devagonal's picture
End of training
2b5b469 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/flan-t5-base
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: flan-t5-rouge-durga-q5-clean-1
    results: []

flan-t5-rouge-durga-q5-clean-1

This model is a fine-tuned version of google/flan-t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0005
  • Rouge1: 0.7445
  • Rouge2: 0.7185
  • Rougel: 0.7434
  • Rougelsum: 0.7443

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
2.9251 1.0 25 1.6278 0.2967 0.0873 0.2883 0.2882
1.5255 2.0 50 1.1981 0.3701 0.1385 0.3567 0.3556
2.3769 3.0 75 0.9291 0.3827 0.1966 0.3803 0.3791
1.2209 4.0 100 0.7037 0.4314 0.2566 0.4236 0.4236
0.7555 5.0 125 0.5043 0.4341 0.2524 0.4342 0.4309
1.4086 6.0 150 0.4352 0.4525 0.2964 0.4495 0.4505
1.3036 7.0 175 0.3015 0.5994 0.4670 0.5977 0.5982
0.592 8.0 200 0.2114 0.5736 0.4563 0.5723 0.5720
0.6039 9.0 225 0.1706 0.5588 0.4524 0.5569 0.5584
0.4569 10.0 250 0.1314 0.6186 0.5224 0.6172 0.6172
0.5411 11.0 275 0.0986 0.6435 0.5631 0.6427 0.6456
0.8071 12.0 300 0.0894 0.6291 0.5462 0.6307 0.6286
0.5719 13.0 325 0.0629 0.6876 0.6185 0.6832 0.6838
0.0508 14.0 350 0.0486 0.6538 0.5946 0.6525 0.6478
0.0632 15.0 375 0.0350 0.6864 0.6361 0.6850 0.6853
0.1612 16.0 400 0.0256 0.6867 0.6456 0.6855 0.6851
0.0411 17.0 425 0.0175 0.7375 0.7103 0.7368 0.7375
0.2348 18.0 450 0.0112 0.7256 0.6949 0.7255 0.7260
0.0872 19.0 475 0.0109 0.7247 0.6968 0.7260 0.7267
0.1036 20.0 500 0.0054 0.7421 0.7164 0.7422 0.7422
0.0815 21.0 525 0.0066 0.7432 0.7173 0.7420 0.7427
0.1068 22.0 550 0.0034 0.7445 0.7185 0.7434 0.7443
0.0786 23.0 575 0.0024 0.7421 0.7164 0.7422 0.7422
0.0566 24.0 600 0.0015 0.7421 0.7164 0.7422 0.7422
0.0103 25.0 625 0.0016 0.7445 0.7185 0.7434 0.7443
0.0003 26.0 650 0.0007 0.7445 0.7185 0.7434 0.7443
0.0569 27.0 675 0.0004 0.7445 0.7185 0.7434 0.7443
0.0389 28.0 700 0.0005 0.7445 0.7185 0.7434 0.7443
0.0089 29.0 725 0.0005 0.7445 0.7185 0.7434 0.7443
0.0022 30.0 750 0.0005 0.7445 0.7185 0.7434 0.7443

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.20.1