1.5657955907e-05,1.65390863113e-05,1.74475143214e-05,1.83850573161e-05,1.9347352259e-05,2.03471453711e-05,2.13907432596e-05,2.24877586469e-05,2.36303584736e-05,2.48236165652e-05,2.60941707636e-05,2.74438965007e-05,2.88665120097e-05,3.03494670335e-05,3.19179698297e-05,3.35702225291e-05,3.53004172377e-05,3.71065097767e-05,3.89970358603e-05,4.09782681302e-05,4.30225815063e-05,4.5101890061e-05,4.7202179772e-05,4.93263779167e-05,5.14548285106e-05,5.35759232857e-05,5.56843442946e-05,5.77611665572e-05,5.97918871695e-05,6.17529069135e-05,6.36316636021e-05,6.54294284388e-05,6.71494869104e-05,6.880035317e-05,7.03622316961e-05,7.18323060682e-05,7.32000409868e-05,7.44685498789e-05,7.56397131501e-05,7.67002772327e-05,7.76606237027e-05,7.85273057465e-05,7.93011394578e-05,7.9978810499e-05,8.05745892949e-05,8.10958802388e-05,8.15507948887e-05,8.19366004228e-05,8.22610583537e-05,8.25546673941e-05,8.28297147508e-05,8.30987527321e-05,8.33807782993e-05,8.3685162899e-05,8.40259984167e-05,8.44157239905e-05,8.48787623835e-05,8.54503908962e-05,8.61508636253e-05,8.69907475629e-05,8.79757560763e-05,8.91287298061e-05,9.04644728201e-05,9.19791087142e-05,9.3681883815e-05,9.55850499156e-05,9.77890359463e-05,0.00010038508749,0.000103448502711,0.000107044967047,0.000111690673419,0.000115755079026,0.000119713132431,0.00012362119076,0.000127568297771,0.00013163916721,0.000135928475171,0.000140353096752,0.00014484536064,0.000149318090955,0.000153733906341,0.000157610237445,0.000162568476969,0.000168152142197,0.000174311139364,0.000180988528141,0.000188111642489,0.000195589221316,0.000203424288668,0.000211630299921,0.000220231583629,0.000229218190512,0.000238581268038,0.000248351891047,0.000258538652664,0.000269151939409,0.000280194089294,0.000291671368062,0.000303591921262,0.000315939080811,0.00032869103606,0.000341841895335,0.000355403232892,0.000369351567554,0.000383660075893,0.000398295054058,0.00041322999139,0.000428416301629,0.000443813105167,0.000459384108867,0.000475079398188,0.000490833848843,0.000506555939554,0.00052213354504,0.000537462146937,0.000552444833161,0.00056696027551,0.000580883151749,0.000594088753359,0.000606434350336,0.00061778069262,0.00062799431442,0.0006369532408,0.000644578320127,0.000650801417834,0.000655573139583,0.000658854082652,0.000660643695102,0.000660959270139,0.000659856323331,0.000657412213981,0.000653724880021,0.000648918359962,0.000643134635634,0.000636505221761,0.000629157677251,0.0006212460726,0.0006129299145,0.000604339248342,0.000595586096698,0.000586781298803,0.000578044679982,0.000569463444658,0.000561101024432,0.000553023584291,0.000545273631381,0.000537888491864,0.000530868920577,0.000524213651099,0.000517933405919,0.00051204515112,0.000506517885579,0.0005013299626,0.00049646815503,0.000491912269035,0.000487647938368,0.000483655974718,0.000479921197524,0.000476441075131,0.000473193200173,0.000470157487034,0.00046732178454,0.000464693115194,0.000462253192184,0.000459993513806,0.000457905254355,0.000455962179786,0.000454151749551,0.000452468901991,0.000450913541188,0.000449470656418,0.000448139308545,0.000446897554989,0.000445735133059,0.000444634637911,0.000443576304261,0.000442558771957,0.000441587488112,0.000440655876445,0.000439760125729,0.000438895638326,0.000438051236807,0.000437229598704,0.000436430315022,0.000435645235515,0.000434886465442,0.000434156857679,0.000433445312166,0.000432727382292,0.000431993510326,0.000431225455108,0.000430396882514,0.000429506306731,0.00042852894578,0.000427469894778,0.000426328233291,0.000425086706639,0.000423732755303,0.000422275138936,0.000420713420489,0.000419048666742,0.000417305308055,0.000415491105312,0.000413608269597,0.000411651188062,0.000409601946555,0.000407453098461,0.000405209985196,0.000402874550828,0.000400445323953,0.000397931084912,0.000395332613358,0.000392622151524,0.000389802304853,0.000386885957562,0.000383885819402,0.000380835015302,0.000377753233855,0.000374647477683,0.00037153759219,0.000368437637056,0.000365357079832,0.000362325561907,0.000359376841869,0.000356530897918,0.000353806268963,0.000351212011021,0.000348745942195,0.000346421883506,0.000344250153993,0.00034223524175,0.000340384042755,0.000338702986319,0.000337175036986,0.000335800902263,0.000334562883285,0.000333443871034,0.00033243839833,0.000331547610229,0.000330745035137,0.000330024588959,0.000329352885043,0.000328716020352,0.000328100614814,0.000327496452503,0.000326902554397,0.000326327538388,0.000325779020838,0.000325256546353,0.000324750178982,0.000324261179867,0.000323813407335,0.000323421312449,0.000323090584963,0.000322826864682,0.000322625889445,0.00032247716265,0.000322365131299,0.00032226969532,0.000322199506682,0.000322132110032,0.000322068446643,0.000321972297855,0.000321842173765,0.000321649578675,0.000321388120858,0.00032106229949,0.000320669314766,0.000320211666493,0.000319688928724,0.000319104734253,0.000318466211803,0.000317771242827,0.000317035881864,0.000316278805289,0.000315524128614,0.00031476384917,0.000314005347317,0.000313246649013,0.000312490245239,0.000311758151007,0.000311048925863,0.000310379609001,0.000309763017218,0.000309196993199,0.000308665368662,0.000308170936381,0.000307727069076,0.000307335749077,0.000306999879868,0.000306720375224,0.00030647576462,0.000306258339546,0.000306049889764,0.00030583074258,0.000305586902532,0.000305318588657,0.000304997164563,0.000304619103586,0.000304176254538,0.000303640010627,0.000303009765508,0.000302299066936,0.000301507827053,0.00030064470774,0.0002997259549,0.000298750833368,0.000297723109855,0.000296671483201,0.000295607596674,0.000294557169261,0.000293540746905,0.000292555333895,0.000291606523698,0.000290691632668,0.00028981841291,0.000288997905874,0.000288247769682,0.000287556864537,0.000286910495399,0.000286282447475,0.000285667793266,0.00028508059863,0.000284515966852,0.000283965164057,0.000283440985056,0.000282928384045,0.00028242043879,0.000281928582449,0.000281476977849,0.000281091066443,0.000280782658387,0.000280536564398,0.000280349893312,0.00028024639001,0.000280215223853,0.000280270392568,0.000280415060867,0.0002806449431,0.00028093758777,0.00028128276743,0.000281659794177,0.000282065946638,0.000282507263247,0.000282960495918,0.000283410734767,0.000283854578118,0.000284274082623,0.000284653705339,0.000284986494637,0.000285274231061,0.000285520824852,0.000285730464461,0.000285890794273,0.000286018103767,0.000286133721622,0.000286233401159,0.000286323020694,0.000286395961496,0.000286473557071,0.000286549431241,0.000286614635205,0.0002866628314,0.000286695566422,0.000286700741769,0.000286641445064,0.000286503979238,0.000286286291116,0.000285977700715,0.00028556139892,0.000285020138964,0.000284338160998,0.000283500928385,0.000282475150138,0.000281241925248,0.000279809990469,0.00027817717787,0.000276323400468,0.000274233751414,0.00027190236157,0.000269304941839,0.000266448072048,0.000263330545194,0.000259960143382,0.000256346351963,0.000252483846808,0.000248363178002,0.000243976049299,0.000239340798159,0.000234436597373,0.000229280877638,0.000223893503998,0.000218267539155,0.000212415473079,0.000206337437647,0.000200045012775,0.000193550712575,0.000186889765276,0.000180073479577,0.000173133881392,0.000166112998551,0.000159033410415,0.000151933026939,0.00014483450197,0.000137764248228,0.000130751961687,0.000123828153623,0.000117013258441,0.000110328564021,0.000103806182683,9.74484881662e-05,9.12597190429e-05,8.52316659576e-05,7.93682388419e-05,7.36862299211e-05,6.81850030672e-05,6.28571820559e-05,5.76969280116e-05,5.27046418794e-05,4.78633121595e-05,4.3168980031e-05,3.86157331238e-05,3.42096545091e-05,2.99512010618e-05,2.58289244843e-05,2.18291154192e-05,1.79616215179e-05,1.42233856089e-05,1.06110277317e-05,7.117370856e-06,3.74934175409e-06,5.00988213956e-07,-2.6385476814e-06,-5.66562341918e-06,-8.56975556119e-06,-1.13461687979e-05,-1.39981696412e-05,-1.65231698499e-05,-1.89189257946e-05,-2.1179995274e-05,-2.3312047531e-05,-2.53275986386e-05,-2.72200825809e-05,-2.89836226593e-05,-3.06412929847e-05,-3.22031090542e-05,-3.36859274253e-05,-3.51007782505e-05,-3.64703132501e-05,-3.78058881934e-05,-3.91238072452e-05,-4.04251559144e-05,-4.17193312551e-05,-4.30419109216e-05,-4.43984840056e-05,-4.57809400987e-05,-4.72163769609e-05,-4.87141056957e-05,-5.02704575495e-05,-5.18992106274e-05,-5.36057118429e-05,-5.53952716544e-05,-5.72851059043e-05,-5.92585377e-05,-6.13159459983e-05,-6.34743772982e-05,-6.57095187927e-05,-6.79993917858e-05,-7.03385094932e-05,-7.27055739719e-05,-7.50786353045e-05,-7.74520220088e-05,-7.98094527711e-05,-8.21403912347e-05,-8.44424406877e-05,-8.66941219041e-05,-8.88741049914e-05,-9.09986033439e-05,-9.30725455653e-05,-9.50912424119e-05,-9.70785690011e-05,-9.90226676971e-05,-0.000100895784783,-0.000102699925346,-0.00010442445296,-0.000106070406709,-0.000107651723682,-0.000109174355529,-0.000110613678834,-0.000111971606833,-0.000113228263863,-0.000114389064711,-0.000115488905898,-0.000116544725238,-0.000117548156654,-0.000118509732522,-0.000119439091463,-0.000120312505843,-0.000121155597028,-0.000121989093638,-0.000122822352644,-0.000123668397752,-0.00012450846018,-0.00012532076049,-0.000126122666217,-0.000126925357037,-0.000127712831982,-0.00012849361635,-0.000129277418342,-0.000130048322094,-0.000130809161107,-0.000131548708595,-0.00013227697774,-0.000133010430675,-0.000133750081729,-0.000134488466986,-0.00013523583744,-0.000136008390709,-0.000136800459212,-0.000137621363863,-0.000138477718274,-0.000139381792061,-0.000140324185927,-0.000141306336285,-0.000142334057015,-0.000143402722662,-0.00014451246099,-0.00014566694395,-0.000146858437674,-0.000148096534493,-0.000149360807181,-0.000150637530345,-0.000151926574186,-0.000153232272987,-0.000154550621585,-0.000155862835882,-0.000157185574661,-0.000158495573867,-0.000159795909393,-0.000161072845669,-0.000162319029168,-0.000163549646814,-0.000164784321387,-0.000166017495305,-0.00016724117354,-0.000168462767529,-0.00016968922486,-0.000170908064995,-0.000172125997459,-0.000173335819215,-0.000174558885378,-0.000175782493858,-0.000177004587623,-0.000178203092585,-0.000179387818872,-0.000180562095621,-0.000181703639065,-0.000182815784368,-0.00018389800846,-0.000184948424559,-0.000185953065076,-0.000186905264408,-0.000187784041345,-0.000188598055246,-0.000189342477661,-0.000190021182389,-0.000190663683126,-0.000191293364289,-0.000191903852575,-0.0001925003762,-0.000193098098826,-0.00019371523229,-0.000194370207072,-0.000195095187027,-0.000195886527333,-0.000196745822442,-0.000197648998233,-0.000198568452393,-0.000199509778968,-0.000200485330008,-0.000201499784316,-0.00020254235986,-0.000203605363241,-0.000204663209035,-0.000205711852271,-0.000206758475733,-0.000207801655906,-0.000208859275412,-0.000209934229464,-0.00021100958938,-0.000212081996858,-0.000213152255601,-0.000214215319455,-0.000215273283012,-0.000216326555191,-0.000217378236316,-0.000218425159505,-0.000219468847962,-0.000220489616881,-0.000221498007368,-0.000222475827773,-0.000223411070394,-0.000224298508212,-0.000225147208125,-0.000225947938145,-0.000226687643007,-0.000227351776863,-0.000227934852895,-0.000228460809296,-0.000228915622281,-0.000229303342985,-0.000229635182204,-0.000229920819162,-0.000230149797582,-0.000230328385741,-0.000230474412052,-0.000230605602,-0.000230729517302,-0.000230833122252,-0.00023092345567,-0.000231027975208,-0.000231145512517,-0.000231273494042,-0.000231423519797,-0.000231623105597,-0.000231863881743,-0.000232137219586,-0.000232451368159,-0.000232819575398,-0.000233239581293,-0.00023368841615,-0.000234183399772,-0.000234746093777,-0.000235389498983,-0.000236094244173,-0.000236846369114,-0.000237666835806,-0.000238561468394,-0.00023953245704,-0.000240586295503,-0.00024174125469,-0.000242993645873,-0.000244323438776,-0.000245698274978,-0.000247109362578,-0.00024857562115,-0.000250088490414,-0.000251623011519,-0.000253163685731,-0.000254699156017,-0.000256216214685,-0.00025769631237,-0.000259128168686,-0.000260509150884,-0.00026184099214,-0.000263121169688,-0.000264322882518,-0.000265462815195,-0.000266531082768,-0.000267527105812,-0.000268440894041,-0.000269274915311,-0.000270027433197,-0.000270720289995,-0.000271358785796,-0.000271931463922,-0.000272455207522,-0.000272923248818,-0.000273337833087,-0.000273715735878,-0.000274065646586,-0.0002743733563,-0.000274610763638,-0.000274792490898,-0.00027490901222,-0.000274970499575) xcorr <- c(-600.0,-598.999165972,-597.998331943,-596.997497915,-595.996663887,-594.995829858,-593.99499583,-592.994161802,-591.993327773,-590.992493745,-589.991659716,-588.990825688,-587.98999166,-586.989157631,-585.988323603,-584.987489575,-583.986655546,-582.985821518,-581.98498749,-580.984153461,-579.983319433,-578.982485405,-577.981651376,-576.980817348,-575.979983319,-574.979149291,-573.978315263,-572.977481234,-571.976647206,-570.975813178,-569.974979149,-568.974145121,-567.973311093,-566.972477064,-565.971643036,-564.970809008,-563.969974979,-562.969140951,-561.968306922,-560.967472894,-559.966638866,-558.965804837,-557.964970809,-556.964136781,-555.963302752,-554.962468724,-553.961634696,-552.960800667,-551.959966639,-550.959132611,-549.958298582,-548.957464554,-547.956630525,-546.955796497,-545.954962469,-544.95412844,-543.953294412,-542.952460384,-541.951626355,-540.950792327,-539.949958299,-538.94912427,-537.948290242,-536.947456214,-535.946622185,-534.945788157,-533.944954128,-532.9441201,-531.943286072,-530.942452043,-529.941618015,-528.940783987,-527.939949958,-526.93911593,-525.938281902,-524.937447873,-523.936613845,-522.935779817,-521.934945788,-520.93411176,-519.933277731,-518.932443703,-517.931609675,-516.930775646,-515.929941618,-514.92910759,-513.928273561,-512.927439533,-511.926605505,-510.925771476,-509.924937448,-508.92410342,-507.923269391,-506.922435363,-505.921601334,-504.920767306,-503.919933278,-502.919099249,-501.918265221,-500.917431193,-499.916597164,-498.915763136,-497.914929108,-496.914095079,-495.913261051,-494.912427023,-493.911592994,-492.910758966,-491.909924937,-490.909090909,-489.908256881,-488.907422852,-487.906588824,-486.905754796,-485.904920767,-484.904086739,-483.903252711,-482.902418682,-481.901584654,-480.900750626,-479.899916597,-478.899082569,-477.89824854,-476.897414512,-475.896580484,-474.895746455,-473.894912427,-472.894078399,-471.89324437,-470.892410342,-469.891576314,-468.890742285,-467.889908257,-466.889074229,-465.8882402,-464.887406172,-463.886572143,-462.885738115,-461.884904087,-460.884070058,-459.88323603,-458.882402002,-457.881567973,-456.880733945,-455.879899917,-454.879065888,-453.87823186,-452.877397832,-451.876563803,-450.875729775,-449.874895746,-448.874061718,-447.87322769,-446.872393661,-445.871559633,-444.870725605,-443.869891576,-442.869057548,-441.86822352,-440.867389491,-439.866555463,-438.865721435,-437.864887406,-436.864053378,-435.863219349,-434.862385321,-433.861551293,-432.860717264,-431.859883236,-430.859049208,-429.858215179,-428.857381151,-427.856547123,-426.855713094,-425.854879066,-424.854045038,-423.853211009,-422.852376981,-421.851542952,-420.850708924,-419.849874896,-418.849040867,-417.848206839,-416.847372811,-415.846538782,-414.845704754,-413.844870726,-412.844036697,-411.843202669,-410.842368641,-409.841534612,-408.840700584,-407.839866555,-406.839032527,-405.838198499,-404.83736447,-403.836530442,-402.835696414,-401.834862385,-400.834028357,-399.833194329,-398.8323603,-397.831526272,-396.830692244,-395.829858215,-394.829024187,-393.828190158,-392.82735613,-391.826522102,-390.825688073,-389.824854045,-388.824020017,-387.823185988,-386.82235196,-385.821517932,-384.820683903,-383.819849875,-382.819015847,-381.818181818,-380.81734779,-379.816513761,-378.815679733,-377.814845705,-376.814011676,-375.813177648,-374.81234362,-373.811509591,-372.810675563,-371.809841535,-370.809007506,-369.808173478,-368.80733945,-367.806505421,-366.805671393,-365.804837364,-364.804003336,-363.803169308,-362.802335279,-361.801501251,-360.800667223,-359.799833194,-358.798999166,-357.798165138,-356.797331109,-355.796497081,-354.795663053,-353.794829024,-352.793994996,-351.793160967,-350.792326939,-349.791492911,-348.790658882,-347.789824854,-346.788990826,-345.788156797,-344.787322769,-343.786488741,-342.785654712,-341.784820684,-340.783986656,-339.783152627,-338.782318599,-337.78148457,-336.780650542,-335.779816514,-334.778982485,-333.778148457,-332.777314429,-331.7764804,-330.775646372,-329.774812344,-328.773978315,-327.773144287,-326.772310259,-325.77147623,-324.770642202,-323.769808173,-322.768974145,-321.768140117,-320.767306088,-319.76647206,-318.765638032,-317.764804003,-316.763969975,-315.763135947,-314.762301918,-313.76146789,-312.760633862,-311.759799833,-310.758965805,-309.758131776,-308.757297748,-307.75646372,-306.755629691,-305.754795663,-304.753961635,-303.753127606,-302.752293578,-301.75145955,-300.750625521,-299.749791493,-298.748957465,-297.748123436,-296.747289408,-295.746455379,-294.745621351,-293.744787323,-292.743953294,-291.743119266,-290.742285238,-289.741451209,-288.740617181,-287.739783153,-286.738949124,-285.738115096,-284.737281068,-283.736447039,-282.735613011,-281.734778982,-280.733944954,-279.733110926,-278.732276897,-277.731442869,-276.730608841,-275.729774812,-274.728940784,-273.728106756,-272.727272727,-271.726438699,-270.725604671,-269.724770642,-268.723936614,-267.723102585,-266.722268557,-265.721434529,-264.7206005,-263.719766472,-262.718932444,-261.718098415,-260.717264387,-259.716430359,-258.71559633,-257.714762302,-256.713928274,-255.713094245,-254.712260217,-253.711426188,-252.71059216,-251.709758132,-250.708924103,-249.708090075,-248.707256047,-247.706422018,-246.70558799,-245.704753962,-244.703919933,-243.703085905,-242.702251877,-241.701417848,-240.70058382,-239.699749791,-238.698915763,-237.698081735,-236.697247706,-235.696413678,-234.69557965,-233.694745621,-232.693911593,-231.693077565,-230.692243536,-229.691409508,-228.69057548,-227.689741451,-226.688907423,-225.688073394,-224.687239366,-223.686405338,-222.685571309,-221.684737281,-220.683903253,-219.683069224,-218.682235196,-217.681401168,-216.680567139,-215.679733111,-214.678899083,-213.678065054,-212.677231026,-211.676396997,-210.675562969,-209.674728941,-208.673894912,-207.673060884,-206.672226856,-205.671392827,-204.670558799,-203.669724771,-202.668890742,-201.668056714,-200.667222686,-199.666388657,-198.665554629,-197.664720601,-196.663886572,-195.663052544,-194.662218515,-193.661384487,-192.660550459,-191.65971643,-190.658882402,-189.658048374,-188.657214345,-187.656380317,-186.655546289,-185.65471226,-184.653878232,-183.653044204,-182.652210175,-181.651376147,-180.650542118,-179.64970809,-178.648874062,-177.648040033,-176.647206005,-175.646371977,-174.645537948,-173.64470392,-172.643869892,-171.643035863,-170.642201835,-169.641367807,-168.640533778,-167.63969975,-166.638865721,-165.638031693,-164.637197665,-163.636363636,-162.635529608,-161.63469558,-160.633861551,-159.633027523,-158.632193495,-157.631359466,-156.630525438,-155.62969141,-154.628857381,-153.628023353,-152.627189324,-151.626355296,-150.625521268,-149.624687239,-148.623853211,-147.623019183,-146.622185154,-145.621351126,-144.620517098,-143.619683069,-142.618849041,-141.618015013,-140.617180984,-139.616346956,-138.615512927,-137.614678899,-136.613844871,-135.613010842,-134.612176814,-133.611342786,-132.610508757,-131.609674729,-130.608840701,-129.608006672,-128.607172644,-127.606338616,-126.605504587,-125.604670559,-124.60383653,-123.603002502,-122.602168474,-121.601334445,-120.600500417,-119.599666389,-118.59883236,-117.597998332,-116.597164304,-115.596330275,-114.595496247,-113.594662219,-112.59382819,-111.592994162,-110.592160133,-109.591326105,-108.590492077,-107.589658048,-106.58882402,-105.587989992,-104.587155963,-103.586321935,-102.585487907,-101.584653878,-100.58381985,-99.5829858215,-98.5821517932,-97.5813177648,-96.5804837364,-95.5796497081,-94.5788156797,-93.5779816514,-92.577147623,-91.5763135947,-90.5754795663,-89.5746455379,-88.5738115096,-87.5729774812,-86.5721434529,-85.5713094245,-84.5704753962,-83.5696413678,-82.5688073394,-81.5679733111,-80.5671392827,-79.5663052544,-78.565471226,-77.5646371977,-76.5638031693,-75.562969141,-74.5621351126,-73.5613010842,-72.5604670559,-71.5596330275,-70.5587989992,-69.5579649708,-68.5571309425,-67.5562969141,-66.5554628857,-65.5546288574,-64.553794829,-63.5529608007,-62.5521267723,-61.551292744,-60.5504587156,-59.5496246872,-58.5487906589,-57.5479566305,-56.5471226022,-55.5462885738,-54.5454545455,-53.5446205171,-52.5437864887,-51.5429524604,-50.542118432,-49.5412844037,-48.5404503753,-47.539616347,-46.5387823186,-45.5379482902,-44.5371142619,-43.5362802335,-42.5354462052,-41.5346121768,-40.5337781485,-39.5329441201,-38.5321100917,-37.5312760634,-36.530442035,-35.5296080067,-34.5287739783,-33.52793995,-32.5271059216,-31.5262718932,-30.5254378649,-29.5246038365,-28.5237698082,-27.5229357798,-26.5221017515,-25.5212677231,-24.5204336947,-23.5195996664,-22.518765638,-21.5179316097,-20.5170975813,-19.516263553,-18.5154295246,-17.5145954962,-16.5137614679,-15.5129274395,-14.5120934112,-13.5112593828,-12.5104253545,-11.5095913261,-10.5087572977,-9.50792326939,-8.50708924103,-7.50625521268,-6.50542118432,-5.50458715596,-4.50375312761,-3.50291909925,-2.50208507089,-1.50125104254,-0.500417014179,0.500417014178,1.50125104254,2.50208507089,3.50291909925,4.50375312761,5.50458715596,6.50542118432,7.50625521268,8.50708924103,9.50792326939,10.5087572977,11.5095913261,12.5104253545,13.5112593828,14.5120934112,15.5129274395,16.5137614679,17.5145954962,18.5154295246,19.516263553,20.5170975813,21.5179316097,22.518765638,23.5195996664,24.5204336947,25.5212677231,26.5221017515,27.5229357798,28.5237698082,29.5246038365,30.5254378649,31.5262718932,32.5271059216,33.52793995,34.5287739783,35.5296080067,36.530442035,37.5312760634,38.5321100917,39.5329441201,40.5337781485,41.5346121768,42.5354462052,43.5362802335,44.5371142619,45.5379482902,46.5387823186,47.539616347,48.5404503753,49.5412844037,50.542118432,51.5429524604,52.5437864887,53.5446205171,54.5454545455,55.5462885738,56.5471226022,57.5479566305,58.5487906589,59.5496246872,60.5504587156,61.551292744,62.5521267723,63.5529608007,64.553794829,65.5546288574,66.5554628857,67.5562969141,68.5571309425,69.5579649708,70.5587989992,71.5596330275,72.5604670559,73.5613010842,74.5621351126,75.562969141,76.5638031693,77.5646371977,78.565471226,79.5663052544,80.5671392827,81.5679733111,82.5688073394,83.5696413678,84.5704753962,85.5713094245,86.5721434529,87.5729774812,88.5738115096,89.5746455379,90.5754795663,91.5763135947,92.577147623,93.5779816514,94.5788156797,95.5796497081,96.5804837364,97.5813177648,98.5821517932,99.5829858215,100.58381985,101.584653878,102.585487907,103.586321935,104.587155963,105.587989992,106.58882402,107.589658048,108.590492077,109.591326105,110.592160133,111.592994162,112.59382819,113.594662219,114.595496247,115.596330275,116.597164304,117.597998332,118.59883236,119.599666389,120.600500417,121.601334445,122.602168474,123.603002502,124.60383653,125.604670559,126.605504587,127.606338616,128.607172644,129.608006672,130.608840701,131.609674729,132.610508757,133.611342786,134.612176814,135.613010842,136.613844871,137.614678899,138.615512927,139.616346956,140.617180984,141.618015013,142.618849041,143.619683069,144.620517098,145.621351126,146.622185154,147.623019183,148.623853211,149.624687239,150.625521268,151.626355296,152.627189324,153.628023353,154.628857381,155.62969141,156.630525438,157.631359466,158.632193495,159.633027523,160.633861551,161.63469558,162.635529608,163.636363636,164.637197665,165.638031693,166.638865721,167.63969975,168.640533778,169.641367807,170.642201835,171.643035863,172.643869892,173.64470392,174.645537948,175.646371977,176.647206005,177.648040033,178.648874062,179.64970809,180.650542118,181.651376147,182.652210175,183.653044204,184.653878232,185.65471226,186.655546289,187.656380317,188.657214345,189.658048374,190.658882402,191.65971643,192.660550459,193.661384487,194.662218515,195.663052544,196.663886572,197.664720601,198.665554629,199.666388657,200.667222686,201.668056714,202.668890742,203.669724771,204.670558799,205.671392827,206.672226856,207.673060884,208.673894912,209.674728941,210.675562969,211.676396997,212.677231026,213.678065054,214.678899083,215.679733111,216.680567139,217.681401168,218.682235196,219.683069224,220.683903253,221.684737281,222.685571309,223.686405338,224.687239366,225.688073394,226.688907423,227.689741451,228.69057548,229.691409508,230.692243536,231.693077565,232.693911593,233.694745621,234.69557965,235.696413678,236.697247706,237.698081735,238.698915763,239.699749791,240.70058382,241.701417848,242.702251877,243.703085905,244.703919933,245.704753962,246.70558799,247.706422018,248.707256047,249.708090075,250.708924103,251.709758132,252.71059216,253.711426188,254.712260217,255.713094245,256.713928274,257.714762302,258.71559633,259.716430359,260.717264387,261.718098415,262.718932444,263.719766472,264.7206005,265.721434529,266.722268557,267.723102585,268.723936614,269.724770642,270.725604671,271.726438699,272.727272727,273.728106756,274.728940784,275.729774812,276.730608841,277.731442869,278.732276897,279.733110926,280.733944954,281.734778982,282.735613011,283.736447039,284.737281068,285.738115096,286.738949124,287.739783153,288.740617181,289.741451209,290.742285238,291.743119266,292.743953294,293.744787323,294.745621351,295.746455379,296.747289408,297.748123436,298.748957465,299.749791493,300.750625521,301.75145955,302.752293578,303.753127606,304.753961635,305.754795663,306.755629691,307.75646372,308.757297748,309.758131776,310.758965805,311.759799833,312.760633862,313.76146789,314.762301918,315.763135947,316.763969975,317.764804003,318.765638032,319.76647206,320.767306088,321.768140117,322.768974145,323.769808173,324.770642202,325.77147623,326.772310259,327.773144287,328.773978315,329.774812344,330.775646372,331.7764804,332.777314429,333.778148457,334.778982485,335.779816514,336.780650542,337.78148457,338.782318599,339.783152627,340.783986656,341.784820684,342.785654712,343.786488741,344.787322769,345.788156797,346.788990826,347.789824854,348.790658882,349.791492911,350.792326939,351.793160967,352.793994996,353.794829024,354.795663053,355.796497081,356.797331109,357.798165138,358.798999166,359.799833194,360.800667223,361.801501251,362.802335279,363.803169308,364.804003336,365.804837364,366.805671393,367.806505421,368.80733945,369.808173478,370.809007506,371.809841535,372.810675563,373.811509591,374.81234362,375.813177648,376.814011676,377.814845705,378.815679733,379.816513761,380.81734779,381.818181818,382.819015847,383.819849875,384.820683903,385.821517932,386.82235196,387.823185988,388.824020017,389.824854045,390.825688073,391.826522102,392.82735613,393.828190158,394.829024187,395.829858215,396.830692244,397.831526272,398.8323603,399.833194329,400.834028357,401.834862385,402.835696414,403.836530442,404.83736447,405.838198499,406.839032527,407.839866555,408.840700584,409.841534612,410.842368641,411.843202669,412.844036697,413.844870726,414.845704754,415.846538782,416.847372811,417.848206839,418.849040867,419.849874896,420.850708924,421.851542952,422.852376981,423.853211009,424.854045038,425.854879066,426.855713094,427.856547123,428.857381151,429.858215179,430.859049208,431.859883236,432.860717264,433.861551293,434.862385321,435.863219349,436.864053378,437.864887406,438.865721435,439.866555463,440.867389491,441.86822352,442.869057548,443.869891576,444.870725605,445.871559633,446.872393661,447.87322769,448.874061718,449.874895746,450.875729775,451.876563803,452.877397832,453.87823186,454.879065888,455.879899917,456.880733945,457.881567973,458.882402002,459.88323603,460.884070058,461.884904087,462.885738115,463.886572143,464.887406172,465.8882402,466.889074229,467.889908257,468.890742285,469.891576314,470.892410342,471.89324437,472.894078399,473.894912427,474.895746455,475.896580484,476.897414512,477.89824854,478.899082569,479.899916597,480.900750626,481.901584654,482.902418682,483.903252711,484.904086739,485.904920767,486.905754796,487.906588824,488.907422852,489.908256881,490.909090909,491.909924937,492.910758966,493.911592994,494.912427023,495.913261051,496.914095079,497.914929108,498.915763136,499.916597164,500.917431193,501.918265221,502.919099249,503.919933278,504.920767306,505.921601334,506.922435363,507.923269391,508.92410342,509.924937448,510.925771476,511.926605505,512.927439533,513.928273561,514.92910759,515.929941618,516.930775646,517.931609675,518.932443703,519.933277731,520.93411176,521.934945788,522.935779817,523.936613845,524.937447873,525.938281902,526.93911593,527.939949958,528.940783987,529.941618015,530.942452043,531.943286072,532.9441201,533.944954128,534.945788157,535.946622185,536.947456214,537.948290242,538.94912427,539.949958299,540.950792327,541.951626355,542.952460384,543.953294412,544.95412844,545.954962469,546.955796497,547.956630525,548.957464554,549.958298582,550.959132611,551.959966639,552.960800667,553.961634696,554.962468724,555.963302752,556.964136781,557.964970809,558.965804837,559.966638866,560.967472894,561.968306922,562.969140951,563.969974979,564.970809008,565.971643036,566.972477064,567.973311093,568.974145121,569.974979149,570.975813178,571.976647206,572.977481234,573.978315263,574.979149291,575.979983319,576.980817348,577.981651376,578.982485405,579.983319433,580.984153461,581.98498749,582.985821518,583.986655546,584.987489575,585.988323603,586.989157631,587.98999166,588.990825688,589.991659716,590.992493745,591.993327773,592.994161802,593.99499583,594.995829858,595.996663887,596.997497915,597.998331943,598.999165972,600.0) altd <- c(52, 288) x <- seq.int((length(p)-1)/2*-1,(length(p)-1)/2) pdf('/magnuson-lab/jraab/analysis/swi_snf_final/output/macs_peaks//arid2_model.pdf',height=6,width=6) plot(x,p,type='l',col=c('red'),main='Peak Model',xlab='Distance to the middle',ylab='Percentage') lines(x,m,col=c('blue')) legend('topleft',c('forward tags','reverse tags'),lty=c(1,1,1),col=c('red','blue')) plot(xcorr,ycorr,type='l',col=c('black'),main='Cross-Correlation',xlab='Lag between + and - tags',ylab='Correlation') abline(v=altd,lty=2,col=c('red')) legend('topleft','alternative lag(s)',lty=2,col='red') legend('right','alt lag(s) : 52,288',bty='n') dev.off()
/output/macs_peaks/arid2_model.r
permissive
ytakemon/raab_swisnf_2015
R
false
false
78,410
r
