deberta-semeval25_EN08_WAR_fold3
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 8.9626
- Precision Samples: 0.1997
- Recall Samples: 0.5446
- F1 Samples: 0.2711
- Precision Macro: 0.6058
- Recall Macro: 0.4386
- F1 Macro: 0.2752
- Precision Micro: 0.1965
- Recall Micro: 0.4913
- F1 Micro: 0.2807
- Precision Weighted: 0.4234
- Recall Weighted: 0.4913
- F1 Weighted: 0.2111
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9.8767 | 1.0 | 43 | 9.8989 | 0.2713 | 0.1482 | 0.1472 | 0.9512 | 0.1963 | 0.1727 | 0.2050 | 0.1435 | 0.1688 | 0.8608 | 0.1435 | 0.0557 |
| 9.63 | 2.0 | 86 | 9.7697 | 0.1837 | 0.2821 | 0.1847 | 0.9042 | 0.2587 | 0.1909 | 0.1578 | 0.2565 | 0.1954 | 0.7668 | 0.2565 | 0.0918 |
| 10.4009 | 3.0 | 129 | 9.6533 | 0.1703 | 0.3547 | 0.2007 | 0.8712 | 0.3003 | 0.2070 | 0.1581 | 0.3348 | 0.2148 | 0.7046 | 0.3348 | 0.1190 |
| 10.6078 | 4.0 | 172 | 9.5252 | 0.1714 | 0.4137 | 0.2138 | 0.7880 | 0.3338 | 0.2224 | 0.1633 | 0.3826 | 0.2289 | 0.5842 | 0.3826 | 0.1435 |
| 9.7252 | 5.0 | 215 | 9.3610 | 0.2047 | 0.4368 | 0.2489 | 0.7827 | 0.3516 | 0.2414 | 0.1949 | 0.3957 | 0.2611 | 0.5934 | 0.3957 | 0.1723 |
| 9.2976 | 6.0 | 258 | 9.2303 | 0.1924 | 0.4940 | 0.2581 | 0.6982 | 0.4005 | 0.2708 | 0.1914 | 0.4478 | 0.2682 | 0.5012 | 0.4478 | 0.2019 |
| 8.8482 | 7.0 | 301 | 9.0991 | 0.1882 | 0.5276 | 0.2575 | 0.6545 | 0.4181 | 0.2608 | 0.1857 | 0.4739 | 0.2668 | 0.4543 | 0.4739 | 0.1937 |
| 10.324 | 8.0 | 344 | 9.0111 | 0.2003 | 0.5439 | 0.2719 | 0.6441 | 0.4398 | 0.2748 | 0.2007 | 0.4913 | 0.2850 | 0.4485 | 0.4913 | 0.2105 |
| 8.4129 | 9.0 | 387 | 8.9908 | 0.1949 | 0.5176 | 0.2641 | 0.6280 | 0.4256 | 0.2745 | 0.1953 | 0.4739 | 0.2766 | 0.4208 | 0.4739 | 0.2092 |
| 7.694 | 10.0 | 430 | 8.9626 | 0.1997 | 0.5446 | 0.2711 | 0.6058 | 0.4386 | 0.2752 | 0.1965 | 0.4913 | 0.2807 | 0.4234 | 0.4913 | 0.2111 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for g-assismoraes/deberta-semeval25_EN08_WAR_fold3
Base model
microsoft/deberta-v3-base