lr0.0001_bs16_0509_1514

This model is a fine-tuned version of nvidia/mit-b0 on the greenkwd/upwellingdetection_SST dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2220
  • Mean Iou: 0.4787
  • Mean Accuracy: 0.8026
  • Overall Accuracy: 0.8579
  • Accuracy Land: nan
  • Accuracy Upwelling: 0.9308
  • Accuracy Not Upwelling: 0.6744
  • Iou Land: 0.0
  • Iou Upwelling: 0.8552
  • Iou Not Upwelling: 0.5811
  • Dice Macro: 0.8605
  • Dice Micro: 0.9054

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Land Accuracy Upwelling Accuracy Not Upwelling Iou Land Iou Upwelling Iou Not Upwelling Dice Macro Dice Micro
1.0733 0.8 20 1.0873 0.2354 0.4782 0.5349 nan 0.6093 0.3470 0.0 0.4941 0.2120 0.2696 0.3006
0.8574 1.6 40 0.8671 0.3476 0.6306 0.7635 nan 0.9393 0.3220 0.0 0.7597 0.2832 0.7181 0.8199
0.6299 2.4 60 0.5997 0.3465 0.6203 0.7681 nan 0.9582 0.2825 0.0 0.7780 0.2616 0.7261 0.8418
0.4894 3.2 80 0.4757 0.4100 0.7202 0.7987 nan 0.9030 0.5374 0.0 0.7893 0.4408 0.7917 0.8583
0.4301 4.0 100 0.4114 0.4331 0.7610 0.8133 nan 0.8815 0.6404 0.0 0.7987 0.5004 0.8132 0.8678
0.4131 4.8 120 0.3786 0.4301 0.7441 0.8223 nan 0.9243 0.5639 0.0 0.8125 0.4777 0.8054 0.8680
0.3352 5.6 140 0.3519 0.4457 0.7782 0.8253 nan 0.8863 0.6701 0.0 0.8120 0.5250 0.8263 0.8764
0.343 6.4 160 0.3306 0.4480 0.7673 0.8350 nan 0.9237 0.6110 0.0 0.8265 0.5176 0.8297 0.8851
0.3601 7.2 180 0.3195 0.4367 0.7458 0.8196 nan 0.9185 0.5731 0.0 0.8244 0.4856 0.8248 0.8833
0.3037 8.0 200 0.3118 0.4512 0.7755 0.8329 nan 0.9080 0.6429 0.0 0.8252 0.5284 0.8351 0.8867
0.2972 8.8 220 0.2943 0.4598 0.7795 0.8459 nan 0.9345 0.6245 0.0 0.8371 0.5421 0.8412 0.8926
0.2874 9.6 240 0.2955 0.4526 0.7802 0.8337 nan 0.9014 0.6590 0.0 0.8265 0.5312 0.8386 0.8895
0.3222 10.4 260 0.2955 0.4423 0.7517 0.8368 nan 0.9469 0.5564 0.0 0.8317 0.4951 0.8268 0.8884
0.3449 11.2 280 0.2936 0.4408 0.7662 0.8123 nan 0.8730 0.6594 0.0 0.8133 0.5092 0.8328 0.8831
0.2903 12.0 300 0.3006 0.4328 0.7378 0.8065 nan 0.8971 0.5784 0.0 0.8237 0.4748 0.8259 0.8843
0.2584 12.8 320 0.2797 0.4578 0.7803 0.8411 nan 0.9233 0.6374 0.0 0.8316 0.5419 0.8409 0.8909
0.276 13.6 340 0.2827 0.4274 0.7235 0.8120 nan 0.9267 0.5203 0.0 0.8312 0.4511 0.8206 0.8874
0.3025 14.4 360 0.2700 0.4592 0.7862 0.8360 nan 0.9015 0.6708 0.0 0.8320 0.5454 0.8459 0.8937
0.2609 15.2 380 0.2854 0.4315 0.7306 0.8138 nan 0.9262 0.5350 0.0 0.8296 0.4649 0.8233 0.8860
0.2781 16.0 400 0.2847 0.4478 0.7606 0.8405 nan 0.9451 0.5760 0.0 0.8326 0.5109 0.8275 0.8862