# R script for Peak Model # -- generated by MACS p <- c(0.0414937466192,0.0489353039017,0.0560707211693,0.0635358276837,0.0698234726027,0.070247358777,0.0698705710665,0.0689521510222,0.0688815033264,0.0689286017903,0.0690934464136,0.0691405448774,0.0689757002541,0.0686460110074,0.0691169956455,0.0698941202984,0.0707418926471,0.0705299495599,0.0704357526323,0.0707418926471,0.0706476957194,0.0706476957194,0.0717074111552,0.0715190173,0.0717780588509,0.0713777219085,0.0705299495599,0.0720371004019,0.0721548465614,0.0722961419529,0.0720841988657,0.0712128772852,0.070011866458,0.0701060633856,0.0701531618494,0.0705299495599,0.0703651049366,0.0691405448774,0.0694466848922,0.069258291037,0.0695408818198,0.0698234726027,0.0702238095451,0.0701767110813,0.0701767110813,0.0699647679941,0.0717074111552,0.0714483696043,0.0711186803576,0.070506400328,0.0706476957194,0.070765441879,0.0697763741389,0.0699647679941,0.0697763741389,0.0697057264432,0.0689521510222,0.0697999233708,0.0706005972556,0.071000934198,0.0703886541685,0.070765441879,0.0725787327358,0.07250808504,0.073026168142,0.073026168142,0.0731203650696,0.0735678004758,0.0729555204463,0.0738032927949,0.0744155728245,0.0746510651435,0.0733323081568,0.0742271789692,0.0741094328097,0.0738503912587,0.0732145619972,0.0722490434891,0.0726258311996,0.071754509619,0.0719900019381,0.0715190173,0.0715661157638,0.0705299495599,0.0706241464875,0.0710715818937,0.071259975749,0.0719193542424,0.0722254942572,0.0719429034743,0.0714954680681,0.0716367634595,0.0716132142276,0.0714012711404,0.0708831880385,0.0701767110813,0.0703415557046,0.0703651049366,0.070011866458,0.0700354156899,0.0691169956455,0.0692818402689,0.0696586279794,0.0698941202984,0.0700825141537,0.069752824907,0.0692111925731,0.0693524879646,0.069258291037,0.069234741805,0.0696821772113,0.0687873063988,0.0686224617755,0.0693524879646,0.0695644310517,0.0703415557046,0.0715425665319,0.0713070742128,0.0706712449513,0.0706712449513,0.0708831880385,0.0718016080828,0.0715425665319,0.0711893280533,0.0713777219085,0.0717309603871,0.0715425665319,0.0714248203723,0.0719664527062,0.0727435773591,0.0732616604611,0.0726729296634,0.0729790696782,0.0729084219825,0.0725551835039,0.0718251573148,0.0710480326618,0.0713306234447,0.0709538357342,0.0700354156899,0.0693289387327,0.068999249486,0.0694466848922,0.0694702341241,0.0704357526323,0.0706476957194,0.0709067372704,0.0705534987918,0.0715661157638,0.0727200281272,0.0728142250548,0.0736619974035,0.0728848727505,0.0731203650696,0.071754509619,0.0715896649957,0.0711186803576,0.0714012711404,0.0711186803576,0.0703886541685,0.0706712449513,0.0705299495599,0.0714248203723,0.0716367634595,0.0718487065467,0.0720606496338,0.0742507282011,0.0742271789692,0.0738739404906,0.0743449251287,0.0746275159116,0.0738503912587,0.0734736035482,0.0737561943311,0.0738974897225,0.0740623343459,0.0725551835039,0.0726964788953,0.0726964788953,0.0726729296634,0.072767126591,0.0732145619972,0.0734971527801,0.0725787327358,0.0731674635334,0.0733794066206,0.0738503912587,0.0749336559264,0.0747688113031,0.0747452620712,0.0746981636073,0.0753339928688,0.0753104436369,0.0753104436369,0.074792360535,0.0743920235926,0.0743449251287,0.0739445881863,0.0740623343459,0.0740623343459,0.0737090958673,0.0736384481716,0.0737326450992,0.0735913497077,0.0733558573887,0.0734500543163,0.0728142250548,0.0722490434891,0.0721548465614,0.0715425665319,0.0718487065467,0.0713070742128,0.0712364265171,0.0710715818937,0.0712364265171,0.0710715818937,0.0712128772852,0.0711893280533,0.0711422295895,0.0718487065467,0.0719900019381,0.07250808504,0.0723667896486,0.0727435773591,0.0730026189101,0.0734971527801,0.0734736035482,0.0739681374182,0.0748865574626,0.0747688113031,0.0746981636073,0.0745804174478,0.0746746143754,0.0754281897964,0.0757107805793,0.0757578790431,0.0758285267389,0.0749807543902,0.0746039666797,0.0745097697521,0.0742978266649,0.0748865574626,0.075027852854,0.0745804174478,0.0746746143754,0.0744391220564,0.0740858835778,0.0739445881863,0.0744626712883,0.0741800805054,0.0746746143754,0.0749101066945,0.0750985005498,0.074792360535,0.0746275159116,0.0739916866502,0.0739210389544,0.0736619974035,0.0730968158377,0.0728613235186,0.0722490434891,0.0721312973295,0.0710480326618,0.0715425665319,0.0713777219085,0.0722490434891,0.0721077480976,0.0727200281272,0.0722961419529,0.0724374373443,0.0724374373443,0.0718958050105,0.0730497173739,0.0727200281272,0.0725551835039,0.0724138881124,0.0726022819677,0.0730497173739,0.0733558573887,0.0739445881863,0.0741565312735,0.0734029558525,0.0727200281272,0.0729555204463,0.0728848727505,0.0723903388805,0.07250808504,0.0721548465614,0.07250808504,0.072272592721,0.0732381112291,0.0743449251287,0.0752397959412,0.0749572051583,0.0752162467093,0.0758991744346,0.0766527498556,0.0773827760447,0.0773827760447,0.0786544345676,0.0790076730462,0.0801615854096,0.0810564562221,0.0830816901661,0.0844710948485,0.0869908626625,0.088121225794,0.0896048274041,0.0908293874633,0.0919597505948,0.0925955798563,0.0933256060454,0.0935375491325,0.0927839737115,0.0937494922197,0.0932785075816,0.0940320830026,0.0939378860749,0.0948563061193,0.0947385599598,0.0950682492064,0.0944559691769,0.0951153476703,0.0961279646422,0.0959631200189,0.0966695969761,0.0971170323823,0.09770576318,0.0973054262376,0.0972112293099,0.0978941570352,0.0976822139481,0.0980354524267,0.0979648047309,0.0977293124119,0.0969992862228,0.0968579908313,0.0965754000485,0.0962928092656,0.0963634569613,0.0952095445979,0.095445036917,0.0944559691769,0.0944088707131,0.0940556322345,0.0937730414516,0.0929723675668,0.0927368752477,0.0933256060454,0.0933727045092,0.0933256060454,0.093914336843,0.0945737153364,0.0939614353068,0.0944088707131,0.0935846475963,0.0939849845388,0.0939614353068,0.093419802973,0.0929488183349,0.0933727045092,0.0930430152625,0.0929959167987,0.0934433522049,0.0932078598858,0.0935846475963,0.0933020568135,0.0932078598858,0.0932314091177,0.0928075229434,0.0933020568135,0.0923836367691,0.09214814445,0.0923365383053,0.0916300613481,0.0920068490586,0.0918655536672,0.0917949059714,0.0917478075076,0.0926426783201,0.092171693682,0.0928310721753,0.0924542844648,0.0920774967543,0.0928310721753,0.0932078598858,0.0933256060454,0.0931843106539,0.0936081968282,0.093160761422,0.0935375491325,0.0938907876111,0.0940791814664,0.0943382230173,0.0947150107279,0.0941262799302,0.0941027306983,0.095421487685,0.0951388969022,0.0961515138741,0.0963399077294,0.0961515138741,0.0961750631061,0.0957511769317,0.0953272907574,0.0968344415994,0.0979177062671,0.0962928092656,0.0965754000485,0.0963399077294,0.0955863323084,0.0955627830765,0.0962457108018,0.0969050892952,0.0966695969761,0.0950917984384,0.0932785075816,0.0947150107279,0.0950446999745,0.0946208138002,0.0950446999745,0.0950917984384,0.0943146737854,0.0941262799302,0.0943146737854,0.0955627830765,0.0968579908313,0.0960573169465,0.0954685861489,0.0957747261636,0.0959160215551,0.0966224985123,0.0973525247014,0.0967402446718,0.0972583277738,0.0967637939037,0.096693146208,0.0971405816142,0.0976115662523,0.0976351154843,0.097941255499,0.096952187759,0.0966460477442,0.0966460477442,0.0969050892952,0.096198612338,0.095680529236,0.0950446999745,0.0952330938298,0.0948798553512,0.0938907876111,0.0938436891473,0.0938201399154,0.0940791814664,0.0935610983644,0.0937494922197,0.0932785075816,0.0928075229434,0.0932314091177,0.0940085337707,0.0945737153364,0.0953508399893,0.0942440260897,0.0945737153364,0.0949740522788,0.0943382230173,0.0950446999745,0.0959631200189,0.0952095445979,0.0948092076555,0.0938672383792,0.0932078598858,0.0943853214812,0.0947856584236,0.0944088707131,0.0949034045831,0.0950211507426,0.0938201399154,0.0935610983644,0.0927368752477,0.0937259429878,0.0941262799302,0.0940556322345,0.0934904506687,0.0938672383792,0.0948092076555,0.0950682492064,0.0971170323823,0.0981767478181,0.0993306601815,0.100154883298,0.101214598734,0.102227215706,0.102815946504,0.103357578838,0.104417294273,0.105006025071,0.104417294273,0.103922760403,0.104346646578,0.103781465012,0.103381128069,0.103169184982,0.103946309635,0.104982475839,0.104723434288,0.10437019581,0.104558589665,0.105335714318,0.105500558941,0.105641854332,0.106065740507,0.106678020536,0.105335714318,0.104464392737,0.10425244965,0.104558589665,0.105076672767,0.10535926355,0.104841180448,0.10486472968,0.105053123535,0.104888278911,0.106207035898,0.106630922073,0.105924445115,0.106489626681,0.107196103638,0.107667088276,0.108632606785,0.109362632974,0.109857166844,0.110022011467,0.110328151482,0.110704939192,0.111434965381,0.111552711541,0.111317219222,0.110869783816,0.110752037656,0.110775586888,0.111199473062,0.110752037656,0.111270120758,0.112023696179,0.112612426977,0.112235639266,0.113106960847,0.114166676283,0.114684759385,0.115556080965,0.115391236342,0.117086781039,0.118240693402,0.119041367287,0.121043051999,0.123633467509,0.124481239858,0.124952224496,0.125470307598,0.127001007672,0.130109506283,0.132087641763,0.134136424939,0.136114560419,0.138822722089,0.141460236062,0.146429123994,0.151609955014,0.158462781499,0.165080115664,0.170779029786,0.177773151662,0.185002765857,0.190819426138,0.196848029506,0.203630208295,0.207610028488,0.210247542461,0.212979253362,0.212861507203,0.211283708665,0.207821971575,0.202758886715,0.198096138797,0.1914552554,0.184343387364,0.177090223937,0.171344211352,0.163266824808,0.156249153699,0.150809281129,0.144804226993,0.140165028307,0.135667125013,0.131969895604,0.128390412354,0.125729349149,0.122220513595,0.118688128809,0.116757091792,0.113742790108,0.112212090034,0.109715871452,0.108138072915,0.106536725145,0.103710817316,0.101332344894,0.0990951678625,0.0968344415994,0.0952330938298,0.0935375491325,0.0922187921458,0.090900035159,0.0903113043613,0.088874801215,0.088874801215,0.0882860704174,0.0877208888516,0.088121225794,0.0875324949964,0.087367650373,0.0863550334011,0.0861666395458,0.0846359394719,0.0844239963847,0.0837646178913,0.0826813532236,0.0828226486151,0.0831523378618,0.0824223116727,0.0820455239622,0.0817629331793,0.0811506531497,0.0808680623668,0.0803028808011,0.079572854612,0.0804206269606,0.0801615854096,0.0795022069163,0.0791254192058,0.0783247453209,0.0787486314953,0.0798554453949,0.0803970777287,0.0804206269606,0.0810564562221,0.0810564562221,0.0803970777287,0.0804912746563,0.0818806793388,0.0835762240361,0.0836468717318,0.0829639440065,0.0830581409341,0.0837175194275,0.0841885040657,0.083340731717,0.084094307138,0.0849891779505,0.0848007840952,0.0848243333271,0.0849420794867,0.0861430903139,0.0861430903139,0.0856485564439,0.0850598256462,0.0858840487629,0.0862843857053,0.0860724426182,0.0859075979948,0.0855308102843,0.0863079349372,0.0849656287186,0.0854130641248,0.0860488933863,0.0859546964586,0.0848243333271,0.0844946440804,0.0837410686594,0.0839765609785,0.0833878301808,0.082092622426,0.0821161716579,0.0813625962369,0.0806561192797,0.0807267669754,0.0809387100626,0.0803028808011,0.0804441761925,0.0794551084525,0.0798083469311,0.080326430033,0.0805619223521,0.0805148238882,0.0813861454688,0.0809858085264,0.0816922854836,0.0822574670493,0.0821632701217,0.0821632701217,0.0819748762664,0.0822103685855,0.083105239398,0.0844475456166,0.0839294625147,0.0834349286446,0.0827520009194,0.0826342547598,0.0823752132089,0.083105239398,0.0833642809489,0.0828932963108,0.082092622426,0.0815038916283,0.0819277778026,0.0829168455427,0.0839765609785,0.0834584778766,0.0844239963847,0.0835526748042,0.0834820271085,0.0834820271085,0.0832465347894,0.0830110424703,0.0833171824851,0.0834820271085,0.0828932963108,0.0836468717318,0.0835526748042,0.0835291255723,0.0828932963108,0.0832465347894,0.083340731717,0.0827049024555,0.0824223116727,0.0818571301069,0.0825165086003,0.082092622426,0.0822103685855,0.083340731717,0.0843297994571,0.0848714317909,0.0847536856314,0.0859546964586,0.0853188671972,0.0855779087481,0.0854366133567,0.0851775718057,0.0843062502252,0.084353348689,0.0837410686594,0.082587156296,0.0819984254984,0.0811977516135,0.0812919485412,0.0815038916283,0.0801380361777,0.0805383731202,0.0813154977731,0.080820963903,0.0806796685116,0.0809387100626,0.0816451870198,0.0815038916283,0.0816687362517,0.081574539324,0.0820455239622,0.0814096947007,0.0808680623668,0.0809151608307,0.0811035546859,0.0807267669754,0.080820963903,0.0807267669754,0.0810329069902,0.0810329069902,0.0808916115988,0.0819984254984,0.0824458609046,0.0818100316431,0.0815509900921,0.0821632701217,0.0816687362517,0.0825165086003,0.0819748762664,0.0818100316431,0.0821632701217,0.0812213008454,0.080326430033,0.0807032177435,0.0811742023816,0.0807738654392,0.0811977516135,0.0805383731202,0.0803028808011,0.0811506531497,0.0810564562221,0.081339047005,0.081574539324,0.0815038916283,0.0809151608307,0.0808445131349,0.0814803423964,0.0818571301069,0.0819748762664,0.0815038916283,0.0817629331793,0.080820963903,0.0813625962369,0.0811035546859,0.0817393839474,0.0818806793388,0.0804206269606,0.0803970777287,0.0797847976991,0.0779244083785,0.0775711698999,0.0787721807272,0.0779008591466,0.0783718437848,0.07806570377,0.0784424914805,0.0792667145972,0.0787957299591,0.0797376992353,0.0809151608307,0.0811742023816,0.0803028808011,0.0807503162073,0.0807267669754,0.0809622592945,0.080820963903,0.0806325700478,0.0806796685116,0.0799967407863,0.0799025438587,0.0797376992353,0.0803970777287,0.080067388482,0.0792431653653,0.0787957299591,0.078819279191,0.0788428284229,0.079078320742,0.0791018699739,0.0791725176696,0.0787015330314,0.0781834499295,0.0779479576104,0.0779715068423,0.0776653668276,0.0773592268128,0.0766056513918,0.0763230606089,0.0764879052322,0.0765350036961,0.0764879052322,0.076299511377,0.0764408067684,0.0766762990875,0.0771001852618,0.0766527498556,0.0772179314213,0.0771472837256,0.0771472837256,0.0772414806532,0.0774534237404,0.0771943821894,0.076299511377,0.0757107805793,0.075804977507,0.0753575421007,0.0746039666797,0.0739210389544,0.0737326450992,0.0734500543163,0.0730732666058,0.0730497173739,0.0736619974035,0.074274277433,0.0738032927949,0.074274277433,0.0739916866502,0.0746275159116,0.0741800805054,0.0739445881863,0.074274277433,0.0742036297373,0.0740152358821,0.0737326450992,0.0741565312735,0.0735913497077,0.0743920235926,0.0736148989396,0.0735678004758,0.0739210389544,0.0735678004758,0.0738974897225,0.0738974897225,0.0742978266649,0.0734500543163,0.0739210389544,0.0742978266649,0.0749572051583,0.0751926974774,0.0748865574626,0.0746981636073,0.0738974897225,0.0743920235926,0.074533318984,0.0745568682159,0.0742036297373,0.0736384481716,0.0732145619972,0.0728848727505,0.0723903388805,0.072531634272,0.0736855466354,0.072767126591,0.0719429034743,0.0722254942572,0.0731439143015,0.0735442512439,0.0735442512439,0.073779743563,0.0744155728245,0.074274277433,0.0728613235186,0.0738268420268,0.0737090958673,0.0729790696782,0.0723432404167,0.0717074111552,0.0722019450253,0.0719664527062,0.0720371004019,0.0718487065467,0.0727200281272,0.0722019450253,0.0721783957934,0.0725787327358,0.0723196911848,0.0726493804315,0.0730732666058,0.0733794066206,0.0723667896486,0.0726964788953,0.0722961419529,0.0717780588509,0.0719193542424,0.0722254942572,0.0715425665319,0.0709067372704,0.0697763741389,0.0688815033264,0.0692111925731,0.0691169956455,0.0689286017903,0.0697999233708,0.0696821772113,0.0686224617755,0.0691405448774,0.0695644310517,0.0702709080089,0.0708596388066,0.0705770480237,0.0699883172261,0.0699412187622,0.0696350787475,0.0699647679941,0.0707889911109,0.0703651049366,0.0701296126175,0.0695879802836,0.0691169956455,0.0691640941093,0.0689050525584,0.0688344048626,0.0686931094712,0.0680337309778,0.0672566063249,0.0683163217607,0.0682221248331,0.0675627463397,0.0680101817459,0.0682692232969,0.0685518140798,0.0691640941093,0.0697057264432,0.0700354156899,0.0704122034004,0.070506400328,0.0705534987918,0.0704122034004,0.0701060633856,0.0697057264432,0.0700825141537,0.0703180064727,0.0701060633856,0.0693995864284,0.0694702341241,0.0691876433412,0.0696586279794,0.069752824907,0.0700354156899,0.0701767110813,0.0702709080089,0.0697057264432,0.0691876433412,0.0693289387327,0.0693289387327,0.0682927725288,0.0680808294416,0.0688108556307,0.0684576171521,0.068245674065,0.067492098644,0.0677746894268,0.0675156478759,0.0679395340502,0.0680808294416,0.0686460110074,0.0682221248331,0.0681043786735,0.0688108556307,0.069258291037,0.0699176695303,0.0698941202984,0.0696821772113,0.0703651049366,0.0696115295155,0.0699647679941,0.0698234726027,0.0699883172261,0.0694702341241,0.0690227987179,0.0684576171521,0.0689050525584,0.0691876433412,0.0683869694564,0.0691169956455,0.0690227987179,0.0697999233708,0.0697999233708,0.070247358777,0.0702944572408,0.0707889911109,0.0703415557046,0.0708596388066,0.0712128772852,0.0709538357342,0.0707418926471,0.0704122034004,0.0698705710665,0.0695879802836,0.0706476957194,0.0708831880385,0.0711422295895,0.0710480326618,0.0705770480237,0.0707889911109,0.0711657788214,0.0716132142276,0.0721312973295,0.0722961419529,0.0712835249809,0.0714012711404,0.0709773849661,0.0705534987918,0.0708831880385,0.0706947941832,0.0701531618494,0.0692111925731,0.0689757002541,0.0691405448774,0.0696586279794,0.0694466848922,0.070247358777,0.071259975749,0.0722019450253,0.0718722557786,0.0721548465614,0.0729319712144,0.0728142250548,0.0730497173739,0.0728377742867,0.0730968158377,0.0721548465614,0.0717780588509,0.0713306234447,0.0714012711404,0.0715896649957,0.0715661157638,0.0720606496338,0.0713070742128,0.0712364265171,0.071000934198,0.0714012711404,0.0720371004019,0.0716367634595,0.0719193542424,0.0712128772852,0.0708596388066,0.0706005972556,0.0708831880385,0.0709538357342,0.0709067372704,0.0710951311257,0.0705299495599,0.0708125403428,0.0712128772852,0.0720606496338,0.0719664527062,0.0718016080828,0.0717074111552,0.0714012711404,0.0714954680681,0.0714719188362,0.0711657788214,0.0710244834299,0.0704357526323,0.0700589649218,0.0699176695303,0.0693524879646,0.069258291037,0.0695408818198,0.0687873063988,0.0690698971817,0.0689757002541,0.0685989125436,0.0693524879646,0.0696350787475,0.0697292756751,0.0696350787475,0.0697763741389,0.0700589649218,0.0698234726027,0.0686224617755,0.0686224617755,0.0679395340502,0.0668562693825,0.0656788077872,0.0657494554829,0.0662675385848,0.0654904139319,0.0646661908152,0.0657494554829,0.0663617355125,0.0664088339763,0.0669504663101,0.0670682124696,0.067492098644,0.067727590963,0.0678453371226,0.0684340679202,0.0686224617755,0.0686931094712,0.0680337309778,0.0672801555568,0.0676098448035,0.0683634202245,0.0689286017903,0.0693053895008,0.0696821772113,0.0693760371965,0.0696821772113,0.0688344048626,0.0689286017903,0.0691640941093,0.0692111925731,0.0692111925731,0.0693289387327,0.0687166587031,0.0683163217607,0.068245674065,0.0677040417311,0.0679630832821,0.0686460110074,0.0692111925731,0.068481166384,0.067727590963,0.0672566063249,0.067492098644,0.0679395340502,0.0689286017903,0.069493783356,0.0694466848922,0.0693524879646,0.0693289387327,0.0693053895008,0.0698234726027,0.0699883172261,0.0697999233708,0.0690227987179,0.0689050525584,0.069493783356,0.0695173325879,0.0694702341241,0.0691405448774,0.0703180064727,0.0695408818198,0.0687873063988,0.0690698971817,0.068999249486,0.0688108556307,0.0612044537249,0.0544458241678,0.0474752515235,0.040787269662,0.0) m <- c(0.0405831966008,0.0480339269004,0.0547163006379,0.0619109120835,0.0688028376106,0.0684303010957,0.0698738800912,0.0705025354602,0.0695246271084,0.0705723860568,0.070595669589,0.0702697001384,0.0707120872499,0.0701998495418,0.070595669589,0.070851788443,0.0701998495418,0.0700601483487,0.0715735779408,0.0715735779408,0.0715037273443,0.0713873096833,0.0716201450052,0.0715037273443,0.0708052213787,0.0715037273443,0.071596861473,0.0710846237649,0.0702464166062,0.0690356729325,0.0687795540784,0.0689658223359,0.0686864199497,0.069594477705,0.0699902977521,0.0699902977521,0.0698273130268,0.0699437306878,0.0703861177993,0.0711311908293,0.0712708920224,0.0708052213787,0.0707353707821,0.0705723860568,0.0705258189924,0.0702697001384,0.0703628342671,0.0708983555074,0.0699902977521,0.0707353707821,0.0707819378465,0.0707586543143,0.0712708920224,0.0707819378465,0.0701532824774,0.0700368648165,0.0699902977521,0.0696643283015,0.0700135812843,0.0690589564647,0.068849404675,0.0693150753187,0.0690822399969,0.0687562705463,0.0692917917865,0.0692917917865,0.0698971636234,0.0694082094475,0.0687097034819,0.0684535846278,0.0690589564647,0.0689425388038,0.0691520905934,0.0690356729325,0.0690356729325,0.068593285821,0.0673592586151,0.0680577645807,0.0683837340313,0.0690589564647,0.0681508987094,0.0675222433404,0.0674058256795,0.0678016457266,0.0679646304519,0.0681508987094,0.0679180633876,0.0677783621944,0.0676619445335,0.0671729903576,0.067475676276,0.0682440328382,0.0681741822416,0.0690123894003,0.0687795540784,0.0690589564647,0.0697108953659,0.0698040294946,0.0708750719752,0.0713640261511,0.0722720839064,0.0724350686317,0.0711079072971,0.0701765660096,0.0698273130268,0.0700135812843,0.0712708920224,0.0706422366534,0.0704326848637,0.0699437306878,0.0691753741256,0.0691055235291,0.0696876118337,0.0698040294946,0.0705491025246,0.0710846237649,0.069594477705,0.0699437306878,0.0702464166062,0.0705491025246,0.0712476084902,0.0713873096833,0.0712010414258,0.0716899956017,0.0722022333098,0.0708285049108,0.0704792519281,0.0701765660096,0.0699437306878,0.0701067154131,0.0698040294946,0.069850596559,0.0704094013315,0.069850596559,0.0685467187566,0.0690123894003,0.0695479106406,0.0700601483487,0.070223133074,0.0700601483487,0.0697108953659,0.0692917917865,0.0689891058681,0.0692452247222,0.0694314929797,0.0705258189924,0.0707120872499,0.0707353707821,0.0707586543143,0.0710846237649,0.0709914896362,0.0709216390396,0.070595669589,0.0703395507349,0.0704326848637,0.0695479106406,0.0697108953659,0.0688726882072,0.0682905999025,0.06847686816,0.0685467187566,0.0691288070612,0.0696177612372,0.0704559683959,0.0703628342671,0.0704326848637,0.0700135812843,0.071224324958,0.0708983555074,0.0702929836706,0.0696643283015,0.0687562705463,0.0688028376106,0.0679879139841,0.0684303010957,0.068220749306,0.067848212791,0.0671264232932,0.0669401550357,0.0666840361817,0.0675222433404,0.0678249292588,0.0681741822416,0.0686398528853,0.0681508987094,0.0690822399969,0.0695246271084,0.0689891058681,0.0691055235291,0.0686631364175,0.0689425388038,0.0688726882072,0.0684070175635,0.067848212791,0.0676386610013,0.0673126915507,0.0672428409541,0.0683371669669,0.068220749306,0.0680810481129,0.0673126915507,0.0674291092116,0.0681276151772,0.0686864199497,0.0693616423831,0.0687562705463,0.0697574624303,0.0698040294946,0.0704094013315,0.0709914896362,0.0719228309236,0.0719926815202,0.0713640261511,0.0711544743615,0.0712941755546,0.0710380567005,0.0704326848637,0.0705025354602,0.0704326848637,0.0702929836706,0.0700601483487,0.0701067154131,0.0702929836706,0.0707120872499,0.0702929836706,0.070968206104,0.0707120872499,0.0706888037177,0.0702697001384,0.0705025354602,0.070223133074,0.0707353707821,0.070851788443,0.0709914896362,0.0713174590868,0.0706422366534,0.0700368648165,0.0700368648165,0.0712010414258,0.0717598461983,0.0713407426189,0.070851788443,0.0712941755546,0.0704094013315,0.0700601483487,0.0702464166062,0.0713174590868,0.0701765660096,0.0693383588509,0.0691288070612,0.0696876118337,0.0697574624303,0.0697108953659,0.0701299989453,0.0706655201855,0.070851788443,0.0704559683959,0.0713873096833,0.0720159650523,0.0721323827133,0.0711544743615,0.0714804438121,0.0712476084902,0.070851788443,0.0704792519281,0.0706888037177,0.0705491025246,0.0706655201855,0.0705723860568,0.0706422366534,0.0715270108764,0.0710613402327,0.0706422366534,0.070968206104,0.0712476084902,0.0714571602799,0.0716667120696,0.0715270108764,0.0716899956017,0.0714338767477,0.0715270108764,0.0714105932155,0.0718995473914,0.0720858156489,0.0713640261511,0.0704792519281,0.070595669589,0.0701299989453,0.0701299989453,0.0705025354602,0.0710846237649,0.0713174590868,0.070595669589,0.0705025354602,0.0713640261511,0.0720625321167,0.0724117850995,0.0722022333098,0.0715270108764,0.0713640261511,0.0704326848637,0.0701998495418,0.0708983555074,0.0708750719752,0.0710846237649,0.0708750719752,0.0696876118337,0.0703162672027,0.0710147731683,0.0700135812843,0.0702697001384,0.0701067154131,0.0704094013315,0.0708285049108,0.070223133074,0.0705025354602,0.0714105932155,0.0712708920224,0.0702697001384,0.0713407426189,0.0722720839064,0.0728076051467,0.0723186509708,0.0716667120696,0.0723186509708,0.0718762638592,0.0714571602799,0.0711311908293,0.0722022333098,0.0722953674386,0.0719461144558,0.0726911874858,0.0732965593226,0.073226708726,0.0725282027604,0.0729938734042,0.0731568581295,0.0737855134985,0.0734362605157,0.0736923793698,0.0723885015673,0.0713407426189,0.070595669589,0.071596861473,0.0721090991811,0.0714338767477,0.0718995473914,0.072225516842,0.0739950652882,0.0734595440479,0.0753920772194,0.0755550619447,0.0763699855712,0.0759508819918,0.0758810313953,0.0773711774552,0.0770452080046,0.0772780433265,0.0759043149275,0.0768123726827,0.0763932691034,0.0766726714896,0.0768356562149,0.0776505798414,0.0772780433265,0.0771383421333,0.078465503468,0.0780696834208,0.0783956528714,0.0779299822277,0.0772547597943,0.0771150586012,0.0774875951161,0.0770452080046,0.0776738633736,0.0776505798414,0.0769287903437,0.0777669975024,0.0779765492921,0.0780696834208,0.0791407259014,0.0788147564508,0.0781861010817,0.0781162504852,0.078349085807,0.0781628175495,0.0783956528714,0.0774177445196,0.0771616256655,0.0772780433265,0.0768123726827,0.0768822232793,0.0767658056184,0.0773246103908,0.0774410280518,0.0776505798414,0.0779299822277,0.0779066986955,0.0779299822277,0.078349085807,0.0780463998886,0.0783723693392,0.0785819211289,0.0778601316311,0.0779765492921,0.077720430438,0.077091775069,0.0769520738759,0.0767425220862,0.0760440161206,0.0770452080046,0.0783723693392,0.0783258022748,0.0783723693392,0.0784189364036,0.0776505798414,0.0777669975024,0.0792105764979,0.0795365459485,0.0798857989313,0.0788380399829,0.0781395340174,0.0782093846139,0.0785120705323,0.0782093846139,0.0789777411761,0.0791174423692,0.078349085807,0.0781861010817,0.0779765492921,0.0783956528714,0.0782792352105,0.0786517717255,0.0786052046611,0.0792105764979,0.0797693812704,0.0794899788842,0.079466695352,0.0791872929657,0.0796296800773,0.0803281860429,0.0798159483348,0.0792804270945,0.0792338600301,0.079350277691,0.0792105764979,0.0794201282876,0.0795132624164,0.0804213201716,0.0801419177854,0.0802117683819,0.0809801249441,0.0813060943947,0.0818648991672,0.0814923626522,0.081212960266,0.0811198261372,0.0806075884291,0.0800720671888,0.0808869908153,0.080467887236,0.0807938566866,0.0803281860429,0.0796296800773,0.0806541554935,0.0810034084763,0.081212960266,0.0816786309097,0.0823538533431,0.0818183321028,0.0819114662315,0.0815389297166,0.0821675850856,0.0827031063259,0.0820744509568,0.0809801249441,0.0815156461844,0.0813060943947,0.0800255001245,0.0798159483348,0.0799556495279,0.079350277691,0.0788846070473,0.0787681893864,0.0785819211289,0.0799323659957,0.0798857989313,0.0798857989313,0.0809335578797,0.08146907912,0.0808171402188,0.0815854967809,0.0819347497637,0.0813992285234,0.0809335578797,0.0801186342532,0.0803281860429,0.0814923626522,0.0811198261372,0.0805377378325,0.0803049025107,0.0807007225579,0.0805144543004,0.0804446037038,0.08072400609,0.0812362437981,0.0800487836566,0.0790475917726,0.0795132624164,0.0798159483348,0.0807007225579,0.080095350721,0.080467887236,0.0810034084763,0.0806774390257,0.0805144543004,0.081096542605,0.0815389297166,0.081096542605,0.0807007225579,0.0815622132487,0.0817484815062,0.0819580332959,0.0814923626522,0.0816553473775,0.0812828108625,0.0817019144419,0.0817251979741,0.08221415215,0.0823538533431,0.0815854967809,0.0822374356822,0.0814923626522,0.0825634051328,0.0830290757765,0.0837042982099,0.0831454934374,0.0826099721971,0.0825866886649,0.083098926373,0.083215344034,0.0828893745834,0.0838905664674,0.0834947464202,0.0840535511927,0.0837741488065,0.0845425053686,0.0846123559652,0.0834248958237,0.0838905664674,0.0835180299524,0.0836344476133,0.0830290757765,0.0836344476133,0.0829359416477,0.0833783287593,0.0833550452271,0.0833783287593,0.0843096700467,0.0831920605018,0.082842807519,0.0820278838925,0.082470271004,0.0823305698109,0.0823538533431,0.0821443015534,0.0814923626522,0.0817717650384,0.0827496733903,0.0836111640811,0.0833550452271,0.0836810146777,0.0833317616949,0.0827962404546,0.0825866886649,0.0823538533431,0.0827962404546,0.0833783287593,0.0821443015534,0.0820278838925,0.0832386275662,0.0832386275662,0.0841466853214,0.0853108619307,0.0851013101411,0.0858929502354,0.0857998161067,0.0859162337676,0.0877789163425,0.0880350351966,0.0885007058403,0.0897813001105,0.0907359249302,0.0908756261233,0.0925287569085,0.0938559182431,0.0956487502215,0.0956254666893,0.0964403903158,0.0973018810067,0.0981400881654,0.0997932189507,0.10000277074,0.101516200332,0.102633809877,0.103704852358,0.105474400804,0.108152007006,0.109642153065,0.113134682893,0.115556170241,0.118932282408,0.122401528704,0.127034951609,0.13141225566,0.134741800762,0.138257614122,0.14324029001,0.147524459933,0.152483852288,0.15793219882,0.16272860645,0.170062919089,0.176000219797,0.183241398306,0.189853921447,0.195767938623,0.200680763914,0.206129110446,0.20862044839,0.21139118872,0.212019844089,0.209924326192,0.205453888012,0.200471212124,0.195139283254,0.190273025027,0.184359007851,0.177490365856,0.17092440978,0.163659947738,0.158258168271,0.152483852288,0.148292816495,0.143729244186,0.140259997891,0.136557916273,0.133274938235,0.131156136806,0.128408680008,0.126476146836,0.123728690038,0.122797348751,0.121516754481,0.120445712,0.119630788373,0.118163925846,0.117488703412,0.11576572203,0.116464227996,0.115090499597,0.114811097211,0.113856472391,0.113227817022,0.112319759267,0.111644536834,0.111877372155,0.111528119173,0.111085732061,0.109874988387,0.11001468958,0.109246333018,0.108291708199,0.107500068104,0.108710811778,0.108897080036,0.108314991731,0.106894696267,0.107034397461,0.107267232782,0.107872604619,0.108803945907,0.108990214164,0.11022424137,0.108710811778,0.106871412735,0.106661860946,0.108058872877,0.107639769297,0.106848129203,0.1069179798,0.106266040898,0.107895888151,0.108012305812,0.108547827053,0.109944838984,0.11043379316,0.109432601276,0.109362750679,0.110457076692,0.110503643756,0.109805137791,0.108966930632,0.106848129203,0.106289324431,0.105567534933,0.104938879564,0.105311416079,0.105381266675,0.103658285294,0.102889928731,0.102587242813,0.102121572169,0.10265709341,0.102796794603,0.103914404148,0.104100672405,0.103844553551,0.103704852358,0.104170523002,0.104659477178,0.10500873016,0.103891120615,0.103541867633,0.103588434697,0.102400974556,0.102400974556,0.101003962624,0.100165755466,0.0993741153713,0.0980003869723,0.0966965091699,0.0961377043974,0.0964869573802,0.0950200948525,0.0944147230156,0.0928314428269,0.0940189029684,0.0941353206294,0.0944147230156,0.0947406924662,0.0949502442559,0.0959980032043,0.0953460643031,0.095835018479,0.0967896432986,0.097581283393,0.0971854633458,0.0972320304102,0.097581283393,0.0976744175217,0.0987221764701,0.0969991950883,0.0969991950883,0.0963705397193,0.0959281526077,0.0958583020112,0.0950200948525,0.0948105430628,0.0949269607237,0.0947639759984,0.0941818876937,0.0951132289812,0.0956720337537,0.0964171067836,0.0961377043974,0.0961377043974,0.0973950151355,0.0977908351826,0.0973717316033,0.0963938232514,0.0953227807709,0.0951830795778,0.0951597960456,0.0958583020112,0.0965102409124,0.0960445702687,0.0952994972387,0.0946941254018,0.094717408934,0.0944845736122,0.0953926313674,0.0958583020112,0.0955090490284,0.095835018479,0.0958117349468,0.0958815855433,0.0954857654962,0.0952762137065,0.0948571101271,0.0956720337537,0.0951365125134,0.0940654700328,0.0945777077409,0.0929944275522,0.0925520404407,0.0928314428269,0.0938559182431,0.0940421865006,0.0950200948525,0.0951132289812,0.095718600818,0.0970690456849,0.0968827774274,0.0975579998608,0.0976744175217,0.0974415821998,0.0959048690755,0.0957884514146,0.0949502442559,0.0947639759984,0.0949269607237,0.0943215888869,0.093832634711,0.0939024853075,0.0943215888869,0.0939956194363,0.0944380065478,0.0943215888869,0.0951365125134,0.0952994972387,0.0956021831571,0.0960445702687,0.0961842714618,0.0961144208652,0.0953926313674,0.0954159148996,0.0956953172859,0.0964171067836,0.0958117349468,0.0953693478352,0.0953693478352,0.0945078571444,0.0949968113203,0.09446129008,0.0939723359041,0.0937395005822,0.0939257688397,0.0940189029684,0.0948571101271,0.0951830795778,0.0941120370972,0.09446129008,0.0933203970029,0.0938792017753,0.0941120370972,0.0941120370972,0.0947406924662,0.0951830795778,0.0946242748053,0.0953693478352,0.0970690456849,0.0974881492642,0.0990248623885,0.0988153105988,0.0988851611954,0.0987221764701,0.0986523258735,0.0969991950883,0.096463673848,0.0959747196721,0.0946475583375,0.0948105430628,0.0936463664535,0.0943681559512,0.0949502442559,0.0950200948525,0.0944380065478,0.0950200948525,0.0945777077409,0.094833826595,0.0956487502215,0.0951365125134,0.0959980032043,0.0958815855433,0.0952529301743,0.0961377043974,0.0968129268308,0.0969759115561,0.0976278504573,0.0976278504573,0.0971621798136,0.0979538199079,0.0975579998608,0.0971854633458,0.0979771034401,0.0967430762342,0.0966965091699,0.0966499421055,0.0961377043974,0.0957884514146,0.0954857654