history-model / README.md
ghdi's picture
Training in progress epoch 19
a6dfdf1
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: ghdi/history-model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# ghdi/history-model
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 7.7920
- Validation Loss: 8.0670
- Epoch: 19
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -985, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 10.9056 | 10.8226 | 0 |
| 10.7307 | 10.5379 | 1 |
| 10.4261 | 10.2113 | 2 |
| 10.1010 | 9.9371 | 3 |
| 9.8444 | 9.7434 | 4 |
| 9.6557 | 9.6059 | 5 |
| 9.5159 | 9.5011 | 6 |
| 9.3981 | 9.4071 | 7 |
| 9.2842 | 9.3113 | 8 |
| 9.1686 | 9.2134 | 9 |
| 9.0484 | 9.1090 | 10 |
| 8.9229 | 8.9987 | 11 |
| 8.7890 | 8.8852 | 12 |
| 8.6514 | 8.7654 | 13 |
| 8.5102 | 8.6470 | 14 |
| 8.3639 | 8.5240 | 15 |
| 8.2187 | 8.4040 | 16 |
| 8.0724 | 8.2869 | 17 |
| 7.9284 | 8.1745 | 18 |
| 7.7920 | 8.0670 | 19 |
### Framework versions
- Transformers 4.27.4
- TensorFlow 2.12.0
- Datasets 2.11.0
- Tokenizers 0.13.3