lr5e-05_bs16_0509_1701

This model is a fine-tuned version of nvidia/mit-b0 on the greenkwd/upwellingdetection_SST dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2247
  • Mean Iou: 0.4779
  • Mean Accuracy: 0.8016
  • Overall Accuracy: 0.8593
  • Accuracy Land: nan
  • Accuracy Upwelling: 0.9306
  • Accuracy Not Upwelling: 0.6727
  • Iou Land: 0.0
  • Iou Upwelling: 0.8576
  • Iou Not Upwelling: 0.5761
  • Dice Macro: 0.8589
  • Dice Micro: 0.9055

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Land Accuracy Upwelling Accuracy Not Upwelling Iou Land Iou Upwelling Iou Not Upwelling Dice Macro Dice Micro
1.1187 0.8 20 1.1005 0.1569 0.4351 0.3122 nan 0.1597 0.7104 0.0 0.1507 0.3199 0.4029 0.4345
0.9878 1.6 40 1.0030 0.2851 0.6584 0.5931 nan 0.5106 0.8061 0.0 0.4830 0.3723 0.6490 0.6790
0.8057 2.4 60 0.7942 0.3603 0.7501 0.7138 nan 0.6698 0.8303 0.0 0.6371 0.4437 0.7415 0.7798
0.6353 3.2 80 0.5933 0.4045 0.7321 0.7904 nan 0.8641 0.6002 0.0 0.7669 0.4465 0.7828 0.8433
0.5465 4.0 100 0.4706 0.4092 0.7118 0.8090 nan 0.9289 0.4946 0.0 0.8069 0.4207 0.7918 0.8672
0.4525 4.8 120 0.4175 0.4265 0.7415 0.8151 nan 0.9048 0.5782 0.0 0.8110 0.4685 0.8062 0.8696
0.4248 5.6 140 0.3652 0.4370 0.7546 0.8247 nan 0.9115 0.5978 0.0 0.8200 0.4908 0.8175 0.8769
0.3756 6.4 160 0.3417 0.4512 0.7735 0.8372 nan 0.9152 0.6317 0.0 0.8320 0.5216 0.8305 0.8859
0.375 7.2 180 0.3401 0.4514 0.7772 0.8313 nan 0.8993 0.6551 0.0 0.8273 0.5268 0.8318 0.8834
0.327 8.0 200 0.3223 0.4467 0.7630 0.8310 nan 0.9158 0.6102 0.0 0.8318 0.5084 0.8303 0.8869
0.3417 8.8 220 0.3140 0.4526 0.7669 0.8369 nan 0.9241 0.6098 0.0 0.8406 0.5173 0.8376 0.8925
0.315 9.6 240 0.3118 0.4501 0.7662 0.8352 nan 0.9192 0.6131 0.0 0.8381 0.5121 0.8341 0.8906
0.3303 10.4 260 0.3035 0.4664 0.7992 0.8509 nan 0.9136 0.6848 0.0 0.8391 0.5602 0.8408 0.8902
0.3201 11.2 280 0.3016 0.4492 0.7595 0.8368 nan 0.9333 0.5858 0.0 0.8402 0.5074 0.8339 0.8918
0.3107 12.0 300 0.3018 0.4397 0.7439 0.8170 nan 0.9071 0.5807 0.0 0.8376 0.4814 0.8299 0.8892
0.3042 12.8 320 0.2965 0.4601 0.8012 0.8349 nan 0.8777 0.7247 0.0 0.8227 0.5576 0.8437 0.8881
0.3126 13.6 340 0.2858 0.4494 0.7647 0.8254 nan 0.9001 0.6293 0.0 0.8384 0.5099 0.8393 0.8936