962,0.0945544242087,0.0940421865006,0.0938792017753,0.0931574122775,0.0942517382903,0.093460098196,0.0934368146638,0.0925054733763,0.0924821898441,0.0915508485567,0.0910386108486,0.0898278671749,0.0876624986816,0.0867544409263,0.0849383254158,0.0842398194502,0.0828195239868,0.0838207158708,0.0823538533431,0.0821443015534,0.0817950485706,0.0818881826994,0.0815389297166,0.0811663932016,0.0815156461844,0.0808869908153,0.0805610213647,0.0797460977382,0.0793037106267,0.0789078905795,0.0786750552576,0.078092966953,0.0782559516783,0.0783025187427,0.0772780433265,0.0768822232793,0.0765562538287,0.0754619278159,0.075601629009,0.0755317784125,0.0740649158847,0.074344318271,0.0746470041894,0.0731335745973,0.0730404404685,0.0725282027604,0.0726911874858,0.0730637240007,0.0727843216145,0.0725514862926,0.0724117850995,0.0710147731683,0.0708285049108,0.071852980327,0.0721789497777,0.0723652180351,0.0722022333098,0.071852980327,0.0715037273443,0.0717831297305,0.0726679039536,0.0739019311594,0.0742511841422,0.073715662902,0.0745771535928,0.0748332724469,0.0751592418975,0.0757413302022,0.0761371502493,0.0760440161206,0.0758810313953,0.0758344643309,0.0758810313953,0.075345510155,0.0743676018032,0.074344318271,0.0736690958376,0.0735061111123,0.0737389464341,0.073226708726,0.0734129769835,0.0724816356961,0.0718064132627,0.0723885015673,0.0728308886789,0.072341934503,0.072225516842,0.0711544743615,0.0708052213787,0.0711311908293,0.0710380567005,0.0722488003742,0.0720625321167,0.0718762638592,0.0710147731683,0.0713640261511,0.0721090991811,0.0729473063398,0.0727144710179,0.0716899956017,0.0723186509708,0.0718296967949,0.0721323827133,0.072341934503,0.0729240228076,0.0730171569364,0.073599245241,0.0729938734042,0.0729938734042,0.0742744676744,0.0737855134985,0.074344318271,0.0743908853354,0.0738786476273,0.0734362605157,0.0732965593226,0.0726213368892,0.0725514862926,0.0723186509708,0.0716434285374,0.0718762638592,0.0715735779408,0.0709449225718,0.0715037273443,0.0716667120696,0.0716201450052,0.0709914896362,0.0724583521639,0.0727843216145,0.0728774557432,0.0724350686317,0.0724350686317,0.072598053357,0.0734595440479,0.0739252146916,0.0744141688675,0.0754153607516,0.0738087970307,0.0740183488204,0.0740881994169,0.0739019311594,0.073343126387,0.0739019311594,0.0723885015673,0.0722488003742,0.0715735779408,0.0713174590868,0.0720625321167,0.0715502944086,0.071852980327,0.0721556662455,0.0724117850995,0.0724117850995,0.0729007392754,0.0724350686317,0.072225516842,0.072341934503,0.0723885015673,0.0728774557432,0.0720858156489,0.0719926815202,0.0713640261511,0.0711079072971,0.0716434285374,0.0717365626661,0.0725049192283,0.0715735779408,0.071596861473,0.0710147731683,0.071596861473,0.0721090991811,0.0725282027604,0.071852980327,0.0717132791339,0.0710380567005,0.0710846237649,0.0717598461983,0.0713640261511,0.0714571602799,0.0714338767477,0.0709914896362,0.0719228309236,0.0721789497777,0.072225516842,0.0738553640951,0.0734362605157,0.0735293946445,0.073971781756,0.0741580500135,0.0736690958376,0.0735759617088,0.0728774557432,0.0728541722111,0.0728308886789,0.0716667120696,0.0716434285374,0.0720858156489,0.0724117850995,0.072970589872,0.0728774557432,0.0728076051467,0.0727377545501,0.0734362605157,0.0730404404685,0.0733896934513,0.0731801416617,0.0732965593226,0.0726213368892,0.0725049192283,0.0726446204214,0.0726213368892,0.0726446204214,0.0720625321167,0.0725049192283,0.0719228309236,0.071969397988,0.0708983555074,0.0709449225718,0.070595669589,0.0708285049108,0.0706655201855,0.0707819378465,0.0711311908293,0.0705723860568,0.0712941755546,0.0714338767477,0.071852980327,0.0718995473914,0.0722720839064,0.0726679039536,0.0727610380823,0.0726679039536,0.072225516842,0.0731335745973,0.0728541722111,0.0724816356961,0.0727144710179,0.0729938734042,0.0729240228076,0.0724350686317,0.0726679039536,0.0725282027604,0.0727610380823,0.0721090991811,0.0728076051467,0.0728774557432,0.0723186509708,0.072225516842,0.0724816356961,0.0730637240007,0.072341934503,0.0726213368892,0.0727610380823,0.0726911874858,0.0722953674386,0.0728076051467,0.0736225287732,0.0736225287732,0.0727144710179,0.0720392485845,0.0726213368892,0.0727843216145,0.0723885015673,0.0719926815202,0.0716667120696,0.0712708920224,0.0707819378465,0.0700834318809,0.0698273130268,0.070223133074,0.0704792519281,0.0704094013315,0.070851788443,0.0711777578936,0.0709449225718,0.0713407426189,0.0713407426189,0.0717598461983,0.0726911874858,0.0727144710179,0.072598053357,0.0719926815202,0.0717831297305,0.0719228309236,0.0720159650523,0.0715502944086,0.0718995473914,0.0724816356961,0.0721090991811,0.0722022333098,0.0720625321167,0.0725282027604,0.0725282027604,0.0727610380823,0.0731335745973,0.0739484982238,0.0738553640951,0.0733664099192,0.0739950652882,0.0739252146916,0.0736923793698,0.073715662902,0.0740183488204,0.0740183488204,0.0742279006101,0.0735759617088,0.0730870075329,0.0729240228076,0.0726213368892,0.0727377545501,0.0725282027604,0.072970589872,0.0728308886789,0.0726911874858,0.0651240395252,0.0580691292727,0.0509676519559,0.0439825923,0.0) ycorr <- c(-8.27358908567e-06,-8.66608098524e-06,-9.82701030176e-06,-1.17779831261e-05,-1.45428142131e-05,-1.81320491947e-05,-2.25739396861e-05,-2.7336738214e-05,-3.24282925172e-05,-3.78557354552e-05,-4.3625465525e-05,-4.97158737741e-05,-5.6100365226e-05,-6.27227186274e-05,-6.95288746118e-05,-7.64386113897e-05,-8.3348263303e-05,-9.01150002235e-05,-9.66619714788e-05,-0.000102876212786,-0.000108691068188,-0.00011404885968,-0.000118906360287,-0.000123222267144,-0.000126997139359,-0.000130238233983,-0.000132965627712,-0.000135262756553,-0.000137200784871,-0.000138864330236,-0.000140326040595,-0.000141632521634,-0.000142841047426,-0.000143995105989,-0.000145127783009,-0.000146268786687,-0.000147456026675,-0.000148723258692,-0.000150067703733,-0.000151488639471,-0.000152953024274,-0.000154465894296,-0.000156006139489,-0.000157579148975,-0.000159176664081,-0.00016080040738,-0.000162445821371,-0.000164080169322,-0.000165683213442,-0.000167250317846,-0.000168794028462,-0.000170317989924,-0.000171810762954,-0.000173278963077,-0.00017471401496,-0.000176122864801,-0.00017749908313,-0.000178857662117,-0.000180233361695,-0.000181641950226,-0.000183070455399,-0.000184502611471,-0.00018595742458,-0.000187443997276,-0.000188979678756,-0.000190564664381,-0.000192201537493,-0.000193903418081,-0.000195633901299,-0.000197343465988,-0.000199046649589,-0.000200770933939,-0.000202507753201,-0.000204240468269,-0.000205963726411,-0.000207653455293,-0.000209319388318,-0.000210951972625,-0.000212537581161,-0.000214110713323,-0.000215678267721,-0.000217202496049,-0.000218671859232,-0.000220106266719,-0.000221493142198,-0.000222815290002,-0.000224077885098,-0.00022522963304,-0.00022628967677,-0.000227262871482,-0.00022815132417,-0.000228973742015,-0.000229746552308,-0.00023044448429,-0.00023107233542,-0.000231652185989,-0.000232190490336,-0.000232709406786,-0.000233237481799,-0.000233774184886,-0.000234301370027,-0.000234800958871,-0.00023525519492,-0.000235666855918,-0.000236051640315,-0.000236402985414,-0.000236694193574,-0.00023693339424,-0.000237101800907,-0.000237190988161,-0.000237206056903,-0.000237152549204,-0.000237058822651,-0.000236939726798,-0.000236789402963,-0.000236603211318,-0.000236400110905,-0.0002362194884,-0.000236059284869,-0.000235930591034,-0.000235824299867,-0.000235763833888,-0.000235754519105,-0.000235780236558,-0.000235849805018,-0.000235982825724,-0.000236200250504,-0.000236472412332,-0.000236779318116,-0.000237125990974,-0.000237516972,-0.000237954916118,-0.000238407794934,-0.000238893695784,-0.000239407206639,-0.000239944735072,-0.000240462741195,-0.000240962221168,-0.000241459785786,-0.000241967353134,-0.000242491995066,-0.000243027049976,-0.000243593048665,-0.000244198010019,-0.000244829069484,-0.000245494045603,-0.000246205877102,-0.000246993174457,-0.000247848420939,-0.000248756994061,-0.000249707314519,-0.00025069229543,-0.000251698259309,-0.000252706538583,-0.000253699169377,-0.000254661410968,-0.000255591897875,-0.00025646847176,-0.000257304501136,-0.000258103103257,-0.000258870683403,-0.000259604801129,-0.000260309792418,-0.000260999187119,-0.000261683355979,-0.000262391149495,-0.00026314124502,-0.00026393332025,-0.000264777948014,-0.000265652814287,-0.000266543281915,-0.000267448285281,-0.000268372647397,-0.000269310875242,-0.000270274724756,-0.000271252801794,-0.000272218679309,-0.000273178948798,-0.000274106195153,-0.000275010548659,-0.000275923863844,-0.000276865774587,-0.000277836799211,-0.000278845329128,-0.000279886705693,-0.000280957559598,-0.000282083371473,-0.000283254898423,-0.000284473882159,-0.000285750620633,-0.000287044684008,-0.000288314867897,-0.000289552383852,-0.000290750355165,-0.00029190059098,-0.000293006062054,-0.000294039581848,-0.000294989124224,-0.000295866620955,-0.000296667808842,-0.000297407579932,-0.000298114940844,-0.000298805362135,-0.000299479379693,-0.000300141645632,-0.000300789384762,-0.00030142686084,-0.000302063215436,-0.000302695458046,-0.000303310231833,-0.000303895326316,-0.000304444439755,-0.000304953368308,-0.000305415358815,-0.000305813629669,-0.00030615787801,-0.000306429829885,-0.000306634001988,-0.000306764193973,-0.000306822557425,-0.000306827239613,-0.00030679330836,-0.000306732412054,-0.000306655324049,-0.000306582052098,-0.00030650617353,-0.000306441119522,-0.000306396210056,-0.000306387268033,-0.000306436894584,-0.00030654824602,-0.000306735128337,-0.000306988843659,-0.000307298490101,-0.000307665737616,-0.000308098138827,-0.0003086114617,-0.000309203365861,-0.000309863122474,-0.000310557380905,-0.000311270398202,-0.000311990304609,-0.000312679478768,-0.000313328665641,-0.000313936784037,-0.000314472572557,-0.000314930117471,-0.000315295607581,-0.000315578450764,-0.000315812113892,-0.000316005784611,-0.000316158552031,-0.000316291116318,-0.00031642404223,-0.000316565712633,-0.000316739354677,-0.000316946805922,-0.000317193897026,-0.00031748628963,-0.000317787626426,-0.000318105048605,-0.000318440136607,-0.000318791816832,-0.000319147846032,-0.000319502244124,-0.000319837757053,-0.000320145998773,-0.000320424089492,-0.000320646450503,-0.000320831832585,-0.000320961787372,-0.000321023874251,-0.000321012119115,-0.000320924789095,-0.000320768493021,-0.000320550486402,-0.000320280407411,-0.000319948270165,-0.000319575410562,-0.000319161519578,-0.000318728315857,-0.000318291576913,-0.000317859672113,-0.000317429076408,-0.000317014983238,-0.000316599465526,-0.00031617868269,-0.000315747977636,-0.000315288967775,-0.000314801721666,-0.000314273428986,-0.000313678081963,-0.000313016145234,-0.000312304911893,-0.000311533082683,-0.000310711771664,-0.000309856768384,-0.000308984715224,-0.000308103724307,-0.000307233010627,-0.000306374183616,-0.000305543383901,-0.000304741895341,-0.000303971610054,-0.000303194392197,-0.000302426431667,-0.000301653752954,-0.000300867501307,-0.00030006678533,-0.000299255134994,-0.000298426462991,-0.000297575271066,-0.000296708183644,-0.000295815243836,-0.000294928133677,-0.000294049817358,-0.000293165372101,-0.000292286143612,-0.000291422657396,-0.00029054599931,-0.000289665403477,-0.000288787796468,-0.000287918203141,-0.000287051025823,-0.000286186586506,-0.000285304251479,-0.00028440345754,-0.000283483906967,-0.000282527854949,-0.000281546292138,-0.000280549683978,-0.000279527665346,-0.000278472031305,-0.000277375202908,-0.000276234689925,-0.000275057989012,-0.00027385309052,-0.000272634992124,-0.000271418780678,-0.000270191053595,-0.000268946351493,-0.000267684851041,-0.000266404969931,-0.000265117067425,-0.000263816705149,-0.000262499756856,-0.000261157058825,-0.000259773626813,-0.000258333286067,-0.000256830827279,-0.000255272621521,-0.000253648427596,-0.00025195900614,-0.000250201550043,-0.000248376349942,-0.000246478827225,-0.000244525708078,-0.000242509271748,-0.000240436998389,-0.000238320250822,-0.000236165734282,-0.000233970868521,-0.000231728833088,-0.000229434913655,-0.000227094231806,-0.000224717305498,-0.00022231233117,-0.000219888210928,-0.000217448406154,-0.000214993918241,-0.000212507751047,-0.000210003387901,-0.000207502182149,-0.000205022115811,-0.00020256540975,-0.000200120121905,-0.000197688676331,-0.000195263717865,-0.000192844726565,-0.000190447964765,-0.000188086214614,-0.000185771348184,-0.000183503167249,-0.000181263832008,-0.000179053470299,-0.000176899870141,-0.000174808320923,-0.00017278151644,-0.000170832144793,-0.000168948790324,-0.000167122883852,-0.000165348611632,-0.000163624617934,-0.000161950954317,-0.000160343964211,-0.000158792481,-0.000157292040946,-0.000155848872816,-0.000154446898051,-0.000153096404333,-0.000151801804645,-0.000150563687586,-0.000149362178794,-0.000148215664792,-0.000147098380258,-0.00014599939828,-0.000144904296331,-0.000143795545165,-0.000142663255517,-0.000141510646949,-0.000140320312658,-0.000139088056785,-0.000137833457585,-0.000136538328934,-0.000135190941156,-0.000133806622376,-0.000132391169819,-0.000130956449696,-0.000129519226558,-0.00012807783156,-0.000126635737686,-0.000125187859592,-0.00012373338738,-0.000122269650718,-0.000120826652383,-0.000119400389189,-0.000117985397971,-0.000116584566686,-0.00011520040447,-0.000113811485342,-0.000112419242126,-0.000111016022067,-0.000109613247515,-0.000108206966663,-0.000106788479866,-0.000105349343662,-0.000103901372675,-0.000102441631213,-0.000100959970332,-9.94693716778e-05,-9.79776975023e-05,-9.65135639481e-05,-9.50558556982e-05,-9.3609024579e-05,-9.21623476419e-05,-9.07154844964e-05,-8.92721292933e-05,-8.78171658835e-05,-8.63510506809e-05,-8.48799517986e-05,-8.33829246819e-05,-8.18589357728e-05,-8.0301321692e-05,-7.87232668844e-05,-7.71222700978e-05,-7.55154149912e-05,-7.38921154279e-05,-7.22691009747e-05,-7.06414242481e-05,-6.90172190452e-05,-6.74162266103e-05,-6.58281304295e-05,-6.4247730196e-05,-6.26590175493e-05,-6.10714774826e-05,-5.94676529095e-05,-5.78414905184e-05,-5.61875292233e-05,-5.44990475308e-05,-5.2780752901e-05,-5.10168156648e-05,-4.91965013959e-05,-4.73535250023e-05,-4.5499685369e-05,-4.36387964435e-05,-4.17658106734e-05,-3.98954094874e-05,-3.80396078772e-05,-3.62253252729e-05,-3.44417580236e-05,-3.26969487514e-05,-3.10038727309e-05,-2.9357760087e-05,-2.77488141876e-05,-2.61901171609e-05,-2.46916752267e-05,-2.32657005752e-05,-2.19136023364e-05,-2.06204585401e-05,-1.9384208401e-05,-1.82086305033e-05,-1.7092192315e-05,-1.60233002363e-05,-1.49957365673e-05,-1.39975776374e-05,-1.30202469148e-05,-1.20457082407e-05,-1.10689461919e-05,-1.00864272594e-05,-9.08915832352e-06,-8.0757383222e-06,-7.04710400968e-06,-5.99973407346e-06,-4.94569652451e-06,-3.88817967953e-06,-2.83472462818e-06,-1.77750397346e-06,-7.21028103789e-07,3.42992049901e-07,1.40128164814e-06,2.44758585899e-06,3.49749504207e-06,4.53390398504e-06,5.55384784953e-06,6.55459762473e-06,7.54163854644e-06,8.5071282224e-06,9.46030337383e-06,1.03927273627e-05,1.13034230573e-05,1.21966311069e-05,1.30652487302e-05,1.39264508826e-05,1.47888239801e-05,1.5657955907e-05,1.65390863113e-05,1.74475143214e-05,1.83850573161e-05,1.9347352259e-05,2.03471453711e-05,2.13907432596e-05,2.24877586469e-05,2.36303584736e-05,2.48236165652e-05,2.60941707636e-05,2.74438965007e-05,2.88665120097e-05,3.03494670335e-05,3.19179698297e-05,3.35702225291e-05,3.53004172377e-05,3.71065097767e-05,3.89970358603e-05,4.09782681302e-05,4.30225815063e-05,4.5101890061e-05,4.7202179772e-05,4.93263779167e-05,5.14548285106e-05,5.35759232857e-05,5.56843442946e-05,5.77611665572e-05,5.97918871695e-05,6.17529069135e-05,6.36316636021e-05,6.54294284388e-05,6.71494869104e-05,6.880035317e-05,7.03622316961e-05,7.18323060682e-05,7.32000409868e-05,7.44685498789e-05,7.56397131501e-05,7.67002772327e-05,7.76606237027e-05,7.85273057465e-05,7.93011394578e-05,7.9978810499e-05,8.05745892949e-05,8.10958802388e-05,8.15507948887e-05,8.19366004228e-05,8.22610583537e-05,8.25546673941e-05,8.28297147508e-05,8.30987527321e-05,8.33807782993e-05,8.3685162899e-05,8.40259984167e-05,8.44157239905e-05,8.48787623835e-05,8.54503908962e-05,8.61508636253e-05,8.69907475629e-05,8.79757560763e-05,8.91287298061e-05,9.04644728201e-05,9.19791087142e-05,9.3681883815e-05,9.55850499156e-05,9.77890359463e-05,0.00010038508749,0.000103448502711,0.000107044967047,0.000111690673419,0.000115755079026,0.000119713132431,0.00012362119076,0.000127568297771,0.00013163916721,0.000135928475171,0.000140353096752,0.00014484536064,0.000149318090955,0.000153733906341,0.000157610237445,0.000162568476969,0.000168152142197,0.000174311139364,0.000180988528141,0.000188111642489,0.000195589221316,0.000203424288668,0.000211630299921,0.000220231583629,0.000229218190512,0.000238581268038,0.000248351891047,0.000258538652664,0.000269151939409,0.000280194089294,0.000291671368062,0.000303591921262,0.000315939080811,0.00032869103606,0.000341841895335,0.000355403232892,0.000369351567554,0.000383660075893,0.000398295054058,0.00041322999139,0.000428416301629,0.000443813105167,0.000459384108867,0.000475079398188,0.000490833848843,0.000506555939554,0.00052213354504,0.000537462146937,0.000552444833161,0.00056696027551,0.000580883151749,0.000594088753359,0.000606434350336,0.00061778069262,0.00062799431442,0.0006369532408,0.000644578320127,0.000650801417834,0.000655573139583,0.000658854082652,0.000660643695102,0.000660959270139,0.000659856323331,0.000657412213981,0.000653724880021,0.000648918359962,0.000643134635634,0.000636505221761,0.000629157677251,0.0006212460726,0.0006129299145,0.000604339248342,0.000595586096698,0.000586781298803,0.000578044679982,0.000569463444658,0.000561101024432,0.000553023584291,0.000545273631381,0.000537888491864,0.000530868920577,0.000524213651099,0.000517933405919,0.00051204515112,0.000506517885579,0.0005013299626,0.00049646815503,0.000491912269035,0.000487647938368,0.000483655974718,0.000479921197524,0.000476441075131,0.000473193200173,0.000470157487034,0.00046732178454,0.000464693115194,0.000462253192184,0.000459993513806,0.000457905254355,0.000455962179786,0.000454151749551,0.000452468901991,0.000450913541188,0.000449470656418,0.000448139308545,0.000446897554989,0.000445735133059,0.000444634637911,0.000443576304261,0.000442558771957,0.000441587488112,0.000440655876445,0.000439760125729,0.000438895638326,0.000438051236807,0.000437229598704,0.000436430315022,0.000435645235515,0.000434886465442,0.000434156857679,0.000433445312166,0.000432727382292,0.000431993510326,0.000431225455108,0.000430396882514,0.000429506306731,0.00042852894578,0.000427469894778,0.000426328233291,0.000425086706639,0.000423732755303,0.000422275138936,0.000420713420489,0.000419048666742,0.000417305308055,0.000415491105312,0.000413608269597,0.000411651188062,0.000409601946555,0.000407453098461,0.000405209985196,0.000402874550828,0.000400445323953,0.000397931084912,0.000395332613358,0.000392622151524,0.000389802304853,0.000386885957562,0.000383885819402,0.000380835015302,0.000377753233855,0.000374647477683,0.00037153759219,0.000368437637056,0.000365357079832,0.000362325561907,0.000359376841869,0.000356530897918,0.000353806268963,0.000351212011021,0.000348745942195,0.000346421883506,0.000344250153993,0.00034223524175,0.000340384042755,0.000338702986319,0.000337175036986,0.000335800902263,0.000334562883285,0.000333443871034,0.00033243839833,0.000331547610229,0.000330745035137,0.000330024588959,0.000329352885043,0.000328716020352,0.000328100614814,0.000327496452503,0.000326902554397,0.000326327538388,0.000325779020838,0.000325256546353,0.000324750178982,0.000324261179867,0.000323813407335,0.000323421312449,0.000323090584963,0.000322826864682,0.000322625889445,0.00032247716265,0.000322365131299,0.00032226969532,0.000322199506682,0.000322132110032,0.000322068446643,0.000321972297855,0.000321842173765,0.000321649578675,0.000321388120858,0.00032106229949,0.000320669314766,0.000320211666493,0.000319688928724,0.000319104734253,0.000318466211803,0.000317771242827,0.000317035881864,0.000316278805289,0.000315524128614,0.00031476384917,0.000314005347317,0.000313246649013,0.000312490245239,0.000311758151007,0.000311048925863,0.000310379609001,0.000309763017218,0.000309196993199,0.000308665368662,0.000308170936381,0.000307727069076,0.000307335749077,0.000306999879868,0.000306720375224,0.00030647576462,0.000306258339546,0.000306049889764,0.00030583074258,0.000305586902532,0.000305318588657,0.000304997164563,0.000304619103586,0.000304176254538,0.000303640010627,0.000303009765508,0.000302299066936,0.000301507827053,0.00030064470774,0.0002997259549,0.000298750833368,0.000297723109855,0.000296671483201,0.000295607596674,0.000294557169261,0.000293540746905,0.000292555333895,0.000291606523698,0.000290691632668,0.00028981841291,0.000288997905874,0.000288247769682,0.000287556864537,0.000286910495399,0.000286282447475,0.000285667793266,0.00028508059863,0.000284515966852,0.000283965164057,0.000283440985056,0.000282928384045,0.00028242043879,0.000281928582449,0.000281476977849,0.000281091066443,0.000280782658387,0.000280536564398,0.000280349893312,0.00028024639001,0.000280215223853,0.000280270392568,0.000280415060867,0.0002806449431,0.00028093758777,0.00028128276743,0.000281659794177,0.000282065946638,0.000282507263247,0.000282960495918,0.000283410734767,0.000283854578118,0.000284274082623,0.000284653705339,0.000284986494637,0.000285274231061,0.000285520824852,0.000285730464461,0.000285890794273,0.000286018103767,0.000286133721622,0.000286233401159,0.000286323020694,0.000286395961496,0.000286473557071,0.000286549431241,0.000286614635205,0.0002866628314,0.000286695566422,0.000286700741769,0.000286641445064,0.000286503979238,0.000286286291116,0.000285977700715,0.00028556139892,0.000285020138964,0.000284338160998,0.000283500928385,0.000282475150138,0.000281241925248,0.000279809990469,0.00027817717787,0.000276323400468,0.000274233751414,0.00027190236157,0.000269304941839,0.000266448072048,0.000263330545194,0.000259960143382,0.000256346351963,0.000252483846808,0.000248363178002,0.000243976049299,0.000239340798159,0.000234436597373,0.000229280877638,0.000223893503998,0.000218267539155,0.000212415473079,0.000206337437647,0.000200045012775,0.000193550712575,0.000186889765276,0.000180073479577,0.000173133881392,0.000166112998551,0.000159033410415,0.000151933026939,0.00014483450197,0.000137764248228,0.000130751961687,0.000123828153623,0.000117013258441,0.000110328564021,0.000103806182683,9.74484881662e-05,9.12597190429e-05,8.52316659576e-05,7.93682388419e-05,7.36862299211e-05,6.81850030672e-05,6.28571820559e-05,5.76969280116e-05,5.27046418794e-05,4.78633121595e-05,4.3168980031e-05,3.86157331238e-05,3.42096545091e-05,2.99512010618e-05,2.58289244843e-05,2.18291154192e-05,1.79616215179e-05,1.42233856089e-05,1.06110277317e-05,7.117370856e-06,3.74934175409e-06,5.00988213956e-07,-2.6385476814e-06,-5.66562341918e-06,-8.56975556119e-06,-1.13461687979e-05,-1.39981696412e-05,-1.65231698499e-05,-1.89189257946e-05,-2.1179995274e-05,-2.3312047531e-05,-2.53275986386e-05,-2.72200825809e-05,-2.89836226593e-05,-3.06412929847e-05,-3.22031090542e-05,-3.36859274253e-05,-3.51007782505e-05,-3.64703132501e-05,-3.78058881934e-05,-3.91238072452e-05,-4.04251559144e-05,-4.17193312551e-05,-4.30419109216e-05,-4.43984840056e-05,-4.57809400987e-05,-4.72163769609e-05,-4.87141056957e-05,-5.02704575495e-05,-5.18992106274e-05,-5.36057118429e-05,-5.53952716544e-05,-5.72851059043e-05,-5.92585377e-05,-6.13159459983e-05,-6.34743772982e-05,-6.57095187927e-05,-6.79993917858e-05,-7.03385094932e-05,-7.27055739719e-05,-7.50786353045e-05,-7.74520220088e-05,-7.98094527711e-05,-8.21403912347e-05,-8.44424406877e-05,-8.66941219041e-05,-8.88741049914e-05,-9.09986033439e-05,-9.30725455653e-05,-9.50912424119e-05,-9.70785690011e-05,-9.90226676971e-05,-0.000100895784783,-0.000102699925346,-0.00010442445296,-0.000106070406709,-0.000107651723682,-0.000109174355529,-0.000110613678834,-0.000111971606833,-0.000113228263863,-0.000114389064711,-0.000115488905898,-0.000116544725238,-0.000117548156654,-0.000118509732522,-0.000119439091463,-0.000120312505843,-0.000121155597028,-0.000121989093638,-0.000122822352644,-0.000123668397752,-0.00012450846018,-0.00012532076049,-0.000126122666217,-0.000126925357037,-0.000127712831982,-0.00012849361635,-0.000129277418342,-0.000130048322094,-0.000130809161107,-0.000131548708595,-0.00013227697774,-0.000133010430675,-0.000133750081729,-0.000134488466986,-0.00013523583744,-0.000136008390709,-0.000136800459212,-0.000137621363863,-0.000138477718274,-0.000139381792061,-0.000140324185927,-0.000141306336285,-0.000142334057015,-0.000143402722662,-0.00014451246099,-0.00014566694395,-0.000146858437674,-0.000148096534493,-0.000149360807181,-0.000150637530345,-0.000151926574186,-0.000153232272987,-0.000154550621585,-0.000155862835882,-0.000157185574661,-0.000158495573867,-0.000159795909393,-0.000161072845669,-0.000162319029168,-0.000163549646814,-0.000164784321387,-0.000166017495305,-0.00016724117354,-0.000168462767529,-0.00016968922486,-0.000170908064995,-0.000172125997459,-0.000173335819215,-0.000174558885378,-0.000175782493858,-0.000177004587623,-0.000178203092585,-0.000179387818872,-0.000180562095621,-0.000181703639065,-0.000182815784368,-0.00018389800846,-0.000184948424559,-0.000185953065076,-0.000186905264408,-0.000187784041345,-0.000188598055246,-0.000189342477661,-0.000190021182389,-0.000190663683126,-0.000191293364289,-0.000191903852575,-0.0001925003762,-0.000193098098826,-0.00019371523229,-0.000194370207072,-0.000195095187027,-0.000195886527333,-0.000196745822442,-0.000197648998233,-0.000198568452393,-0.000199509778968,-0.000200485330008,-0.000201499784316,-0.00020254235986,-0.000203605363241,-0.000204663209035,-0.000205711852271,-0.000206758475733,-0.000207801655906,-0.000208859275412,-0.000209934229464,-0.00021100958938,-0.000212081996858,-0.000213152255601,-0.000214215319455,-0.000215273283012,-0.000216326555191,-0.000217378236316,-0.000218425159505,-0.000219468847962,-0.000220489616881,-0.000221498007368,-0.000222475827773,-0.000223411070394,-0.000224298508212,-0.000225147208125,-0.000225947938145,-0.000226687643007,-0.000227351776863,-0.000227934852895,-0.000228460809296,-0.000228915622281,-0.000229303342985,-0.000229635182204,-0.000229920819162,-0.000230149797582,-0.000230328385741,-0.000230474412052,-0.000230605602,-0.000230729517302,-0.000230833122252,-0.00023092345567,-0.000231027975208,-0.000231145512517,-0.000231273494042,-0.000231423519797,-0.000231623105597,-0.000231863881743,-0.000232137219586,-0.000232451368159,-0.000232819575398,-0.000233239581293,-0.00023368841615,-0.000234183399772,-0.000234746093777,-0.000235389498983,-0.000236094244173,-0.000236846369114,-0.000237666835806,-0.000238561468394,-0.00023953245704,-0.000240586295503,-0.00024174125469,-0.000242993645873,-0.000244323438776,-0.000245698274978,-0.000247109362578,-0.00024857562115,-0.000250088490414,-0.000251623011519,-0.000253163685731,-0.000254699156017,-0.000256216214685,-0.00025769631237,-0.000259128168686,-0.000260509150884,-0.00026184099214,-0.000263121169688,-0.000264322882518,-0.000265462815195,-0.000266531082768,-0.000267527105812,-0.000268440894041,-0.000269274915311,-0.000270027433197,-0.000270720289995,-0.000271358785796,-0.000271931463922,-0.000272455207522,-0.000272923248818,-0.000273337833087,-0.000273715735878,-0.000274065646586,-0.0002743733563,-0.000274610763638,-0.000274792490898,-0.00027490901222,-0.000274970499575) xcorr <- c(-600.0,-598.999165972,-597.998331943,-596.997497915,-595.996663887,-594.995829858,-593.99499583,-592.994161802,-591.993327773,-590.992493745,-589.991659716,-588.990825688,-587.98999166,-586.989157631,-585.988323603,-584.987489575,-583.986655546,-582.985821518,-581.98498749,-580.984153461,-579.983319433,-578.982485405,-577.981651376,-576.980817348,-575.979983319,-574.979149291,-573.978315263,-572.977481234,-571.976647206,-570.975813178,-569.974979149,-568.974145121,-567.973311093,-566.972477064,-565.971643036,-564.970809008,-563.969974979,-562.969140951,-561.968306922,-560.967472894,-559.966638866,-558.965804837,-557.964970809,-556.964136781,-555.963302752,-554.962468724,-553.961634696,-552.960800667,-551.959966639,-550.959132611,-549.958298582,-548.957464554,-547.956630525,-546.955796497,-545.954962469,-544.95412844,-543.953294412,-542.952460384,-541.951626355,-540.950792327,-539.949958299,-538.94912427,-537.948290242,-536.947456214,-535.946622185,-534.945788157,-533.944954128,-532.9441201,-531.943286072,-530.942452043,-529.941618015,-528.940783987,-527.939949958,-526.93911593,-525.938281902,-524.937447873,-523.936613845,-522.935779817,-521.934945788,-520.93411176,-519.933277731,-518.932443703,-517.931609675,-516.930775646,-515.929941618,-514.92910759,-513.928273561,-512.927439533,-511.926605505,-510.925771476,-509.924937448,-508.92410342,-507.923269391,-506.922435363,-505.921601334,-504.920767306,-503.919933278,-502.919099249,-501.918265221,-500.917431193,-499.916597164,-498.915763136,-497.914929108,-496.914095079,-495.913261051,-494.912427023,-493.911592994,-492.910758966,-491.909924937,-490.909090909,-489.908256881,-488.907422852,-487.906588824,-486.905754796,-485.904920767,-484.904086739,-483.903252711,-482.902418682,-481.901584654,-480.900750626,-479.899916597,-478.899082569,-477.89824854,-476.897414512,-475.896580484,-474.895746455,-473.894912427,-472.894078399,-471.89324437,-470.892410342,-469.891576314,-468.890742285,-467.889908257,-466.889074229,-465.8882402,-464.887406172,-463.886572143,-462.885738115,-461.884904087,-460.884070058,-459.88323603,-458.882402002,-457.881567973,-456.880733945,-455.879899917,-454.879065888,-453.87823186,-452.877397832,-451.876563803,-450.875729775,-449.874895746,-448.874061718,-447.87322769,-446.872393661,-445.871559633,-444.870725605,-443.869891576,-442.869057548,-441.86822352,-440.867389491,-439.866555463,-438.865721435,-437.864887406,-436.864053378,-435.863219349,-434.862385321,-433.861551293,-432.860717264,-431.859883236,-430.859049208,-429.858215179,-428.857381151,-427.856547123,-426.855713094,-425.854879066,-424.854045038,-423.853211009,-422.852376981,-421.851542952,-420.850708924,-419.849874896,-418.849040867,-417.848206839,-416.847372811,-415.846538782,-414.845704754,-413.844870726,-412.844036697,-411.843202669,-410.842368641,-409.841534612,-408.840700584,-407.839866555,-406.839032527,-405.838198499,-404.83736447,-403.836530442,-402.835696414,-401.834862385,-400.834028357,-399.833194329,-398.8323603,-397.831526272,-396.830692244,-395.829858215,-394.829024187,-393.828190158,-392.82735613,-391.826522102,-390.825688073,-389.824854045,-388.824020017,-387.823185988,-386.82235196,-385.821517932,-384.820683903,-383.819849875,-382.819015847,-381.818181818,-380.81734779,-379.816513761,-378.815679733,-377.814845705,-376.814011676,-375.813177648,-374.81234362,-373.811509591,-372.810675563,-371.809841535,-370.809007506,-369.808173478,-368.80733945,-367.806505421,-366.805671393,-365.804837364,-364.804003336,-363.803169308,-362.802335279,-361.801501251,-360.800667223,-359.799833194,-358.798999166,-357.798165138,-356.797331109,-355.796497081,-354.795663053,-353.794829024,-352.793994996,-351.793160967,-350.792326939,-349.791492911,-348.790658882,-347.789824854,-346.788990826,-345.788156797,-344.787322769,-343.786488741,-342.785654712,-341.784820684,-340.783986656,-339.783152627,-338.782318599,-337.78148457,-336.780650542,-335.779816514,-334.778982485,-333.778148457,-332.777314429,-331.7764804,-330.775646372,-329.774812344,-328.773978315,-327.773144287,-326.772310259,-325.77147623,-324.770642202,-323.769808173,-322.768974145,-321.768140117,-320.767306088,-319.76647206,-318.765638032,-317.764804003,-316.763969975,-315.763135947,-314.762301918,-313.76146789,-312.760633862,-311.759799833,-310.758965805,-309.758131776,-308.757297748,-307.75646372,-306.755629691,-305.754795663,-304.753961635,-303.753127606,-302.752293578,-301.75145955,-300.750625521,-299.749791493,-298.748957465,-297.748123436,-296.747289408,-295.746455379,-294.745621351,-293.744787323,-292.743953294,-291.743119266,-290.742285238,-289.741451209,-288.740617181,-287.739783153,-286.738949124,-285.738115096,-284.737281068,-283.736447039,-282.735613011,-281.734778982,-280.733944954,-279.733110926,-278.732276897,-277.731442869,-276.730608841,-275.729774812,-274.728940784,-273.728106756,-272.727272727,-271.726438699,-270.725604671,-269.724770642,-268.723936614,-267.723102585,-266.722268557,-265.721434529,-264.7206005,-263.719766472,-262.718932444,-261.718098415,-260.717264387,-259.716430359,-258.71559633,-257.714762302,-256.713928274,-255.713094245,-254.712260217,-253.711426188,-252.71059216,-251.709758132,-250.708924103,-249.708090075,-248.707256047,-247.706422018,-246.70558799,-245.704753962,-244.703919933,-243.703085905,-242.702251877,-241.701417848,-240.70058382,-239.699749791,-238.698915763,-237.698081735,-236.697247706,-235.696413678,-234.69557965,-233.694745621,-232.693911593,-231.693077565,-230.692243536,-229.691409508,-228.69057548,-227.689741451,-226.688907423,-225.688073394,-224.687239366,-223.686405338,-222.685571309,-221.684737281,-220.683903253,-219.683069224,-218.682235196,-217.681401168,-216.680567139,-215.679733111,-214.678899083,-213.678065054,-212.677231026,-211.676396997,-210.675562969,-209.674728941,-208.673894912,-207.673060884,-206.672226856,-205.671392827,-204.670558799,-203.669724771,-202.668890742,-201.668056714,-200.667222686,-199.666388657,-198.665554629,-197.664720601,-196.663886572,-195.663052544,-194.662218515,-193.661384487,-192.660550459,-191.65971643,-190.658882402,-189.658048374,-188.657214345,-187.656380317,-186.655546289,-185.65471226,-184.653878232,-183.653044204,-182.652210175,-181.651376147,-180.650542118,-179.64970809,-178.648874062,-177.648040033,-176.647206005,-175.646371977,-174.645537948,-173.64470392,-172.643869892,-171.643035863,-170.642201835,-169.641367807,-168.640533778,-167.63969975,-166.638865721,-165.638031693,-164.637197665,-163.636363636,-162.635529608,-161.63469558,-160.633861551,-159.633027523,-158.632193495,-157.631359466,-156.630525438,-155.62969141,-154.628857381,-153.628023353,-152.627189324,-151.626355296,-150.625521268,-149.624687239,-148.623853211,-147.623019183,-146.622185154,-145.621351126,-144.620517098,-143.619683069,-142.618849041,-141.618015013,-140.617180984,-139.616346956,-138.615512927,-137.614678899,-136.613844871,-135.613010842,-134.612176814,-133.611342786,-132.610508757,-131.609674729,-130.608840701,-129.608006672,-128.607172644,-127.606338616,-126.605504587,-125.604670559,-124.60383653,-123.603002502,-122.602168474,-121.601334445,-120.600500417,-119.599666389,-118.59883236,-117.597998332,-116.597164304,-115.596330275,-114.595496247,-113.594662219,-112.59382819,-111.592994162,-110.592160133,-109.591326105,-108.590492077,-107.589658048,-106.58882402,-105.587989992,-104.587155963,-103.586321935,-102.585487907,-101.584653878,-100.58381985,-99.5829858215,-98.5821517932,-97.5813177648,-96.5804837364,-95.5796497081,-94.5788156797,-93.5779816514,-92.577147623,-91.5763135947,-90.5754795663,-89.5746455379,-88.5738115096,-87.5729774812,-86.5721434529,-85.5713094245,-84.5704753962,-83.5696413678,-82.5688073394,-81.5679733111,-80.5671392827,-79.5663052544,-78.565471226,-77.5646371977,-76.5638031693,-75.562969141,-74.5621351126,-73.5613010842,-72.5604670559,-71.5596330275,-70.5587989992,-69.5579649708,-68.5571309425,-67.5562969141,-66.5554628857,-65.5546288574,-64.553794829,-63.5529608007,-62.5521267723,-61.551292744,-60.5504587156,-59.5496246872,-58.5487906589,-57.5479566305,-56.5471226022,-55.5462885738,-54.5454545455,-53.5446205171,-52.5437864887,-51.5429524604,-50.542118432,-49.5412844037,-48.5404503753,-47.539616347,-46.5387823186,-45.5379482902,-44.5371142619,-43.5362802335,-42.5354462052,-41.5346121768,-40.5337781485,-39.5329441201,-38.5321100917,-37.5312760634,-36.530442035,-35.5296080067,-34.5287739783,-33.52793995,-32.5271059216,-31.5262718932,-30.5254378649,-29.5246038365,-28.5237698082,-27.5229357798,-26.5221017515,-25.5212677231,-24.5204336947,-23.5195996664,-22.518765638,-21.5179316097,-20.5170975813,-19.516263553,-18.5154295246,-17.5145954962,-16.5137614679,-15.5129274395,-14.5120934112,-13.5112593828,-12.5104253545,-11.5095913261,-10.5087572977,-9.50792326939,-8.50708924103,-7.50625521268,-6.50542118432,-5.50458715596,-4.50375312761,-3.50291909925,-2.50208507089,-1.50125104254,-0.500417014179,0.500417014178,1.50125104254,2.50208507089,3.50291909925,4.50375312761,5.50458715596,6.50542118432,7.50625521268,8.50708924103,9.50792326939,10.5087572977,11.5095913261,12.5104253545,13.5112593828,14.5120934112,15.5129274395,16.5137614679,17.5145954962,18.5154295246,19.516263553,20.5170975813,21.5179316097,22.518765638,23.5195996664,24.5204336947,25.5212677231,26.5221017515,27.5229357798,28.5237698082,29.5246038365,30.5254378649,31.5262718932,32.5271059216,33.52793995,34.5287739783,35.5296080067,36.530442035,37.5312760634,38.5321100917,39.5329441201,40.5337781485,41.5346121768,42.5354462052,43.5362802335,44.5371142619,45.5379482902,46.5387823186,47.539616347,48.5404503753,49.5412844037,50.542118432,51.5429524604,52.5437864887,53.5446205171,54.5454545455,55.5462885738,56.5471226022,57.5479566305,58.5487906589,59.5496246872,60.5504587156,61.551292744,62.5521267723,63.5529608007,64.553794829,65.5546288574,66.5554628857,67.5562969141,68.5571309425,69.5579649708,70.5587989992,71.5596330275,72.5604670559,73.5613010842,74.5621351126,75.562969141,76.5638031693,77.5646371977,78.565471226,79.5663052544,80.5671392827,81.5679733111,82.5688073394,83.5696413678,84.5704753962,85.5713094245,86.5721434529,87.5729774812,88.5738115096,89.5746455379,90.5754795663,91.5763135947,92.577147623,93.5779816514,94.5788156797,95.5796497081,96.5804837364,97.5813177648,98.5821517932,99.5829858215,100.58381985,101.584653878,102.585487907,103.586321935,104.587155963,105.587989992,106.58882402,107.589658048,108.590492077,109.591326105,110.592160133,111.592994162,112.59382819,113.594662219,114.595496247,115.596330275,116.597164304,117.597998332,118.59883236,119.599666389,120.600500417,121.601334445,122.602168474,123.603002502,124.60383653,125.604670559,126.605504587,127.606338616,128.607172644,129.608006672,130.608840701,131.609674729,132.610508757,133.611342786,134.612176814,135.613010842,136.613844871,137.614678899,138.615512927,139.616346956,140.617180984,141.618015013,142.618849041,143.619683069,144.620517098,145.621351126,146.622185154,147.623019183,148.623853211,149.624687239,150.625521268,151.626355296,152.627189324,153.628023353,154.628857381,155.62969141,156.630525438,157.631359466,158.632193495,159.633027523,160.633861551,161.63469558,162.635529608,163.636363636,164.637197665,165.638031693,166.638865721,167.63969975,168.640533778,169.641367807,170.642201835,171.643035863,172.643869892,173.64470392,174.645537948,175.646371977,176.647206005,177.648040033,178.648874062,179.64970809,180.650542118,181.651376147,182.652210175,183.653044204,184.653878232,185.65471226,186.655546289,187.656380317,188.657214345,189.658048374,190.658882402,191.65971643,192.660550459,193.661384487,194.662218515,195.663052544,196.663886572,197.664720601,198.665554629,199.666388657,200.667222686,201.668056714,202.668890742,203.669724771,204.670558799,205.671392827,206.672226856,207.673060884,208.673894912,209.674728941,210.675562969,211.676396997,212.677231026,213.678065054,214.678899083,215.679733111,216.680567139,217.681401168,218.682235196,219.683069224,220.683903253,221.684737281,222.685571309,223.686405338,224.687239366,225.688073394,226.688907423,227.689741451,228.69057548,229.691409508,230.692243536,231.693077565,232.693911593,233.694745621,234.69557965,235.696413678,236.697247706,237.698081735,238.698915763,239.699749791,240.70058382,241.701417848,242.702251877,243.703085905,244.703919933,245.704753962,246.70558799,247.706422018,248.707256047,249.708090075,250.708924103,251.709758132,252.71059216,253.711426188,254.712260217,255.713094245,256.713928274,257.714762302,258.71559633,259.716430359,260.717264387,261.718098415,262.718932444,263.719766472,264.7206005,265.721434529,266.722268557,267.723102585,268.723936614,269.724770642,270.725604671,271.726438699,272.727272727,273.728106756,274.728940784,275.729774812,276.730608841,277.731442869,278.732276897,279.733110926,280.733944954,281.734778982,282.735613011,283.736447039,284.737281068,285.738115096,286.738949124,287.739783153,288.740617181,289.741451209,290.742285238,291.743119266,292.743953294,293.744787323,294.745621351,295.746455379,296.747289408,297.748123436,298.748957465,299.749791493,300.750625521,301.75145955,302.752293578,303.753127606,304.753961635,305.754795663,306.755629691,307.75646372,308.757297748,309.758131776,310.758965805,311.759799833,312.760633862,313.76146789,314.762301918,315.763135947,316.763969975,317.764804003,318.765638032,319.76647206,320.767306088,321.768140117,322.768974145,323.769808173,324.770642202,325.77147623,326.772310259,327.773144287,328.773978315,329.774812344,330.775646372,331.7764804,332.777314429,333.778148457,334.778982485,335.779816514,336.780650542,337.78148457,338.782318599,339.783152627,340.783986656,341.784820684,342.785654712,343.786488741,344.787322769,345.788156797,346.788990826,347.789824854,348.790658882,349.791492911,350.792326939,351.793160967,352.793994996,353.794829024,354.795663053,355.796497081,356.797331109,357.798165138,358.798999166,359.799833194,360.800667223,361.801501251,362.802335279,363.803169308,364.804003336,365.804837364,366.805671393,367.806505421,368.80733945,369.808173478,370.809007506,371.809841535,372.810675563,373.811509591,374.81234362,375.813177648,376.814011676,377.814845705,378.815679733,379.816513761,380.81734779,381.818181818,382.819015847,383.819849875,384.820683903,385.821517932,386.82235196,387.823185988,388.824020017,389.824854045,390.825688073,391.826522102,392.82735613,393.828190158,394.829024187,395.829858215,396.830692244,397.831526272,398.8323603,399.833194329,400.834028357,401.834862385,402.835696414,403.836530442,404.83736447,405.838198499,406.839032527,407.839866555,408.840700584,409.841534612,410.842368641,411.843202669,412.844036697,413.844870726,414.845704754,415.846538782,416.847372811,417.848206839,418.849040867,419.849874896,420.850708924,421.851542952,422.852376981,423.853211009,424.854045038,425.854879066,426.855713094,427.856547123,428.857381151,429.858215179,430.859049208,431.859883236,432.860717264,433.861551293,434.862385321,435.863219349,436.864053378,437.864887406,438.865721435,439.866555463,440.867389491,441.86822352,442.869057548,443.869891576,444.870725605,445.871559633,446.872393661,447.87322769,448.874061718,449.874895746,450.875729775,451.876563803,452.877397832,453.87823186,454.879065888,455.879899917,456.880733945,457.881567973,458.882402002,459.88323603,460.884070058,461.884904087,462.885738115,463.886572143,464.887406172,465.8882402,466.889074229,467.889908257,468.890742285,469.891576314,470.892410342,471.89324437,472.894078399,473.894912427,474.895746455,475.896580484,476.897414512,477.89824854,478.899082569,479.899916597,480.900750626,481.901584654,482.902418682,483.903252711,484.904086739,485.904920767,486.905754796,487.906588824,488.907422852,489.908256881,490.909090909,491.909924937,492.910758966,493.911592994,494.912427023,495.913261051,496.914095079,497.914929108,498.915763136,499.916597164,500.917431193,501.918265221,502.919099249,503.919933278,504.920767306,505.921601334,506.922435363,507.923269391,508.92410342,509.924937448,510.925771476,511.926605505,512.927439533,513.928273561,514.92910759,515.929941618,516.930775646,517.931609675,518.932443703,519.933277731,520.93411176,521.934945788,522.935779817,523.936613845,524.937447873,525.938281902,526.93911593,527.939949958,528.940783987,529.941618015,530.942452043,531.943286072,532.9441201,533.944954128,534.945788157,535.946622185,536.947456214,537.948290242,538.94912427,539.949958299,540.950792327,541.951626355,542.952460384,543.953294412,544.95412844,545.954962469,546.955796497,547.956630525,548.957464554,549.958298582,550.959132611,551.959966639,552.960800667,553.961634696,554.962468724,555.963302752,556.964136781,557.964970809,558.965804837,559.966638866,560.967472894,561.968306922,562.969140951,563.969974979,564.970809008,565.971643036,566.972477064,567.973311093,568.974145121,569.974979149,570.975813178,571.976647206,572.977481234,573.978315263,574.979149291,575.979983319,576.980817348,577.981651376,578.982485405,579.983319433,580.984153461,581.98498749,582.985821518,583.986655546,584.987489575,585.988323603,586.989157631,587.98999166,588.990825688,589.991659716,590.992493745,591.993327773,592.994161802,593.99499583,594.995829858,595.996663887,596.997497915,597.998331943,598.999165972,600.0) altd <- c(52, 288) x <- seq.int((length(p)-1)/2*-1,(length(p)-1)/2) pdf('/magnuson-lab/jraab/analysis/swi_snf_final/output/macs_peaks//arid2_model.pdf',height=6,width=6) plot(x,p,type='l',col=c('red'),main='Peak Model',xlab='Distance to the middle',ylab='Percentage') lines(x,m,col=c('blue')) legend('topleft',c('forward tags','reverse tags'),lty=c(1,1,1),col=c('red','blue')) plot(xcorr,ycorr,type='l',col=c('black'),main='Cross-Correlation',xlab='Lag between + and - tags',ylab='Correlation') abline(v=altd,lty=2,col=c('red')) legend('topleft','alternative lag(s)',lty=2,col='red') legend('right','alt lag(s) : 52,288',bty='n') dev.off()
#19 febbraio 2018 #Unisci serie storiche con serie nuove scaricate da Centro Funzionale Calabria rm(list=objects()) library("tidyverse") library("stringr") library("readr") library("purrr") options(error=recover,warn = 2) ANNO<-as.integer(2017) #Se il file delle nuove serie contiene i codici HisCentral OD (in anagrafica, SiteCode) #vanno riconvertiti in SiteID CONVERTI_NOMI<-TRUE tryCatch({ read_delim("reg.calabria.info.csv",delim=";",col_names=TRUE) },error=function(e){ stop("Anagrafica regione Calabria, file non trovato") })->ana c("Precipitation","Tmax","Tmin")->parametri leggiDati<-function(nomeFile,DELIM=","){ if(missing(nomeFile)) stop("Manca il nome del file da leggere") stopifnot(DELIM %in% c(",",";")) #leggiamo solo intestazione per sapere quante colonne ho e quindi scrivere il formato di lettura tryCatch({ read_delim(nomeFile,delim=DELIM,col_names=TRUE,n_max=1) },error=function(e){ stop(sprintf("errore lettura file %s",nomeFile)) })->dati stopifnot(all(names(dati)[1:3] %in% c("yy","mm","dd"))) #numero ci colonne (ncol(dati)-3) ->numCol #lettura dati storici utilizzando il formato double read_delim(nomeFile,delim=DELIM,col_names=TRUE,col_types=paste("iii",paste(rep("d",numCol),collapse=""),sep ="")) }#fine leggiDati purrr::walk(parametri,.f=function(parametro){ paste0(parametro,"_fino",ANNO-1,".csv")->nomeFile leggiDati(nomeFile,DELIM=",")->dati paste0(parametro,"_",ANNO,".csv")->nomeFileDatiNuovi #leggiamo solo intestazione per sapere quante colonne ho e quindi scrivere il formato di lettura leggiDati(nomeFileDatiNuovi,DELIM=";")->datiNuovi if(CONVERTI_NOMI){ match(names(datiNuovi)[4:ncol(datiNuovi)],ana$SiteCode)->posizioni stopifnot(all(!is.na(posizioni))) names(datiNuovi)<-c("yy","mm","dd",ana[posizioni,]$SiteID) }#fine CONVERTI_NOMI #unione e scrittura bind_rows(dati,datiNuovi)->finale print(sprintf("PARAMETRO %s",parametro)) range(finale$yy)->anni print(sprintf("Range anni da %s a %s",anni[1],anni[2])) write_delim(finale,path=paste0(parametro,"_storici_fino",ANNO,".csv"),delim=",",col_names=TRUE) #quale serie manca nel nuovo anno ANNO? setdiff(names(dati),names(datiNuovi))->missingIn #viceversa: quali serie sono presenti nel ANNO e non ho nel file fino ad ANNO-1? setdiff(names(datiNuovi),names(dati))->missingInUp sink(paste0("log_bindSerie",ANNO,"ConSerieFino",ANNO-1,".txt"),append=TRUE) print("*************") print(parametro) print(sprintf("Serie Centro Funzionale Calabria nel %s ma che non hanno corrispondenza nel %s:",ANNO,ANNO-1)) print(missingInUp) print(sprintf("Serie fino a %s senza dati nel %s:",ANNO-1,ANNO)) print(missingIn) print("*************") sink() })#fine lapply
/calabria_centro_funzionale/unisci_serieStoriche_nuoviDati.R
no_license
guidofioravanti/serie_giornaliere
R
false
false
2,936
r
#19 febbraio 2018 #Unisci serie storiche con serie nuove scaricate da Centro Funzionale Calabria rm(list=objects()) library("tidyverse") library("stringr") library("readr") library("purrr") options(error=recover,warn = 2) ANNO<-as.integer(2017) #Se il file delle nuove serie contiene i codici HisCentral OD (in anagrafica, SiteCode) #vanno riconvertiti in SiteID CONVERTI_NOMI<-TRUE tryCatch({ read_delim("reg.calabria.info.csv",delim=";",col_names=TRUE) },error=function(e){ stop("Anagrafica regione Calabria, file non trovato") })->ana c("Precipitation","Tmax","Tmin")->parametri leggiDati<-function(nomeFile,DELIM=","){ if(missing(nomeFile)) stop("Manca il nome del file da leggere") stopifnot(DELIM %in% c(",",";")) #leggiamo solo intestazione per sapere quante colonne ho e quindi scrivere il formato di lettura tryCatch({ read_delim(nomeFile,delim=DELIM,col_names=TRUE,n_max=1) },error=function(e){ stop(sprintf("errore lettura file %s",nomeFile)) })->dati stopifnot(all(names(dati)[1:3] %in% c("yy","mm","dd"))) #numero ci colonne (ncol(dati)-3) ->numCol #lettura dati storici utilizzando il formato double read_delim(nomeFile,delim=DELIM,col_names=TRUE,col_types=paste("iii",paste(rep("d",numCol),collapse=""),sep ="")) }#fine leggiDati purrr::walk(parametri,.f=function(parametro){ paste0(parametro,"_fino",ANNO-1,".csv")->nomeFile leggiDati(nomeFile,DELIM=",")->dati paste0(parametro,"_",ANNO,".csv")->nomeFileDatiNuovi #leggiamo solo intestazione per sapere quante colonne ho e quindi scrivere il formato di lettura leggiDati(nomeFileDatiNuovi,DELIM=";")->datiNuovi if(CONVERTI_NOMI){ match(names(datiNuovi)[4:ncol(datiNuovi)],ana$SiteCode)->posizioni stopifnot(all(!is.na(posizioni))) names(datiNuovi)<-c("yy","mm","dd",ana[posizioni,]$SiteID) }#fine CONVERTI_NOMI #unione e scrittura bind_rows(dati,datiNuovi)->finale print(sprintf("PARAMETRO %s",parametro)) range(finale$yy)->anni print(sprintf("Range anni da %s a %s",anni[1],anni[2])) write_delim(finale,path=paste0(parametro,"_storici_fino",ANNO,".csv"),delim=",",col_names=TRUE) #quale serie manca nel nuovo anno ANNO? setdiff(names(dati),names(datiNuovi))->missingIn #viceversa: quali serie sono presenti nel ANNO e non ho nel file fino ad ANNO-1? setdiff(names(datiNuovi),names(dati))->missingInUp sink(paste0("log_bindSerie",ANNO,"ConSerieFino",ANNO-1,".txt"),append=TRUE) print("*************") print(parametro) print(sprintf("Serie Centro Funzionale Calabria nel %s ma che non hanno corrispondenza nel %s:",ANNO,ANNO-1)) print(missingInUp) print(sprintf("Serie fino a %s senza dati nel %s:",ANNO-1,ANNO)) print(missingIn) print("*************") sink() })#fine lapply
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/data.R \docType{data} \name{irish_county_data} \alias{irish_county_data} \title{Irish county data} \format{ An object of class \code{sf} (inherits from \code{tbl_df}, \code{tbl}, \code{data.frame}) with 8008 rows and 10 columns. } \source{ \url{http://opendata-geohive.hub.arcgis.com} } \usage{ irish_county_data } \description{ Irish county data from Irish government. } \keyword{datasets}
/man/irish_county_data.Rd
permissive
hamilton-institute/hamiltonCovid19
R
false
true
469
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/data.R \docType{data} \name{irish_county_data} \alias{irish_county_data} \title{Irish county data} \format{ An object of class \code{sf} (inherits from \code{tbl_df}, \code{tbl}, \code{data.frame}) with 8008 rows and 10 columns. } \source{ \url{http://opendata-geohive.hub.arcgis.com} } \usage{ irish_county_data } \description{ Irish county data from Irish government. } \keyword{datasets}
# Load amniote csv and master synonyms file dat <- read.csv(file = "/Users/Anna/Google Drive/bird trait networks/inputs/data/r data/match data/preAves_Synonyms.csv") synonyms <- read.csv(file = "/Users/Anna/Google Drive/bird trait networks/inputs/data/r data/match data/pre_synonyms.csv") # clean amniote synonyms dat <- unique(dat[!dat[,1] == dat[,2],]) # add amniote synonyms to master synonyms <- rbind(synonyms, data.frame(dat, dataset = "amniote1"), data.frame(dat[,2:1], dataset = "amniote2")) # remove duplicates synonyms <- synonyms[!duplicated(synonyms[,1:2]),] # save write.csv(synonyms, file = "/Users/Anna/Google Drive/bird trait networks/inputs/data/r data/synonyms.csv")
/R/add amniote synonyms.R
no_license
annakrystalli/bird_trait_networks
R
false
false
710
r
# Load amniote csv and master synonyms file dat <- read.csv(file = "/Users/Anna/Google Drive/bird trait networks/inputs/data/r data/match data/preAves_Synonyms.csv") synonyms <- read.csv(file = "/Users/Anna/Google Drive/bird trait networks/inputs/data/r data/match data/pre_synonyms.csv") # clean amniote synonyms dat <- unique(dat[!dat[,1] == dat[,2],]) # add amniote synonyms to master synonyms <- rbind(synonyms, data.frame(dat, dataset = "amniote1"), data.frame(dat[,2:1], dataset = "amniote2")) # remove duplicates synonyms <- synonyms[!duplicated(synonyms[,1:2]),] # save write.csv(synonyms, file = "/Users/Anna/Google Drive/bird trait networks/inputs/data/r data/synonyms.csv")
# This code is related to the extreme value theory (EVT) # It builds a graph that shows the mean excess loss as a function of the threhold. SP500 = read.csv("/Users/Larry/Documents/UIUC Schedule/FIN 580/HW/HW4.data.csv") SP500$loss = -SP500$Return loss <- SP500$loss[!is.na(SP500$loss)] # make sure "NA" is not output to loss # For different threhold {0.01, 0.012, 0.014, …, 0.05} steps = (0.05-0.01)/0.002+1 i = 0 meanexcess = matrix(nrow = steps, ncol = 2) for (u in seq(0.01, 0.05, by = 0.002)) { i = i+1 meanexcess[i,1] = u meanexcess[i,2] = mean((loss-u)[loss>=u]) } matplot(meanexcess[,1], meanexcess[,2], type = "l", xlab = "Threshold (u)", ylab = "Mean Excess Loss (e(u))", col = "black") #calculate number with loss higher than 0.022 excess = (loss-0.022)[loss>=0.022] length(excess) # MLE for GPD # GPD fitting, theta[1]=kesai, theta[2]=beta initialvalue = c(0.1, 0.05) gpd = function(excess,theta){(1/theta[2])*((1+theta[1]*excess/theta[2])^(-(1+1/theta[1])))} result = optim(initialvalue, fn=function(theta){-sum(log(gpd(excess,theta)))}, method="BFGS") kesai = result$par[1] beta = result$par[2] #conditional desity pdf_gpd = function(x,theta){(1/theta[2])*((1+theta[1]*x/theta[2])^(-(1+1/theta[1])))} threshold_new = seq(from = 0.022, to = 0.1, by = 0.002) - 0.022 density = rep(0,length(threshold_new)) density = pdf_gpd(threshold_new,result$par) threshold_new = threshold_new + 0.022 plot(threshold_new,density, type = "l") #probability (need to check later) prob22=length(excess)/length(loss) condprob <- function(x){(1+kesai*x/beta)^(-1/kesai)} series = seq(0.022 , 0.10, by = 0.001) valueofprob <- vector("numeric", length=79) for (j in 1: 79) { valueofprob[j] = prob22*condprob(series[j]-0.022) } length(series) length(valueofprob) plot(series,valueofprob, type ="l") #Value at Risk VaR_EVT = 0.022+(beta/kesai)*((0.01/prob22)^(-kesai)-1) VaR_EVT prob22
/Mean_excess_function.R
no_license
Karagul/risk_management
R
false
false
1,920
r
# This code is related to the extreme value theory (EVT) # It builds a graph that shows the mean excess loss as a function of the threhold. SP500 = read.csv("/Users/Larry/Documents/UIUC Schedule/FIN 580/HW/HW4.data.csv") SP500$loss = -SP500$Return loss <- SP500$loss[!is.na(SP500$loss)] # make sure "NA" is not output to loss # For different threhold {0.01, 0.012, 0.014, …, 0.05} steps = (0.05-0.01)/0.002+1 i = 0 meanexcess = matrix(nrow = steps, ncol = 2) for (u in seq(0.01, 0.05, by = 0.002)) { i = i+1 meanexcess[i,1] = u meanexcess[i,2] = mean((loss-u)[loss>=u]) } matplot(meanexcess[,1], meanexcess[,2], type = "l", xlab = "Threshold (u)", ylab = "Mean Excess Loss (e(u))", col = "black") #calculate number with loss higher than 0.022 excess = (loss-0.022)[loss>=0.022] length(excess) # MLE for GPD # GPD fitting, theta[1]=kesai, theta[2]=beta initialvalue = c(0.1, 0.05) gpd = function(excess,theta){(1/theta[2])*((1+theta[1]*excess/theta[2])^(-(1+1/theta[1])))} result = optim(initialvalue, fn=function(theta){-sum(log(gpd(excess,theta)))}, method="BFGS") kesai = result$par[1] beta = result$par[2] #conditional desity pdf_gpd = function(x,theta){(1/theta[2])*((1+theta[1]*x/theta[2])^(-(1+1/theta[1])))} threshold_new = seq(from = 0.022, to = 0.1, by = 0.002) - 0.022 density = rep(0,length(threshold_new)) density = pdf_gpd(threshold_new,result$par) threshold_new = threshold_new + 0.022 plot(threshold_new,density, type = "l") #probability (need to check later) prob22=length(excess)/length(loss) condprob <- function(x){(1+kesai*x/beta)^(-1/kesai)} series = seq(0.022 , 0.10, by = 0.001) valueofprob <- vector("numeric", length=79) for (j in 1: 79) { valueofprob[j] = prob22*condprob(series[j]-0.022) } length(series) length(valueofprob) plot(series,valueofprob, type ="l") #Value at Risk VaR_EVT = 0.022+(beta/kesai)*((0.01/prob22)^(-kesai)-1) VaR_EVT prob22
zilele trecute , spre seara , am oprit in Piata Domenii din Bucuresti . piramide de pepeni , prapad de legume si stive de lazi cu prune . ziceai ca s - au rupt barajele toamnei si toate s - au pravalit in acel loc . am cerut unui taran din Dimbovita doua kilograme de prune brumarii . cu miinile sale latarete a umplut tasul . cupa de aluminiu era si ea murdara . Dar de zece ori mai jegoasa decit miinile barbatului mirosind a rachiu . alaturi , nevasta ( sau ce i - o fi fost ) si un tingalau ( probabil fiul ori vreun sofer de imprumut ) beau bere . dupa ce a cintarit pina la o pruna , taranul din Dimbovita s - a uitat lung la mine . n - ai punga ? imi pare rau , vin de la serviciu . a pus tasul inapoi pe cintar si a inceput sa se invirta ca un ciine in jurul cozii , doar - doar gaseste pe jos vreo punga aruncata . ba , s - a dus si la un tomberon batut de muste , de unde s - a intors cu un plastic mototolit si murdar . esti nebun , am zis . cum o sa - mi dai prunele in asa ceva ? daca nu - ti convine , nu cumpara , a zis tingalaul atins de bere . si am plecat cu mina goala , asta fiind singura sanctiune politicoasa pe care puteam sa i - o aplic taranului . pentru ca e piatra de temelie a Romaniei , pentru ca e purtatorul de traditii , pentru ca a dus razboaiele , pentru ca in mina lui e piinea tuturor , taranul roman e idealizat departe de conditia sa de astazi . o duce greu , a invatat sa triseze , adeseori e ignorant si plin de prejudecati . pentru a - l cistiga in alegeri este cocolosit de politicieni , si pentru a sublinia specificul romanesc este supralicitat de intelectualii pasunisti . prea putina lume incearca sa - l ajute pe taranul roman sa inteleaga vremurile . Sa priceapa ca s - au dus timpurile cind orasenii se bateau pe telemeaua lui amestecata cu gunoaie si par de oaie , ca nu mai poate vinde cu dispret fata de cumparator , ca nu mai poate sta nespalat , ca nu mai poate fura . si , daca vrea sa supravietuiasca , trebuie sa se adapteze , sa deprinda gesturi noi , sa invete sa foloseasca masinarii mai complicate . ba , daca vrea sa nu se impiedice de nebunii , trebuie sa invete si diferenta dintre banci si fonduri de investitii , dintre publicitate si manualul de folosire a unui aparat , chiar sa priceapa cursul monedei nationale si care - i treaba cu rata dobinzilor . sa nu mai vorbim ca nu mai merge cu vindutul carnii in hirtie de ziar , cu fructe adunate in galetile de la porci , cu toate celelalte care tradeaza un anume dispret pentru semeni . n - as vrea sa se inteleaga ca este vorba despre toti taranii romani . unii au priceput ce se intimpla si au schimbat macazul , miscindu - se spirt . dar multi traiesc si se poarta ca inainte de cel de - al doilea razboi mondial , daca nu chiar mai rau . nici salvarea nu este foarte usoara . cum sa ii luminezi pe unii , cind ei sint copti de alcool si au uitat sa munceasca ? si daca ar fi sa declansam o campanie de iluminare , cum au mai incercat si alte generatii de intelectuali , de unde resurse ? ziarele nu prea ajung pe la sate , programele televiziunilor numai la propasire nu duc , iar biserica numai educatie sociala si economica nu incearca . taranul roman cel idealizat de poeti si politicieni poate face la fel de bine obiectul unei campanii de lichidare a efectelor ignorantei .
/data/Newspapers/2001.09.08.editorial.70827.0712.r
no_license
narcis96/decrypting-alpha
R
false
false
3,330
r
zilele trecute , spre seara , am oprit in Piata Domenii din Bucuresti . piramide de pepeni , prapad de legume si stive de lazi cu prune . ziceai ca s - au rupt barajele toamnei si toate s - au pravalit in acel loc . am cerut unui taran din Dimbovita doua kilograme de prune brumarii . cu miinile sale latarete a umplut tasul . cupa de aluminiu era si ea murdara . Dar de zece ori mai jegoasa decit miinile barbatului mirosind a rachiu . alaturi , nevasta ( sau ce i - o fi fost ) si un tingalau ( probabil fiul ori vreun sofer de imprumut ) beau bere . dupa ce a cintarit pina la o pruna , taranul din Dimbovita s - a uitat lung la mine . n - ai punga ? imi pare rau , vin de la serviciu . a pus tasul inapoi pe cintar si a inceput sa se invirta ca un ciine in jurul cozii , doar - doar gaseste pe jos vreo punga aruncata . ba , s - a dus si la un tomberon batut de muste , de unde s - a intors cu un plastic mototolit si murdar . esti nebun , am zis . cum o sa - mi dai prunele in asa ceva ? daca nu - ti convine , nu cumpara , a zis tingalaul atins de bere . si am plecat cu mina goala , asta fiind singura sanctiune politicoasa pe care puteam sa i - o aplic taranului . pentru ca e piatra de temelie a Romaniei , pentru ca e purtatorul de traditii , pentru ca a dus razboaiele , pentru ca in mina lui e piinea tuturor , taranul roman e idealizat departe de conditia sa de astazi . o duce greu , a invatat sa triseze , adeseori e ignorant si plin de prejudecati . pentru a - l cistiga in alegeri este cocolosit de politicieni , si pentru a sublinia specificul romanesc este supralicitat de intelectualii pasunisti . prea putina lume incearca sa - l ajute pe taranul roman sa inteleaga vremurile . Sa priceapa ca s - au dus timpurile cind orasenii se bateau pe telemeaua lui amestecata cu gunoaie si par de oaie , ca nu mai poate vinde cu dispret fata de cumparator , ca nu mai poate sta nespalat , ca nu mai poate fura . si , daca vrea sa supravietuiasca , trebuie sa se adapteze , sa deprinda gesturi noi , sa invete sa foloseasca masinarii mai complicate . ba , daca vrea sa nu se impiedice de nebunii , trebuie sa invete si diferenta dintre banci si fonduri de investitii , dintre publicitate si manualul de folosire a unui aparat , chiar sa priceapa cursul monedei nationale si care - i treaba cu rata dobinzilor . sa nu mai vorbim ca nu mai merge cu vindutul carnii in hirtie de ziar , cu fructe adunate in galetile de la porci , cu toate celelalte care tradeaza un anume dispret pentru semeni . n - as vrea sa se inteleaga ca este vorba despre toti taranii romani . unii au priceput ce se intimpla si au schimbat macazul , miscindu - se spirt . dar multi traiesc si se poarta ca inainte de cel de - al doilea razboi mondial , daca nu chiar mai rau . nici salvarea nu este foarte usoara . cum sa ii luminezi pe unii , cind ei sint copti de alcool si au uitat sa munceasca ? si daca ar fi sa declansam o campanie de iluminare , cum au mai incercat si alte generatii de intelectuali , de unde resurse ? ziarele nu prea ajung pe la sate , programele televiziunilor numai la propasire nu duc , iar biserica numai educatie sociala si economica nu incearca . taranul roman cel idealizat de poeti si politicieni poate face la fel de bine obiectul unei campanii de lichidare a efectelor ignorantei .
