# intent-onnx | |
This is an ONNX version of the fine-tuned intent classification model. | |
## Model Details | |
- **Model Type**: BERT-based sentence transformer | |
- **Architecture**: BertModel | |
- **Hidden Size**: 384 | |
- **Attention Heads**: 12 | |
- **Layers**: 3 | |
- **Vocabulary Size**: 30,522 | |
## Usage | |
### Transformers.js | |
```javascript | |
import { pipeline } from '@xenova/transformers'; | |
const extractor = await pipeline('feature-extraction', 'drithh/intent-onnx'); | |
const output = await extractor('your text here', { | |
pooling: 'mean', | |
normalize: true | |
}); | |
console.log('Embedding shape:', output.data.length); | |
``` | |
### Python | |
```python | |
from sentence_transformers import SentenceTransformer | |
model = SentenceTransformer('drithh/intent-classifier') | |
embeddings = model.encode('your text here') | |
print(f'Embedding shape: {embeddings.shape}') | |
``` | |
## Training | |
This model was fine-tuned on intent classification data using SentenceTransformers. | |