|
|
--- |
|
|
pipeline_tag: image-text-to-text |
|
|
language: |
|
|
- multilingual |
|
|
tags: |
|
|
- deepseek |
|
|
- vision-language |
|
|
- ocr |
|
|
- custom_code |
|
|
license: mit |
|
|
--- |
|
|
<div align="center"> |
|
|
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek AI" /> |
|
|
</div> |
|
|
<hr> |
|
|
<div align="center"> |
|
|
<a href="https://www.deepseek.com/" target="_blank"> |
|
|
<img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" /> |
|
|
</a> |
|
|
<a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR" target="_blank"> |
|
|
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" /> |
|
|
</a> |
|
|
|
|
|
</div> |
|
|
|
|
|
<div align="center"> |
|
|
|
|
|
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank"> |
|
|
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" /> |
|
|
</a> |
|
|
<a href="https://twitter.com/deepseek_ai" target="_blank"> |
|
|
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" /> |
|
|
</a> |
|
|
|
|
|
</div> |
|
|
|
|
|
|
|
|
|
|
|
<p align="center"> |
|
|
<a href="https://github.com/deepseek-ai/DeepSeek-OCR"><b>🌟 Github</b></a> | |
|
|
<a href="https://huggingface.co/deepseek-ai/DeepSeek-OCR"><b>📥 Model Download</b></a> | |
|
|
<a href="https://github.com/deepseek-ai/DeepSeek-OCR/blob/main/DeepSeek_OCR_paper.pdf"><b>📄 Paper Link</b></a> | |
|
|
<a href="https://arxiv.org/abs/2510.18234"><b>📄 Arxiv Paper Link</b></a> | |
|
|
</p> |
|
|
<h2> |
|
|
<p align="center"> |
|
|
<a href="">DeepSeek-OCR: Contexts Optical Compression</a> |
|
|
</p> |
|
|
</h2> |
|
|
<p align="center"> |
|
|
<img src="assets/fig1.png" style="width: 1000px" align=center> |
|
|
</p> |
|
|
<p align="center"> |
|
|
<a href="">Explore the boundaries of visual-text compression.</a> |
|
|
</p> |
|
|
|
|
|
## Usage |
|
|
Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.12.9 + CUDA11.8: |
|
|
|
|
|
``` |
|
|
torch==2.6.0 |
|
|
transformers==4.46.3 |
|
|
tokenizers==0.20.3 |
|
|
einops |
|
|
addict |
|
|
easydict |
|
|
pip install flash-attn==2.7.3 --no-build-isolation |
|
|
``` |
|
|
|
|
|
```python |
|
|
from transformers import AutoModel, AutoTokenizer |
|
|
import torch |
|
|
import os |
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = '0' |
|
|
model_name = 'deepseek-ai/DeepSeek-OCR' |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
|
model = AutoModel.from_pretrained(model_name, _attn_implementation='flash_attention_2', trust_remote_code=True, use_safetensors=True) |
|
|
model = model.eval().cuda().to(torch.bfloat16) |
|
|
|
|
|
# prompt = "<image>\nFree OCR. " |
|
|
prompt = "<image>\n<|grounding|>Convert the document to markdown. " |
|
|
image_file = 'your_image.jpg' |
|
|
output_path = 'your/output/dir' |
|
|
|
|
|
# infer(self, tokenizer, prompt='', image_file='', output_path = ' ', base_size = 1024, image_size = 640, crop_mode = True, test_compress = False, save_results = False): |
|
|
|
|
|
# Tiny: base_size = 512, image_size = 512, crop_mode = False |
|
|
# Small: base_size = 640, image_size = 640, crop_mode = False |
|
|
# Base: base_size = 1024, image_size = 1024, crop_mode = False |
|
|
# Large: base_size = 1280, image_size = 1280, crop_mode = False |
|
|
|
|
|
# Gundam: base_size = 1024, image_size = 640, crop_mode = True |
|
|
|
|
|