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/job_get.R \name{job_get} \alias{job_get} \title{Get a single job} \usage{ job_get(id, verbose = TRUE, ...) } \arguments{ \item{id}{A character string containing an ID for job.} \item{verbose}{A logical indicating whether to print additional information about the request.} \item{...}{Additional arguments passed to \code{\link{cf_query}}.} } \value{ A list containing details of all jobs. The \code{id} field provides the Crowdflower Job ID for each job. } \description{ Get a single Crowdflower job } \examples{ \dontrun{ # create new job f1 <- system.file("templates/instructions1.html", package = "crowdflower") f2 <- system.file("templates/cml1.xml", package = "crowdflower") j <- job_create(title = "Job Title", instructions = readChar(f1, nchars = 1e8L), cml = readChar(f2, nchars = 1e8L)) # confirm details are correct job_get(j) # delete job job_delete(j) } } \seealso{ \code{\link{cf_account}} } \keyword{jobs}
/man/job_get.Rd
no_license
isabella232/crowdflower
R
false
true
1,035
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/job_get.R \name{job_get} \alias{job_get} \title{Get a single job} \usage{ job_get(id, verbose = TRUE, ...) } \arguments{ \item{id}{A character string containing an ID for job.} \item{verbose}{A logical indicating whether to print additional information about the request.} \item{...}{Additional arguments passed to \code{\link{cf_query}}.} } \value{ A list containing details of all jobs. The \code{id} field provides the Crowdflower Job ID for each job. } \description{ Get a single Crowdflower job } \examples{ \dontrun{ # create new job f1 <- system.file("templates/instructions1.html", package = "crowdflower") f2 <- system.file("templates/cml1.xml", package = "crowdflower") j <- job_create(title = "Job Title", instructions = readChar(f1, nchars = 1e8L), cml = readChar(f2, nchars = 1e8L)) # confirm details are correct job_get(j) # delete job job_delete(j) } } \seealso{ \code{\link{cf_account}} } \keyword{jobs}
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/general_misc_utils.R \name{getDataFromTextArea} \alias{getDataFromTextArea} \title{Transform two column text to data matrix} \usage{ getDataFromTextArea(txtInput, sep.type = "space") } \arguments{ \item{txtInput}{Input text} \item{sep.type}{Indicate the seperator type for input text. Default set to "space"} } \description{ Transform two column input text to data matrix (single column data frame) } \author{ Jeff Xia\email{jeff.xia@mcgill.ca} McGill University, Canada License: GNU GPL (>= 2) }
/man/getDataFromTextArea.Rd
permissive
xia-lab/MetaboAnalystR
R
false
true
576
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/general_misc_utils.R \name{getDataFromTextArea} \alias{getDataFromTextArea} \title{Transform two column text to data matrix} \usage{ getDataFromTextArea(txtInput, sep.type = "space") } \arguments{ \item{txtInput}{Input text} \item{sep.type}{Indicate the seperator type for input text. Default set to "space"} } \description{ Transform two column input text to data matrix (single column data frame) } \author{ Jeff Xia\email{jeff.xia@mcgill.ca} McGill University, Canada License: GNU GPL (>= 2) }
# Functions for handling data from stateior, https://github.com/USEPA/stateior #' Load two-region IO data of model iolevel and year from user's local directory #' or the EPA Data Commons. #' @description Load two-region IO data of model iolevel and year from user's #' local directory or the EPA Data Commons. #' @param model An EEIO form USEEIO model object with model specs and IO meta data loaded. #' @param dataname Name of desired IO data, can be "Make", "Use", "DomesticUse", #' "UseTransactions", "FinalDemand", "InternationalTradeAdjustment, #' "DomesticUseTransactions", "DomesticFinalDemand", #' "CommodityOutput, "IndustryOutput", and "DomesticUsewithTrade". #' @return A list of two-region IO data of model iolevel and year. getTwoRegionIOData <- function(model, dataname) { # Define state, year and iolevel if (!"US-DC" %in% model$specs$ModelRegionAcronyms) { state <- state.name[state.abb == gsub(".*-", "", model$specs$ModelRegionAcronyms[1])] } else { state <- "District of Columbia" } # Define data file name filename <- paste("TwoRegion", model$specs$BaseIOLevel, dataname, model$specs$IOYear, model$specs$IODataVersion, sep = "_") # Adjust filename to fit what is on the Data Commons if (dataname %in% c("UseTransactions", "FinalDemand")) { filename <- gsub(dataname, "Use", filename) } else if (dataname %in% c("DomesticUseTransactions", "DomesticFinalDemand")) { filename <- gsub(dataname, "DomesticUse", filename) } # Load data TwoRegionIOData <- readRDS(loadDataCommonsfile(paste0("stateio/", filename, ".rds"))) # Keep SoI and RoUS only TwoRegionIOData <- TwoRegionIOData[[state]] if (dataname %in% c("UseTransactions", "DomesticUseTransactions")) { TwoRegionIOData <- TwoRegionIOData[model$Commodities$Code_Loc, model$Industries$Code_Loc] } else if (dataname %in% c("FinalDemand", "DomesticFinalDemand")) { TwoRegionIOData <- TwoRegionIOData[model$Commodities$Code_Loc, model$FinalDemandMeta$Code_Loc] } else if (dataname == "ValueAdded") { TwoRegionIOData <- TwoRegionIOData[model$ValueAddedMeta$Code_Loc, model$Industries$Code_Loc] } return(TwoRegionIOData) }
/R/StateiorFunctions.R
permissive
USEPA/useeior
R
false
false
2,291
r
# Functions for handling data from stateior, https://github.com/USEPA/stateior #' Load two-region IO data of model iolevel and year from user's local directory #' or the EPA Data Commons. #' @description Load two-region IO data of model iolevel and year from user's #' local directory or the EPA Data Commons. #' @param model An EEIO form USEEIO model object with model specs and IO meta data loaded. #' @param dataname Name of desired IO data, can be "Make", "Use", "DomesticUse", #' "UseTransactions", "FinalDemand", "InternationalTradeAdjustment, #' "DomesticUseTransactions", "DomesticFinalDemand", #' "CommodityOutput, "IndustryOutput", and "DomesticUsewithTrade". #' @return A list of two-region IO data of model iolevel and year. getTwoRegionIOData <- function(model, dataname) { # Define state, year and iolevel if (!"US-DC" %in% model$specs$ModelRegionAcronyms) { state <- state.name[state.abb == gsub(".*-", "", model$specs$ModelRegionAcronyms[1])] } else { state <- "District of Columbia" } # Define data file name filename <- paste("TwoRegion", model$specs$BaseIOLevel, dataname, model$specs$IOYear, model$specs$IODataVersion, sep = "_") # Adjust filename to fit what is on the Data Commons if (dataname %in% c("UseTransactions", "FinalDemand")) { filename <- gsub(dataname, "Use", filename) } else if (dataname %in% c("DomesticUseTransactions", "DomesticFinalDemand")) { filename <- gsub(dataname, "DomesticUse", filename) } # Load data TwoRegionIOData <- readRDS(loadDataCommonsfile(paste0("stateio/", filename, ".rds"))) # Keep SoI and RoUS only TwoRegionIOData <- TwoRegionIOData[[state]] if (dataname %in% c("UseTransactions", "DomesticUseTransactions")) { TwoRegionIOData <- TwoRegionIOData[model$Commodities$Code_Loc, model$Industries$Code_Loc] } else if (dataname %in% c("FinalDemand", "DomesticFinalDemand")) { TwoRegionIOData <- TwoRegionIOData[model$Commodities$Code_Loc, model$FinalDemandMeta$Code_Loc] } else if (dataname == "ValueAdded") { TwoRegionIOData <- TwoRegionIOData[model$ValueAddedMeta$Code_Loc, model$Industries$Code_Loc] } return(TwoRegionIOData) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/homebrewanalytics-package.R \docType{package} \name{homebrewanalytics} \alias{homebrewanalytics} \alias{homebrewanalytics-package} \title{homebrewanalytics} \description{ The 'Homebrew Project' <brew.sh> has a myriad of "recipes" that make life easier for 'macOS' users by enabling them to (mostly) effortlessly install popular open source libraries, tools, utilities and applications. The project collectes anonymous metrics from users who have not opted-out of metrics collection and makes them available via a 'JSON' 'API'. } \author{ Bob Rudis (bob@rud.is) }
/man/homebrewanalytics.Rd
no_license
pombredanne/homebrewanalytics
R
false
true
641
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/homebrewanalytics-package.R \docType{package} \name{homebrewanalytics} \alias{homebrewanalytics} \alias{homebrewanalytics-package} \title{homebrewanalytics} \description{ The 'Homebrew Project' <brew.sh> has a myriad of "recipes" that make life easier for 'macOS' users by enabling them to (mostly) effortlessly install popular open source libraries, tools, utilities and applications. The project collectes anonymous metrics from users who have not opted-out of metrics collection and makes them available via a 'JSON' 'API'. } \author{ Bob Rudis (bob@rud.is) }
#' Old Radial Matrix Element. #' #' \code{radial_matrix_element} calculates the radial matrix element. #' #' This function calculates the radial matrix element for two arbitrary states #' (n1, l1, j1) and (n2, l2, j2). A Numerov algorithm is used to compute the #' radial matrix elements as done in Appendix A of Zimmerman et al, PRA, 20, 2251 #' (1979). The scaling used in this function is \eqn{\xi = \sqrt r}, #' \eqn{\Psi = r^(3/4) R(r)} as done by Bhatti, Cromer, and Cooke, PRA, 24, 161 #' (1981). #' #' @param k A numeric. The power of r to be calculated over. To get a dipole #' matrix element, k must be equal to 1. Default k = 1. #' @param n1 A numeric. The principle quantum number of state 1. #' @param n2 A numeric. The principle quantum number of state 2. #' @param l1 A numeric. The orbital angular momentum number of state 1. #' @param l2 A numeric. The orbital angular momentum number of state 2. #' @param j1 A numeric. The total angular momentum number of state 1. #' @param j2 A numeric. The total angular momentum number of state 2. #' #' @export old_radial_matrix_element <- function(n1, n2, l1, l2, j1, j2, k = 1){ # Number of Electrons Z <- 1 # Quantum numbers for states 1 and 2. Primary quantum number n, orbital # angular momentum l, total angular momentum j delta1 <- quantum_defect(n1, l1, j1) delta2 <- quantum_defect(n2, l2, j2) E1 <- -1 / (2 * (n1 - delta1) ^ 2) E2 <- -1 / (2 * (n2 - delta2) ^ 2) # Inner and outer turning points, core radius for both states r1_O <- 2 * n1 * (n1 + 15) r1_I <- (n1 ^ 2 - n1 * sqrt(n1 ^ 2 - l1 * (l1 + 1))) / 2 r2_O <- 2 * n2 * (n2 + 15) r2_I <- (n2 ^ 2 - n2 * sqrt(n2 ^ 2 - l2 * (l2 + 1)))/ 2 # Core radius as a function of core polarizability r = (a_c)^(1/3) # Core polarizability is a_c = 9.0760 for Rubidium core.radius <- (9.0760) ^ (1/3) # Determine which outer turning point is the larger to set as starting point r_0 <- max(r1_O, r2_O) # Defining scaled x-axis ksi = sqrt(r), step size h, and starting # point ksi_0 = sqrt(r_0) ksi_0 <- sqrt(r_0) h <- 0.01 ksi_1 <- ksi_0 - h ksi_2 <- ksi_1 - h # Initial wavefunction guesses Psi1_0 <- 10 ^ -15 Psi1_1 <- 10 ^ -14 Psi2_0 <- 10 ^ -15 Psi2_1 <- 10 ^ -14 # Defining terms to be used in Numerov Algorithm ksi_iminus1 <- ksi_0 ksi_i <- ksi_1 ksi_iplus1 <- ksi_2 Psi1_iminus1 <- Psi1_0 Psi1_i <- Psi1_1 Psi2_iminus1 <- Psi2_0 Psi2_i <- Psi2_1 # Establishing Numerov integration data frame ksi <- numeric() Psi1 <- numeric() Psi2 <- numeric() N1_i <- numeric() N2_i <- numeric() Psi12 <- numeric() if(r1_O < r2_O){ ksi <- c(ksi, ksi_0, ksi_1) Psi1 <- c(Psi1, 0, 0) Psi2 <- c(Psi2, Psi2_0, Psi2_1) N1_i <- c(N1_i, 0, 0) N2_i <- c(N2_i, 2 * ksi_0 ^ 2 * Psi2_0 ^ 2, 2 * ksi_1 ^ 2 * Psi2_1 ^ 2 ) Psi12 <- c(Psi12, 0, 0) } else{ ksi <- c(ksi, ksi_0, ksi_1) Psi1 <- c(Psi1, Psi1_0, Psi1_1) Psi2 <- c(Psi2, 0, 0) N1_i <- c(N1_i, 2 * ksi_0 ^ 2 * Psi1_0 ^ 2, 2 * ksi_1 ^ 2 * Psi1_1 ^ 2) N2_i <- c(N2_i, 0, 0) Psi12 <- c(Psi12, 0, 0) } # Numerov Algorithm # Iterates algorithm until the condition of ksi_(i+1) < sqrt(r_I) # or ksi_(i+1) < sqrt(core.radius) is met repeat{ # When ksi_i is larger than the smallest of the starting points, the # normalization for the larger outer turning point accumulates while the # other does not. if(ksi_i > sqrt(min(r1_O, r2_O))){ #First statement is case when r1_O < r2_O, second statement is r2_O < r1_O if(r1_O < r2_O){ g2_iplus1 <- -8 * (ksi_iplus1 ^ 2 * E2 + Z - (l2 + 1/4) * (l2 + 3 / 4) / (2 * ksi_iplus1 ^ 2)) g2_i <- -8 * (ksi_i ^ 2 * E2 + Z - (l2 + 1 / 4) * (l2 + 3/4) / (2 * ksi_i ^ 2)) g2_iminus1 <- -8 * (ksi_iminus1 ^ 2 * E2 + Z - (l2 + 1 / 4) * (l2 + 3 / 4) / (2 * ksi_iminus1 ^ 2)) Psi2_iplus1 <- (Psi2_iminus1 * (g2_iminus1 - 12 / h^2) + Psi2_i * (10 * g2_i + 24 / h ^ 2)) / (12 / h ^ 2 - g2_iplus1) N1_iplus1 <- 0 N2_iplus1 <- 2 * ksi_iplus1 ^ 2 * Psi2_iplus1 ^ 2 * h if(ksi_iplus1 < sqrt(max(r1_I, r2_I)) | ksi_iplus1 < sqrt(core.radius)){ break } else { ksi <- c(ksi, ksi_iplus1) Psi1 <- c(Psi1, 0) Psi2 <- c(Psi2, Psi2_iplus1) N1_i <- c(N1_i, N1_iplus1) N2_i <- c(N2_i, N2_iplus1) Psi12 <- c(Psi12, 0) } } else{ g1_iplus1 <- -8 * (ksi_iplus1 ^ 2 * E1 + Z - (l1 + 1 / 4) * (l1 + 3 / 4) / (2 * ksi_iplus1 ^ 2)) g1_i <- -8 * (ksi_i ^ 2 * E1 + Z - (l1 + 1 / 4) * (l1 + 3 / 4) / (2 * ksi_i ^ 2)) g1_iminus1 <- -8 * (ksi_iminus1 ^ 2 * E1 + Z - (l1 + 1 / 4) * (l1 + 3 / 4) / (2 * ksi_iminus1 ^ 2)) Psi1_iplus1 <- (Psi1_iminus1 * (g1_iminus1 - 12 / h^2) + Psi1_i * (10 * g1_i + 24 / h ^ 2)) / (12 / h ^ 2 - g1_iplus1) N1_iplus1 <- 2 * ksi_iplus1 ^ 2 * Psi1_iplus1 ^ 2 * h N2_iplus1 <- 0 if(ksi_iplus1 < sqrt(max(r1_I, r2_I)) | ksi_iplus1 < sqrt(core.radius)){ break } else { ksi <- c(ksi, ksi_iplus1) Psi1 <- c(Psi1, Psi1_iplus1) Psi2 <- c(Psi2, 0) N1_i <- c(N1_i, N1_iplus1) N2_i <- c(N2_i, N2_iplus1) Psi12 <- c(Psi12, 0) } } if(r1_O < r2_O){ Psi2_iminus1 <- Psi2_i Psi2_i <- Psi2_iplus1 } else{ Psi1_iminus1 <- Psi1_i Psi1_i <- Psi1_iplus1 } } else{ g1_iplus1 <- -8 * (ksi_iplus1 ^ 2 * E1 + Z - (l1 + 1 / 4) * (l1 + 3 / 4) / (2 * ksi_iplus1 ^ 2)) g1_i <- -8 * (ksi_i ^ 2 * E1 + Z - (l1 + 1 / 4) * (l1 + 3 / 4) / (2 * ksi_i ^ 2)) g1_iminus1 <- -8 * (ksi_iminus1 ^ 2 * E1 + Z - (l1 + 1 / 4) * (l1 + 3 / 4) / (2 * ksi_iminus1 ^ 2)) g2_iplus1 <- -8 * (ksi_iplus1 ^ 2 * E2 + Z - (l2 + 1 / 4) * (l2 + 3 / 4) / (2 * ksi_iplus1 ^ 2)) g2_i <- -8 * (ksi_i ^ 2 * E2 + Z - (l2 + 1 / 4) * (l2 + 3 / 4) / (2 * ksi_i ^ 2)) g2_iminus1 <- -8 * (ksi_iminus1 ^ 2 * E2 + Z - (l2 + 1 / 4) * (l2 + 3 / 4) / (2 * ksi_iminus1 ^ 2)) Psi1_iplus1 <- (Psi1_iminus1 * (g1_iminus1 - 12 / h ^ 2) + Psi1_i * (10 * g1_i + 24 / h ^ 2)) / (12 / h ^ 2 - g1_iplus1) Psi2_iplus1 <- (Psi2_iminus1 * (g2_iminus1 - 12 / h ^ 2) + Psi2_i * (10 * g2_i + 24 / h ^ 2)) / (12 / h ^ 2 - g2_iplus1) Psi12_iplus1 <- 2 * Psi1_iplus1 * Psi2_iplus1 * ksi_iplus1 ^ (2 + 2 * k) * h N1_iplus1 <- 2 * ksi_iplus1 ^ 2 * Psi1_iplus1 ^ 2 * h N2_iplus1 <- 2 * ksi_iplus1 ^ 2 * Psi2_iplus1 ^ 2 * h new.row <- data.frame(ksi = ksi_iplus1, Psi1 = Psi1_iplus1, Psi2 = Psi2_iplus1, N1_i = N1_iplus1, N2_i=N2_iplus1, Psi12 = Psi12_iplus1) if(ksi_iplus1 < sqrt(max(r1_I, r2_I)) | ksi_iplus1 < sqrt(core.radius)){ break } else { ksi <- c(ksi, ksi_iplus1) Psi1 <- c(Psi1, Psi1_iplus1) Psi2 <- c(Psi2, Psi2_iplus1) N1_i <- c(N1_i, N1_iplus1) N2_i <- c(N2_i, N2_iplus1) Psi12 <- c(Psi12, Psi12_iplus1) } Psi1_iminus1 <- Psi1_i Psi1_i <- Psi1_iplus1 Psi2_iminus1 <- Psi2_i Psi2_i <- Psi2_iplus1 } ksi_iminus1 <- ksi_i ksi_i <- ksi_iplus1 ksi_iplus1 <- ksi_iplus1 - h } RadialMatrixElement <- sum(Psi12) / (sqrt(sum(N1_i)) * sqrt(sum(N2_i))) RadialMatrixElement }
/R/old_radial_matrix_element.R
no_license
bgrich/starkr
R
false
false
7,326
r
#' Old Radial Matrix Element. #' #' \code{radial_matrix_element} calculates the radial matrix element. #' #' This function calculates the radial matrix element for two arbitrary states #' (n1, l1, j1) and (n2, l2, j2). A Numerov algorithm is used to compute the #' radial matrix elements as done in Appendix A of Zimmerman et al, PRA, 20, 2251 #' (1979). The scaling used in this function is \eqn{\xi = \sqrt r}, #' \eqn{\Psi = r^(3/4) R(r)} as done by Bhatti, Cromer, and Cooke, PRA, 24, 161 #' (1981). #' #' @param k A numeric. The power of r to be calculated over. To get a dipole #' matrix element, k must be equal to 1. Default k = 1. #' @param n1 A numeric. The principle quantum number of state 1. #' @param n2 A numeric. The principle quantum number of state 2. #' @param l1 A numeric. The orbital angular momentum number of state 1. #' @param l2 A numeric. The orbital angular momentum number of state 2. #' @param j1 A numeric. The total angular momentum number of state 1. #' @param j2 A numeric. The total angular momentum number of state 2. #' #' @export old_radial_matrix_element <- function(n1, n2, l1, l2, j1, j2, k = 1){ # Number of Electrons Z <- 1 # Quantum numbers for states 1 and 2. Primary quantum number n, orbital # angular momentum l, total angular momentum j delta1 <- quantum_defect(n1, l1, j1) delta2 <- quantum_defect(n2, l2, j2) E1 <- -1 / (2 * (n1 - delta1) ^ 2) E2 <- -1 / (2 * (n2 - delta2) ^ 2) # Inner and outer turning points, core radius for both states r1_O <- 2 * n1 * (n1 + 15) r1_I <- (n1 ^ 2 - n1 * sqrt(n1 ^ 2 - l1 * (l1 + 1))) / 2 r2_O <- 2 * n2 * (n2 + 15) r2_I <- (n2 ^ 2 - n2 * sqrt(n2 ^ 2 - l2 * (l2 + 1)))/ 2 # Core radius as a function of core polarizability r = (a_c)^(1/3) # Core polarizability is a_c = 9.0760 for Rubidium core.radius <- (9.0760) ^ (1/3) # Determine which outer turning point is the larger to set as starting point r_0 <- max(r1_O, r2_O) # Defining scaled x-axis ksi = sqrt(r), step size h, and starting # point ksi_0 = sqrt(r_0) ksi_0 <- sqrt(r_0) h <- 0.01 ksi_1 <- ksi_0 - h ksi_2 <- ksi_1 - h # Initial wavefunction guesses Psi1_0 <- 10 ^ -15 Psi1_1 <- 10 ^ -14 Psi2_0 <- 10 ^ -15 Psi2_1 <- 10 ^ -14 # Defining terms to be used in Numerov Algorithm ksi_iminus1 <- ksi_0 ksi_i <- ksi_1 ksi_iplus1 <- ksi_2 Psi1_iminus1 <- Psi1_0 Psi1_i <- Psi1_1 Psi2_iminus1 <- Psi2_0 Psi2_i <- Psi2_1 # Establishing Numerov integration data frame ksi <- numeric() Psi1 <- numeric() Psi2 <- numeric() N1_i <- numeric() N2_i <- numeric() Psi12 <- numeric() if(r1_O < r2_O){ ksi <- c(ksi, ksi_0, ksi_1) Psi1 <- c(Psi1, 0, 0) Psi2 <- c(Psi2, Psi2_0, Psi2_1) N1_i <- c(N1_i, 0, 0) N2_i <- c(N2_i, 2 * ksi_0 ^ 2 * Psi2_0 ^ 2, 2 * ksi_1 ^ 2 * Psi2_1 ^ 2 ) Psi12 <- c(Psi12, 0, 0) } else{ ksi <- c(ksi, ksi_0, ksi_1) Psi1 <- c(Psi1, Psi1_0, Psi1_1) Psi2 <- c(Psi2, 0, 0) N1_i <- c(N1_i, 2 * ksi_0 ^ 2 * Psi1_0 ^ 2, 2 * ksi_1 ^ 2 * Psi1_1 ^ 2) N2_i <- c(N2_i, 0, 0) Psi12 <- c(Psi12, 0, 0) } # Numerov Algorithm # Iterates algorithm until the condition of ksi_(i+1) < sqrt(r_I) # or ksi_(i+1) < sqrt(core.radius) is met repeat{ # When ksi_i is larger than the smallest of the starting points, the # normalization for the larger outer turning point accumulates while the # other does not. if(ksi_i > sqrt(min(r1_O, r2_O))){ #First statement is case when r1_O < r2_O, second statement is r2_O < r1_O if(r1_O < r2_O){ g2_iplus1 <- -8 * (ksi_iplus1 ^ 2 * E2 + Z - (l2 + 1/4) * (l2 + 3 / 4) / (2 * ksi_iplus1 ^ 2)) g2_i <- -8 * (ksi_i ^ 2 * E2 + Z - (l2 + 1 / 4) * (l2 + 3/4) / (2 * ksi_i ^ 2)) g2_iminus1 <- -8 * (ksi_iminus1 ^ 2 * E2 + Z - (l2 + 1 / 4) * (l2 + 3 / 4) / (2 * ksi_iminus1 ^ 2)) Psi2_iplus1 <- (Psi2_iminus1 * (g2_iminus1 - 12 / h^2) + Psi2_i * (10 * g2_i + 24 / h ^ 2)) / (12 / h ^ 2 - g2_iplus1) N1_iplus1 <- 0 N2_iplus1 <- 2 * ksi_iplus1 ^ 2 * Psi2_iplus1 ^ 2 * h if(ksi_iplus1 < sqrt(max(r1_I, r2_I)) | ksi_iplus1 < sqrt(core.radius)){ break } else { ksi <- c(ksi, ksi_iplus1) Psi1 <- c(Psi1, 0) Psi2 <- c(Psi2, Psi2_iplus1) N1_i <- c(N1_i, N1_iplus1) N2_i <- c(N2_i, N2_iplus1) Psi12 <- c(Psi12, 0) } } else{ g1_iplus1 <- -8 * (ksi_iplus1 ^ 2 * E1 + Z - (l1 + 1 / 4) * (l1 + 3 / 4) / (2 * ksi_iplus1 ^ 2)) g1_i <- -8 * (ksi_i ^ 2 * E1 + Z - (l1 + 1 / 4) * (l1 + 3 / 4) / (2 * ksi_i ^ 2)) g1_iminus1 <- -8 * (ksi_iminus1 ^ 2 * E1 + Z - (l1 + 1 / 4) * (l1 + 3 / 4) / (2 * ksi_iminus1 ^ 2)) Psi1_iplus1 <- (Psi1_iminus1 * (g1_iminus1 - 12 / h^2) + Psi1_i * (10 * g1_i + 24 / h ^ 2)) / (12 / h ^ 2 - g1_iplus1) N1_iplus1 <- 2 * ksi_iplus1 ^ 2 * Psi1_iplus1 ^ 2 * h N2_iplus1 <- 0 if(ksi_iplus1 < sqrt(max(r1_I, r2_I)) | ksi_iplus1 < sqrt(core.radius)){ break } else { ksi <- c(ksi, ksi_iplus1) Psi1 <- c(Psi1, Psi1_iplus1) Psi2 <- c(Psi2, 0) N1_i <- c(N1_i, N1_iplus1) N2_i <- c(N2_i, N2_iplus1) Psi12 <- c(Psi12, 0) } } if(r1_O < r2_O){ Psi2_iminus1 <- Psi2_i Psi2_i <- Psi2_iplus1 } else{ Psi1_iminus1 <- Psi1_i Psi1_i <- Psi1_iplus1 } } else{ g1_iplus1 <- -8 * (ksi_iplus1 ^ 2 * E1 + Z - (l1 + 1 / 4) * (l1 + 3 / 4) / (2 * ksi_iplus1 ^ 2)) g1_i <- -8 * (ksi_i ^ 2 * E1 + Z - (l1 + 1 / 4) * (l1 + 3 / 4) / (2 * ksi_i ^ 2)) g1_iminus1 <- -8 * (ksi_iminus1 ^ 2 * E1 + Z - (l1 + 1 / 4) * (l1 + 3 / 4) / (2 * ksi_iminus1 ^ 2)) g2_iplus1 <- -8 * (ksi_iplus1 ^ 2 * E2 + Z - (l2 + 1 / 4) * (l2 + 3 / 4) / (2 * ksi_iplus1 ^ 2)) g2_i <- -8 * (ksi_i ^ 2 * E2 + Z - (l2 + 1 / 4) * (l2 + 3 / 4) / (2 * ksi_i ^ 2)) g2_iminus1 <- -8 * (ksi_iminus1 ^ 2 * E2 + Z - (l2 + 1 / 4) * (l2 + 3 / 4) / (2 * ksi_iminus1 ^ 2)) Psi1_iplus1 <- (Psi1_iminus1 * (g1_iminus1 - 12 / h ^ 2) + Psi1_i * (10 * g1_i + 24 / h ^ 2)) / (12 / h ^ 2 - g1_iplus1) Psi2_iplus1 <- (Psi2_iminus1 * (g2_iminus1 - 12 / h ^ 2) + Psi2_i * (10 * g2_i + 24 / h ^ 2)) / (12 / h ^ 2 - g2_iplus1) Psi12_iplus1 <- 2 * Psi1_iplus1 * Psi2_iplus1 * ksi_iplus1 ^ (2 + 2 * k) * h N1_iplus1 <- 2 * ksi_iplus1 ^ 2 * Psi1_iplus1 ^ 2 * h N2_iplus1 <- 2 * ksi_iplus1 ^ 2 * Psi2_iplus1 ^ 2 * h new.row <- data.frame(ksi = ksi_iplus1, Psi1 = Psi1_iplus1, Psi2 = Psi2_iplus1, N1_i = N1_iplus1, N2_i=N2_iplus1, Psi12 = Psi12_iplus1) if(ksi_iplus1 < sqrt(max(r1_I, r2_I)) | ksi_iplus1 < sqrt(core.radius)){ break } else { ksi <- c(ksi, ksi_iplus1) Psi1 <- c(Psi1, Psi1_iplus1) Psi2 <- c(Psi2, Psi2_iplus1) N1_i <- c(N1_i, N1_iplus1) N2_i <- c(N2_i, N2_iplus1) Psi12 <- c(Psi12, Psi12_iplus1) } Psi1_iminus1 <- Psi1_i Psi1_i <- Psi1_iplus1 Psi2_iminus1 <- Psi2_i Psi2_i <- Psi2_iplus1 } ksi_iminus1 <- ksi_i ksi_i <- ksi_iplus1 ksi_iplus1 <- ksi_iplus1 - h } RadialMatrixElement <- sum(Psi12) / (sqrt(sum(N1_i)) * sqrt(sum(N2_i))) RadialMatrixElement }
## 2018 APPLIED PUBLIC HEALTH STATISTICS BREAKFAST WORKSHOP ## ## R EXAMPLE 2: DESCRIPTIVES AND VISUALIZATION OF ILD ## # SUMMER FRANK-PEARCE & TRENT L. LALONDE # # R FILE FOR VISUALIZATION AND EXPLORATION OF ILD # # CONTENTS: # # ALL ANALYSES REPEATED FOR BOTH MJ AND SMK DATASETS # # # (1) DATA SUMMARY AND TABLES # # (2) AGGREGATED SUMMARY STATISTICS # # (3) BOX PLOTS FOR RAW DATA # # (4) AGGREGATED SUMMARY STATISTICS # # (5) HISTOGRAMS AND BOX PLOTS OF AGGREGATES # # (6) TIME PLOTS # # (7) SPAGHETTI PLOTS # # (8) VARIOGRAMS # library(ggplot2) # READ IN THE DATA # # MJ DATA # setwd('/Users/trent.lalonde/Documents/Research/Presentations/APHA/APHA ILD Workshop/Software/Data/') WorkshopMJData = read.csv('WorkshopMJData.csv') # SMK DATA # setwd('/Users/trent.lalonde/Documents/Research/Presentations/APHA/APHA ILD Workshop/Software/Data/') WorkshopSMKData = read.csv('WorkshopSMKData.csv') ## BASIC EXPLORATION OF DATA ## # MJ DATA # dim(WorkshopMJData) summary(WorkshopMJData) table(WorkshopMJData$Used,useNA='ifany') table(WorkshopMJData$Others,useNA='ifany') # SMK DATA # dim(WorkshopSMKData) summary(WorkshopSMKData) table(WorkshopSMKData$WithOthers,useNA='ifany') table(WorkshopSMKData$Stress,useNA='ifany') ## MEANS AND VARIANCES BY RELEVANT TIME (DAY OF WEEK) ## # MJ DATA # (DailyFrequencyMeans = aggregate(Frequency~Day,data=WorkshopMJData,FUN=function(x)mean(x,na.rm=TRUE))) (DailyFrequencyVariances = aggregate(Frequency~Day,data=WorkshopMJData,FUN=function(x)var(x,na.rm=TRUE))) # SMK DATA # (DailyCigaretteMeans = aggregate(Cigarettes~TimeInStudy,data=WorkshopSMKData,FUN=function(x)mean(x,na.rm=TRUE))) (DailyCigaretteVariances = aggregate(Cigarettes~TimeInStudy,data=WorkshopSMKData,FUN=function(x)var(x,na.rm=TRUE))) # BOXPLOTS BY DAY OF WEEK # # MJ DATA # # RE-ORDER DAYS # WorkshopMJData$Day = factor(WorkshopMJData$Day, levels=levels(WorkshopMJData$Day)[c(2,6,7,5,1,3,4)]) png('BoxplotFrequencyByDay.png') ggplot(WorkshopMJData, aes(x=as.factor(Day),y=Frequency)) + geom_boxplot(notch=TRUE,outlier.colour='grey45',fill='grey45') + stat_summary(fun.y=mean, geom="point", shape=18, size=5) + ggtitle("Box Plots of Frequency by Day") + xlab("Day") + ylab("Frequency") + theme(axis.text=element_text(size=12), axis.title=element_text(size=20), plot.title=element_text(size=24),legend.position="none") dev.off() # SMK DATA # pdf('BoxplotCigarettesByDay.pdf') ggplot(WorkshopSMKData, aes(x=as.factor(TimeInStudy),y=Cigarettes)) + geom_boxplot(notch=TRUE,outlier.colour='grey45',fill='grey45') + stat_summary(fun.y=mean, geom="point", shape=18, size=5) + ggtitle("Box Plots of Cigarettes by Time") + xlab("Time") + ylab("Cigarettes") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24),legend.position="none") dev.off() ## DISTRIBUTIONS OF SUMMARY STATISTICS AMONG SUBJECTS ## # SOMETIMES USE MEANS # # MJ DATA # (SubjectFrequencyMeans = aggregate(Frequency~ID,data=WorkshopMJData,FUN=function(x)mean(x,na.rm=TRUE))) fivenum(SubjectFrequencyMeans$Frequency) pdf('HistogramFrequency.pdf') ggplot(SubjectFrequencyMeans, aes(Frequency)) + geom_histogram(aes(y=..density..),col='grey45') + geom_density() + ggtitle("Histogram of Frequency Means") + xlab("Frequency of Use") + ylab("Frequency") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24)) dev.off() pdf('BoxPlotFrequency.pdf') ggplot(SubjectFrequencyMeans, aes(x=1,y=Frequency)) + geom_boxplot(notch=TRUE,outlier.colour='grey45',fill='grey45') + stat_summary(fun.y=mean, geom="point", shape=18, size=5) + ggtitle("Box Plot of Frequency Means") + xlab("Frequency Mean Box Plot") + ylab("Frequency Mean") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24),legend.position="none") dev.off() # SMK DATA # (SubjectCigaretteMeans = aggregate(Cigarettes~ID,data=WorkshopSMKData,FUN=function(x)mean(x,na.rm=TRUE))) fivenum(SubjectCigaretteMeans$Cigarettes) pdf('HistogramCigarettes.pdf') ggplot(SubjectCigaretteMeans, aes(Cigarettes)) + geom_histogram(aes(y=..density..),col='grey45') + geom_density() + ggtitle("Histogram of Cigarette Means") + xlab("Mean of Cigarettes") + ylab("Cigarettes") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24)) dev.off() pdf('BoxPlotCigarettes.pdf') ggplot(SubjectCigaretteMeans, aes(x=1,y=Cigarettes)) + geom_boxplot(notch=TRUE,outlier.colour='grey45',fill='grey45') + stat_summary(fun.y=mean, geom="point", shape=18, size=5) + ggtitle("Box Plot of Cigarette Means") + xlab("Cigarette Mean Box Plot") + ylab("Cigarette Mean") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24),legend.position="none") dev.off() # SOMETIMES USE TOTALS # # MJ DATA # (SubjectUseTotals = aggregate(Used~ID,data=WorkshopMJData,FUN=function(x)sum(x,na.rm=TRUE))) fivenum(SubjectUseTotals$Used) pdf('HistogramUse.pdf') ggplot(SubjectUseTotals, aes(Used)) + geom_histogram(aes(y=..density..),col='grey45') + geom_density() + ggtitle("Histogram of Total Use") + xlab("Use") + ylab("Frequency") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24)) dev.off() pdf('BoxplotUse.pdf') ggplot(SubjectUseTotals, aes(x=1,y=Used)) + geom_boxplot(notch=TRUE,outlier.colour='grey45',fill='grey45') + stat_summary(fun.y=mean, geom="point", shape=18, size=5) + ggtitle("Box Plot of Total Use") + xlab("Total Use Box Plot") + ylab("Total Use") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24),legend.position="none") dev.off() # MJ DATA # (SubjectCigTotals = aggregate(Cigarettes~ID,data=WorkshopSMKData,FUN=function(x)sum(x,na.rm=TRUE))) fivenum(SubjectCigTotals$Cigarettes) pdf('HistogramCig.pdf') ggplot(SubjectCigTotals, aes(Cigarettes)) + geom_histogram(aes(y=..density..),col='grey45') + geom_density() + ggtitle("Histogram of Total Cigarettes") + xlab("Cigarettes") + ylab("Frequency") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24)) dev.off() pdf('BoxplotCig.pdf') ggplot(SubjectCigTotals, aes(x=1,y=Cigarettes)) + geom_boxplot(notch=TRUE,outlier.colour='grey45',fill='grey45') + stat_summary(fun.y=mean, geom="point", shape=18, size=5) + ggtitle("Box Plot of Total Cigarettes") + xlab("Total Cigarettes Box Plot") + ylab("Total Cigarettes") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24),legend.position="none") dev.off() # SOMETIMES COMPARE # (UseData = merge(SubjectFrequencyMeans, SubjectUseTotals,by.x='ID',by.y='ID')) pdf('ScatterPlotUse.pdf') ggplot(UseData, aes(x=Used,y=Frequency)) + geom_point(col='grey45') + geom_smooth(col='grey45') + ggtitle("Scatter Plot of Frequency Means Versus Total Use") + xlab("Total Use") + ylab("Mean Frequency") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=18)) dev.off() ## PLOTS USING RAW DATA ## # TIME PLOT # # MJ DATA # pdf('ScatterPlotFrequency.pdf') ggplot(WorkshopMJData, aes(x=TimeInStudy,y=Frequency)) + geom_point(col='grey45') + geom_smooth(col='grey45') + ggtitle("Scatter Plot of Frequency Versus Time") + xlab("Study Prompt") + ylab("Frequency") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24)) dev.off() # SMK DATA # pdf('ScatterPlotCigarettes.pdf') ggplot(WorkshopSMKData, aes(x=TimeInStudy,y=Cigarettes)) + geom_point(col='grey45') + geom_smooth(col='grey45') + ggtitle("Scatter Plot of Cigarettes Versus Time") + xlab("Study Prompt") + ylab("Cigarettes") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24)) dev.off() # SPAGHETTI PLOT # # MJ DATA # interaction.plot(x.factor=as.factor(WorkshopMJData$TimeInStudy),trace.factor=as.factor(WorkshopMJData$ID),response= WorkshopMJData$Frequency,fun=function(x)mean(x,na.rm=TRUE)) # SMK DATA # interaction.plot(x.factor=as.factor(WorkshopSMKData$TimeInStudy),trace.factor=as.factor(WorkshopSMKData$ID),response= WorkshopSMKData$Cigarettes,fun=function(x)mean(x,na.rm=TRUE)) # VARIOGRAM # library(joineR) ?plot
/2 - ILDVisualization.R
no_license
lalondetl/APHSWorkshop
R
false
false
8,563
r