0.2491 16.8 420 0.2719 0.4496 0.7628 0.8308 nan 0.9210 0.6046 0.0 0.8353 0.5137 0.8382 0.8916
0.3232 17.6 440 0.2723 0.4573 0.7904 0.8318 nan 0.8858 0.6951 0.0 0.8242 0.5476 0.8441 0.8902
0.3251 18.4 460 0.2679 0.4458 0.7516 0.8385 nan 0.9519 0.5513 0.0 0.8393 0.4981 0.8313 0.8922
0.2918 19.2 480 0.2640 0.4545 0.7721 0.8435 nan 0.9364 0.6078 0.0 0.8344 0.5290 0.8372 0.8920
0.2652 20.0 500 0.2609 0.4518 0.7648 0.8289 nan 0.9134 0.6162 0.0 0.8362 0.5191 0.8415 0.8943
0.2659 20.8 520 0.2569 0.4535 0.7696 0.8301 nan 0.9091 0.6301 0.0 0.8380 0.5225 0.8436 0.8953
0.2421 21.6 540 0.2576 0.4687 0.7912 0.8547 nan 0.9403 0.6421 0.0 0.8433 0.5629 0.8482 0.8966
0.2691 22.4 560 0.2521 0.4511 0.7589 0.8414 nan 0.9494 0.5683 0.0 0.8426 0.5108 0.8381 0.8962
0.3014 23.2 580 0.2573 0.4667 0.7992 0.8455 nan 0.9064 0.6920 0.0 0.8350 0.5652 0.8487 0.8941
0.2588 24.0 600 0.2715 0.4476 0.7841 0.8162 nan 0.8578 0.7104 0.0 0.8119 0.5309 0.8405 0.8866
0.2843 24.8 620 0.2503 0.4570 0.7746 0.8333 nan 0.9110 0.6381 0.0 0.8385 0.5324 0.8467 0.8968
0.2384 25.6 640 0.2481 0.4585 0.7707 0.8428 nan 0.9397 0.6017 0.0 0.8443 0.5311 0.8460 0.8985
0.3404 26.4 660 0.2410 0.4675 0.7866 0.8542 nan 0.9403 0.6330 0.0 0.8484 0.5540 0.8484 0.8993
0.2827 27.2 680 0.2642 0.4417 0.7506 0.8188 nan 0.9071 0.5941 0.0 0.8335 0.4916 0.8339 0.8910
0.2257 28.0 700 0.2485 0.4591 0.7811 0.8340 nan 0.9052 0.6570 0.0 0.8360 0.5412 0.8475 0.8954
0.2477 28.8 720 0.2415 0.4631 0.7798 0.8458 nan 0.9323 0.6272 0.0 0.8466 0.5428 0.8492 0.8999
0.23 29.6 740 0.2624 0.4420 0.7568 0.8123 nan 0.8838 0.6299 0.0 0.8271 0.4990 0.8356 0.8890
0.2403 30.4 760 0.2487 0.4783 0.8259 0.8538 nan 0.8901 0.7618 0.0 0.8358 0.5991 0.8575 0.8970
0.2379 31.2 780 0.2596 0.4578 0.7748 0.8498 nan 0.9507 0.5989 0.0 0.8358 0.5375 0.8357 0.8902
0.2061 32.0 800 0.2384 0.4727 0.7980 0.8533 nan 0.9245 0.6716 0.0 0.8482 0.5699 0.8555 0.9019
0.223 32.8 820 0.2487 0.4649 0.7874 0.8474 nan 0.9268 0.6481 0.0 0.8404 0.5543 0.8467 0.8957
0.2432 33.6 840 0.2589 0.4650 0.7944 0.8496 nan 0.9218 0.6670 0.0 0.8341 0.5608 0.8439 0.8920
0.2624 34.4 860 0.2431 0.4593 0.7732 0.8405 nan 0.9300 0.6163 0.0 0.8452 0.5327 0.8469 0.8988
0.2419 35.2 880 0.2491 0.4714 0.8095 0.8498 nan 0.9021 0.7168 0.0 0.8349 0.5792 0.8516 0.8952
0.2937 36.0 900 0.2356 0.4677 0.7846 0.8487 nan 0.9328 0.6363 0.0 0.8499 0.5531 0.8529 0.9021
0.2544 36.8 920 0.2501 0.4526 0.7625 0.8409 nan 0.9432 0.5819 0.0 0.8418 0.5160 0.8385 0.8954
0.2796 37.6 940 0.2372 0.4747 0.8096 0.8529 nan 0.9095 0.7097 0.0 0.8425 0.5815 0.8568 0.9004