0.3021 14.4 360 0.2797 0.4566 0.7728 0.8369 nan 0.9160 0.6296 0.0 0.8445 0.5253 0.8430 0.8960
0.2897 15.2 380 0.2830 0.4481 0.7575 0.8300 nan 0.9215 0.5935 0.0 0.8393 0.5049 0.8359 0.8924
0.3312 16.0 400 0.2742 0.4590 0.7791 0.8420 nan 0.9194 0.6387 0.0 0.8426 0.5343 0.8433 0.8960
0.2575 16.8 420 0.2835 0.4472 0.7644 0.8223 nan 0.8947 0.6340 0.0 0.8344 0.5072 0.8370 0.8895
0.2851 17.6 440 0.2684 0.4634 0.7884 0.8421 nan 0.9078 0.6689 0.0 0.8441 0.5460 0.8479 0.8968
0.2996 18.4 460 0.2802 0.4467 0.7631 0.8199 nan 0.8893 0.6369 0.0 0.8343 0.5057 0.8366 0.8901
0.3527 19.2 480 0.2615 0.4557 0.7652 0.8475 nan 0.9472 0.5833 0.0 0.8484 0.5186 0.8401 0.8985
0.2549 20.0 500 0.2846 0.4686 0.8241 0.8413 nan 0.8622 0.7861 0.0 0.8235 0.5823 0.8507 0.8915
0.2657 20.8 520 0.2594 0.4513 0.7557 0.8460 nan 0.9560 0.5553 0.0 0.8493 0.5044 0.8368 0.8983
0.2576 21.6 540 0.2623 0.4761 0.8106 0.8587 nan 0.9189 0.7023 0.0 0.8446 0.5838 0.8511 0.8963
0.2866 22.4 560 0.2647 0.4505 0.7624 0.8289 nan 0.9091 0.6157 0.0 0.8444 0.5073 0.8398 0.8950
0.2638 23.2 580 0.2590 0.4619 0.7791 0.8464 nan 0.9306 0.6276 0.0 0.8461 0.5395 0.8442 0.8966
0.2602 24.0 600 0.2584 0.4750 0.8019 0.8601 nan 0.9314 0.6724 0.0 0.8506 0.5744 0.8490 0.8975
0.2775 24.8 620 0.2589 0.4663 0.8020 0.8399 nan 0.8863 0.7177 0.0 0.8381 0.5607 0.8523 0.8972
0.256 25.6 640 0.2511 0.4592 0.7730 0.8385 nan 0.9203 0.6256 0.0 0.8489 0.5287 0.8477 0.8994
0.2645 26.4 660 0.2587 0.4572 0.7677 0.8542 nan 0.9599 0.5756 0.0 0.8474 0.5241 0.8358 0.8951
0.2838 27.2 680 0.2488 0.4599 0.7738 0.8467 nan 0.9356 0.6120 0.0 0.8498 0.5300 0.8440 0.8991
0.2507 28.0 700 0.2493 0.4673 0.7938 0.8439 nan 0.9071 0.6806 0.0 0.8452 0.5566 0.8527 0.8993
0.2496 28.8 720 0.2604 0.4832 0.8234 0.8662 nan 0.9178 0.7289 0.0 0.8484 0.6014 0.8533 0.8969
0.2578 29.6 740 0.2395 0.4724 0.7942 0.8551 nan 0.9286 0.6599 0.0 0.8557 0.5615 0.8550 0.9041
0.2593 30.4 760 0.2436 0.4675 0.7819 0.8574 nan 0.9509 0.6129 0.0 0.8538 0.5486 0.8496 0.9029
0.3011 31.2 780 0.2583 0.4765 0.8021 0.8647 nan 0.9428 0.6614 0.0 0.8495 0.5800 0.8461 0.8953
0.2386 32.0 800 0.2348 0.4747 0.7964 0.8575 nan 0.9325 0.6602 0.0 0.8570 0.5670 0.8562 0.9046
0.2213 32.8 820 0.2473 0.4714 0.7955 0.8530 nan 0.9243 0.6668 0.0 0.8486 0.5657 0.8510 0.8993
