Robotics
PyTorch
File size: 6,528 Bytes
2abaaf7
 
c8ca7b7
 
2abaaf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
library_name: pytorch
license: apache-2.0
pipeline_tag: robotics
---

<div align="center" style="line-height:1.2; margin:0; padding:0;">
<h1 style="margin-bottom:0em;">Multi-View 3D Point Tracking</h1>

<a href="https://huggingface.co/papers/2508.21060"><img src="https://img.shields.io/badge/Paper-2508.21060-b31b1b" alt="Paper"></a>
<a href="https://ethz-vlg.github.io/mvtracker/"><img src="https://img.shields.io/badge/Project%20Page-009688?logo=internetcomputer&logoColor=white" alt="Project Page"></a>
<a href="https://github.com/ethz-vlg/mvtracker"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&logoColor=white" alt="GitHub"></a>
[![](https://img.shields.io/badge/%F0%9F%A4%97%20Demo-Coming%20soon…-ffcc00)](#)
<br>
[**Frano Rajič**](https://m43.github.io/)<sup>1</sup> · 
[**Haofei Xu**](https://haofeixu.github.io/)<sup>1</sup> · 
[**Marko Mihajlovic**](https://markomih.github.io/)<sup>1</sup> · 
[**Siyuan Li**](https://siyuanliii.github.io/)<sup>1</sup> · 
[**Irem Demir**](https://github.com/iremddemir)<sup>1</sup>  
[**Emircan Gündoğdu**](https://github.com/emircangun)<sup>1</sup> · 
[**Lei Ke**](https://www.kelei.site/)<sup>2</sup> · 
[**Sergey Prokudin**](https://vlg.inf.ethz.ch/team/Dr-Sergey-Prokudin.html)<sup>1,3</sup> · 
[**Marc Pollefeys**](https://people.inf.ethz.ch/marc.pollefeys/)<sup>1,4</sup> · 
[**Siyu Tang**](https://vlg.inf.ethz.ch/team/Prof-Dr-Siyu-Tang.html)<sup>1</sup>
<br>
<sup>1</sup>[ETH Zürich](https://vlg.inf.ethz.ch/) &emsp;
<sup>2</sup>[Carnegie Mellon University](https://www.cmu.edu/) &emsp;
<sup>3</sup>[Balgrist University Hospital](https://www.balgrist.ch/) &emsp;
<sup>4</sup>[Microsoft](https://www.microsoft.com/)
</div>

MVTracker is the first **data-driven multi-view 3D point tracker** for tracking arbitrary 3D points across multiple cameras. It fuses multi-view features into a unified 3D feature point cloud, within which it leverages kNN-based correlation to capture spatiotemporal relationships across views. A transformer then iteratively refines the point tracks, handling occlusions and adapting to varying camera setups without per-sequence optimization.

<p float="left">
  <img alt="selfcap" src="https://github.com/user-attachments/assets/b502d193-c37c-43be-af6c-653b5de7597e" width="48%" /> 
  <img alt="dexycb" src="https://github.com/user-attachments/assets/d14d4c6c-152e-4040-b29b-3da4b7e8b913" width="48%" /> 
  <img alt="4d-dress-stretching" src="https://github.com/user-attachments/assets/f3eabdda-59e1-4032-b345-c4603ea86fc0" width="48%" />
  <img alt="4d-dress-avatarmove" src="https://github.com/user-attachments/assets/3fef9924-84ad-4295-95e2-5b82ae7c3053" width="48%" />
</p>

## Abstract
We introduce the first data-driven multi-view 3D point tracker, designed to track arbitrary points in dynamic scenes using multiple camera views. Unlike existing monocular trackers, which struggle with depth ambiguities and occlusion, or prior multi-camera methods that require over 20 cameras and tedious per-sequence optimization, our feed-forward model directly predicts 3D correspondences using a practical number of cameras (e.g., four), enabling robust and accurate online tracking. Given known camera poses and either sensor-based or estimated multi-view depth, our tracker fuses multi-view features into a unified point cloud and applies k-nearest-neighbors correlation alongside a transformer-based update to reliably estimate long-range 3D correspondences, even under occlusion. We train on 5K synthetic multi-view Kubric sequences and evaluate on two real-world benchmarks: Panoptic Studio and DexYCB, achieving median trajectory errors of 3.1 cm and 2.0 cm, respectively. Our method generalizes well to diverse camera setups of 1-8 views with varying vantage points and video lengths of 24-150 frames. By releasing our tracker alongside training and evaluation datasets, we aim to set a new standard for multi-view 3D tracking research and provide a practical tool for real-world applications.

## Quick Start

This repo was validated on **Python 3.10.12**, **PyTorch 2.3.0** (CUDA 12.1), **cuDNN 8903**, and **gcc 11.3.0**. If you want a fresh minimal environment that runs the Hub demo and `demo.py`:
```bash
conda create -n 3dpt python=3.10.12 -y
conda activate 3dpt
conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install -r https://raw.githubusercontent.com/ethz-vlg/mvtracker/refs/heads/main/requirements.txt

# Optional, speeds up the model
pip install --upgrade --no-build-isolation flash-attn==2.5.8  # Speeds up attention
pip install "git+https://github.com/ethz-vlg/pointcept.git@2082918#subdirectory=libs/pointops"  # Speeds up kNN search; may require gcc 11.3.0: conda install -c conda-forge gcc_linux-64=11.3.0 gxx_linux-64=11.3.0 gcc=11.3.0 gxx=11.3.0
```

With the minimal dependencies in place, you can try MVTracker directly via **PyTorch Hub**:
```python
import torch
import numpy as np
from huggingface_hub import hf_hub_download

device = "cuda" if torch.cuda.is_available() else "cpu"
mvtracker = torch.hub.load("ethz-vlg/mvtracker", "mvtracker", pretrained=True, device=device)

# Example input from demo sample (downloaded automatically)
sample = np.load(hf_hub_download("ethz-vlg/mvtracker", "data_sample.npz"))
rgbs = torch.from_numpy(sample["rgbs"]).float()
depths = torch.from_numpy(sample["depths"]).float()
intrs = torch.from_numpy(sample["intrs"]).float()
extrs = torch.from_numpy(sample["extrs"]).float()
query_points = torch.from_numpy(sample["query_points"]).float()

with torch.no_grad():
    results = mvtracker(
        rgbs=rgbs[None].to(device) / 255.0,
        depths=depths[None].to(device),\
        intrs=intrs[None].to(device),
        extrs=extrs[None].to(device),
        query_points_3d=query_points[None].to(device),
    )

pred_tracks = results["traj_e"].cpu()  # [T,N,3]
pred_vis = results["vis_e"].cpu()      # [T,N]
print(pred_tracks.shape, pred_vis.shape)
```

## Citation
If you find our repository useful, please consider giving it a star ⭐ and citing our work:
```bibtex
@inproceedings{rajic2025mvtracker,
  title     = {Multi-View 3D Point Tracking},
  author    = {Raji{\v{c}}, Frano and Xu, Haofei and Mihajlovic, Marko and Li, Siyuan and Demir, Irem and G{\"u}ndo{\u{g}}du, Emircan and Ke, Lei and Prokudin, Sergey and Pollefeys, Marc and Tang, Siyu},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  year      = {2025}
}
```