0.2408 38.4 960 0.2523 0.4534 0.7642 0.8415 nan 0.9451 0.5832 0.0 0.8405 0.5197 0.8383 0.8937
0.2616 39.2 980 0.2378 0.4667 0.7887 0.8476 nan 0.9249 0.6524 0.0 0.8440 0.5560 0.8519 0.9001
0.2252 40.0 1000 0.2464 0.4543 0.7697 0.8343 nan 0.9198 0.6197 0.0 0.8384 0.5246 0.8427 0.8950
0.2313 40.8 1020 0.2404 0.4570 0.7653 0.8427 nan 0.9461 0.5845 0.0 0.8479 0.5233 0.8455 0.9002
0.2319 41.6 1040 0.2420 0.4620 0.7779 0.8406 nan 0.9238 0.6320 0.0 0.8467 0.5393 0.8492 0.8989
0.2368 42.4 1060 0.2381 0.4693 0.7890 0.8581 nan 0.9456 0.6325 0.0 0.8490 0.5589 0.8490 0.9004
0.2641 43.2 1080 0.2402 0.4624 0.7769 0.8472 nan 0.9402 0.6136 0.0 0.8458 0.5413 0.8454 0.8979
0.2444 44.0 1100 0.2420 0.4609 0.7886 0.8351 nan 0.8958 0.6813 0.0 0.8361 0.5466 0.8497 0.8960
0.263 44.8 1120 0.2461 0.4648 0.7866 0.8520 nan 0.9392 0.6340 0.0 0.8400 0.5543 0.8449 0.8953
0.229 45.6 1140 0.2551 0.4443 0.7475 0.8295 nan 0.9397 0.5554 0.0 0.8390 0.4938 0.8351 0.8938
0.2396 46.4 1160 0.2354 0.4733 0.8039 0.8515 nan 0.9146 0.6933 0.0 0.8427 0.5772 0.8555 0.8998
0.2252 47.2 1180 0.2297 0.4758 0.8018 0.8548 nan 0.9241 0.6795 0.0 0.8503 0.5771 0.8587 0.9041
0.2897 48.0 1200 0.2383 0.4639 0.7877 0.8423 nan 0.9147 0.6607 0.0 0.8398 0.5518 0.8505 0.8982
0.2215 48.8 1220 0.2449 0.4617 0.7989 0.8376 nan 0.8872 0.7105 0.0 0.8281 0.5569 0.8493 0.8944
0.2529 49.6 1240 0.2372 0.4707 0.7967 0.8505 nan 0.9229 0.6705 0.0 0.8429 0.5691 0.8539 0.8992
0.2418 50.4 1260 0.2323 0.4739 0.8026 0.8564 nan 0.9251 0.6802 0.0 0.8470 0.5746 0.8540 0.9007
0.2532 51.2 1280 0.2388 0.4590 0.7746 0.8395 nan 0.9252 0.6240 0.0 0.8427 0.5342 0.8462 0.8975
0.238 52.0 1300 0.2477 0.4572 0.7817 0.8296 nan 0.8931 0.6704 0.0 0.8335 0.5382 0.8470 0.8940
0.2484 52.8 1320 0.2397 0.4683 0.7921 0.8505 nan 0.9257 0.6586 0.0 0.8449 0.5601 0.8520 0.8995
0.2433 53.6 1340 0.2387 0.4692 0.7880 0.8544 nan 0.9432 0.6329 0.0 0.8478 0.5596 0.8507 0.8997
0.2378 54.4 1360 0.2480 0.4596 0.7841 0.8405 nan 0.9153 0.6530 0.0 0.8347 0.5442 0.8441 0.8931
0.2319 55.2 1380 0.2304 0.4685 0.7923 0.8461 nan 0.9173 0.6673 0.0 0.8440 0.5616 0.8545 0.9008
0.2339 56.0 1400 0.2347 0.4715 0.8022 0.8519 nan 0.9163 0.6881 0.0 0.8418 0.5726 0.8534 0.8991
0.2436 56.8 1420 0.2414 0.4611 0.7885 0.8436 nan 0.9157 0.6613 0.0 0.8329 0.5503 0.8458 0.8946
0.2571 57.6 1440 0.2436 0.4644 0.7854 0.8486 nan 0.9322 0.6387 0.0 0.8420 0.5514 0.8465 0.8965
0.2254 58.4 1460 0.2321 0.4727 0.7982 0.8537 nan 0.9251 0.6713 0.0 0.8488 0.5694 0.8554 0.9023
0.243 59.2 1480 0.2386 0.4688 0.7889 0.8530 nan 0.9380 0.6399 0.0 0.8470 0.5595 0.8495 0.8984