## 2018 APPLIED PUBLIC HEALTH STATISTICS BREAKFAST WORKSHOP ## ## R EXAMPLE 2: DESCRIPTIVES AND VISUALIZATION OF ILD ## # SUMMER FRANK-PEARCE & TRENT L. LALONDE # # R FILE FOR VISUALIZATION AND EXPLORATION OF ILD # # CONTENTS: # # ALL ANALYSES REPEATED FOR BOTH MJ AND SMK DATASETS # # # (1) DATA SUMMARY AND TABLES # # (2) AGGREGATED SUMMARY STATISTICS # # (3) BOX PLOTS FOR RAW DATA # # (4) AGGREGATED SUMMARY STATISTICS # # (5) HISTOGRAMS AND BOX PLOTS OF AGGREGATES # # (6) TIME PLOTS # # (7) SPAGHETTI PLOTS # # (8) VARIOGRAMS # library(ggplot2) # READ IN THE DATA # # MJ DATA # setwd('/Users/trent.lalonde/Documents/Research/Presentations/APHA/APHA ILD Workshop/Software/Data/') WorkshopMJData = read.csv('WorkshopMJData.csv') # SMK DATA # setwd('/Users/trent.lalonde/Documents/Research/Presentations/APHA/APHA ILD Workshop/Software/Data/') WorkshopSMKData = read.csv('WorkshopSMKData.csv') ## BASIC EXPLORATION OF DATA ## # MJ DATA # dim(WorkshopMJData) summary(WorkshopMJData) table(WorkshopMJData$Used,useNA='ifany') table(WorkshopMJData$Others,useNA='ifany') # SMK DATA # dim(WorkshopSMKData) summary(WorkshopSMKData) table(WorkshopSMKData$WithOthers,useNA='ifany') table(WorkshopSMKData$Stress,useNA='ifany') ## MEANS AND VARIANCES BY RELEVANT TIME (DAY OF WEEK) ## # MJ DATA # (DailyFrequencyMeans = aggregate(Frequency~Day,data=WorkshopMJData,FUN=function(x)mean(x,na.rm=TRUE))) (DailyFrequencyVariances = aggregate(Frequency~Day,data=WorkshopMJData,FUN=function(x)var(x,na.rm=TRUE))) # SMK DATA # (DailyCigaretteMeans = aggregate(Cigarettes~TimeInStudy,data=WorkshopSMKData,FUN=function(x)mean(x,na.rm=TRUE))) (DailyCigaretteVariances = aggregate(Cigarettes~TimeInStudy,data=WorkshopSMKData,FUN=function(x)var(x,na.rm=TRUE))) # BOXPLOTS BY DAY OF WEEK # # MJ DATA # # RE-ORDER DAYS # WorkshopMJData$Day = factor(WorkshopMJData$Day, levels=levels(WorkshopMJData$Day)[c(2,6,7,5,1,3,4)]) png('BoxplotFrequencyByDay.png') ggplot(WorkshopMJData, aes(x=as.factor(Day),y=Frequency)) + geom_boxplot(notch=TRUE,outlier.colour='grey45',fill='grey45') + stat_summary(fun.y=mean, geom="point", shape=18, size=5) + ggtitle("Box Plots of Frequency by Day") + xlab("Day") + ylab("Frequency") + theme(axis.text=element_text(size=12), axis.title=element_text(size=20), plot.title=element_text(size=24),legend.position="none") dev.off() # SMK DATA # pdf('BoxplotCigarettesByDay.pdf') ggplot(WorkshopSMKData, aes(x=as.factor(TimeInStudy),y=Cigarettes)) + geom_boxplot(notch=TRUE,outlier.colour='grey45',fill='grey45') + stat_summary(fun.y=mean, geom="point", shape=18, size=5) + ggtitle("Box Plots of Cigarettes by Time") + xlab("Time") + ylab("Cigarettes") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24),legend.position="none") dev.off() ## DISTRIBUTIONS OF SUMMARY STATISTICS AMONG SUBJECTS ## # SOMETIMES USE MEANS # # MJ DATA # (SubjectFrequencyMeans = aggregate(Frequency~ID,data=WorkshopMJData,FUN=function(x)mean(x,na.rm=TRUE))) fivenum(SubjectFrequencyMeans$Frequency) pdf('HistogramFrequency.pdf') ggplot(SubjectFrequencyMeans, aes(Frequency)) + geom_histogram(aes(y=..density..),col='grey45') + geom_density() + ggtitle("Histogram of Frequency Means") + xlab("Frequency of Use") + ylab("Frequency") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24)) dev.off() pdf('BoxPlotFrequency.pdf') ggplot(SubjectFrequencyMeans, aes(x=1,y=Frequency)) + geom_boxplot(notch=TRUE,outlier.colour='grey45',fill='grey45') + stat_summary(fun.y=mean, geom="point", shape=18, size=5) + ggtitle("Box Plot of Frequency Means") + xlab("Frequency Mean Box Plot") + ylab("Frequency Mean") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24),legend.position="none") dev.off() # SMK DATA # (SubjectCigaretteMeans = aggregate(Cigarettes~ID,data=WorkshopSMKData,FUN=function(x)mean(x,na.rm=TRUE))) fivenum(SubjectCigaretteMeans$Cigarettes) pdf('HistogramCigarettes.pdf') ggplot(SubjectCigaretteMeans, aes(Cigarettes)) + geom_histogram(aes(y=..density..),col='grey45') + geom_density() + ggtitle("Histogram of Cigarette Means") + xlab("Mean of Cigarettes") + ylab("Cigarettes") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24)) dev.off() pdf('BoxPlotCigarettes.pdf') ggplot(SubjectCigaretteMeans, aes(x=1,y=Cigarettes)) + geom_boxplot(notch=TRUE,outlier.colour='grey45',fill='grey45') + stat_summary(fun.y=mean, geom="point", shape=18, size=5) + ggtitle("Box Plot of Cigarette Means") + xlab("Cigarette Mean Box Plot") + ylab("Cigarette Mean") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24),legend.position="none") dev.off() # SOMETIMES USE TOTALS # # MJ DATA # (SubjectUseTotals = aggregate(Used~ID,data=WorkshopMJData,FUN=function(x)sum(x,na.rm=TRUE))) fivenum(SubjectUseTotals$Used) pdf('HistogramUse.pdf') ggplot(SubjectUseTotals, aes(Used)) + geom_histogram(aes(y=..density..),col='grey45') + geom_density() + ggtitle("Histogram of Total Use") + xlab("Use") + ylab("Frequency") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24)) dev.off() pdf('BoxplotUse.pdf') ggplot(SubjectUseTotals, aes(x=1,y=Used)) + geom_boxplot(notch=TRUE,outlier.colour='grey45',fill='grey45') + stat_summary(fun.y=mean, geom="point", shape=18, size=5) + ggtitle("Box Plot of Total Use") + xlab("Total Use Box Plot") + ylab("Total Use") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24),legend.position="none") dev.off() # MJ DATA # (SubjectCigTotals = aggregate(Cigarettes~ID,data=WorkshopSMKData,FUN=function(x)sum(x,na.rm=TRUE))) fivenum(SubjectCigTotals$Cigarettes) pdf('HistogramCig.pdf') ggplot(SubjectCigTotals, aes(Cigarettes)) + geom_histogram(aes(y=..density..),col='grey45') + geom_density() + ggtitle("Histogram of Total Cigarettes") + xlab("Cigarettes") + ylab("Frequency") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24)) dev.off() pdf('BoxplotCig.pdf') ggplot(SubjectCigTotals, aes(x=1,y=Cigarettes)) + geom_boxplot(notch=TRUE,outlier.colour='grey45',fill='grey45') + stat_summary(fun.y=mean, geom="point", shape=18, size=5) + ggtitle("Box Plot of Total Cigarettes") + xlab("Total Cigarettes Box Plot") + ylab("Total Cigarettes") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24),legend.position="none") dev.off() # SOMETIMES COMPARE # (UseData = merge(SubjectFrequencyMeans, SubjectUseTotals,by.x='ID',by.y='ID')) pdf('ScatterPlotUse.pdf') ggplot(UseData, aes(x=Used,y=Frequency)) + geom_point(col='grey45') + geom_smooth(col='grey45') + ggtitle("Scatter Plot of Frequency Means Versus Total Use") + xlab("Total Use") + ylab("Mean Frequency") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=18)) dev.off() ## PLOTS USING RAW DATA ## # TIME PLOT # # MJ DATA # pdf('ScatterPlotFrequency.pdf') ggplot(WorkshopMJData, aes(x=TimeInStudy,y=Frequency)) + geom_point(col='grey45') + geom_smooth(col='grey45') + ggtitle("Scatter Plot of Frequency Versus Time") + xlab("Study Prompt") + ylab("Frequency") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24)) dev.off() # SMK DATA # pdf('ScatterPlotCigarettes.pdf') ggplot(WorkshopSMKData, aes(x=TimeInStudy,y=Cigarettes)) + geom_point(col='grey45') + geom_smooth(col='grey45') + ggtitle("Scatter Plot of Cigarettes Versus Time") + xlab("Study Prompt") + ylab("Cigarettes") + theme(axis.text=element_text(size=16), axis.title=element_text(size=20), plot.title=element_text(size=24)) dev.off() # SPAGHETTI PLOT # # MJ DATA # interaction.plot(x.factor=as.factor(WorkshopMJData$TimeInStudy),trace.factor=as.factor(WorkshopMJData$ID),response= WorkshopMJData$Frequency,fun=function(x)mean(x,na.rm=TRUE)) # SMK DATA # interaction.plot(x.factor=as.factor(WorkshopSMKData$TimeInStudy),trace.factor=as.factor(WorkshopSMKData$ID),response= WorkshopSMKData$Cigarettes,fun=function(x)mean(x,na.rm=TRUE)) # VARIOGRAM # library(joineR) ?plot
library(tidyverse) # https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html # ability.cov # airmiles # AirPassengers airquality %>% dplyr::group_by(Month) %>% dplyr::summarise_all(mean, na.rm = TRUE) tidy_anscombe = anscombe %>% tibble::rowid_to_column("id") %>% tidyr::pivot_longer(!id, names_to = c("axis", "group"), names_sep = 1L, names_transform = list(group = as.integer)) %>% tidyr::pivot_wider(c(id, group), names_from = axis) %>% dplyr::select(!id) %>% dplyr::arrange(group) tidy_anscombe %>% dplyr::group_by(group) %>% dplyr::summarise( x_mean = mean(x), x_sd = sd(x), y_mean = mean(y), y_sd = sd(y), cor_xy = cor(x, y) ) tidy_anscombe %>% tidyr::nest(data = !group) %>% dplyr::mutate(data = purrr::map(data, ~{ summarise_all(.x, funs(mean, sd)) %>% dplyr::mutate(cor = cor(.x$x, .x$y)) })) %>% tidyr::unnest(data) tidy_anscombe %>% ggplot(aes(x, y)) + geom_point(size = 3) + stat_smooth(method = lm, se = FALSE, fullrange = TRUE) + facet_wrap(vars(group), nrow = 1L) tidy_anscombe %>% ggplot(aes(x, y)) + geom_point(size = 2) + stat_smooth(method = lm, se = FALSE, fullrange = TRUE) + stat_summary(fun.data = mean_se) + facet_wrap(vars(group)) # attenu # attitude # austres # beaver1 beaver2 # BJsales # BOD # cars ChickWeight %>% ggplot(aes(Time, weight, group = Chick)) + geom_line(aes(colour = Diet)) + theme_bw() chickwts %>% dplyr::group_by(feed) %>% dplyr::summarise_all(funs(mean, sd, length)) chickwts %>% as_tibble() %>% ggplot(aes(weight)) + geom_histogram(bins = 10) + facet_wrap(vars(feed)) + theme_bw() # co2 # crimtab # discoveries DNase esoph # euro # eurodist # EuStockMarkets (faithful %>% ggplot(aes(eruptions, waiting)) + geom_point()) %>% ggExtra::ggMarginal(type = "histogram") # freeny # Formaldehyde HairEyeColor # Harman23.cor # Harman74.cor Indometh # infert InsectSprays %>% head() iris iris3 # islands # JohnsonJohnson # LakeHuron # lh # LifeCycleSavings # Loblolly # longley # lynx # morley mtcars # nhtemp # Nile # nottem # npk # occupationalStatus # Orange OrchardSprays %>% head() OrchardSprays %>% tidyr::pivot_wider(names_from = colpos, values_from = c(decrease, treatment)) PlantGrowth %>% dplyr::group_by(group) %>% dplyr::summarise_all(mean) # precip # presidents pressure # Puromycin quakes %>% ggplot(aes(long, lat)) + geom_point(aes(size = mag, colour = depth), alpha = 0.4) + scale_size_continuous(name = "magnitude", range = c(1, 6), guide = guide_legend(reverse = TRUE)) + scale_colour_viridis_c(option = "magma", direction = -1, guide = guide_colourbar(reverse = TRUE)) + labs(title = "Quakes", x = "Longitude", y = "Latitude") + theme_gray(base_size = 14) + theme( panel.grid.minor = element_blank(), panel.background = element_rect(fill = "#8090a0"), ) # randu %>% ggplot(aes(x, y, colour=z))+geom_point() # rivers # rock Seatbelts # sleep # stackloss tibble::tibble( name = state.name, abb = state.abb, division = state.division, region = state.region ) %>% bind_cols(as_tibble(state.x77)) %>% bind_cols(state.center) # sunspot.month sunspot.year sunspots # swiss # Theoph %>% head() Titanic # ToothGrowth # treering # trees UCBAdmissions UKDriverDeaths ldeaths # mdeaths + fdeaths # UKgas # USAccDeaths # USArrests # USJudgeRatings USPersonalExpenditure %>% as.data.frame() %>% rownames_to_column("category") %>% tidyr::pivot_longer(!category, "year", names_transform = list(year = as.integer), values_to = "dollar") # uspop va_deaths = VADeaths %>% as.data.frame() %>% tibble::rownames_to_column("class") %>% as_tibble() %>% tidyr::separate(class, c("lbound", "ubound"), "-", convert = TRUE) %>% print() %>% tidyr::pivot_longer(!matches("bound$"), names_to = c("region", "sex"), names_sep = " ", values_to = "death_rate") %>% dplyr::mutate(death_rate = death_rate * 0.1) %>% print() ggplot(va_deaths, aes(lbound, death_rate)) + geom_line(aes(colour = sex, linetype = region), size = 1) + theme_bw() # volcano # warpbreaks # women # WWWusage WorldPhones %>% as.data.frame() %>% rownames_to_column("year") %>% dplyr::mutate(year = as.integer(year)) %>% tidyr::pivot_longer(!year, "country", values_to = "phones") %>% ggplot(aes(year, phones)) + geom_line(aes(colour = country)) + theme_bw() # #######1#########2#########3#########4#########5#########6#########7######### # ggplot2 ggplot(diamonds, aes(carat, price)) + geom_point(aes(colour = clarity), alpha = 0.5) + facet_grid(vars(cut), vars(color)) + scale_colour_viridis_d( guide = guide_legend(reverse = TRUE, override.aes = list(alpha = 1)) ) + labs(title = "Diamonds") + theme_gray(base_size = 14) + theme( panel.grid = element_blank(), panel.background = element_rect(fill = "#aaaaaa"), legend.key = element_rect(fill = "#aaaaaa"), axis.text = element_blank(), axis.ticks = element_blank() ) seals %>% dplyr::mutate(v = sqrt(delta_lat ** 2 + delta_long ** 2)) %>% ggplot(aes(x = long, y = lat, colour = v)) + geom_segment( aes(xend = long + delta_long, yend = lat + delta_lat), arrow = arrow(length = unit(1.5, "mm")), size = 1 ) + scale_colour_viridis_c(option = "magma", end = 0.7, guide = FALSE) + labs(title = "Seals", x = "Longitude", y = "Latitude") + theme_bw(base_size = 14) economics_long %>% tidyr::pivot_wider(!value01, names_from = variable, values_from = value) # #######1#########2#########3#########4#########5#########6#########7######### # install.packages("AER") library(AER) data_AER = data(package = "AER")[["results"]] %>% as_tibble() %>% dplyr::select(!LibPath) %>% print() data_AER[["Item"]] %>% paste(collapse="\n") %>% cat("\n") data(list = data_AER[["Item"]], package = "AER") Affairs %>% as_tibble() ArgentinaCPI BankWages %>% as_tibble() BenderlyZwick BondYield CASchools %>% as_tibble() CPS1985 %>% as_tibble() CPS1988 %>% as_tibble() CPSSW04 %>% as_tibble() CPSSW3 %>% as_tibble() CPSSW8 %>% as_tibble() CPSSW9204 %>% as_tibble() CPSSW9298 %>% as_tibble() CPSSWEducation %>% as_tibble() CartelStability %>% as_tibble() ChinaIncome CigarettesB %>% rownames_to_column("state") %>% as_tibble() CigarettesSW %>% as_tibble() CollegeDistance %>% as_tibble() ConsumerGood CreditCard %>% as_tibble() DJFranses DJIA8012 DoctorVisits %>% as_tibble() DutchAdvert DutchSales Electricity1955 %>% as_tibble() Electricity1970 %>% rownames_to_column() %>% as_tibble() EquationCitations %>% as_tibble() Equipment %>% rownames_to_column("state") %>% as_tibble() EuroEnergy %>% rownames_to_column("country") %>% as_tibble() Fatalities %>% as_tibble() Fertility %>% as_tibble() Fertility2 %>% as_tibble() FrozenJuice GSOEP9402 %>% as_tibble() GSS7402 %>% as_tibble() GermanUnemployment GoldSilver GrowthDJ %>% as_tibble() GrowthSW %>% rownames_to_column("country") %>% as_tibble() Grunfeld %>% as_tibble() Guns %>% as_tibble() HMDA %>% as_tibble() HealthInsurance %>% as_tibble() HousePrices %>% as_tibble() Journals %>% rownames_to_column("abbrev") %>% as_tibble() KleinI Longley MASchools %>% as_tibble() MSCISwitzerland ManufactCosts MarkDollar MarkPound Medicaid1986 %>% as_tibble() Mortgage %>% as_tibble() MotorCycles MotorCycles2 Municipalities %>% as_tibble() MurderRates %>% as_tibble() NMES1988 %>% as_tibble() NYSESW NaturalGas %>% as_tibble() OECDGas %>% as_tibble() OECDGrowth %>% rownames_to_column("country") %>% as_tibble() OlympicTV %>% rownames_to_column("city") %>% as_tibble() OrangeCounty PSID1976 %>% as_tibble() PSID1982 %>% as_tibble() PSID7682 %>% as_tibble() Parade2005 %>% as_tibble() PepperPrice PhDPublications %>% as_tibble() ProgramEffectiveness %>% as_tibble() RecreationDemand %>% as_tibble() ResumeNames %>% as_tibble() SIC33 %>% as_tibble() STAR %>% as_tibble() ShipAccidents %>% as_tibble() SmokeBan %>% as_tibble() SportsCards %>% as_tibble() StrikeDuration %>% as_tibble() SwissLabor %>% as_tibble() TeachingRatings %>% as_tibble() TechChange TradeCredit TravelMode %>% as_tibble() UKInflation UKNonDurables USAirlines %>% as_tibble() USConsump1950 USConsump1979 USConsump1993 USCrudes %>% as_tibble() USGasB USGasG USInvest USMacroB USMacroG USMacroSW USMacroSWM USMacroSWQ USMoney USProdIndex USSeatBelts %>% as_tibble() USStocksSW WeakInstrument %>% as_tibble() # #######1#########2#########3#########4#########5#########6#########7######### # install.packages("COUNT") library(COUNT) data_COUNT = data(package = "COUNT")[["results"]] %>% as_tibble() %>% dplyr::select(!LibPath) %>% print() data(list = data_COUNT[["Item"]], package = "COUNT") affairs %>% as_tibble() azcabgptca %>% as_tibble() azdrg112 %>% as_tibble() azpro %>% as_tibble() azprocedure %>% as_tibble() badhealth %>% as_tibble() %>% ggplot() + aes(numvisit, badh) + geom_jitter(aes(color = age), height = 0.2, width = 0, alpha = 0.5) + stat_smooth(formula = y ~ x, method = glm, method.args = list(family = binomial)) fasttrakg %>% as_tibble() fishing %>% as_tibble() lbw %>% as_tibble() lbwgrp %>% as_tibble() loomis %>% as_tibble() mdvis %>% as_tibble() %>% plot() medpar %>% as_tibble() nuts %>% as_tibble() rwm %>% as_tibble() %>% plot() rwm1984 %>% as_tibble() rwm5yr %>% as_tibble() ships %>% as_tibble() smoking %>% as_tibble() titanic %>% as_tibble() titanicgrp %>% as_tibble() MASS::ships %>% as_tibble() %>% ggplot() + aes(log10(service), incidents) + geom_point(aes(color = type), alpha = 0.6)
/rstats/datasets.R
permissive
heavywatal/scribble
R
false
false
9,479
r
library(tidyverse) # https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html # ability.cov # airmiles # AirPassengers airquality %>% dplyr::group_by(Month) %>% dplyr::summarise_all(mean, na.rm = TRUE) tidy_anscombe = anscombe %>% tibble::rowid_to_column("id") %>% tidyr::pivot_longer(!id, names_to = c("axis", "group"), names_sep = 1L, names_transform = list(group = as.integer)) %>% tidyr::pivot_wider(c(id, group), names_from = axis) %>% dplyr::select(!id) %>% dplyr::arrange(group) tidy_anscombe %>% dplyr::group_by(group) %>% dplyr::summarise( x_mean = mean(x), x_sd = sd(x), y_mean = mean(y), y_sd = sd(y), cor_xy = cor(x, y) ) tidy_anscombe %>% tidyr::nest(data = !group) %>% dplyr::mutate(data = purrr::map(data, ~{ summarise_all(.x, funs(mean, sd)) %>% dplyr::mutate(cor = cor(.x$x, .x$y)) })) %>% tidyr::unnest(data) tidy_anscombe %>% ggplot(aes(x, y)) + geom_point(size = 3) + stat_smooth(method = lm, se = FALSE, fullrange = TRUE) + facet_wrap(vars(group), nrow = 1L) tidy_anscombe %>% ggplot(aes(x, y)) + geom_point(size = 2) + stat_smooth(method = lm, se = FALSE, fullrange = TRUE) + stat_summary(fun.data = mean_se) + facet_wrap(vars(group)) # attenu # attitude # austres # beaver1 beaver2 # BJsales # BOD # cars ChickWeight %>% ggplot(aes(Time, weight, group = Chick)) + geom_line(aes(colour = Diet)) + theme_bw() chickwts %>% dplyr::group_by(feed) %>% dplyr::summarise_all(funs(mean, sd, length)) chickwts %>% as_tibble() %>% ggplot(aes(weight)) + geom_histogram(bins = 10) + facet_wrap(vars(feed)) + theme_bw() # co2 # crimtab # discoveries DNase esoph # euro # eurodist # EuStockMarkets (faithful %>% ggplot(aes(eruptions, waiting)) + geom_point()) %>% ggExtra::ggMarginal(type = "histogram") # freeny # Formaldehyde HairEyeColor # Harman23.cor # Harman74.cor Indometh # infert InsectSprays %>% head() iris iris3 # islands # JohnsonJohnson # LakeHuron # lh # LifeCycleSavings # Loblolly # longley # lynx # morley mtcars # nhtemp # Nile # nottem # npk # occupationalStatus # Orange OrchardSprays %>% head() OrchardSprays %>% tidyr::pivot_wider(names_from = colpos, values_from = c(decrease, treatment)) PlantGrowth %>% dplyr::group_by(group) %>% dplyr::summarise_all(mean) # precip # presidents pressure # Puromycin quakes %>% ggplot(aes(long, lat)) + geom_point(aes(size = mag, colour = depth), alpha = 0.4) + scale_size_continuous(name = "magnitude", range = c(1, 6), guide = guide_legend(reverse = TRUE)) + scale_colour_viridis_c(option = "magma", direction = -1, guide = guide_colourbar(reverse = TRUE)) + labs(title = "Quakes", x = "Longitude", y = "Latitude") + theme_gray(base_size = 14) + theme( panel.grid.minor = element_blank(), panel.background = element_rect(fill = "#8090a0"), ) # randu %>% ggplot(aes(x, y, colour=z))+geom_point() # rivers # rock Seatbelts # sleep # stackloss tibble::tibble( name = state.name, abb = state.abb, division = state.division, region = state.region ) %>% bind_cols(as_tibble(state.x77)) %>% bind_cols(state.center) # sunspot.month sunspot.year sunspots # swiss # Theoph %>% head() Titanic # ToothGrowth # treering # trees UCBAdmissions UKDriverDeaths ldeaths # mdeaths + fdeaths # UKgas # USAccDeaths # USArrests # USJudgeRatings USPersonalExpenditure %>% as.data.frame() %>% rownames_to_column("category") %>% tidyr::pivot_longer(!category, "year", names_transform = list(year = as.integer), values_to = "dollar") # uspop va_deaths = VADeaths %>% as.data.frame() %>% tibble::rownames_to_column("class") %>% as_tibble() %>% tidyr::separate(class, c("lbound", "ubound"), "-", convert = TRUE) %>% print() %>% tidyr::pivot_longer(!matches("bound$"), names_to = c("region", "sex"), names_sep = " ", values_to = "death_rate") %>% dplyr::mutate(death_rate = death_rate * 0.1) %>% print() ggplot(va_deaths, aes(lbound, death_rate)) + geom_line(aes(colour = sex, linetype = region), size = 1) + theme_bw() # volcano # warpbreaks # women # WWWusage WorldPhones %>% as.data.frame() %>% rownames_to_column("year") %>% dplyr::mutate(year = as.integer(year)) %>% tidyr::pivot_longer(!year, "country", values_to = "phones") %>% ggplot(aes(year, phones)) + geom_line(aes(colour = country)) + theme_bw() # #######1#########2#########3#########4#########5#########6#########7######### # ggplot2 ggplot(diamonds, aes(carat, price)) + geom_point(aes(colour = clarity), alpha = 0.5) + facet_grid(vars(cut), vars(color)) + scale_colour_viridis_d( guide = guide_legend(reverse = TRUE, override.aes = list(alpha = 1)) ) + labs(title = "Diamonds") + theme_gray(base_size = 14) + theme( panel.grid = element_blank(), panel.background = element_rect(fill = "#aaaaaa"), legend.key = element_rect(fill = "#aaaaaa"), axis.text = element_blank(), axis.ticks = element_blank() ) seals %>% dplyr::mutate(v = sqrt(delta_lat ** 2 + delta_long ** 2)) %>% ggplot(aes(x = long, y = lat, colour = v)) + geom_segment( aes(xend = long + delta_long, yend = lat + delta_lat), arrow = arrow(length = unit(1.5, "mm")), size = 1 ) + scale_colour_viridis_c(option = "magma", end = 0.7, guide = FALSE) + labs(title = "Seals", x = "Longitude", y = "Latitude") + theme_bw(base_size = 14) economics_long %>% tidyr::pivot_wider(!value01, names_from = variable, values_from = value) # #######1#########2#########3#########4#########5#########6#########7######### # install.packages("AER") library(AER) data_AER = data(package = "AER")[["results"]] %>% as_tibble() %>% dplyr::select(!LibPath) %>% print() data_AER[["Item"]] %>% paste(collapse="\n") %>% cat("\n") data(list = data_AER[["Item"]], package = "AER") Affairs %>% as_tibble() ArgentinaCPI BankWages %>% as_tibble() BenderlyZwick BondYield CASchools %>% as_tibble() CPS1985 %>% as_tibble() CPS1988 %>% as_tibble() CPSSW04 %>% as_tibble() CPSSW3 %>% as_tibble() CPSSW8 %>% as_tibble() CPSSW9204 %>% as_tibble() CPSSW9298 %>% as_tibble() CPSSWEducation %>% as_tibble() CartelStability %>% as_tibble() ChinaIncome CigarettesB %>% rownames_to_column("state") %>% as_tibble() CigarettesSW %>% as_tibble() CollegeDistance %>% as_tibble() ConsumerGood CreditCard %>% as_tibble() DJFranses DJIA8012 DoctorVisits %>% as_tibble() DutchAdvert DutchSales Electricity1955 %>% as_tibble() Electricity1970 %>% rownames_to_column() %>% as_tibble() EquationCitations %>% as_tibble() Equipment %>% rownames_to_column("state") %>% as_tibble() EuroEnergy %>% rownames_to_column("country") %>% as_tibble() Fatalities %>% as_tibble() Fertility %>% as_tibble() Fertility2 %>% as_tibble() FrozenJuice GSOEP9402 %>% as_tibble() GSS7402 %>% as_tibble() GermanUnemployment GoldSilver GrowthDJ %>% as_tibble() GrowthSW %>% rownames_to_column("country") %>% as_tibble() Grunfeld %>% as_tibble() Guns %>% as_tibble() HMDA %>% as_tibble() HealthInsurance %>% as_tibble() HousePrices %>% as_tibble() Journals %>% rownames_to_column("abbrev") %>% as_tibble() KleinI Longley MASchools %>% as_tibble() MSCISwitzerland ManufactCosts MarkDollar MarkPound Medicaid1986 %>% as_tibble() Mortgage %>% as_tibble() MotorCycles MotorCycles2 Municipalities %>% as_tibble() MurderRates %>% as_tibble() NMES1988 %>% as_tibble() NYSESW NaturalGas %>% as_tibble() OECDGas %>% as_tibble() OECDGrowth %>% rownames_to_column("country") %>% as_tibble() OlympicTV %>% rownames_to_column("city") %>% as_tibble() OrangeCounty PSID1976 %>% as_tibble() PSID1982 %>% as_tibble() PSID7682 %>% as_tibble() Parade2005 %>% as_tibble() PepperPrice PhDPublications %>% as_tibble() ProgramEffectiveness %>% as_tibble() RecreationDemand %>% as_tibble() ResumeNames %>% as_tibble() SIC33 %>% as_tibble() STAR %>% as_tibble() ShipAccidents %>% as_tibble() SmokeBan %>% as_tibble() SportsCards %>% as_tibble() StrikeDuration %>% as_tibble() SwissLabor %>% as_tibble() TeachingRatings %>% as_tibble() TechChange TradeCredit TravelMode %>% as_tibble() UKInflation UKNonDurables USAirlines %>% as_tibble() USConsump1950 USConsump1979 USConsump1993 USCrudes %>% as_tibble() USGasB USGasG USInvest USMacroB USMacroG USMacroSW USMacroSWM USMacroSWQ USMoney USProdIndex USSeatBelts %>% as_tibble() USStocksSW WeakInstrument %>% as_tibble() # #######1#########2#########3#########4#########5#########6#########7######### # install.packages("COUNT") library(COUNT) data_COUNT = data(package = "COUNT")[["results"]] %>% as_tibble() %>% dplyr::select(!LibPath) %>% print() data(list = data_COUNT[["Item"]], package = "COUNT") affairs %>% as_tibble() azcabgptca %>% as_tibble() azdrg112 %>% as_tibble() azpro %>% as_tibble() azprocedure %>% as_tibble() badhealth %>% as_tibble() %>% ggplot() + aes(numvisit, badh) + geom_jitter(aes(color = age), height = 0.2, width = 0, alpha = 0.5) + stat_smooth(formula = y ~ x, method = glm, method.args = list(family = binomial)) fasttrakg %>% as_tibble() fishing %>% as_tibble() lbw %>% as_tibble() lbwgrp %>% as_tibble() loomis %>% as_tibble() mdvis %>% as_tibble() %>% plot() medpar %>% as_tibble() nuts %>% as_tibble() rwm %>% as_tibble() %>% plot() rwm1984 %>% as_tibble() rwm5yr %>% as_tibble() ships %>% as_tibble() smoking %>% as_tibble() titanic %>% as_tibble() titanicgrp %>% as_tibble() MASS::ships %>% as_tibble() %>% ggplot() + aes(log10(service), incidents) + geom_point(aes(color = type), alpha = 0.6)
createFreqTable = function() { CountsUM = as.data.frame(xtabs(~ Area + Organisation.Type + Year + Classified + Description, data=UM)) SortedCounts = CountsUM[order(-CountsUM$Freq), ] names(SortedCounts)[names(SortedCounts)=="Organisation.Type"] <- "Type" names(SortedCounts)[names(SortedCounts)=="Classified"] <- "Class." print(SortedCounts[1:30,], row.name=FALSE) }
/R/createFreqTable.R
no_license
Anjs04/UM
R
false
false
386
r
createFreqTable = function() { CountsUM = as.data.frame(xtabs(~ Area + Organisation.Type + Year + Classified + Description, data=UM)) SortedCounts = CountsUM[order(-CountsUM$Freq), ] names(SortedCounts)[names(SortedCounts)=="Organisation.Type"] <- "Type" names(SortedCounts)[names(SortedCounts)=="Classified"] <- "Class." print(SortedCounts[1:30,], row.name=FALSE) }
################################################################################ # Accompanying code for the paper: # Root traits influence storm-water performance in a green roof microcosm # # Authorship: # Garland Xie (1) # Jeremy Lundholm (2) # # Corresponding for this script: # Garland Xie (1) # # Institutional affiliations: # (1) Department of Biological Sciences # University of Toronto Scarborough, # 1265 Military Trail, Toronto, ON, M1C 1A4, Canada # email: garlandxie@gmail.com # (2) Department of Biology # Saint Mary's University # 923 Robie St., Halifax, NS, B3H 3C3, Canada # # Purpose of this R script: to conduct statistical analyses on the relationship # between root traits and ecosystem functions # libraries -------------------------------------------------------------------- library(here) library(dplyr) library(ggplot2) library(tidyr) library(car) library(broom) library(ggstatsplot) library(flextable) library(lme4) # import ----------------------------------------------------------------------- traits_EF <- readRDS( here("data/final", "traits_EF_clean_df.rds") ) # check packaging -------------------------------------------------------------- str(traits_EF) # split data set: wet ---------------------------------------------------------- EF_WW <- traits_EF %>% filter(treatment == "WW") %>% drop_na() %>% ungroup() %>% as.data.frame() # split data set: dry ----------------------------------------------------------- EF_WD <- traits_EF %>% filter(treatment == "WD") %>% drop_na() %>% ungroup() %>% as.data.frame() # linear mixed effect models: water capture (dry treatment) -------------------- lmm_total_ret_WD <- lmer( total_water_capture ~ # fixed vars scale(srl) + scale(mean_radius_mm) + scale(rld) + scale(rmf) + scale(max_root_depth_cm) + # covariate var scale(plant_size) + #bloc random effect (1|block), data = EF_WD) # check the variance component of the random effect # five levels for block effect summary(lmm_total_ret_WD) # result: singularity and zero variance component # drop the block variable and opt for a more simple model # linear mixed effect models: water capture (wet treatment) -------------------- lmm_total_ret_WW <- lmer( total_water_capture ~ # fixed vars scale(srl) + scale(mean_radius_mm) + scale(rld) + scale(rmf) + scale(max_root_depth_cm) + # covariate var scale(plant_size) + #bloc random effect (1|block), data = EF_WW) # check the variance component of the random effect # five levels for block effect summary(lmm_total_ret_WW) # multiple regression: water capture for wet treatment ------------------------- # model fitting lm_total_ret_WW <- lm( formula = # response var total_water_capture ~ # fixed vars scale(srl) + scale(mean_radius_mm) + scale(rld) + scale(rmf) + scale(max_root_depth_cm) + # covariate var scale(plant_size), data = EF_WW) # get coefficients, p-values, R-squared values, degrees of freedom summary(lm_total_ret_WW) # check for model diagnostics plot(lm_total_ret_WW, c(1)) # check for linearity plot(lm_total_ret_WW, c(2)) # check for normality plot(lm_total_ret_WW, c(3)) # check for homogeneity of variance plot(lm_total_ret_WW, c(5)) # check for influential outliers # check for multicollinearity vif(lm_total_ret_WW) # multiple regression: water capture for dry treatment ------------------------- # model fitting lm_total_ret_WD <- lm( formula = # response var total_water_capture ~ # fixed vars scale(srl) + scale(mean_radius_mm) + scale(rld) + scale(rmf) + scale(max_root_depth_cm) + # covariate var scale(plant_size), data = EF_WD) # get coefficients, p-values, R-squared values, degrees of freedom summary(lm_total_ret_WD) # check for model diagnostics plot(lm_total_ret_WD, c(1)) # check for linearity plot(lm_total_ret_WD, c(2)) # check for normality plot(lm_total_ret_WD, c(3)) # check for homogeneity of variance plot(lm_total_ret_WD, c(5)) # check for influential outliers # check for multicollinearity vif(lm_total_ret_WD) # save to disk ----------------------------------------------------------------- ggsave(plot = plot_WD, here( "output/figures/main", "fig1-RET_WD.png" ), width = 7.5, height = 5.4, device = "png") ggsave(plot = plot_WW, here( "output/figures/main", "fig1-RET_WW.png" ), width = 7.5, height = 5.4, device = "png")
/src/02-03-LMM_tot_water_ret.R
no_license
garlandxie/MS_MSc_Roots
R
false
false
4,708
r
################################################################################ # Accompanying code for the paper: # Root traits influence storm-water performance in a green roof microcosm # # Authorship: # Garland Xie (1) # Jeremy Lundholm (2) # # Corresponding for this script: # Garland Xie (1) # # Institutional affiliations: # (1) Department of Biological Sciences # University of Toronto Scarborough, # 1265 Military Trail, Toronto, ON, M1C 1A4, Canada # email: garlandxie@gmail.com # (2) Department of Biology # Saint Mary's University # 923 Robie St., Halifax, NS, B3H 3C3, Canada # # Purpose of this R script: to conduct statistical analyses on the relationship # between root traits and ecosystem functions # libraries -------------------------------------------------------------------- library(here) library(dplyr) library(ggplot2) library(tidyr) library(car) library(broom) library(ggstatsplot) library(flextable) library(lme4) # import ----------------------------------------------------------------------- traits_EF <- readRDS( here("data/final", "traits_EF_clean_df.rds") ) # check packaging -------------------------------------------------------------- str(traits_EF) # split data set: wet ---------------------------------------------------------- EF_WW <- traits_EF %>% filter(treatment == "WW") %>% drop_na() %>% ungroup() %>% as.data.frame() # split data set: dry ----------------------------------------------------------- EF_WD <- traits_EF %>% filter(treatment == "WD") %>% drop_na() %>% ungroup() %>% as.data.frame() # linear mixed effect models: water capture (dry treatment) -------------------- lmm_total_ret_WD <- lmer( total_water_capture ~ # fixed vars scale(srl) + scale(mean_radius_mm) + scale(rld) + scale(rmf) + scale(max_root_depth_cm) + # covariate var scale(plant_size) + #bloc random effect (1|block), data = EF_WD) # check the variance component of the random effect # five levels for block effect summary(lmm_total_ret_WD) # result: singularity and zero variance component # drop the block variable and opt for a more simple model # linear mixed effect models: water capture (wet treatment) -------------------- lmm_total_ret_WW <- lmer( total_water_capture ~ # fixed vars scale(srl) + scale(mean_radius_mm) + scale(rld) + scale(rmf) + scale(max_root_depth_cm) + # covariate var scale(plant_size) + #bloc random effect (1|block), data = EF_WW) # check the variance component of the random effect # five levels for block effect summary(lmm_total_ret_WW) # multiple regression: water capture for wet treatment ------------------------- # model fitting lm_total_ret_WW <- lm( formula = # response var total_water_capture ~ # fixed vars scale(srl) + scale(mean_radius_mm) + scale(rld) + scale(rmf) + scale(max_root_depth_cm) + # covariate var scale(plant_size), data = EF_WW) # get coefficients, p-values, R-squared values, degrees of freedom summary(lm_total_ret_WW) # check for model diagnostics plot(lm_total_ret_WW, c(1)) # check for linearity plot(lm_total_ret_WW, c(2)) # check for normality plot(lm_total_ret_WW, c(3)) # check for homogeneity of variance plot(lm_total_ret_WW, c(5)) # check for influential outliers # check for multicollinearity vif(lm_total_ret_WW) # multiple regression: water capture for dry treatment ------------------------- # model fitting lm_total_ret_WD <- lm( formula = # response var total_water_capture ~ # fixed vars scale(srl) + scale(mean_radius_mm) + scale(rld) + scale(rmf) + scale(max_root_depth_cm) + # covariate var scale(plant_size), data = EF_WD) # get coefficients, p-values, R-squared values, degrees of freedom summary(lm_total_ret_WD) # check for model diagnostics plot(lm_total_ret_WD, c(1)) # check for linearity plot(lm_total_ret_WD, c(2)) # check for normality plot(lm_total_ret_WD, c(3)) # check for homogeneity of variance plot(lm_total_ret_WD, c(5)) # check for influential outliers # check for multicollinearity vif(lm_total_ret_WD) # save to disk ----------------------------------------------------------------- ggsave(plot = plot_WD, here( "output/figures/main", "fig1-RET_WD.png" ), width = 7.5, height = 5.4, device = "png") ggsave(plot = plot_WW, here( "output/figures/main", "fig1-RET_WW.png" ), width = 7.5, height = 5.4, device = "png")
t <- read.table("household_power_consumption.txt", header=TRUE, sep=";", na.strings = "?", colClasses = c('character','character','numeric','numeric','numeric','numeric','numeric','numeric','numeric')) ## Format date to Type Date t$Date <- as.Date(t$Date, "%d/%m/%Y") ## Filter data set from Feb. 1, 2007 to Feb. 2, 2007 t <- subset(t,Date >= as.Date("2007-2-1") & Date <= as.Date("2007-2-2")) ## Remove incomplete observation t <- t[complete.cases(t)] ## Combine Date and Time column dateTime <- paste(t$Date, t$Time) ## Name the vector dateTime <- setNames(dateTime, "DateTime") ## Remove Date and Time column t <- t[ ,!(names(t) %in% c("Date","Time"))] ## Add DateTime column t <- cbind(dateTime, t) ## Format dateTime Column t$dateTime <- as.POSIXct(dateTime) ## Create Plot 4 par(mfrow=c(2,2), mar=c(4,4,2,1), oma=c(0,0,2,0)) with(t, { plot(Global_active_power~dateTime, type="l", ylab="Global Active Power (kilowatts)", xlab="") plot(Voltage~dateTime, type="l", ylab="Voltage (volt)", xlab="") plot(Sub_metering_1~dateTime, type="l", ylab="Global Active Power (kilowatts)", xlab="") lines(Sub_metering_2~dateTime,col='Red') lines(Sub_metering_3~dateTime,col='Blue') legend("topright", col=c("black", "red", "blue"), lty=1, lwd=2, bty="n", legend=c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3")) plot(Global_reactive_power~dateTime, type="l", ylab="Global Rective Power (kilowatts)",xlab="") })
/plot4.R
no_license
aryangupta07/ExData_Plotting1
R
false
false
1,514
r
t <- read.table("household_power_consumption.txt", header=TRUE, sep=";", na.strings = "?", colClasses = c('character','character','numeric','numeric','numeric','numeric','numeric','numeric','numeric')) ## Format date to Type Date t$Date <- as.Date(t$Date, "%d/%m/%Y") ## Filter data set from Feb. 1, 2007 to Feb. 2, 2007 t <- subset(t,Date >= as.Date("2007-2-1") & Date <= as.Date("2007-2-2")) ## Remove incomplete observation t <- t[complete.cases(t)] ## Combine Date and Time column dateTime <- paste(t$Date, t$Time) ## Name the vector dateTime <- setNames(dateTime, "DateTime") ## Remove Date and Time column t <- t[ ,!(names(t) %in% c("Date","Time"))] ## Add DateTime column t <- cbind(dateTime, t) ## Format dateTime Column t$dateTime <- as.POSIXct(dateTime) ## Create Plot 4 par(mfrow=c(2,2), mar=c(4,4,2,1), oma=c(0,0,2,0)) with(t, { plot(Global_active_power~dateTime, type="l", ylab="Global Active Power (kilowatts)", xlab="") plot(Voltage~dateTime, type="l", ylab="Voltage (volt)", xlab="") plot(Sub_metering_1~dateTime, type="l", ylab="Global Active Power (kilowatts)", xlab="") lines(Sub_metering_2~dateTime,col='Red') lines(Sub_metering_3~dateTime,col='Blue') legend("topright", col=c("black", "red", "blue"), lty=1, lwd=2, bty="n", legend=c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3")) plot(Global_reactive_power~dateTime, type="l", ylab="Global Rective Power (kilowatts)",xlab="") })
