|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import warnings |
|
import copy |
|
from dataclasses import dataclass |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.distributions as dists |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache |
|
from transformers.generation.configuration_utils import GenerationConfig |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
ModelOutput, |
|
) |
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS |
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config |
|
from transformers.processing_utils import Unpack |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
replace_return_docstrings, |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
def top_p_logits(logits, top_p=None): |
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) |
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() |
|
sorted_indices_to_remove[..., 0] = 0 |
|
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device) |
|
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove) |
|
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min) |
|
return logits |
|
|
|
def top_k_logits(logits, top_k=None): |
|
if top_k is None or top_k == 0: |
|
return logits |
|
top_k = min(top_k, logits.size(-1)) |
|
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] |
|
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min) |
|
return logits |
|
|
|
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False): |
|
if temperature > 0: |
|
logits = logits / temperature |
|
if top_p is not None and top_p < 1: |
|
logits = top_p_logits(logits, top_p) |
|
if top_k is not None: |
|
logits = top_k_logits(logits, top_k) |
|
probs = torch.softmax(logits.float(), dim=-1) |
|
if temperature > 0: |
|
x0 = dists.Categorical(probs=probs).sample() |
|
else: |
|
_, x0 = probs.max(dim=-1) |
|
|
|
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1) |
|
|
|
if margin_confidence: |
|
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True) |
|
top1_probs = sorted_probs[..., 0] |
|
top2_probs = sorted_probs[..., 1] |
|
confidence = top1_probs - top2_probs |
|
elif neg_entropy: |
|
log_probs = torch.log(probs.clamp(min=1e-10)) |
|
confidence = (probs * log_probs).sum(dim=-1) |
|
|
|
return confidence, x0 |
|
|
|
|
|
@dataclass |
|
class MDMModelOutput(ModelOutput): |
|
sequences: torch.LongTensor = None |
|
history: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
class MDMGenerationConfig(GenerationConfig): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
self.temperature: float = kwargs.pop("temperature", 0.0) |
|
self.top_p: Optional[float] = kwargs.pop("top_p", None) |
|
self.top_k: Optional[int] = kwargs.pop("top_k", None) |
|
self.eps: float = kwargs.pop("eps", 1e-3) |
|
self.steps: int = kwargs.pop("steps", 512) |
|
self.alg: str = kwargs.pop("alg", 'entropy') |
|
self.alg_temp: Optional[float] = kwargs.pop("alg_temp", 0.0) |
|
self.output_history: bool = kwargs.pop("output_history", False) |
|
self.mask_token_id = kwargs.pop("mask_token_id", None) |
|
|
|
|
|
class MDMGenerationMixin: |
|
""" |
|
Mixin class for Masked Diffusion Model generation. |
|
""" |
|
@staticmethod |
|
def _expand_inputs_for_generation( |
|
expand_size: int = 1, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None |
|
) -> Tuple[torch.LongTensor, Dict[str, Any]]: |
|
if expand_size == 1: |
|
return input_ids, attention_mask |
|
|
|
if input_ids is not None: |
|
input_ids = input_ids.repeat_interleave(expand_size, dim=0) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.repeat_interleave(expand_size, dim=0) |
|
return input_ids, attention_mask |
|
|
|
def _prepare_generation_config( |
|
self, generation_config: Optional[GenerationConfig], **kwargs |
|
) -> MDMGenerationConfig: |
|
if generation_config is None: |
|
generation_config = self.generation_config |
|
|
|
if not isinstance(generation_config, MDMGenerationConfig): |
|
generation_config = MDMGenerationConfig.from_dict(generation_config.to_dict()) |
|
|
|
generation_config.update(**kwargs) |
|
return generation_config |
|
|
|
@torch.no_grad() |
|
def diffusion_generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
generation_config: Optional[MDMGenerationConfig] = None, |
|
**kwargs, |
|
) -> Union[MDMModelOutput, torch.LongTensor]: |
|
|
|
generation_config = self._prepare_generation_config(generation_config, **kwargs) |
|
input_ids = inputs |
|
attention_mask = kwargs.get("attention_mask", None) |
|
|
|
if input_ids is None: |
|
raise ValueError("`inputs` must be provided for diffusion generation.") |
|
|
|
if generation_config.max_new_tokens is not None: |
|
generation_config.max_length = input_ids.shape[-1] + generation_config.max_new_tokens |
|
|
|
input_ids, attention_mask = self._expand_inputs_for_generation( |
|
expand_size=generation_config.num_return_sequences, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask |
|
) |
|
return self._sample( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
generation_config=generation_config |
|
) |
|
|
|
def _sample( |
|
self, |
|
input_ids: torch.LongTensor, |
|
attention_mask: Optional[torch.LongTensor], |
|
generation_config: MDMGenerationConfig |
|
) -> Union[MDMModelOutput, torch.LongTensor]: |
|
|
|
max_length = generation_config.max_length |
|
mask_token_id = generation_config.mask_token_id |
|
if mask_token_id is None: |
|
raise ValueError("`mask_token_id` must be set in the generation config.") |
|
|
|
steps = generation_config.steps |
|
eps = generation_config.eps |
|
alg = generation_config.alg |
|
alg_temp = generation_config.alg_temp |
|
temperature = generation_config.temperature |
|
top_p = generation_config.top_p |
|
top_k = generation_config.top_k |
|
|
|
histories = [] if generation_config.output_history else None |
|
x = F.pad(input_ids, (0, max_length - input_ids.shape[1]), value=mask_token_id) |
|
gen_attention_mask = (x != self.config.pad_token_id).long() if self.config.pad_token_id is not None else None |
|
timesteps = torch.linspace(1, eps, steps + 1, device=x.device) |
|
|
|
for i in range(steps): |
|
mask_index = (x == mask_token_id) |
|
if not mask_index.any(): |
|
break |
|
outputs = self(input_ids=x, attention_mask=gen_attention_mask, is_causal=False) |
|
logits = outputs.logits |
|
logits = torch.cat([logits[:, :1], logits[:, :-1]], dim=1) |
|
mask_logits = logits[mask_index] |
|
t = timesteps[i] |
|
s = timesteps[i + 1] |
|
|
|
confidence_alg_map = {'maskgit_plus': False, 'topk_margin': True, 'entropy': True} |
|
is_margin_conf = confidence_alg_map.get(alg, False) |
|
is_neg_entropy = alg == 'entropy' |
|
|
|
confidence, x0 = sample_tokens(mask_logits, temperature, top_p, top_k, margin_confidence=is_margin_conf, neg_entropy=is_neg_entropy) |
|
num_masked = mask_index.sum(dim=-1, keepdim=True) |
|
gamma = 1 - s / t |
|
num_to_unmask = (num_masked * gamma).long() |
|
full_confidence = torch.full_like(x, -torch.inf, device=self.device, dtype=confidence.dtype) |
|
full_confidence[mask_index] = confidence |
|
|
|
if (alg_temp is not None and alg_temp > 0): |
|
unmask_probs = F.softmax(full_confidence / alg_temp, dim=-1) |
|
unmask_indices = torch.multinomial(unmask_probs, num_samples=num_to_unmask.max(), replacement=False) |
|
else: |
|
_, unmask_indices = torch.topk(full_confidence, k=num_to_unmask.max(), dim=-1) |
|
|
|
rows = torch.arange(x.size(0), device=x.device).unsqueeze(1) |
|
unmask_selection_mask = torch.zeros_like(x, dtype=torch.bool) |
|
unmask_selection_mask[rows, unmask_indices] = True |
|
unmask_selection_mask = unmask_selection_mask & (torch.cumsum(unmask_selection_mask.long(), dim=-1) <= num_to_unmask) |
|
x_unmasked_proposals = torch.full_like(x, fill_value=mask_token_id) |
|
x_unmasked_proposals[mask_index] = x0 |
|
x[unmask_selection_mask] = x_unmasked_proposals[unmask_selection_mask] |
|
|
|
if histories is not None: |
|
histories.append(x.clone()) |
|
|
|
if generation_config.return_dict_in_generate: |
|
return MDMModelOutput(sequences=x, history=histories) |
|
else: |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "meta-qwen2/Qwen2-2-7b-hf" |
|
_CONFIG_FOR_DOC = "Qwen2Config" |
|
|
|
|
|
class Qwen2MLP(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
return down_proj |
|
|
|
def rotate_half(x): |
|
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
class Qwen2Attention(nn.Module): |
|
|
|
def __init__(self, config: Qwen2Config, layer_idx: int): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) |
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
self.scaling = self.head_dim**-0.5 |
|
self.attention_dropout = config.attention_dropout |
|
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True) |
|
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True) |
|
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True) |
|
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
attention_mask: Optional[torch.Tensor], |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
is_causal: bool = True, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
hidden_shape = (bsz, q_len, -1, self.head_dim) |
|
|
|
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
full_q_len = query_states.size(2) |
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
attention_interface: Callable = ALL_ATTENTION_FUNCTIONS.get(self.config._attn_implementation, None) |
|
if attention_interface is None: |
|
raise ValueError(f"Attention implementation {self.config._attn_implementation} not found.") |
|
|
|
if self.config._attn_implementation == "sdpa" and output_attentions: |
|
logger.warning_once("Using SDPA with `output_attentions=True` requires eager attention.") |
|
attention_interface = ALL_ATTENTION_FUNCTIONS["eager"] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask=attention_mask, |