0.1834 60.0 1500 0.2361 0.4591 0.7818 0.8369 nan 0.9098 0.6538 0.0 0.8353 0.5419 0.8480 0.8964
0.2446 60.8 1520 0.2334 0.4666 0.7897 0.8443 nan 0.9156 0.6637 0.0 0.8458 0.5539 0.8537 0.9011
0.1942 61.6 1540 0.2330 0.4623 0.7825 0.8440 nan 0.9240 0.6409 0.0 0.8427 0.5442 0.8487 0.8987
0.2226 62.4 1560 0.2320 0.4683 0.7842 0.8570 nan 0.9521 0.6162 0.0 0.8493 0.5556 0.8492 0.9008
0.2527 63.2 1580 0.2423 0.4651 0.7853 0.8505 nan 0.9356 0.6350 0.0 0.8439 0.5513 0.8465 0.8973
0.2486 64.0 1600 0.2402 0.4628 0.7877 0.8479 nan 0.9265 0.6490 0.0 0.8369 0.5515 0.8453 0.8952
0.2855 64.8 1620 0.2313 0.4734 0.7985 0.8524 nan 0.9238 0.6732 0.0 0.8482 0.5721 0.8566 0.9020
0.2238 65.6 1640 0.2439 0.4538 0.7725 0.8346 nan 0.9134 0.6316 0.0 0.8372 0.5242 0.8421 0.8947
0.216 66.4 1660 0.2494 0.4483 0.7665 0.8265 nan 0.9051 0.6279 0.0 0.8284 0.5165 0.8394 0.8917
0.2399 67.2 1680 0.2389 0.4718 0.7949 0.8565 nan 0.9380 0.6518 0.0 0.8466 0.5687 0.8504 0.8990
0.2318 68.0 1700 0.2408 0.4565 0.7725 0.8351 nan 0.9188 0.6262 0.0 0.8404 0.5292 0.8452 0.8959
0.221 68.8 1720 0.2467 0.4538 0.7724 0.8301 nan 0.9076 0.6372 0.0 0.8325 0.5290 0.8427 0.8930
0.2251 69.6 1740 0.2325 0.4674 0.7894 0.8487 nan 0.9267 0.6522 0.0 0.8456 0.5566 0.8534 0.9015
0.228 70.4 1760 0.2369 0.4616 0.7808 0.8458 nan 0.9305 0.6312 0.0 0.8425 0.5422 0.8465 0.8975
0.2677 71.2 1780 0.2336 0.4602 0.7803 0.8377 nan 0.9140 0.6465 0.0 0.8408 0.5398 0.8489 0.8981
0.2552 72.0 1800 0.2351 0.4712 0.8046 0.8463 nan 0.9016 0.7076 0.0 0.8397 0.5739 0.8579 0.9007
0.2282 72.8 1820 0.2261 0.4772 0.8103 0.8537 nan 0.9111 0.7094 0.0 0.8456 0.5860 0.8601 0.9028
0.2132 73.6 1840 0.2329 0.4706 0.7991 0.8525 nan 0.9243 0.6739 0.0 0.8397 0.5719 0.8511 0.8970
0.2187 74.4 1860 0.2415 0.4589 0.7818 0.8392 nan 0.9151 0.6484 0.0 0.8349 0.5419 0.8456 0.8951
0.2647 75.2 1880 0.2318 0.4697 0.7947 0.8505 nan 0.9229 0.6665 0.0 0.8448 0.5643 0.8532 0.9004
0.2243 76.0 1900 0.2296 0.4729 0.8023 0.8531 nan 0.9196 0.6850 0.0 0.8447 0.5741 0.8557 0.9006
0.231 76.8 1920 0.2368 0.4682 0.7951 0.8493 nan 0.9199 0.6703 0.0 0.8419 0.5628 0.8526 0.8995
0.2156 77.6 1940 0.2368 0.4676 0.7992 0.8455 nan 0.9083 0.6901 0.0 0.8349 0.5678 0.8530 0.8974
0.2476 78.4 1960 0.2386 0.4545 0.7727 0.8341 nan 0.9153 0.6300 0.0 0.8350 0.5284 0.8430 0.8946
0.2317 79.2 1980 0.2338 0.4702 0.8045 0.8485 nan 0.9066 0.7025 0.0 0.8376 0.5731 0.8544 0.8986
0.2164 80.0 2000 0.2319 0.4724 0.8007 0.8498 nan 0.9154 0.6861 0.0 0.8443 0.5729 0.8557 0.9002
0.1998 80.8 2020 0.2271 0.4733 0.8054 0.8499 nan 0.9085 0.7022 0.0 0.8436 0.5762 0.8585 0.9020