library(data.table) library(stringr) library(data.table) library(igraph) library(RColorBrewer) ############### # Set options # ############### args=(commandArgs(TRUE)) print(args) ######################### # Significant SNP-pairs # ######################### Pvalue_SNPs=fread(paste(args[1], "/pvalues/sign_SNPpairs.txt", sep="")) data_SNP=Pvalue_SNPs[,c(1,2,4)] data_SNP=unique(data_SNP) head(Pvalue_SNPs) ########################## # Significant gene-pairs # ########################## Pvalue_genes=fread(paste(args[1], "/pvalues/sign_GenePairs.txt", sep="")) genePair=Pvalue_genes[,1] genePair=str_split_fixed(genePair$genePairs_names, " ", 2) data=data.frame(genePair, Pvalue_genes[,2]) head(data) ######################################################## ######## # SNP # ######## node1=data.frame(data_SNP[,1]) node2=data.frame(data_SNP[,2]) dim(node1) colnames(node1)=colnames(node2) nodes_snp=rbind(node1,node2) nodes_snp=data.frame(nodes_snp[!duplicated(nodes_snp),]) dim(nodes_snp) data_SNP$width=-log10(as.numeric(data_SNP$pvalue)) links_snp=data_SNP[,c(1,2,4)] colnames(nodes_snp)=c("id") colnames(links_snp)=c("id1","id2","width") net_SNP <- graph_from_data_frame(d=links_snp, vertices=nodes_snp) #Color cluster in Gene-based exhaustive and visualize them in SNP based exhaustive comp=components(net_SNP, mode = c("weak", "strong")) nodes_snp=data.frame(comp$membership) nodes_snp$gene=rownames(nodes_snp) colnames(nodes_snp)=c("group","id") nodes_snp=data.frame(nodes_snp$id, nodes_snp$group) colnames(nodes_snp)=c("id","group") ######## # Gene # ######## node1=data.frame(data[,1]) node2=data.frame(data[,2]) colnames(node1)=colnames(node2) nodes_gene=rbind(node1,node2) nodes_gene=data.frame(nodes_gene[!duplicated(nodes_gene),]) data$width=-log10(data$MinP) links_gene=data[,c(1,2,4)] colnames(nodes_gene)=c("id") colnames(links_gene)=c("id1","id2","width") net_gene <- graph_from_data_frame(d=links_gene, vertices=nodes_gene) #Color cluster in Gene-based exhaustive and visualize them in SNP based exhaustive #Create community for the gene-based network comp=components(net_gene, mode = c("weak", "strong")) nodes_gene=data.frame(comp$membership) nodes_gene$gene=rownames(nodes_gene) colnames(nodes_gene)=c("group","id") nodes_gene=data.frame(nodes_gene$id, nodes_gene$group) colnames(nodes_gene)=c("id","group") ##################### # Visualization SNP # ##################### V(net_SNP)$size <- 2 V(net_SNP)$frame.color <- "white" V(net_SNP)$color <- nodes_snp$group #V(net_SNP)$label <- "" E(net_SNP)$arrow.mode <- 0 E(net_SNP)$width <- links_snp$width*0.7 E(net_SNP)$label <- "" plot(net_SNP, main=paste("Eqtl", sep=""), cex.main=50, margin=c(0,0,0,0)) ###################### # Visualization Gene # ###################### #Parameters V(net_gene)$size <- 2 V(net_gene)$frame.color <- "white" V(net_gene)$color <- nodes_gene$group #V(net_gene)$label <- "" E(net_gene)$arrow.mode <- 0 E(net_gene)$width <- links_gene$width*0.7 E(net_gene)$label <- "" plot(net_gene, main=paste("Eqtl", sep=""), cex.main=50, margin=c(0,0,0,0)) ############ # Analysis # ############ #Largest component comp_snp=components(net_SNP, mode = c("weak", "strong")) max(comp_snp$csize) comp_gene=components(net_gene, mode = c("weak", "strong")) max(comp_gene$csize) #degree degSNP=degree(net_SNP,mode="all") averageDegreeSNP=mean(degSNP) medDegreeSNP=median(degSNP) averageDegreeSNP medDegreeSNP degGene=degree(net_gene,mode="all") averageDegreeGene=mean(degGene) medDegreeGene=median(degGene) averageDegreeGene medDegreeGene
/pipeline/network_visualization.R
permissive
DianeDuroux/BiologicalEpistasis
R
false
false
3,546
r
library(data.table) library(stringr) library(data.table) library(igraph) library(RColorBrewer) ############### # Set options # ############### args=(commandArgs(TRUE)) print(args) ######################### # Significant SNP-pairs # ######################### Pvalue_SNPs=fread(paste(args[1], "/pvalues/sign_SNPpairs.txt", sep="")) data_SNP=Pvalue_SNPs[,c(1,2,4)] data_SNP=unique(data_SNP) head(Pvalue_SNPs) ########################## # Significant gene-pairs # ########################## Pvalue_genes=fread(paste(args[1], "/pvalues/sign_GenePairs.txt", sep="")) genePair=Pvalue_genes[,1] genePair=str_split_fixed(genePair$genePairs_names, " ", 2) data=data.frame(genePair, Pvalue_genes[,2]) head(data) ######################################################## ######## # SNP # ######## node1=data.frame(data_SNP[,1]) node2=data.frame(data_SNP[,2]) dim(node1) colnames(node1)=colnames(node2) nodes_snp=rbind(node1,node2) nodes_snp=data.frame(nodes_snp[!duplicated(nodes_snp),]) dim(nodes_snp) data_SNP$width=-log10(as.numeric(data_SNP$pvalue)) links_snp=data_SNP[,c(1,2,4)] colnames(nodes_snp)=c("id") colnames(links_snp)=c("id1","id2","width") net_SNP <- graph_from_data_frame(d=links_snp, vertices=nodes_snp) #Color cluster in Gene-based exhaustive and visualize them in SNP based exhaustive comp=components(net_SNP, mode = c("weak", "strong")) nodes_snp=data.frame(comp$membership) nodes_snp$gene=rownames(nodes_snp) colnames(nodes_snp)=c("group","id") nodes_snp=data.frame(nodes_snp$id, nodes_snp$group) colnames(nodes_snp)=c("id","group") ######## # Gene # ######## node1=data.frame(data[,1]) node2=data.frame(data[,2]) colnames(node1)=colnames(node2) nodes_gene=rbind(node1,node2) nodes_gene=data.frame(nodes_gene[!duplicated(nodes_gene),]) data$width=-log10(data$MinP) links_gene=data[,c(1,2,4)] colnames(nodes_gene)=c("id") colnames(links_gene)=c("id1","id2","width") net_gene <- graph_from_data_frame(d=links_gene, vertices=nodes_gene) #Color cluster in Gene-based exhaustive and visualize them in SNP based exhaustive #Create community for the gene-based network comp=components(net_gene, mode = c("weak", "strong")) nodes_gene=data.frame(comp$membership) nodes_gene$gene=rownames(nodes_gene) colnames(nodes_gene)=c("group","id") nodes_gene=data.frame(nodes_gene$id, nodes_gene$group) colnames(nodes_gene)=c("id","group") ##################### # Visualization SNP # ##################### V(net_SNP)$size <- 2 V(net_SNP)$frame.color <- "white" V(net_SNP)$color <- nodes_snp$group #V(net_SNP)$label <- "" E(net_SNP)$arrow.mode <- 0 E(net_SNP)$width <- links_snp$width*0.7 E(net_SNP)$label <- "" plot(net_SNP, main=paste("Eqtl", sep=""), cex.main=50, margin=c(0,0,0,0)) ###################### # Visualization Gene # ###################### #Parameters V(net_gene)$size <- 2 V(net_gene)$frame.color <- "white" V(net_gene)$color <- nodes_gene$group #V(net_gene)$label <- "" E(net_gene)$arrow.mode <- 0 E(net_gene)$width <- links_gene$width*0.7 E(net_gene)$label <- "" plot(net_gene, main=paste("Eqtl", sep=""), cex.main=50, margin=c(0,0,0,0)) ############ # Analysis # ############ #Largest component comp_snp=components(net_SNP, mode = c("weak", "strong")) max(comp_snp$csize) comp_gene=components(net_gene, mode = c("weak", "strong")) max(comp_gene$csize) #degree degSNP=degree(net_SNP,mode="all") averageDegreeSNP=mean(degSNP) medDegreeSNP=median(degSNP) averageDegreeSNP medDegreeSNP degGene=degree(net_gene,mode="all") averageDegreeGene=mean(degGene) medDegreeGene=median(degGene) averageDegreeGene medDegreeGene
## Put comments here that give an overall description of what your ## functions do ## There are two functions here. ## 1. The first function, makeCacheMatrix, creates a special kind of matrix(CacheMatrix). The one which can cache its own inverse (once computed (AND PROVIDED)). This kind of a matrix ## also contains helper functions to set the data (YES, you can dynamically change its data. At which point the cached inverse is invalidated), get the data, set the inverse and get the inverse. ## 2. The Second function, cacheSolve, takes as input, a CacheMatrix. And sees if its inverse is already computed, if so it just returns the inverse. On the other hand, if the inverse ## is not there, it computes the inverse, and does two additional things. ## a. Stores the inverse back in the CacheMatrix ## b. Returns the inverse to the caller ## Write a short comment describing this function ## This is the function, 1, described above. It takes as input a standard matrix, and returns the interface (i.e., set of functions) that can be invoked on it. These being ## set(x) -> To reset the data content of the CachedMatrix, to the one that is provided. At which point the inverse is also invalidated(set to NULL). ## get() -> returns the dataContent of the CacheMatrix Object ## getInv() -> returns the STORED inverse. Note that the inverse is NOT computed. It just returns whatever is stored. And this would be null, till the time someone calls the setInv with a non ## non NULL input. This function should ONLY be called by the cacheSolve function described below. End users should NOT be calling this to get inverse. ## setInv(inv) -> Stores the given inverse, within itself makeCacheMatrix <- function(x = matrix()) { inv<-NULL set <- function(y){ inv<<-NULL x<<-y } get <- function(){ x } setInv <- function(computedInverse){ inv <<- computedInverse } getInv <- function(){ inv } # return the list of functions created. This could be called as the Interface of a CacheMatrix. list(set=set, get=get, setInv=setInv, getInv= getInv) } ## Write a short comment describing this function ## This is the function, 2, described at the top. This is the function called for getting the computed Inverse, and end users should be calling this. ## This takes a CacheMatrix as input. And looks up its inverse. And sees if its inverse is already computed, if so it just returns the inverse. On the other hand, if the inverse ## is not computed, it computes the inverse, and does two additional things. ## a. Stores the inverse back in the Cache Matrix ## b. Returns the inverse to the caller cacheSolve <- function(x, ...) { ## Note that, here x is a CacheMatrix! ## Return a matrix that is the inverse of 'x' inv<-x$getInv() if (!is.null(inv)){ message("Getting Inverse from Cache") return(inv) } mat<-x$get() message("Inverse Not in Cache. Computing the Inverse") inv<-solve(mat, ...) ## It is assumed that the Matrix provided is always INVERTIBLE x$setInv(inv) inv } ## I just used the below function to test the code. You could uncomment this and run it, and look at the messages. This also includes the test case where the contents of a CacheMatrix are reset. # test <- function(){ # m1<-matrix(c(1,2,3,0,1,4,5,6,0), nrow = 3, byrow = T) # m2<-solve(m1) # # cm1<-makeCacheMatrix(m1) # cacheSolve(cm1) # cacheSolve(cm1) # # cm2<-makeCacheMatrix(m2) # cacheSolve(cm1) # cacheSolve(cm2) # cacheSolve(cm1) # cacheSolve(cm2) # cacheSolve(cm1) # cacheSolve(cm2) # #This should invalidate the inverse # cm1$set(m2) # cacheSolve(cm1) # cacheSolve(cm1) # # }
/cachematrix.R
no_license
gunapemmaraju/ProgrammingAssignment2
R
false
false
3,867
r
## Put comments here that give an overall description of what your ## functions do ## There are two functions here. ## 1. The first function, makeCacheMatrix, creates a special kind of matrix(CacheMatrix). The one which can cache its own inverse (once computed (AND PROVIDED)). This kind of a matrix ## also contains helper functions to set the data (YES, you can dynamically change its data. At which point the cached inverse is invalidated), get the data, set the inverse and get the inverse. ## 2. The Second function, cacheSolve, takes as input, a CacheMatrix. And sees if its inverse is already computed, if so it just returns the inverse. On the other hand, if the inverse ## is not there, it computes the inverse, and does two additional things. ## a. Stores the inverse back in the CacheMatrix ## b. Returns the inverse to the caller ## Write a short comment describing this function ## This is the function, 1, described above. It takes as input a standard matrix, and returns the interface (i.e., set of functions) that can be invoked on it. These being ## set(x) -> To reset the data content of the CachedMatrix, to the one that is provided. At which point the inverse is also invalidated(set to NULL). ## get() -> returns the dataContent of the CacheMatrix Object ## getInv() -> returns the STORED inverse. Note that the inverse is NOT computed. It just returns whatever is stored. And this would be null, till the time someone calls the setInv with a non ## non NULL input. This function should ONLY be called by the cacheSolve function described below. End users should NOT be calling this to get inverse. ## setInv(inv) -> Stores the given inverse, within itself makeCacheMatrix <- function(x = matrix()) { inv<-NULL set <- function(y){ inv<<-NULL x<<-y } get <- function(){ x } setInv <- function(computedInverse){ inv <<- computedInverse } getInv <- function(){ inv } # return the list of functions created. This could be called as the Interface of a CacheMatrix. list(set=set, get=get, setInv=setInv, getInv= getInv) } ## Write a short comment describing this function ## This is the function, 2, described at the top. This is the function called for getting the computed Inverse, and end users should be calling this. ## This takes a CacheMatrix as input. And looks up its inverse. And sees if its inverse is already computed, if so it just returns the inverse. On the other hand, if the inverse ## is not computed, it computes the inverse, and does two additional things. ## a. Stores the inverse back in the Cache Matrix ## b. Returns the inverse to the caller cacheSolve <- function(x, ...) { ## Note that, here x is a CacheMatrix! ## Return a matrix that is the inverse of 'x' inv<-x$getInv() if (!is.null(inv)){ message("Getting Inverse from Cache") return(inv) } mat<-x$get() message("Inverse Not in Cache. Computing the Inverse") inv<-solve(mat, ...) ## It is assumed that the Matrix provided is always INVERTIBLE x$setInv(inv) inv } ## I just used the below function to test the code. You could uncomment this and run it, and look at the messages. This also includes the test case where the contents of a CacheMatrix are reset. # test <- function(){ # m1<-matrix(c(1,2,3,0,1,4,5,6,0), nrow = 3, byrow = T) # m2<-solve(m1) # # cm1<-makeCacheMatrix(m1) # cacheSolve(cm1) # cacheSolve(cm1) # # cm2<-makeCacheMatrix(m2) # cacheSolve(cm1) # cacheSolve(cm2) # cacheSolve(cm1) # cacheSolve(cm2) # cacheSolve(cm1) # cacheSolve(cm2) # #This should invalidate the inverse # cm1$set(m2) # cacheSolve(cm1) # cacheSolve(cm1) # # }
defineModule(sim, list( name = "stateVars", description = "keep track of stat transitions affecting multiple moduls; also classification", keywords = c("insert key words here"), authors = c(person(c("First", "Middle"), "Last", email="email@example.com", role=c("aut", "cre"))), childModules = character(), version = numeric_version("1.1.1.9006"), spatialExtent = raster::extent(rep(NA_real_, 4)), timeframe = as.POSIXlt(c(NA, NA)), timeunit = "year", citation = list("citation.bib"), documentation = list("README.txt", "stateVars.Rmd"), reqdPkgs = list("raster", "data.table", "RColorBrewer"), parameters = rbind( #defineParameter("paramName", "paramClass", value, min, max, "parameter description")), defineParameter("startTime", "numeric", 0, 0, NA, "Start time"), defineParameter("returnInterval", "numeric", 1, 0, NA, "waddya think?"), defineParameter(".plotInitialTime", "numeric", 0, NA, NA, desc="This describes the simulation time at which the first plot event should occur"), defineParameter(".plotInterval", "numeric", 1, NA, NA, desc="This describes the simulation time at which the first plot event should occur"), defineParameter("persistTimes", "numeric", c(40,30,30), c(0,0,0), c(100,100,100), desc= "For how many years do disturbances effect indicators?") ), inputObjects = bind_rows( expectsInput(objectName = "disturbanceMap", objectClass = "RasterLayer", desc = "state of burned or harvestd cells"), expectsInput(objectName = "spreadState", objectClass = "data.table", desc = "table of active initial spread cells"), expectsInput(objectName = "ageMap", objectClass = "RasterLayer", desc = "time since last disturbance"), expectsInput(objectName = "cutCells", objectClass = "numeric", desc = "vector of recently cut cells") ), outputObjects = bind_rows( createsOutput(objectName = "heightMap", objectClass = "RasterLayer", desc = "crude height from age model"), createsOutput(objectName = "disturbanceMap", objectClass = "RasterLayer", desc = "update for caribou adjacency"), createsOutput(objectName = "dtMap", objectClass = "RasterLayer", desc = "timer for disturbances") ) )) doEvent.stateVars = function(sim, eventTime, eventType) { switch (eventType, init = { sim <- Init(sim) sim <- scheduleEvent(sim, P(sim)$startTime,"stateVars","update") sim <- scheduleEvent(sim, P(sim)$.plotInitialTime,"stateVars","plot") }, update = { Update(sim) sim <- scheduleEvent(sim, time(sim) + P(sim)$returnInterval, "stateVars", "update") }, plot = { Plot(sim$disturbanceMap) sim <- scheduleEvent(sim, time(sim) + P(sim)$.plotInterval, "stateVars", "plot") }, warning(paste("Undefined event type: '", events(sim)[1, "eventType", with = FALSE], "' in module '", events(sim)[1, "moduleName", with = FALSE], "'", sep = "")) ) return(invisible(sim)) } heightFromAge <-function(sim){ x <- sim$ageMap[]/ (sim$ageMap[] + 100) sim$heightMap[] <- 80*x return(invisible(sim)) } Init <- function(sim) { #use disturbanceMap as template to copy. #browser() sim$disturbanceMap <- raster::raster(sim$ageMap) sim$disturbanceMap[] <- sim$ageMap[] * 0 sim$dtMap <- raster::raster(sim$ageMap) sim$dtMap[] <- sim$ageMap[] * 0 #raster::setValues(sim$harvestStateMap, values=0) The reason CS people fucking HATE R #is because of random non-orthogonality like this, and the documentation that tries to be #like UNIX, but fails. We shoulda gone with Python. setColors(sim$disturbanceMap,n=4) <- c("grey80", "red", "blue", "yellow") #0 = none #1 = burn #2 = cut #3 = adjacent to cut sim$heightMap <- raster::raster(sim$disturbanceMap) sim$heightMap[] <- sim$disturbanceMap[] * 0 setColors(sim$heightMap, n=10) <- colorRampPalette(c("white","green4"))(10) sim<-heightFromAge(sim) return(invisible(sim)) } Update <- function(sim){ #browser() #idx <- which(sim$harvestStateMap[] > 0) #vals <- sim$harvestStateMap[idx] #sim$harvestStateMap[idx] <- vals - 1 #let't not go all negative #x <- which(sim$disturbanceMap[] == 2) # 2 codes for harvest, 1 for fire; 3 could code for "adjacent to harvest" #Let's add this here #sim$harvestStateMap[x] <- P(sim)$cutPersistanceTime #browser() dtidx <- which(sim$dtMap[] > 0) dtval <- sim$dtMap[dtidx] dtval <- dtval - 1 sim$dtMap[dtidx] <- dtval unMark <- dtidx[which(dtval == 0)] sim$disturbanceMap[unMark] <- 0 if (is.data.table(sim$spreadState) && nrow(sim$spreadState) > 0){ #existant and non-empty? idx <- sim$spreadState[,indices] #then scfmSpread will define "indices" raster::values(sim$disturbanceMap)[idx] <- 1 raster::values(sim$dtMap)[idx] <- P(sim)$persistTimes[1] } if (is.numeric(sim$cutCells) && length(sim$cutCells) > 0){ adjx <- raster::adjacent(sim$disturbanceMap,sim$cutCells,pairs=FALSE) raster::values(sim$disturbanceMap)[adjx] <- 3 raster::values(sim$dtMap)[adjx] <- P(sim)$persistTimes[3] #do these after, because overlap when cutting blocks of cells. raster::values(sim$disturbanceMap)[sim$cutCells] <- 2 raster::values(sim$dtMap)[sim$cutCells] <- P(sim)$persistTimes[2] #update ageMap raster::values(sim$ageMap)[sim$cutCells] <- 0 } sim <- heightFromAge(sim) return(invisible(sim)) } ### add additional events as needed by copy/pasting from above
/stateVars/stateVars.R
no_license
SteveCumming/scfmModules
R
false
false
5,476
r
defineModule(sim, list( name = "stateVars", description = "keep track of stat transitions affecting multiple moduls; also classification", keywords = c("insert key words here"), authors = c(person(c("First", "Middle"), "Last", email="email@example.com", role=c("aut", "cre"))), childModules = character(), version = numeric_version("1.1.1.9006"), spatialExtent = raster::extent(rep(NA_real_, 4)), timeframe = as.POSIXlt(c(NA, NA)), timeunit = "year", citation = list("citation.bib"), documentation = list("README.txt", "stateVars.Rmd"), reqdPkgs = list("raster", "data.table", "RColorBrewer"), parameters = rbind( #defineParameter("paramName", "paramClass", value, min, max, "parameter description")), defineParameter("startTime", "numeric", 0, 0, NA, "Start time"), defineParameter("returnInterval", "numeric", 1, 0, NA, "waddya think?"), defineParameter(".plotInitialTime", "numeric", 0, NA, NA, desc="This describes the simulation time at which the first plot event should occur"), defineParameter(".plotInterval", "numeric", 1, NA, NA, desc="This describes the simulation time at which the first plot event should occur"), defineParameter("persistTimes", "numeric", c(40,30,30), c(0,0,0), c(100,100,100), desc= "For how many years do disturbances effect indicators?") ), inputObjects = bind_rows( expectsInput(objectName = "disturbanceMap", objectClass = "RasterLayer", desc = "state of burned or harvestd cells"), expectsInput(objectName = "spreadState", objectClass = "data.table", desc = "table of active initial spread cells"), expectsInput(objectName = "ageMap", objectClass = "RasterLayer", desc = "time since last disturbance"), expectsInput(objectName = "cutCells", objectClass = "numeric", desc = "vector of recently cut cells") ), outputObjects = bind_rows( createsOutput(objectName = "heightMap", objectClass = "RasterLayer", desc = "crude height from age model"), createsOutput(objectName = "disturbanceMap", objectClass = "RasterLayer", desc = "update for caribou adjacency"), createsOutput(objectName = "dtMap", objectClass = "RasterLayer", desc = "timer for disturbances") ) )) doEvent.stateVars = function(sim, eventTime, eventType) { switch (eventType, init = { sim <- Init(sim) sim <- scheduleEvent(sim, P(sim)$startTime,"stateVars","update") sim <- scheduleEvent(sim, P(sim)$.plotInitialTime,"stateVars","plot") }, update = { Update(sim) sim <- scheduleEvent(sim, time(sim) + P(sim)$returnInterval, "stateVars", "update") }, plot = { Plot(sim$disturbanceMap) sim <- scheduleEvent(sim, time(sim) + P(sim)$.plotInterval, "stateVars", "plot") }, warning(paste("Undefined event type: '", events(sim)[1, "eventType", with = FALSE], "' in module '", events(sim)[1, "moduleName", with = FALSE], "'", sep = "")) ) return(invisible(sim)) } heightFromAge <-function(sim){ x <- sim$ageMap[]/ (sim$ageMap[] + 100) sim$heightMap[] <- 80*x return(invisible(sim)) } Init <- function(sim) { #use disturbanceMap as template to copy. #browser() sim$disturbanceMap <- raster::raster(sim$ageMap) sim$disturbanceMap[] <- sim$ageMap[] * 0 sim$dtMap <- raster::raster(sim$ageMap) sim$dtMap[] <- sim$ageMap[] * 0 #raster::setValues(sim$harvestStateMap, values=0) The reason CS people fucking HATE R #is because of random non-orthogonality like this, and the documentation that tries to be #like UNIX, but fails. We shoulda gone with Python. setColors(sim$disturbanceMap,n=4) <- c("grey80", "red", "blue", "yellow") #0 = none #1 = burn #2 = cut #3 = adjacent to cut sim$heightMap <- raster::raster(sim$disturbanceMap) sim$heightMap[] <- sim$disturbanceMap[] * 0 setColors(sim$heightMap, n=10) <- colorRampPalette(c("white","green4"))(10) sim<-heightFromAge(sim) return(invisible(sim)) } Update <- function(sim){ #browser() #idx <- which(sim$harvestStateMap[] > 0) #vals <- sim$harvestStateMap[idx] #sim$harvestStateMap[idx] <- vals - 1 #let't not go all negative #x <- which(sim$disturbanceMap[] == 2) # 2 codes for harvest, 1 for fire; 3 could code for "adjacent to harvest" #Let's add this here #sim$harvestStateMap[x] <- P(sim)$cutPersistanceTime #browser() dtidx <- which(sim$dtMap[] > 0) dtval <- sim$dtMap[dtidx] dtval <- dtval - 1 sim$dtMap[dtidx] <- dtval unMark <- dtidx[which(dtval == 0)] sim$disturbanceMap[unMark] <- 0 if (is.data.table(sim$spreadState) && nrow(sim$spreadState) > 0){ #existant and non-empty? idx <- sim$spreadState[,indices] #then scfmSpread will define "indices" raster::values(sim$disturbanceMap)[idx] <- 1 raster::values(sim$dtMap)[idx] <- P(sim)$persistTimes[1] } if (is.numeric(sim$cutCells) && length(sim$cutCells) > 0){ adjx <- raster::adjacent(sim$disturbanceMap,sim$cutCells,pairs=FALSE) raster::values(sim$disturbanceMap)[adjx] <- 3 raster::values(sim$dtMap)[adjx] <- P(sim)$persistTimes[3] #do these after, because overlap when cutting blocks of cells. raster::values(sim$disturbanceMap)[sim$cutCells] <- 2 raster::values(sim$dtMap)[sim$cutCells] <- P(sim)$persistTimes[2] #update ageMap raster::values(sim$ageMap)[sim$cutCells] <- 0 } sim <- heightFromAge(sim) return(invisible(sim)) } ### add additional events as needed by copy/pasting from above
Mixture=function(data,pre) { resultall=0 for(i in 1:length(pre$mean)) { resultall=resultall+pre$pro[i]/sum(pre$pro)*stats::dnorm(data,mean=pre$mean[i],sd=pre$sd[i]) } return(resultall) }
/R/Mixture.R
no_license
cran/BANFF
R
false
false
201
r
Mixture=function(data,pre) { resultall=0 for(i in 1:length(pre$mean)) { resultall=resultall+pre$pro[i]/sum(pre$pro)*stats::dnorm(data,mean=pre$mean[i],sd=pre$sd[i]) } return(resultall) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/sql.R \name{set_path} \alias{set_path} \alias{get_path} \alias{append_path} \alias{prepend_path} \alias{path_contains} \title{PostgreSQL path variable} \usage{ set_path(..., default = FALSE) get_path(default = FALSE) append_path(..., default = FALSE, no_dup = TRUE) prepend_path(..., default = FALSE, no_dup = TRUE) path_contains(..., default = FALSE) } \arguments{ \item{...}{path names} \item{default}{if true, manipulate database default} \item{no_dup}{do not add if path exists} } \description{ Manipulate the PostgreSQL path variable }
/man/path.Rd
no_license
keittlab/rpg
R
false
true
625
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/sql.R \name{set_path} \alias{set_path} \alias{get_path} \alias{append_path} \alias{prepend_path} \alias{path_contains} \title{PostgreSQL path variable} \usage{ set_path(..., default = FALSE) get_path(default = FALSE) append_path(..., default = FALSE, no_dup = TRUE) prepend_path(..., default = FALSE, no_dup = TRUE) path_contains(..., default = FALSE) } \arguments{ \item{...}{path names} \item{default}{if true, manipulate database default} \item{no_dup}{do not add if path exists} } \description{ Manipulate the PostgreSQL path variable }
library(raster) library(rgdal) library(rgeos) library(prettymapr) library(rasterVis) library(ggplot2) library(cowplot) library(grid) rm(list=ls()) dev.off() # Lectura de archivos ---- setwd('C:/Users/Usuario/Documents/Francisco/proyecto_agua/coberturas_FFMC') pendiente <- raster('pendiente_marco_trabajo_Rio_Imperial_utm18s.tif') plot(pendiente) # setwd('C:/Users/Usuario/Documents/Francisco/proyecto_agua/') # padre las casas setwd('C:/Users/Usuario/Documents/Francisco/proyecto_agua/coberturas_FFMC/') nombre.archivo.cuenca <- 'poligono_cuenca_Estero_Poleco_utm18s' cuenca <- readOGR('.', nombre.archivo.cuenca) plot(cuenca, add=TRUE) red.hidrica <- readOGR('.', 'linea_red_hidrografica_Estero_Poleco_utm18s') plot(red.hidrica, add=TRUE) orden.maximo <- max(red.hidrica@data$strahler) id <- which(red.hidrica@data$strahler==orden.maximo) curso.de.agua.principal <- red.hidrica[id,] plot(curso.de.agua.principal, col='cyan', lwd=2, add=TRUE) punto.desembocadura <- readOGR('.', 'punto_desembocadura_de_interes_en_Rio_Imperial_utm18s') plot(punto.desembocadura, pch=16, col='red', add=TRUE) # setwd('C:/Users/Usuario/Documents/Francisco/proyecto_agua/coberturas_FFMC/cuencas_buffer_y_clips/') # cuenca.buffer <- readOGR('.', 'VectorCuencaPadreCasas_buffer_de_1000_m') # plot(cuenca.buffer, add=TRUE) # fin --- # clip ---- pendiente.clip0 <- crop(pendiente, cuenca) pendiente.clip <- mask(pendiente.clip0, cuenca) plot(pendiente.clip) # pendiente.curso.de.agua.principal <- mask(pendiente, curso.de.agua.principal) # plot(pendiente.curso.de.agua.principal) # plot(curso.de.agua.principal, col='cyan', lwd=2, add=TRUE) # zoom(pendiente.curso.de.agua.principal, ext=drawExtent()) # fin --- # plot ---- setwd('C:/Users/Usuario/Dropbox/Proyecto_agua/mapas/') # mapa nombre.mapa <- paste('mapa_de_pendiente_', nombre.archivo.cuenca, '.png', sep = '') ; nombre.mapa paleta.colores <- hcl.colors(12, palette = "inferno") myTheme <- rasterTheme(region = paleta.colores) mapa <- levelplot(pendiente.clip, margin = list(FUN = median, axis = gpar(col = 'black', fontsize = 10)), colorkey=myTheme) + layer(sp.polygons(red.hidrica, lwd=2, col='#0fd8ee')) + layer(sp.polygons(punto.desembocadura, cex=1.5, pch=16, col='red')) # png(nombre.mapa, width = 720, height = 720, units = "px") mapa dev.off() # # histogramas # setwd('C:/Users/Usuario/Dropbox/Proyecto_agua/plots/') # # # nombre.histograma <- paste('histogramas_de_pendiente_', nombre.archivo.cuenca, '.png', sep = '') ; nombre.histograma # # histograma.cuenca0 <- hist(pendiente.clip, breaks=30) # histograma.cuenca1 <- data.frame(counts= histograma.cuenca0$counts,breaks = histograma.cuenca0$mids) # histograma.cuenca <- ggplot(histograma.cuenca1, aes(x = breaks, y = counts)) + # geom_bar(stat = "identity") + # labs(y='Frecuencia', x='Pendiente (%)', title='Cuenca') + # theme_bw() + # theme(text = element_text(size=14), panel.spacing = unit(1, "lines")) # # histograma.curso.de.agua.principal0 <- hist(pendiente.curso.de.agua.principal, breaks=30) # histograma.curso.de.agua.principal1 <- data.frame(counts= histograma.curso.de.agua.principal0$counts, breaks = histograma.curso.de.agua.principal0$mids) # histograma.curso.de.agua.principal <- ggplot(histograma.curso.de.agua.principal1, aes(x = breaks, y = counts)) + # geom_bar(stat = "identity") + # labs(y='Frecuencia', x='Pendiente (%)', title = 'Curso de agua principal') + # theme_bw() + # theme(text = element_text(size=14), panel.spacing = unit(1, "lines")) # # # # histogramas <- plot_grid(histograma.cuenca, # histograma.curso.de.agua.principal, # ncol = 1, nrow = 2) # # # png(nombre.mapa, width = 720, height = 500, units = "px") # # histogramas # # dev.off() # # # fin --- # # # # # # otros ---- # # # plot(pendiente.clip, col=hcl.colors(12, palette = "inferno")) # # plot(cuenca, border='red', add=TRUE) # # plot(red.hidrica, col='#0fd8ee', add=TRUE) # # plot(punto.desembocadura, pch=16, cex=1.5, col='#0fd8ee', add=TRUE) # # addscalebar(style = 'ticks', linecol = 'black', label.col = 'black', pos = 'bottomleft', plotepsg = 32718) # # addnortharrow(pos = "topright", cols = c("black", "black"), border = 'black', text.col = 'black', scale = 0.7) # # # # legend("bottomright", title=NULL, text.font = 2, # # legend = c('Cuenca', 'Red hidrográfica', 'Desembocadura'), # # fill=c('transparent', NA, NA), # # border = c('red', NA, NA), # # lty=c(NA, 1, NA), # # pch = c(NA, NA, 16), # # col = c(NA, '#0fd8ee', '#0fd8ee'), # # merge = TRUE, # # horiz=FALSE, cex=0.8, ncol = 1, bg='transparent')
/mapa_de_pendiente.R
no_license
fmanquehual/proyecto_agua_en_R
R
false
false
4,793
r
library(raster) library(rgdal) library(rgeos) library(prettymapr) library(rasterVis) library(ggplot2) library(cowplot) library(grid) rm(list=ls()) dev.off() # Lectura de archivos ---- setwd('C:/Users/Usuario/Documents/Francisco/proyecto_agua/coberturas_FFMC') pendiente <- raster('pendiente_marco_trabajo_Rio_Imperial_utm18s.tif') plot(pendiente) # setwd('C:/Users/Usuario/Documents/Francisco/proyecto_agua/') # padre las casas setwd('C:/Users/Usuario/Documents/Francisco/proyecto_agua/coberturas_FFMC/') nombre.archivo.cuenca <- 'poligono_cuenca_Estero_Poleco_utm18s' cuenca <- readOGR('.', nombre.archivo.cuenca) plot(cuenca, add=TRUE) red.hidrica <- readOGR('.', 'linea_red_hidrografica_Estero_Poleco_utm18s') plot(red.hidrica, add=TRUE) orden.maximo <- max(red.hidrica@data$strahler) id <- which(red.hidrica@data$strahler==orden.maximo) curso.de.agua.principal <- red.hidrica[id,] plot(curso.de.agua.principal, col='cyan', lwd=2, add=TRUE) punto.desembocadura <- readOGR('.', 'punto_desembocadura_de_interes_en_Rio_Imperial_utm18s') plot(punto.desembocadura, pch=16, col='red', add=TRUE) # setwd('C:/Users/Usuario/Documents/Francisco/proyecto_agua/coberturas_FFMC/cuencas_buffer_y_clips/') # cuenca.buffer <- readOGR('.', 'VectorCuencaPadreCasas_buffer_de_1000_m') # plot(cuenca.buffer, add=TRUE) # fin --- # clip ---- pendiente.clip0 <- crop(pendiente, cuenca) pendiente.clip <- mask(pendiente.clip0, cuenca) plot(pendiente.clip) # pendiente.curso.de.agua.principal <- mask(pendiente, curso.de.agua.principal) # plot(pendiente.curso.de.agua.principal) # plot(curso.de.agua.principal, col='cyan', lwd=2, add=TRUE) # zoom(pendiente.curso.de.agua.principal, ext=drawExtent()) # fin --- # plot ---- setwd('C:/Users/Usuario/Dropbox/Proyecto_agua/mapas/') # mapa nombre.mapa <- paste('mapa_de_pendiente_', nombre.archivo.cuenca, '.png', sep = '') ; nombre.mapa paleta.colores <- hcl.colors(12, palette = "inferno") myTheme <- rasterTheme(region = paleta.colores) mapa <- levelplot(pendiente.clip, margin = list(FUN = median, axis = gpar(col = 'black', fontsize = 10)), colorkey=myTheme) + layer(sp.polygons(red.hidrica, lwd=2, col='#0fd8ee')) + layer(sp.polygons(punto.desembocadura, cex=1.5, pch=16, col='red')) # png(nombre.mapa, width = 720, height = 720, units = "px") mapa dev.off() # # histogramas # setwd('C:/Users/Usuario/Dropbox/Proyecto_agua/plots/') # # # nombre.histograma <- paste('histogramas_de_pendiente_', nombre.archivo.cuenca, '.png', sep = '') ; nombre.histograma # # histograma.cuenca0 <- hist(pendiente.clip, breaks=30) # histograma.cuenca1 <- data.frame(counts= histograma.cuenca0$counts,breaks = histograma.cuenca0$mids) # histograma.cuenca <- ggplot(histograma.cuenca1, aes(x = breaks, y = counts)) + # geom_bar(stat = "identity") + # labs(y='Frecuencia', x='Pendiente (%)', title='Cuenca') + # theme_bw() + # theme(text = element_text(size=14), panel.spacing = unit(1, "lines")) # # histograma.curso.de.agua.principal0 <- hist(pendiente.curso.de.agua.principal, breaks=30) # histograma.curso.de.agua.principal1 <- data.frame(counts= histograma.curso.de.agua.principal0$counts, breaks = histograma.curso.de.agua.principal0$mids) # histograma.curso.de.agua.principal <- ggplot(histograma.curso.de.agua.principal1, aes(x = breaks, y = counts)) + # geom_bar(stat = "identity") + # labs(y='Frecuencia', x='Pendiente (%)', title = 'Curso de agua principal') + # theme_bw() + # theme(text = element_text(size=14), panel.spacing = unit(1, "lines")) # # # # histogramas <- plot_grid(histograma.cuenca, # histograma.curso.de.agua.principal, # ncol = 1, nrow = 2) # # # png(nombre.mapa, width = 720, height = 500, units = "px") # # histogramas # # dev.off() # # # fin --- # # # # # # otros ---- # # # plot(pendiente.clip, col=hcl.colors(12, palette = "inferno")) # # plot(cuenca, border='red', add=TRUE) # # plot(red.hidrica, col='#0fd8ee', add=TRUE) # # plot(punto.desembocadura, pch=16, cex=1.5, col='#0fd8ee', add=TRUE) # # addscalebar(style = 'ticks', linecol = 'black', label.col = 'black', pos = 'bottomleft', plotepsg = 32718) # # addnortharrow(pos = "topright", cols = c("black", "black"), border = 'black', text.col = 'black', scale = 0.7) # # # # legend("bottomright", title=NULL, text.font = 2, # # legend = c('Cuenca', 'Red hidrográfica', 'Desembocadura'), # # fill=c('transparent', NA, NA), # # border = c('red', NA, NA), # # lty=c(NA, 1, NA), # # pch = c(NA, NA, 16), # # col = c(NA, '#0fd8ee', '#0fd8ee'), # # merge = TRUE, # # horiz=FALSE, cex=0.8, ncol = 1, bg='transparent')