0.2443 33.6 840 0.2470 0.4675 0.7873 0.8553 nan 0.9385 0.6362 0.0 0.8499 0.5527 0.8471 0.8991
0.2499 34.4 860 0.2407 0.4792 0.8101 0.8568 nan 0.9155 0.7047 0.0 0.8526 0.5850 0.8591 0.9031
0.2641 35.2 880 0.2390 0.4800 0.8067 0.8639 nan 0.9345 0.6789 0.0 0.8563 0.5837 0.8555 0.9022
0.2627 36.0 900 0.2356 0.4801 0.8146 0.8577 nan 0.9107 0.7185 0.0 0.8521 0.5881 0.8605 0.9037
0.269 36.8 920 0.2437 0.4714 0.7950 0.8561 nan 0.9313 0.6587 0.0 0.8504 0.5639 0.8498 0.8993
0.3014 37.6 940 0.2415 0.4648 0.7926 0.8422 nan 0.9029 0.6823 0.0 0.8433 0.5512 0.8511 0.8993
0.2557 38.4 960 0.2463 0.4671 0.7922 0.8473 nan 0.9154 0.6691 0.0 0.8462 0.5552 0.8493 0.8974
0.2927 39.2 980 0.2401 0.4736 0.8034 0.8524 nan 0.9139 0.6930 0.0 0.8470 0.5738 0.8553 0.9009
0.2371 40.0 1000 0.2486 0.4547 0.7724 0.8324 nan 0.9048 0.6400 0.0 0.8427 0.5214 0.8433 0.8959
0.2279 40.8 1020 0.2371 0.4733 0.7908 0.8587 nan 0.9447 0.6369 0.0 0.8559 0.5640 0.8537 0.9036
0.2328 41.6 1040 0.2365 0.4740 0.7968 0.8551 nan 0.9282 0.6653 0.0 0.8543 0.5677 0.8552 0.9023
0.2371 42.4 1060 0.2383 0.4732 0.7916 0.8653 nan 0.9518 0.6314 0.0 0.8575 0.5620 0.8486 0.9018
0.2423 43.2 1080 0.2411 0.4636 0.7765 0.8505 nan 0.9426 0.6104 0.0 0.8519 0.5388 0.8456 0.8999
0.2685 44.0 1100 0.2312 0.4755 0.7989 0.8539 nan 0.9221 0.6757 0.0 0.8572 0.5692 0.8584 0.9046
0.2897 44.8 1120 0.2547 0.4628 0.7860 0.8537 nan 0.9375 0.6344 0.0 0.8400 0.5485 0.8404 0.8931
0.24 45.6 1140 0.2457 0.4531 0.7601 0.8346 nan 0.9267 0.5936 0.0 0.8495 0.5096 0.8420 0.8978
0.2539 46.4 1160 0.2325 0.4737 0.7896 0.8618 nan 0.9518 0.6273 0.0 0.8583 0.5627 0.8527 0.9040
0.2477 47.2 1180 0.2308 0.4712 0.7954 0.8474 nan 0.9117 0.6792 0.0 0.8521 0.5616 0.8571 0.9041
0.2915 48.0 1200 0.2351 0.4747 0.7985 0.8593 nan 0.9341 0.6630 0.0 0.8539 0.5702 0.8543 0.9027
0.2313 48.8 1220 0.2352 0.4756 0.8097 0.8555 nan 0.9099 0.7095 0.0 0.8495 0.5773 0.8570 0.9025
0.2479 49.6 1240 0.2328 0.4770 0.8081 0.8547 nan 0.9123 0.7039 0.0 0.8520 0.5789 0.8591 0.9032
0.2587 50.4 1260 0.2250 0.4801 0.8071 0.8605 nan 0.9247 0.6894 0.0 0.8597 0.5805 0.8607 0.9069
0.259 51.2 1280 0.2409 0.4674 0.7848 0.8571 nan 0.9457 0.6239 0.0 0.8509 0.5513 0.8458 0.8985
0.248 52.0 1300 0.2370 0.4738 0.7958 0.8596 nan 0.9384 0.6531 0.0 0.8541 0.5672 0.8524 0.9014