0.2466 81.6 2040 0.2276 0.4795 0.8077 0.8587 nan 0.9263 0.6891 0.0 0.8521 0.5864 0.8603 0.9037
0.2358 82.4 2060 0.2326 0.4692 0.7899 0.8524 nan 0.9339 0.6459 0.0 0.8471 0.5604 0.8514 0.9001
0.2125 83.2 2080 0.2408 0.4610 0.7837 0.8405 nan 0.9160 0.6514 0.0 0.8370 0.5459 0.8477 0.8969
0.2593 84.0 2100 0.2293 0.4703 0.7979 0.8478 nan 0.9131 0.6826 0.0 0.8451 0.5659 0.8557 0.9016
0.2266 84.8 2120 0.2400 0.4603 0.7844 0.8369 nan 0.9053 0.6634 0.0 0.8367 0.5443 0.8491 0.8970
0.2231 85.6 2140 0.2332 0.4658 0.7915 0.8427 nan 0.9100 0.6730 0.0 0.8406 0.5567 0.8537 0.9000
0.2282 86.4 2160 0.2301 0.4669 0.7885 0.8474 nan 0.9255 0.6515 0.0 0.8438 0.5568 0.8515 0.8995
0.2496 87.2 2180 0.2344 0.4666 0.7905 0.8449 nan 0.9147 0.6663 0.0 0.8446 0.5551 0.8522 0.8996
0.2511 88.0 2200 0.2370 0.4660 0.7931 0.8437 nan 0.9111 0.6750 0.0 0.8404 0.5577 0.8520 0.8983
0.2392 88.8 2220 0.2297 0.4721 0.7964 0.8523 nan 0.9268 0.6660 0.0 0.8470 0.5694 0.8557 0.9020
0.2278 89.6 2240 0.2257 0.4724 0.7965 0.8528 nan 0.9253 0.6677 0.0 0.8497 0.5674 0.8553 0.9020
0.2523 90.4 2260 0.2312 0.4706 0.8017 0.8487 nan 0.9091 0.6942 0.0 0.8418 0.5700 0.8557 0.9003
0.2214 91.2 2280 0.2259 0.4745 0.7994 0.8541 nan 0.9253 0.6735 0.0 0.8499 0.5735 0.8569 0.9027
0.2594 92.0 2300 0.2215 0.4732 0.7987 0.8545 nan 0.9282 0.6693 0.0 0.8480 0.5714 0.8570 0.9029
0.235 92.8 2320 0.2336 0.4678 0.7924 0.8506 nan 0.9266 0.6582 0.0 0.8435 0.5600 0.8505 0.8986
0.2179 93.6 2340 0.2260 0.4745 0.8009 0.8536 nan 0.9231 0.6788 0.0 0.8484 0.5750 0.8581 0.9030
0.2195 94.4 2360 0.2176 0.4785 0.8020 0.8595 nan 0.9356 0.6683 0.0 0.8543 0.5813 0.8606 0.9062
0.2355 95.2 2380 0.2253 0.4782 0.8082 0.8571 nan 0.9209 0.6955 0.0 0.8493 0.5853 0.8602 0.9039
0.2549 96.0 2400 0.2486 0.4555 0.7784 0.8346 nan 0.9087 0.6482 0.0 0.8318 0.5348 0.8423 0.8923
0.2084 96.8 2420 0.2264 0.4720 0.7972 0.8540 nan 0.9286 0.6657 0.0 0.8475 0.5686 0.8564 0.9029
0.2325 97.6 2440 0.2403 0.4625 0.7851 0.8418 nan 0.9172 0.6530 0.0 0.8400 0.5474 0.8477 0.8957
0.2425 98.4 2460 0.2361 0.4695 0.7969 0.8489 nan 0.9175 0.6763 0.0 0.8423 0.5662 0.8526 0.8987
0.2366 99.2 2480 0.2291 0.4736 0.7995 0.8527 nan 0.9217 0.6774 0.0 0.8483 0.5726 0.8558 0.9016
0.2256 100.0 2500 0.2220 0.4787 0.8026 0.8579 nan 0.9308 0.6744 0.0 0.8552 0.5811 0.8605 0.9054

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
3.72M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for greenkwd/lr0.0001_bs16_0509_1514

Base model

nvidia/mit-b0
Finetuned
(454)
this model