library(loggit) ### Name: setLogFile ### Title: Set Log File ### Aliases: setLogFile ### ** Examples setLogFile(file.path(tempdir(), "loggit.json"))
/data/genthat_extracted_code/loggit/examples/setLogFile.Rd.R
no_license
surayaaramli/typeRrh
R
false
false
157
r
library(loggit) ### Name: setLogFile ### Title: Set Log File ### Aliases: setLogFile ### ** Examples setLogFile(file.path(tempdir(), "loggit.json"))
Part 1 #a) load("nrw17.RDATA") length(nrw17) attributes(nrw17) #b) nrw17$inhalt[1] #c) ww = strsplit(nrw17$inhalt[1:10], " ") ww = sapply(ww, function(w) w[!grepl("[^a-zA-Z]", w)]) sapply(ww, "[", 2) #d) ww2 = nrw17$inhalt[1:100] ww2 = ww2[!nrw17$isretweet[1:100]] ww2 = strsplit(ww2, " ") ww2 = sapply(ww2, function(w) w[!grepl("[^a-zA-Z]", w)]) sapply(ww2, "[", 1) #e) retw = nrw17$inhalt[nrw17$isretweet] retw = strsplit(retw, " ") retw = sapply(retw, function(w) w[!grepl("[^a-zA-Z]", w)]) retw = sapply(retw, "[", 1) retw = strsplit(retw, " ") sum(retw == "RT")/length(retw) #f) sum(regexpr("@" ,nrw17$inhalt)>0)/length(nrw17$inhalt) #g) bool_ = regexpr("@", nrw17$inhalt) > 0 no_at = which(bool_ == FALSE) num_at = sapply(gregexpr("@", nrw17$inhalt),length) gregexpr("@", nrw17$inhalt) num_at[no_at] = 0 nrw17 = c(nrw17,list(Num_at=num_at)) table(num_at) #Part 2 #a) words_vec = unlist(strsplit(nrw17$inhalt," ")) words_vec #b) at_verw = unlist(strsplit(nrw17$inhalt[bool_], split=" ")) bool_at = grepl("@", at_verw) words_at = at_verw[bool_at] #c) sorted_usr = sort(table(nrw17$name)) len = length(sorted_usr) top_10 = rev(sorted_usr[(len-10):len]) top_10 #d) tw_table = table(nrw17$name) unique(sort(tw_table)) len = length(tw_table) break_points = c(which(diff(rev(sort(tw_table))) < 0), X = len) break_diff = c(break_points[1], diff(break_points)) names(break_diff) = rev(unique(sort(tw_table))) rev(break_diff) #e) top_100 = rev(sort(table(nrw17$name)))[1:100] rand_usr = sample(top_100 ,1, replace=FALSE) num_ref = sum(grepl(paste0("@",names(rand_usr),separate= ""), nrw17$inhalt[bool_])) num_ref #Part 3 #a) all_sgn = unlist(strsplit(nrw17$inhalt, split="")) table_ = table(all_sgn) table_ #b) hauf_tab = table(all_sgn[grepl("[a-zA-Z]", all_sgn)]) hauf_tab #c) all_na = ifelse(grepl("[a-zA-Z]", all_sgn), all_sgn[grepl("[a-zA-Z]", all_sgn)] , "NA") table_all_na = table(all_na) table_all_na #d) times = nrw17$zeit times_dot = sub(":",".", times) times_vec = unlist(times_dot) times_num = as.numeric(times_vec) hrs = round(times_num) hrs_sep = paste(hrs, "00" , sep=".") hrs_table = sort(table(hrs_sep)) hrs_table #e) chisq.test(hrs_table) # Nein, p-value ist viel kleiner als Signifikanzniveau, wir können die Nullhypothese nicht annehmen. #Part 4 #a) matr = t(sapply(rep(2, 1000), sample, prob=c(0.3,0.7), replace=TRUE, size = 700)) matr[matr==2] = 0 #b) sam = sample(1000) ran_row = paste0("Zeile",sam) rownames(matr) = ran_row matr #c) ja_anteil = rowMeans(matr) ja_anteil #d) sort(ja_anteil) sort(ja_anteil)[25] sort(ja_anteil)[25] == quantile(ja_anteil, probs=0.025) sort(ja_anteil)[975] == quantile(ja_anteil, probs=0.975) #e) alpha = 0.05 n = 1000 sch = ja_anteil q_n = qnorm(1 - (alpha/2)) sd = sqrt(sch*(1-sch)) untere_g = sch - q_n * sd/sqrt(n) obere_g = sch + q_n * sd/sqrt(n) conf_int = paste(untere_g,obere_g,sep = ",") conf_int[975] quantile(ja_anteil, probs=0.975) conf_int[25] quantile(ja_anteil, probs=0.025) #f) row_names = names(ja_anteil) row_names_num = sub("Zeile", replace= "", row_names) row_nums = (as.numeric(row_names_num)) row_nums_sort = paste0("Zeile", sort(row_nums), sep="") ja_anteil_sort = ja_anteil[row_nums_sort] ja_anteil_sort #g) sam = sample(700000, 2000) matr[sam] = NA ja_anteil_no_na <- rowMeans(matr, na.rm=TRUE) ja_anteil_no_na
/HW2/2. Übungsblatt-20171107/2.r
no_license
valentyn1boreiko/R_class
R
false
false
3,334
r
Part 1 #a) load("nrw17.RDATA") length(nrw17) attributes(nrw17) #b) nrw17$inhalt[1] #c) ww = strsplit(nrw17$inhalt[1:10], " ") ww = sapply(ww, function(w) w[!grepl("[^a-zA-Z]", w)]) sapply(ww, "[", 2) #d) ww2 = nrw17$inhalt[1:100] ww2 = ww2[!nrw17$isretweet[1:100]] ww2 = strsplit(ww2, " ") ww2 = sapply(ww2, function(w) w[!grepl("[^a-zA-Z]", w)]) sapply(ww2, "[", 1) #e) retw = nrw17$inhalt[nrw17$isretweet] retw = strsplit(retw, " ") retw = sapply(retw, function(w) w[!grepl("[^a-zA-Z]", w)]) retw = sapply(retw, "[", 1) retw = strsplit(retw, " ") sum(retw == "RT")/length(retw) #f) sum(regexpr("@" ,nrw17$inhalt)>0)/length(nrw17$inhalt) #g) bool_ = regexpr("@", nrw17$inhalt) > 0 no_at = which(bool_ == FALSE) num_at = sapply(gregexpr("@", nrw17$inhalt),length) gregexpr("@", nrw17$inhalt) num_at[no_at] = 0 nrw17 = c(nrw17,list(Num_at=num_at)) table(num_at) #Part 2 #a) words_vec = unlist(strsplit(nrw17$inhalt," ")) words_vec #b) at_verw = unlist(strsplit(nrw17$inhalt[bool_], split=" ")) bool_at = grepl("@", at_verw) words_at = at_verw[bool_at] #c) sorted_usr = sort(table(nrw17$name)) len = length(sorted_usr) top_10 = rev(sorted_usr[(len-10):len]) top_10 #d) tw_table = table(nrw17$name) unique(sort(tw_table)) len = length(tw_table) break_points = c(which(diff(rev(sort(tw_table))) < 0), X = len) break_diff = c(break_points[1], diff(break_points)) names(break_diff) = rev(unique(sort(tw_table))) rev(break_diff) #e) top_100 = rev(sort(table(nrw17$name)))[1:100] rand_usr = sample(top_100 ,1, replace=FALSE) num_ref = sum(grepl(paste0("@",names(rand_usr),separate= ""), nrw17$inhalt[bool_])) num_ref #Part 3 #a) all_sgn = unlist(strsplit(nrw17$inhalt, split="")) table_ = table(all_sgn) table_ #b) hauf_tab = table(all_sgn[grepl("[a-zA-Z]", all_sgn)]) hauf_tab #c) all_na = ifelse(grepl("[a-zA-Z]", all_sgn), all_sgn[grepl("[a-zA-Z]", all_sgn)] , "NA") table_all_na = table(all_na) table_all_na #d) times = nrw17$zeit times_dot = sub(":",".", times) times_vec = unlist(times_dot) times_num = as.numeric(times_vec) hrs = round(times_num) hrs_sep = paste(hrs, "00" , sep=".") hrs_table = sort(table(hrs_sep)) hrs_table #e) chisq.test(hrs_table) # Nein, p-value ist viel kleiner als Signifikanzniveau, wir können die Nullhypothese nicht annehmen. #Part 4 #a) matr = t(sapply(rep(2, 1000), sample, prob=c(0.3,0.7), replace=TRUE, size = 700)) matr[matr==2] = 0 #b) sam = sample(1000) ran_row = paste0("Zeile",sam) rownames(matr) = ran_row matr #c) ja_anteil = rowMeans(matr) ja_anteil #d) sort(ja_anteil) sort(ja_anteil)[25] sort(ja_anteil)[25] == quantile(ja_anteil, probs=0.025) sort(ja_anteil)[975] == quantile(ja_anteil, probs=0.975) #e) alpha = 0.05 n = 1000 sch = ja_anteil q_n = qnorm(1 - (alpha/2)) sd = sqrt(sch*(1-sch)) untere_g = sch - q_n * sd/sqrt(n) obere_g = sch + q_n * sd/sqrt(n) conf_int = paste(untere_g,obere_g,sep = ",") conf_int[975] quantile(ja_anteil, probs=0.975) conf_int[25] quantile(ja_anteil, probs=0.025) #f) row_names = names(ja_anteil) row_names_num = sub("Zeile", replace= "", row_names) row_nums = (as.numeric(row_names_num)) row_nums_sort = paste0("Zeile", sort(row_nums), sep="") ja_anteil_sort = ja_anteil[row_nums_sort] ja_anteil_sort #g) sam = sample(700000, 2000) matr[sam] = NA ja_anteil_no_na <- rowMeans(matr, na.rm=TRUE) ja_anteil_no_na
\name{mean} \alias{cor} \alias{cov} \alias{favstats} \alias{fivenum} \alias{iqr} \alias{IQR} \alias{max} \alias{mean} \alias{median} \alias{min} \alias{prod} \alias{range} \alias{sd} \alias{sum} \alias{var} \title{Aggregating functions} \usage{ mean(x, ..., data, groups = NULL, ..fun.. = base::mean) median(x, ..., data, groups = NULL, ..fun.. = stats::median) range(x, ..., data, groups = NULL, ..fun.. = base::range) sd(x, ..., data, groups = NULL, ..fun.. = stats::sd) max(x, ..., data, groups = NULL, ..fun.. = base::max) min(x, ..., data, groups = NULL, ..fun.. = base::min) sum(x, ..., data, groups = NULL, ..fun.. = base::sum) IQR(x, ..., data, groups = NULL, ..fun.. = stats::IQR) fivenum(x, ..., data, groups = NULL, ..fun.. = stats::fivenum) iqr(x, ..., data, groups = NULL, ..fun.. = stats::IQR) prod(x, ..., data, groups = NULL, ..fun.. = base::prod) sum(x, ..., data, groups = NULL, ..fun.. = base::sum) favstats(x, ..., data, groups = NULL, ..fun.. = fav_stats) var(x, ..., data, groups = NULL, ..fun.. = stats::var) cor(x, y = NULL, ..., data = parent.frame()) cov(x, y = NULL, ..., data = parent.frame()) } \arguments{ \item{x}{an object, often a formula} \item{y}{an object, often a numeric vector} \item{..fun..}{the underlyin function used in the computation} \item{groups}{a grouping variable, typically a name of a variable in \code{data}} \item{data}{a data frame in which to evaluate formulas (or bare names)} \item{\dots}{additional arguments} } \description{ The \code{mosaic} package makes several summary statistic functions (like \code{mean} and \code{sd}) formula aware. } \examples{ mean( HELPrct$age ) mean( ~ age, data=HELPrct ) mean( age ~ sex + substance, data=HELPrct ) mean( ~ age | sex + substance, data=HELPrct ) mean( sqrt(age), data=HELPrct ) sum( ~ age, data=HELPrct ) sd( HELPrct$age ) sd( ~ age, data=HELPrct ) sd( age ~ sex + substance, data=HELPrct ) var( HELPrct$age ) var( ~ age, data=HELPrct ) var( age ~ sex + substance, data=HELPrct ) IQR( width ~ sex, data=KidsFeet ) iqr( width ~ sex, data=KidsFeet ) favstats( width ~ sex, data=KidsFeet ) cor( length ~ width, data=KidsFeet ) cov ( length ~ width, data=KidsFeet ) }
/man/aggregating.Rd
no_license
datandrews/mosaic
R
false
false
2,258
rd
\name{mean} \alias{cor} \alias{cov} \alias{favstats} \alias{fivenum} \alias{iqr} \alias{IQR} \alias{max} \alias{mean} \alias{median} \alias{min} \alias{prod} \alias{range} \alias{sd} \alias{sum} \alias{var} \title{Aggregating functions} \usage{ mean(x, ..., data, groups = NULL, ..fun.. = base::mean) median(x, ..., data, groups = NULL, ..fun.. = stats::median) range(x, ..., data, groups = NULL, ..fun.. = base::range) sd(x, ..., data, groups = NULL, ..fun.. = stats::sd) max(x, ..., data, groups = NULL, ..fun.. = base::max) min(x, ..., data, groups = NULL, ..fun.. = base::min) sum(x, ..., data, groups = NULL, ..fun.. = base::sum) IQR(x, ..., data, groups = NULL, ..fun.. = stats::IQR) fivenum(x, ..., data, groups = NULL, ..fun.. = stats::fivenum) iqr(x, ..., data, groups = NULL, ..fun.. = stats::IQR) prod(x, ..., data, groups = NULL, ..fun.. = base::prod) sum(x, ..., data, groups = NULL, ..fun.. = base::sum) favstats(x, ..., data, groups = NULL, ..fun.. = fav_stats) var(x, ..., data, groups = NULL, ..fun.. = stats::var) cor(x, y = NULL, ..., data = parent.frame()) cov(x, y = NULL, ..., data = parent.frame()) } \arguments{ \item{x}{an object, often a formula} \item{y}{an object, often a numeric vector} \item{..fun..}{the underlyin function used in the computation} \item{groups}{a grouping variable, typically a name of a variable in \code{data}} \item{data}{a data frame in which to evaluate formulas (or bare names)} \item{\dots}{additional arguments} } \description{ The \code{mosaic} package makes several summary statistic functions (like \code{mean} and \code{sd}) formula aware. } \examples{ mean( HELPrct$age ) mean( ~ age, data=HELPrct ) mean( age ~ sex + substance, data=HELPrct ) mean( ~ age | sex + substance, data=HELPrct ) mean( sqrt(age), data=HELPrct ) sum( ~ age, data=HELPrct ) sd( HELPrct$age ) sd( ~ age, data=HELPrct ) sd( age ~ sex + substance, data=HELPrct ) var( HELPrct$age ) var( ~ age, data=HELPrct ) var( age ~ sex + substance, data=HELPrct ) IQR( width ~ sex, data=KidsFeet ) iqr( width ~ sex, data=KidsFeet ) favstats( width ~ sex, data=KidsFeet ) cor( length ~ width, data=KidsFeet ) cov ( length ~ width, data=KidsFeet ) }
### bag-grid.R file ### source("blind.R") # load the blind search methods source("grid.R") # load the grid search methods source("functions.R") # load the profit function # grid search for all bag prices, step of 100$ PTM <- proc.time() # start clock S1 <- gsearch(rep(100, 5), rep(1, 5), rep(1000, 5), profit, "max") sec <- (proc.time() - PTM)[3] # get seconds elapsed cat("gsearch best s:", S1$sol, "f:", S1$eval, "time:", sec, "s\n") # grid search 2 for all bag prices, step of 100$ PTM <- proc.time() # start clock S2 <- gsearch2(rep(100, 5), rep(1, 5), rep(1000, 5), profit, "max") sec <- (proc.time() - PTM)[3] # get seconds elapsed cat("gsearch2 best s:", S2$sol, "f:", S2$eval, "time:", sec, "s\n") # nested grid with 3 levels and initial step of 500$ PTM <- proc.time() # start clock S3 <- ngsearch(3, rep(500, 5), rep(1, 5), rep(1000, 5), profit, "max") sec <- (proc.time() - PTM)[3] # get seconds elapsed cat("ngsearch best s:", S3$sol, "f:", S3$eval, "time:", sec, "s\n")
/src/chapters/Chapter3/bag-grid.R
permissive
wilsonify/ModernOptimization
R
false
false
988
r
### bag-grid.R file ### source("blind.R") # load the blind search methods source("grid.R") # load the grid search methods source("functions.R") # load the profit function # grid search for all bag prices, step of 100$ PTM <- proc.time() # start clock S1 <- gsearch(rep(100, 5), rep(1, 5), rep(1000, 5), profit, "max") sec <- (proc.time() - PTM)[3] # get seconds elapsed cat("gsearch best s:", S1$sol, "f:", S1$eval, "time:", sec, "s\n") # grid search 2 for all bag prices, step of 100$ PTM <- proc.time() # start clock S2 <- gsearch2(rep(100, 5), rep(1, 5), rep(1000, 5), profit, "max") sec <- (proc.time() - PTM)[3] # get seconds elapsed cat("gsearch2 best s:", S2$sol, "f:", S2$eval, "time:", sec, "s\n") # nested grid with 3 levels and initial step of 500$ PTM <- proc.time() # start clock S3 <- ngsearch(3, rep(500, 5), rep(1, 5), rep(1000, 5), profit, "max") sec <- (proc.time() - PTM)[3] # get seconds elapsed cat("ngsearch best s:", S3$sol, "f:", S3$eval, "time:", sec, "s\n")
# Normalise la liste des logiciels standardise_logiciels <- function(liste){ a <- as.character(liste) a[a == ""] <- NA a[a == "autre"] <- NA a[a == "Christalnet (module DMU)"] <- "Cristalnet" a[a == "Clinicom (Siemens)"] <- "Clinicom" a[a == "CORA McKesson"] <- "Cora" a[a == "CrystalNet"] <- "Cristalnet" a[a == "DMU (CristalNet)"] <- "Cristalnet" a[a == "RESURGENCE"] <- "ResUrgences" a[a == "Resurgences"] <- "ResUrgences" a[a == "RESURGENCE (Adulte) DxCare Medasys (Pédiatrie)"] <- "ResUrgences" a[a == "urqual"] <- "UrQual" a[a == "UrQual (McKesson)"] <- "UrQual" a[a == "Urqual (McKesson)"] <- "UrQual" a[a == "Cristalnet"] <- "CristalNet" a[a == "CRISTALNET"] <- "CristalNet" a[a == "Cotexte"] <- "Coretexte" a[a == "Cortexe"] <- "Coretexte" a[a == "CROSSWAY"] <- "Crossway" a[a == "crossway"] <- "Crossway" a[a == "crosway"] <- "Crossway" a[a == "CORA"] <- "Cora" a[a == "CLINICOM (Creil)"] <- "Clinicom" a[a == "DxCare (Medasys)"] <- "DXCare" a[a == "DXCARE (Medasys)"] <- "DXCare" a[a == "DxCare MEDASYS"] <- "DXCare" a[a == "dxcare (vittel)"] <- "DXCare" a[a == "DX CARE"] <- "DXCare" a[a == "DxCare"] <- "DXCare" a[a == "hopital manager"] <- "Hopital Manager" a[a == "Osiris (Cormin)"] <- "Osiris" a[a == "OSIRIS Evolucare"] <- "Osiris" a[a == "Oriris (cormin)"] <- "Osiris" a[a == "OSOFT"] <- "Osoft" a[a == "ATALANTE Pmsi"] <- "Atalante" a[a == "ATALANTE"] <- "Atalante" a[a == "CORETEXTE"] <- "Cortext" a[a == "POLIMEDIS - EQUAFILE"] <- "Polymedis" a[a == "ᅠ"] <- NA a[a == "cf ch lodeve"] <- NA a[a == "Etablissement prioritaire !"] <- NA a[a == "Pas de SAU"] <- NA a[!is.na(a) & nchar(a) < 3] <- NA as.factor(toupper(a)) } #=========================================================================== # copyrigth #=========================================================================== #'@title copyrigth #'@author JcB #'@description Place un copyright Resural sur un graphique. #'Par défaut la phrase est inscrite verticalement sur le bord droit de l'image #'@param an (str) année du copyright (par défaut 2013) #'@param side coté de l'écriture (défaut = 4) #'@param line distance par rapport au bord. Défaut=-1, immédiatement à l'intérieur du cadre #'@param titre #'@param cex taille du texte (défaut 0.8) #'@return "© 2012 Resural" #'@usage copyright() #' copyright<-function(an ="2014",side=4,line=-1,cex=0.8, titre = "IGN & FEDORU"){ titre<-paste("©", an, titre, sep=" ") mtext(titre,side=side,line=line,cex=cex) }
/functions.R
no_license
jcrb/InformatisationSU
R
false
false
2,476
r
# Normalise la liste des logiciels standardise_logiciels <- function(liste){ a <- as.character(liste) a[a == ""] <- NA a[a == "autre"] <- NA a[a == "Christalnet (module DMU)"] <- "Cristalnet" a[a == "Clinicom (Siemens)"] <- "Clinicom" a[a == "CORA McKesson"] <- "Cora" a[a == "CrystalNet"] <- "Cristalnet" a[a == "DMU (CristalNet)"] <- "Cristalnet" a[a == "RESURGENCE"] <- "ResUrgences" a[a == "Resurgences"] <- "ResUrgences" a[a == "RESURGENCE (Adulte) DxCare Medasys (Pédiatrie)"] <- "ResUrgences" a[a == "urqual"] <- "UrQual" a[a == "UrQual (McKesson)"] <- "UrQual" a[a == "Urqual (McKesson)"] <- "UrQual" a[a == "Cristalnet"] <- "CristalNet" a[a == "CRISTALNET"] <- "CristalNet" a[a == "Cotexte"] <- "Coretexte" a[a == "Cortexe"] <- "Coretexte" a[a == "CROSSWAY"] <- "Crossway" a[a == "crossway"] <- "Crossway" a[a == "crosway"] <- "Crossway" a[a == "CORA"] <- "Cora" a[a == "CLINICOM (Creil)"] <- "Clinicom" a[a == "DxCare (Medasys)"] <- "DXCare" a[a == "DXCARE (Medasys)"] <- "DXCare" a[a == "DxCare MEDASYS"] <- "DXCare" a[a == "dxcare (vittel)"] <- "DXCare" a[a == "DX CARE"] <- "DXCare" a[a == "DxCare"] <- "DXCare" a[a == "hopital manager"] <- "Hopital Manager" a[a == "Osiris (Cormin)"] <- "Osiris" a[a == "OSIRIS Evolucare"] <- "Osiris" a[a == "Oriris (cormin)"] <- "Osiris" a[a == "OSOFT"] <- "Osoft" a[a == "ATALANTE Pmsi"] <- "Atalante" a[a == "ATALANTE"] <- "Atalante" a[a == "CORETEXTE"] <- "Cortext" a[a == "POLIMEDIS - EQUAFILE"] <- "Polymedis" a[a == "ᅠ"] <- NA a[a == "cf ch lodeve"] <- NA a[a == "Etablissement prioritaire !"] <- NA a[a == "Pas de SAU"] <- NA a[!is.na(a) & nchar(a) < 3] <- NA as.factor(toupper(a)) } #=========================================================================== # copyrigth #=========================================================================== #'@title copyrigth #'@author JcB #'@description Place un copyright Resural sur un graphique. #'Par défaut la phrase est inscrite verticalement sur le bord droit de l'image #'@param an (str) année du copyright (par défaut 2013) #'@param side coté de l'écriture (défaut = 4) #'@param line distance par rapport au bord. Défaut=-1, immédiatement à l'intérieur du cadre #'@param titre #'@param cex taille du texte (défaut 0.8) #'@return "© 2012 Resural" #'@usage copyright() #' copyright<-function(an ="2014",side=4,line=-1,cex=0.8, titre = "IGN & FEDORU"){ titre<-paste("©", an, titre, sep=" ") mtext(titre,side=side,line=line,cex=cex) }
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/class-cwl.R \docType{class} \name{WorkflowStepInput-class} \alias{WorkflowStepInput-class} \alias{WorkflowStepInput} \alias{WorkflowStepOutput-class} \alias{WorkflowStepOutput} \alias{WorkflowStepInputList} \alias{WorkflowStepInputList-class} \alias{WorkflowStepOutputList} \alias{WorkflowStepOutputList-class} \alias{WorkflowStepList} \alias{WorkflowStepList-class} \alias{WorkflowStep-class} \alias{WorkflowStep} \title{WorkflowStepInputList} \usage{ WorkflowStepInputList(...) WorkflowStepOutputList(...) WorkflowStepList(...) } \arguments{ \item{\dots}{element or list of the element.} } \value{ a WorkflowStep object or subclass object. } \description{ A workflow step is an executable element of a workflow. It specifies the underlying process implementation (such as CommandLineTool) in the run field and connects the input and output parameters of the underlying process to workflow parameters. } \section{Fields}{ \describe{ \item{\code{id}}{[character] The unique identifier for this workflow step.} \item{\code{inputs}}{(WorkflowStepInputList) Defines the input parameters of the workflow step. The process is ready to run when all required input parameters are associated with concrete values. Input parameters include a schema for each parameter and is used to validate the input object, it may also be used build a user interface for constructing the input object.} \item{\code{outputs}}{(WorkflowStepOutputList) Defines the parameters representing the output of the process. May be used to generate and/or validate the output object.} \item{\code{requirements}}{[ProcessRequirement] Declares requirements that apply to either the runtime environment or the workflow engine that must be met in order to execute this workflow step. If an implementation cannot satisfy all requirements, or a requirement is listed which is not recognized by the implementation, it is a fatal error and the implementation must not attempt to run the process, unless overridden at user option.} \item{\code{hints}}{[ANY] Declares hints applying to either the runtime environment or the workflow engine that may be helpful in executing this workflow step. It is not an error if an implementation cannot satisfy all hints, however the implementation may report a warning.} \item{\code{label}}{[character] A short, human-readable label of this process object.} \item{\code{description}}{[character] A long, human-readable description of this process object.} \item{\code{run}}{(CommandLineToolORExpressionToolORWorkflow) Specifies the process to run.} \item{\code{scatter}}{[character]} \item{\code{scatterMethod}}{[ScatterMethod] Required if scatter is an array of more than one element.} }} \section{WorkflowStepInput Class}{ \describe{ The input of a workflow step connects an upstream parameter (from the workflow inputs, or the outputs of other workflows steps) with the input parameters of the underlying process. If the sink parameter is an array, or named in a workflow scatter operation, there may be multiple inbound data links listed in the connect field. The values from the input links are merged depending on the method specified in the linkMerge field. If not specified, the default method is merge_nested: \item{merge_nested}{ The input shall be an array consisting of exactly one entry for each input link. If merge_nested is specified with a single link, the value from the link is wrapped in a single-item list. } \item{merge_flattened}{ 1) The source and sink parameters must be compatible types, or the source type must be compatible with single element from the "items" type of the destination array parameter. 2) Source parameters which are arrays are concatenated; source parameters which are single element types are appended as single elements. } Fields: \item{\code{id}}{ (character) A unique identifier for this workflow input parameter.} \item{\code{source}}{[character] Specifies one or more workflow parameters that will provide input to the underlying process parameter.} \item{\code{linkMerge}}{[LineMergeMethod] The method to use to merge multiple inbound links into a single array. If not specified, the default method is merge_nested:} \item{\code{default}}{ [ANY] The default value for this parameter if there is no source field.} } } \section{WorkflowStepOutput Class}{ \describe{ Associate an output parameter of the underlying process with a workflow parameter. The workflow parameter (given in the id field) be may be used as a source to connect with input parameters of other workflow steps, or with an output parameter of the process. \item{\code{id}}{ (character) A unique identifier for this workflow output parameter. This is the identifier to use in the source field of WorkflowStepInput to connect the output value to downstream parameters.} } } \section{Scatter/gather}{ To use scatter/gather, ScatterFeatureRequirement must be specified in the workflow or workflow step requirements. A "scatter" operation specifies that the associated workflow step or subworkflow should execute separately over a list of input elements. Each job making up a scatter operaution is independent and may be executed concurrently. The scatter field specifies one or more input parameters which will be scattered. An input parameter may be listed more than once. The declared type of each input parameter is implicitly wrapped in an array for each time it appears in the scatter field. As a result, upstream parameters which are connected to scattered parameters may be arrays. All output parameters types are also implicitly wrapped in arrays; each job in the scatter results in an entry in the output array. If scatter declares more than one input parameter, scatterMethod describes how to decompose the input into a discrete set of jobs. \itemize{ \item{dotproduct}{ specifies that each the input arrays are aligned and one element taken from each array to construct each job. It is an error if all input arrays are not the same length.} \item{nested_crossproduct}{specifies the cartesian product of the inputs, producing a job for every combination of the scattered inputs. The output must be nested arrays for each level of scattering, in the order that the input arrays are listed in the scatter field.} \item{flat_crossproduct}{specifies the cartesian product of the inputs, producing a job for every combination of the scattered inputs. The output arrays must be flattened to a single level, but otherwise listed in the order that the input arrays are listed in the scatter field.} } } \section{Subworkflows}{ To specify a nested workflow as part of a workflow step, SubworkflowFeatureRequirement must be specified in the workflow or workflow step requirements. } \examples{ ws <- WorkflowStepList(WorkflowStep( id = "step1", label = "align-and-sort", description = "align and sort", inputs = WorkflowStepInputList( WorkflowStepInput(id = "id1"), WorkflowStepInput(id = "id2") ) )) }
/man/WorkflowStep.Rd
permissive
sbg/sevenbridges-r
R
false
true
7,052
rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/class-cwl.R \docType{class} \name{WorkflowStepInput-class} \alias{WorkflowStepInput-class} \alias{WorkflowStepInput} \alias{WorkflowStepOutput-class} \alias{WorkflowStepOutput} \alias{WorkflowStepInputList} \alias{WorkflowStepInputList-class} \alias{WorkflowStepOutputList} \alias{WorkflowStepOutputList-class} \alias{WorkflowStepList} \alias{WorkflowStepList-class} \alias{WorkflowStep-class} \alias{WorkflowStep} \title{WorkflowStepInputList} \usage{ WorkflowStepInputList(...) WorkflowStepOutputList(...) WorkflowStepList(...) } \arguments{ \item{\dots}{element or list of the element.} } \value{ a WorkflowStep object or subclass object. } \description{ A workflow step is an executable element of a workflow. It specifies the underlying process implementation (such as CommandLineTool) in the run field and connects the input and output parameters of the underlying process to workflow parameters. } \section{Fields}{ \describe{ \item{\code{id}}{[character] The unique identifier for this workflow step.} \item{\code{inputs}}{(WorkflowStepInputList) Defines the input parameters of the workflow step. The process is ready to run when all required input parameters are associated with concrete values. Input parameters include a schema for each parameter and is used to validate the input object, it may also be used build a user interface for constructing the input object.} \item{\code{outputs}}{(WorkflowStepOutputList) Defines the parameters representing the output of the process. May be used to generate and/or validate the output object.} \item{\code{requirements}}{[ProcessRequirement] Declares requirements that apply to either the runtime environment or the workflow engine that must be met in order to execute this workflow step. If an implementation cannot satisfy all requirements, or a requirement is listed which is not recognized by the implementation, it is a fatal error and the implementation must not attempt to run the process, unless overridden at user option.} \item{\code{hints}}{[ANY] Declares hints applying to either the runtime environment or the workflow engine that may be helpful in executing this workflow step. It is not an error if an implementation cannot satisfy all hints, however the implementation may report a warning.} \item{\code{label}}{[character] A short, human-readable label of this process object.} \item{\code{description}}{[character] A long, human-readable description of this process object.} \item{\code{run}}{(CommandLineToolORExpressionToolORWorkflow) Specifies the process to run.} \item{\code{scatter}}{[character]} \item{\code{scatterMethod}}{[ScatterMethod] Required if scatter is an array of more than one element.} }} \section{WorkflowStepInput Class}{ \describe{ The input of a workflow step connects an upstream parameter (from the workflow inputs, or the outputs of other workflows steps) with the input parameters of the underlying process. If the sink parameter is an array, or named in a workflow scatter operation, there may be multiple inbound data links listed in the connect field. The values from the input links are merged depending on the method specified in the linkMerge field. If not specified, the default method is merge_nested: \item{merge_nested}{ The input shall be an array consisting of exactly one entry for each input link. If merge_nested is specified with a single link, the value from the link is wrapped in a single-item list. } \item{merge_flattened}{ 1) The source and sink parameters must be compatible types, or the source type must be compatible with single element from the "items" type of the destination array parameter. 2) Source parameters which are arrays are concatenated; source parameters which are single element types are appended as single elements. } Fields: \item{\code{id}}{ (character) A unique identifier for this workflow input parameter.} \item{\code{source}}{[character] Specifies one or more workflow parameters that will provide input to the underlying process parameter.} \item{\code{linkMerge}}{[LineMergeMethod] The method to use to merge multiple inbound links into a single array. If not specified, the default method is merge_nested:} \item{\code{default}}{ [ANY] The default value for this parameter if there is no source field.} } } \section{WorkflowStepOutput Class}{ \describe{ Associate an output parameter of the underlying process with a workflow parameter. The workflow parameter (given in the id field) be may be used as a source to connect with input parameters of other workflow steps, or with an output parameter of the process. \item{\code{id}}{ (character) A unique identifier for this workflow output parameter. This is the identifier to use in the source field of WorkflowStepInput to connect the output value to downstream parameters.} } } \section{Scatter/gather}{ To use scatter/gather, ScatterFeatureRequirement must be specified in the workflow or workflow step requirements. A "scatter" operation specifies that the associated workflow step or subworkflow should execute separately over a list of input elements. Each job making up a scatter operaution is independent and may be executed concurrently. The scatter field specifies one or more input parameters which will be scattered. An input parameter may be listed more than once. The declared type of each input parameter is implicitly wrapped in an array for each time it appears in the scatter field. As a result, upstream parameters which are connected to scattered parameters may be arrays. All output parameters types are also implicitly wrapped in arrays; each job in the scatter results in an entry in the output array. If scatter declares more than one input parameter, scatterMethod describes how to decompose the input into a discrete set of jobs. \itemize{ \item{dotproduct}{ specifies that each the input arrays are aligned and one element taken from each array to construct each job. It is an error if all input arrays are not the same length.} \item{nested_crossproduct}{specifies the cartesian product of the inputs, producing a job for every combination of the scattered inputs. The output must be nested arrays for each level of scattering, in the order that the input arrays are listed in the scatter field.} \item{flat_crossproduct}{specifies the cartesian product of the inputs, producing a job for every combination of the scattered inputs. The output arrays must be flattened to a single level, but otherwise listed in the order that the input arrays are listed in the scatter field.} } } \section{Subworkflows}{ To specify a nested workflow as part of a workflow step, SubworkflowFeatureRequirement must be specified in the workflow or workflow step requirements. } \examples{ ws <- WorkflowStepList(WorkflowStep( id = "step1", label = "align-and-sort", description = "align and sort", inputs = WorkflowStepInputList( WorkflowStepInput(id = "id1"), WorkflowStepInput(id = "id2") ) )) }