HQQ 4-bit Quantized Whisper Model
This is a 4-bit HQQ quantized version of eolang/whisperturbo.
Model Details
- Base Model: eolang/whisperturbo
- Quantization: HQQ 4-bit, group_size=64
- Compression: ~4x reduction in size
- Library: HQQ (Half-Quadratic Quantization)
Usage
import torch
from transformers import WhisperProcessor
from hqq.models.hf.base import AutoHQQHFModel
import librosa
# Load quantized model
model = AutoHQQHFModel.from_quantized("eolang/whisper-turbo-hqq-quantized")
processor = WhisperProcessor.from_pretrained("eolang/whisper-turbo-hqq-quantized")
# Load and process audio
audio, sr = librosa.load("audio.wav", sr=16000)
inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
# Generate transcription
with torch.no_grad():
predicted_ids = model.generate(inputs["input_features"])
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
print(transcription[0])
Requirements
- pip install git+https://github.com/mobiusml/hqq.git
- pip install transformers librosa soundfile
- Downloads last month
- -