deberta-semeval25_EN08_WAR_fold4
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 8.6077
- Precision Samples: 0.1720
- Recall Samples: 0.4912
- F1 Samples: 0.2394
- Precision Macro: 0.6271
- Recall Macro: 0.3805
- F1 Macro: 0.2080
- Precision Micro: 0.1669
- Recall Micro: 0.4907
- F1 Micro: 0.2491
- Precision Weighted: 0.4263
- Recall Weighted: 0.4907
- F1 Weighted: 0.1966
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10.8033 | 1.0 | 43 | 9.3728 | 0.1378 | 0.2438 | 0.1666 | 0.9162 | 0.1942 | 0.1269 | 0.1474 | 0.2593 | 0.1879 | 0.7785 | 0.2593 | 0.0801 |
| 10.1064 | 2.0 | 86 | 9.1982 | 0.1369 | 0.2669 | 0.1707 | 0.8713 | 0.2046 | 0.1301 | 0.1354 | 0.2870 | 0.1840 | 0.6798 | 0.2870 | 0.0892 |
| 9.246 | 3.0 | 129 | 9.1481 | 0.1404 | 0.3175 | 0.1842 | 0.8340 | 0.2329 | 0.1419 | 0.1426 | 0.3333 | 0.1997 | 0.6338 | 0.3333 | 0.1101 |
| 10.4091 | 4.0 | 172 | 9.0465 | 0.1517 | 0.3645 | 0.2022 | 0.8028 | 0.2641 | 0.1545 | 0.1517 | 0.3843 | 0.2176 | 0.5867 | 0.3843 | 0.1306 |
| 9.7993 | 5.0 | 215 | 9.0293 | 0.1560 | 0.3716 | 0.2076 | 0.7276 | 0.3003 | 0.1789 | 0.1514 | 0.3981 | 0.2194 | 0.5169 | 0.3981 | 0.1532 |
| 10.5038 | 6.0 | 258 | 8.8051 | 0.1696 | 0.4602 | 0.2349 | 0.6589 | 0.3553 | 0.2003 | 0.1697 | 0.4722 | 0.2497 | 0.4598 | 0.4722 | 0.1771 |
| 9.1186 | 7.0 | 301 | 8.7311 | 0.1773 | 0.4607 | 0.2312 | 0.6367 | 0.3637 | 0.2015 | 0.1643 | 0.4722 | 0.2437 | 0.4362 | 0.4722 | 0.1792 |
| 9.7935 | 8.0 | 344 | 8.6690 | 0.1797 | 0.4680 | 0.2316 | 0.6339 | 0.3667 | 0.1992 | 0.1629 | 0.4676 | 0.2416 | 0.4367 | 0.4676 | 0.1808 |
| 8.1802 | 9.0 | 387 | 8.6158 | 0.1712 | 0.4941 | 0.2400 | 0.6267 | 0.3832 | 0.2082 | 0.1664 | 0.4907 | 0.2485 | 0.4238 | 0.4907 | 0.1938 |
| 8.7028 | 10.0 | 430 | 8.6077 | 0.1720 | 0.4912 | 0.2394 | 0.6271 | 0.3805 | 0.2080 | 0.1669 | 0.4907 | 0.2491 | 0.4263 | 0.4907 | 0.1966 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 4
Model tree for g-assismoraes/deberta-semeval25_EN08_WAR_fold4
Base model
microsoft/deberta-v3-base