|
--- |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: Qwen/Qwen3-0.6B |
|
model-index: |
|
- name: app/checkpoints/0ace46bc-8f88-4e70-95b9-9502b5a4d1dc/instructtest |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.11.0.dev0` |
|
```yaml |
|
adapter: lora |
|
base_model: Qwen/Qwen3-0.6B |
|
bf16: auto |
|
chat_template: llama3 |
|
dataset_prepared_path: null |
|
datasets: |
|
- data_files: |
|
- 0ace46bc-8f88-4e70-95b9-9502b5a4d1dc_train_data.json |
|
ds_type: json |
|
format: custom |
|
path: /workspace/axolotl/data |
|
type: |
|
field_instruction: instruct |
|
field_output: output |
|
format: '{instruction}' |
|
no_input_format: '{instruction}' |
|
system_format: '{system}' |
|
system_prompt: '' |
|
debug: null |
|
deepspeed: null |
|
early_stopping_patience: null |
|
eval_max_new_tokens: 128 |
|
eval_table_size: null |
|
evals_per_epoch: 4 |
|
flash_attention: false |
|
fp16: null |
|
fsdp: null |
|
fsdp_config: null |
|
gradient_accumulation_steps: 4 |
|
gradient_checkpointing: false |
|
group_by_length: false |
|
learning_rate: 0.0002 |
|
load_in_4bit: false |
|
load_in_8bit: false |
|
local_rank: null |
|
logging_steps: 1 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_fan_in_fan_out: null |
|
lora_model_dir: null |
|
lora_r: 8 |
|
lora_target_linear: true |
|
lr_scheduler: cosine |
|
max_steps: 10 |
|
micro_batch_size: 2 |
|
mlflow_experiment_name: /workspace/axolotl/data/0ace46bc-8f88-4e70-95b9-9502b5a4d1dc_train_data.json |
|
model_type: AutoModelForCausalLM |
|
num_epochs: 1 |
|
optimizer: adamw_bnb_8bit |
|
output_dir: /app/checkpoints/0ace46bc-8f88-4e70-95b9-9502b5a4d1dc/instructtest |
|
pad_to_sequence_len: true |
|
resume_from_checkpoint: null |
|
s2_attention: null |
|
sample_packing: false |
|
saves_per_epoch: 4 |
|
sequence_len: 512 |
|
strict: false |
|
tf32: false |
|
tokenizer_type: AutoTokenizer |
|
train_on_inputs: false |
|
trust_remote_code: true |
|
val_set_size: 0.05 |
|
wandb_entity: null |
|
wandb_mode: offline |
|
wandb_name: 0ace46bc-8f88-4e70-95b9-9502b5a4d1dc_instructtest |
|
wandb_project: Gradients-On-Demand |
|
wandb_run: your_name |
|
wandb_runid: 0ace46bc-8f88-4e70-95b9-9502b5a4d1dc_instructtest |
|
warmup_steps: 10 |
|
weight_decay: 0.0 |
|
xformers_attention: null |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# app/checkpoints/0ace46bc-8f88-4e70-95b9-9502b5a4d1dc/instructtest |
|
|
|
This model was trained from scratch on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.6241 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- training_steps: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| No log | 0 | 0 | 2.8341 | |
|
| 2.3531 | 0.0308 | 3 | 2.8291 | |
|
| 2.0761 | 0.0615 | 6 | 2.7468 | |
|
| 1.48 | 0.0923 | 9 | 2.6241 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.15.2 |
|
- Transformers 4.53.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.6.0 |
|
- Tokenizers 0.21.2 |