0.2612 52.8 1320 0.2362 0.4693 0.7912 0.8521 nan 0.9264 0.6560 0.0 0.8516 0.5563 0.8528 0.9019
0.2421 53.6 1340 0.2412 0.4714 0.7866 0.8627 nan 0.9584 0.6148 0.0 0.8555 0.5588 0.8483 0.9006
0.2371 54.4 1360 0.2444 0.4721 0.7939 0.8586 nan 0.9391 0.6488 0.0 0.8515 0.5647 0.8486 0.8983
0.2412 55.2 1380 0.2286 0.4753 0.7944 0.8601 nan 0.9404 0.6484 0.0 0.8594 0.5663 0.8568 0.9059
0.235 56.0 1400 0.2268 0.4764 0.7970 0.8617 nan 0.9411 0.6529 0.0 0.8580 0.5713 0.8560 0.9052
0.2265 56.8 1420 0.2310 0.4824 0.8132 0.8651 nan 0.9283 0.6981 0.0 0.8550 0.5921 0.8576 0.9029
0.2233 57.6 1440 0.2382 0.4784 0.8090 0.8604 nan 0.9237 0.6943 0.0 0.8514 0.5839 0.8539 0.8999
0.2657 58.4 1460 0.2290 0.4716 0.7926 0.8547 nan 0.9307 0.6545 0.0 0.8556 0.5590 0.8549 0.9044
0.2576 59.2 1480 0.2355 0.4749 0.7987 0.8588 nan 0.9334 0.6639 0.0 0.8535 0.5711 0.8531 0.9011
0.1939 60.0 1500 0.2213 0.4825 0.8091 0.8612 nan 0.9255 0.6927 0.0 0.8599 0.5876 0.8632 0.9074
0.2252 60.8 1520 0.2244 0.4751 0.7978 0.8571 nan 0.9292 0.6665 0.0 0.8584 0.5670 0.8577 0.9056
0.2052 61.6 1540 0.2268 0.4775 0.8007 0.8607 nan 0.9348 0.6667 0.0 0.8570 0.5754 0.8571 0.9045
0.2403 62.4 1560 0.2270 0.4750 0.7935 0.8618 nan 0.9449 0.6422 0.0 0.8588 0.5661 0.8554 0.9054
0.2355 63.2 1580 0.2410 0.4658 0.7834 0.8570 nan 0.9449 0.6218 0.0 0.8509 0.5466 0.8442 0.8984
0.2487 64.0 1600 0.2336 0.4755 0.7991 0.8636 nan 0.9419 0.6564 0.0 0.8546 0.5720 0.8515 0.9011
0.2557 64.8 1620 0.2303 0.4782 0.8103 0.8564 nan 0.9137 0.7069 0.0 0.8517 0.5828 0.8585 0.9025
0.2468 65.6 1640 0.2333 0.4685 0.7892 0.8464 nan 0.9171 0.6613 0.0 0.8522 0.5532 0.8532 0.9018
0.2203 66.4 1660 0.2348 0.4643 0.7805 0.8478 nan 0.9297 0.6313 0.0 0.8515 0.5415 0.8489 0.9009
0.2529 67.2 1680 0.2332 0.4724 0.7948 0.8574 nan 0.9349 0.6546 0.0 0.8520 0.5651 0.8517 0.9014
0.219 68.0 1700 0.2318 0.4757 0.8077 0.8510 nan 0.9048 0.7107 0.0 0.8505 0.5767 0.8589 0.9022
0.2225 68.8 1720 0.2376 0.4661 0.7898 0.8427 nan 0.9092 0.6704 0.0 0.8456 0.5526 0.8516 0.8993
0.2713 69.6 1740 0.2239 0.4777 0.8036 0.8581 nan 0.9252 0.6821 0.0 0.8566 0.5767 0.8601 0.9062
0.2666 70.4 1760 0.2375 0.4736 0.8021 0.8563 nan 0.9232 0.6811 0.0 0.8488 0.5720 0.8530 0.8999
0.2714 71.2 1780 0.2268 0.4685 0.7870 0.8521 nan 0.9303 0.6437 0.0 0.8556 0.5500 0.8525 0.9035
