|
--- |
|
base_model: google-bert/bert-base-multilingual-cased |
|
library_name: transformers |
|
license: apache-2.0 |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bert-f1-durga-muhammad |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-f1-durga-muhammad |
|
|
|
This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0079 |
|
- Accuracy: 0.999 |
|
- Precision: 0.999 |
|
- Recall: 0.999 |
|
- F1: 0.999 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:-----:| |
|
| 0.1978 | 0.24 | 60 | 0.1764 | 0.968 | 0.968 | 0.968 | 0.968 | |
|
| 0.1657 | 0.48 | 120 | 0.0619 | 0.981 | 0.981 | 0.981 | 0.981 | |
|
| 0.1155 | 0.72 | 180 | 0.0475 | 0.989 | 0.989 | 0.989 | 0.989 | |
|
| 0.0675 | 0.96 | 240 | 0.0143 | 0.997 | 0.997 | 0.997 | 0.997 | |
|
| 0.0009 | 1.2 | 300 | 0.0148 | 0.997 | 0.997 | 0.997 | 0.997 | |
|
| 0.0006 | 1.44 | 360 | 0.0151 | 0.997 | 0.997 | 0.997 | 0.997 | |
|
| 0.0267 | 1.6800 | 420 | 0.0083 | 0.999 | 0.999 | 0.999 | 0.999 | |
|
| 0.0335 | 1.92 | 480 | 0.0080 | 0.999 | 0.999 | 0.999 | 0.999 | |
|
| 0.0315 | 2.16 | 540 | 0.0073 | 0.999 | 0.999 | 0.999 | 0.999 | |
|
| 0.0056 | 2.4 | 600 | 0.0076 | 0.999 | 0.999 | 0.999 | 0.999 | |
|
| 0.0004 | 2.64 | 660 | 0.0078 | 0.999 | 0.999 | 0.999 | 0.999 | |
|
| 0.0004 | 2.88 | 720 | 0.0079 | 0.999 | 0.999 | 0.999 | 0.999 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 3.0.2 |
|
- Tokenizers 0.19.1 |
|
|