res = model.infer(tokenizer, prompt=prompt, image_file=image_file, output_path = output_path, base_size = 1024, image_size = 640, crop_mode=True, save_results = True, test_compress = True) |
|
|
``` |
|
|
|
|
|
## vLLM |
|
|
Refer to [🌟GitHub](https://github.com/deepseek-ai/DeepSeek-OCR/) for guidance on model inference acceleration and PDF processing, etc.<!-- --> |
|
|
|
|
|
[2025/10/23] 🚀🚀🚀 DeepSeek-OCR is now officially supported in upstream [vLLM](https://docs.vllm.ai/projects/recipes/en/latest/DeepSeek/DeepSeek-OCR.html#installing-vllm). |
|
|
```shell |
|
|
uv venv |
|
|
source .venv/bin/activate |
|
|
# Until v0.11.1 release, you need to install vLLM from nightly build |
|
|
uv pip install -U vllm --pre --extra-index-url https://wheels.vllm.ai/nightly |
|
|
``` |
|
|
|
|
|
```python |
|
|
from vllm import LLM, SamplingParams |
|
|
from vllm.model_executor.models.deepseek_ocr import NGramPerReqLogitsProcessor |
|
|
from PIL import Image |
|
|
|
|
|
# Create model instance |
|
|
llm = LLM( |
|
|
model="deepseek-ai/DeepSeek-OCR", |
|
|
enable_prefix_caching=False, |
|
|
mm_processor_cache_gb=0, |
|
|
logits_processors=[NGramPerReqLogitsProcessor] |
|
|
) |
|
|
|
|
|
# Prepare batched input with your image file |
|
|
image_1 = Image.open("path/to/your/image_1.png").convert("RGB") |
|
|
image_2 = Image.open("path/to/your/image_2.png").convert("RGB") |
|
|
prompt = "<image>\nFree OCR." |
|
|
|
|
|
model_input = [ |
|
|
{ |
|
|
"prompt": prompt, |
|
|
"multi_modal_data": {"image": image_1} |
|
|
}, |
|
|
{ |
|
|
"prompt": prompt, |
|
|
"multi_modal_data": {"image": image_2} |
|
|
} |
|
|
] |
|
|
|
|
|
sampling_param = SamplingParams( |
|
|
temperature=0.0, |
|
|
max_tokens=8192, |
|
|
# ngram logit processor args |
|
|
extra_args=dict( |
|
|
ngram_size=30, |
|
|
window_size=90, |
|
|
whitelist_token_ids={128821, 128822}, # whitelist: <td>, </td> |
|
|
), |
|
|
skip_special_tokens=False, |
|
|
) |
|
|
# Generate output |
|
|
model_outputs = llm.generate(model_input, sampling_param) |
|
|
|
|
|
# Print output |
|
|
for output in model_outputs: |
|
|
print(output.outputs[0].text) |
|
|
``` |
|
|
|
|
|
|
|
|
## Visualizations |
|
|
<table> |
|
|
<tr> |
|
|
<td><img src="assets/show1.jpg" style="width: 500px"></td> |
|
|
<td><img src="assets/show2.jpg" style="width: 500px"></td> |
|
|
</tr> |
|
|
<tr> |
|
|
<td><img src="assets/show3.jpg" style="width: 500px"></td> |
|
|
<td><img src="assets/show4.jpg" style="width: 500px"></td> |
|
|
</tr> |
|
|
</table> |
|
|
|
|
|
|
|
|
## Acknowledgement |
|
|
|
|
|
We would like to thank [Vary](https://github.com/Ucas-HaoranWei/Vary/), [GOT-OCR2.0](https://github.com/Ucas-HaoranWei/GOT-OCR2.0/), [MinerU](https://github.com/opendatalab/MinerU), [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR), [OneChart](https://github.com/LingyvKong/OneChart), [Slow Perception](https://github.com/Ucas-HaoranWei/Slow-Perception) for their valuable models and ideas. |
|
|
|
|
|
We also appreciate the benchmarks: [Fox](https://github.com/ucaslcl/Fox), [OminiDocBench](https://github.com/opendatalab/OmniDocBench). |
|
|
|
|
|
|
|
|
## Citation |
|
|
```bibtex |
|
|
@article{wei2024deepseek-ocr, |
|
|
title={DeepSeek-OCR: Contexts Optical Compression}, |
|
|
author={Wei, Haoran and Sun, Yaofeng and Li, Yukun}, |
|
|
journal={arXiv preprint arXiv:2510.18234}, |
|
|
year={2025} |
|
|
} |