euler03's picture
euler03/bbq-distil_bumble_bert
1fb005b verified
metadata
library_name: transformers
base_model: Aubins/distil-bumble-bert
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: bbq-distil_bumble_bert
    results: []

bbq-distil_bumble_bert

This model is a fine-tuned version of Aubins/distil-bumble-bert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1032
  • Accuracy: 0.9627
  • Precision: 0.9432
  • Recall: 0.9470
  • F1: 0.9451
  • Roc Auc: 0.9965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc Auc
0.3899 0.1709 500 0.3561 0.8325 0.7513 0.7559 0.7536 0.9373
0.3563 0.3419 1000 0.3456 0.8429 0.7693 0.7662 0.7678 0.9444
0.3987 0.5128 1500 0.3510 0.8402 0.7658 0.7612 0.7635 0.9424
0.4003 0.6838 2000 0.3447 0.8595 0.7909 0.7957 0.7933 0.9523
0.2942 0.8547 2500 0.3214 0.8660 0.7998 0.8063 0.8031 0.9577
0.288 1.0256 3000 0.3118 0.8774 0.8158 0.8245 0.8201 0.9642
0.2941 1.1966 3500 0.2656 0.8886 0.8303 0.8439 0.8370 0.9715
0.2818 1.3675 4000 0.2618 0.9015 0.8458 0.8676 0.8566 0.9763
0.265 1.5385 4500 0.2281 0.9093 0.8589 0.8764 0.8676 0.9804
0.1927 1.7094 5000 0.1938 0.9297 0.8929 0.9004 0.8966 0.9869
0.1919 1.8803 5500 0.1726 0.9394 0.9038 0.9190 0.9113 0.9902
0.1421 2.0513 6000 0.1578 0.9426 0.9111 0.9206 0.9158 0.9918
0.1481 2.2222 6500 0.1429 0.9464 0.9189 0.9233 0.9211 0.9930
0.1363 2.3932 7000 0.1219 0.9562 0.9317 0.9397 0.9357 0.9948
0.2112 2.5641 7500 0.1173 0.9594 0.9391 0.9412 0.9402 0.9956
0.1424 2.7350 8000 0.1102 0.9604 0.9391 0.9445 0.9418 0.9961
0.1744 2.9060 8500 0.1032 0.9627 0.9432 0.9470 0.9451 0.9965

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0