|
dropout=self.attention_dropout if self.training else 0.0, |
|
is_causal=is_causal, |
|
**kwargs, |
|
) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.config.hidden_size) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
class Qwen2RMSNorm(nn.Module): |
|
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
class Qwen2DecoderLayer(nn.Module): |
|
|
|
def __init__(self, config: Qwen2Config, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = Qwen2Attention(config=config, layer_idx=layer_idx) |
|
self.mlp = Qwen2MLP(config) |
|
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
is_causal: bool = True, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
is_causal=is_causal, |
|
**kwargs, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
class Qwen2RotaryEmbedding(nn.Module): |
|
|
|
def __init__(self, config: Qwen2Config, device=None): |
|
super().__init__() |
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
else: |
|
self.rope_type = "default" |
|
self.max_seq_len_cached = config.max_position_embeddings |
|
self.original_max_seq_len = config.max_position_embeddings |
|
self.config = config |
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.original_inv_freq = self.inv_freq |
|
|
|
def _dynamic_frequency_update(self, position_ids, device): |
|
seq_len = torch.max(position_ids) + 1 |
|
if seq_len > self.max_seq_len_cached: |
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.max_seq_len_cached = seq_len |
|
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: |
|
self.original_inv_freq = self.original_inv_freq.to(device) |
|
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) |
|
self.max_seq_len_cached = self.original_max_seq_len |
|
|
|
@torch.no_grad() |
|
def forward(self, x, position_ids): |
|
if "dynamic" in self.rope_type: |
|
self._dynamic_frequency_update(position_ids, device=x.device) |
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
device_type = x.device.type |
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() |
|
sin = emb.sin() |
|
cos = cos * self.attention_scaling |
|
sin = sin * self.attention_scaling |
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
class Qwen2PreTrainedModel(PreTrainedModel): |
|
|
|
config_class = Qwen2Config |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["Qwen2DecoderLayer"] |
|
_skip_keys_device_placement = ["past_key_values"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
class Qwen2Model(Qwen2PreTrainedModel): |
|
|
|
def __init__(self, config: Qwen2Config): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.rotary_emb = Qwen2RotaryEmbedding(config=config) |
|
self.gradient_checkpointing = False |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
is_causal: bool = True, |
|
**flash_attn_kwargs: Unpack[FlashAttentionKwargs], |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
if self.gradient_checkpointing and self.training and use_cache: |
|
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.") |
|
use_cache = False |
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
past_key_values_length = 0 |
|
if use_cache: |
|
if past_key_values is None: |
|
past_key_values = DynamicCache() |
|
past_key_values_length = past_key_values.get_seq_length() |
|
|
|
if cache_position is None: |
|
cache_position = torch.arange( |
|
past_key_values_length, past_key_values_length + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, is_causal) |
|
hidden_states = inputs_embeds |
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
is_causal=is_causal, |
|
**flash_attn_kwargs, |
|
) |
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
def _update_causal_mask(self, attention_mask, input_tensor, cache_position, is_causal): |
|
if not is_causal: |
|
return attention_mask |
|
|
|
seq_len = input_tensor.shape[1] |
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
dtype = input_tensor.dtype |
|
device = input_tensor.device |
|
|
|
causal_mask = torch.triu(torch.full((seq_len, seq_len), torch.finfo(dtype).min, device=device), 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) |
|
|
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
causal_mask = causal_mask + attention_mask[:, None, None, :] |
|
|
|
return causal_mask |
|
|
|
class Qwen2ForCausalLM(Qwen2PreTrainedModel, MDMGenerationMixin): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = Qwen2Model(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
is_causal: bool = True, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
is_causal=is_causal, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
loss = None |
|
|
|
if labels is not None: |
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
loss_fct = torch.nn.CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
ModelClass = Qwen2ForCausalLM |
|
|
|
__all__ = ["Qwen2ForCausalLM", "Qwen2Model", "Qwen2PreTrainedModel", "MDMGenerationMixin"] |
|
|