0.2815 72.0 1800 0.2224 0.4791 0.8051 0.8585 nan 0.9237 0.6865 0.0 0.8583 0.5789 0.8619 0.9071
0.2372 72.8 1820 0.2198 0.4831 0.8079 0.8643 nan 0.9349 0.6809 0.0 0.8611 0.5882 0.8625 0.9078
0.2311 73.6 1840 0.2298 0.4764 0.8007 0.8621 nan 0.9381 0.6633 0.0 0.8543 0.5749 0.8541 0.9021
0.2248 74.4 1860 0.2323 0.4695 0.7907 0.8509 nan 0.9262 0.6552 0.0 0.8511 0.5573 0.8524 0.9015
0.2777 75.2 1880 0.2294 0.4802 0.8098 0.8602 nan 0.9219 0.6977 0.0 0.8547 0.5858 0.8592 0.9042
0.2348 76.0 1900 0.2215 0.4855 0.8109 0.8676 nan 0.9386 0.6831 0.0 0.8623 0.5943 0.8629 0.9074
0.2268 76.8 1920 0.2273 0.4766 0.7990 0.8608 nan 0.9363 0.6617 0.0 0.8568 0.5729 0.8564 0.9047
0.2597 77.6 1940 0.2252 0.4794 0.8061 0.8603 nan 0.9272 0.6849 0.0 0.8576 0.5807 0.8602 0.9058
0.2644 78.4 1960 0.2301 0.4693 0.7892 0.8499 nan 0.9250 0.6535 0.0 0.8532 0.5548 0.8528 0.9023
0.2315 79.2 1980 0.2223 0.4849 0.8125 0.8676 nan 0.9358 0.6892 0.0 0.8607 0.5938 0.8612 0.9065
0.2225 80.0 2000 0.2264 0.4782 0.8027 0.8585 nan 0.9276 0.6779 0.0 0.8582 0.5763 0.8588 0.9050
0.2068 80.8 2020 0.2193 0.4829 0.8072 0.8627 nan 0.9320 0.6824 0.0 0.8622 0.5864 0.8642 0.9091
0.2449 81.6 2040 0.2242 0.4811 0.8083 0.8607 nan 0.9266 0.6900 0.0 0.8583 0.5851 0.8617 0.9060
0.2462 82.4 2060 0.2319 0.4745 0.7985 0.8611 nan 0.9365 0.6605 0.0 0.8537 0.5697 0.8522 0.9014
0.228 83.2 2080 0.2276 0.4756 0.7974 0.8593 nan 0.9363 0.6584 0.0 0.8556 0.5711 0.8545 0.9034
0.2686 84.0 2100 0.2202 0.4774 0.8017 0.8597 nan 0.9299 0.6734 0.0 0.8584 0.5738 0.8589 0.9065
0.2389 84.8 2120 0.2292 0.4674 0.7870 0.8471 nan 0.9198 0.6543 0.0 0.8533 0.5488 0.8530 0.9026
0.2377 85.6 2140 0.2194 0.4804 0.8022 0.8608 nan 0.9347 0.6698 0.0 0.8612 0.5799 0.8621 0.9078
0.226 86.4 2160 0.2254 0.4768 0.8013 0.8579 nan 0.9272 0.6753 0.0 0.8565 0.5739 0.8578 0.9047
0.2504 87.2 2180 0.2328 0.4671 0.7855 0.8496 nan 0.9279 0.6430 0.0 0.8524 0.5489 0.8511 0.9017
0.2687 88.0 2200 0.2265 0.4783 0.8054 0.8591 nan 0.9251 0.6857 0.0 0.8568 0.5780 0.8585 0.9044
0.2483 88.8 2220 0.2253 0.4773 0.7991 0.8598 nan 0.9358 0.6625 0.0 0.8570 0.5749 0.8583 0.9055
0.2322 89.6 2240 0.2232 0.4764 0.8001 0.8583 nan 0.9280 0.6722 0.0 0.8593 0.5699 0.8579 0.9054
0.2253 90.4 2260 0.2225 0.4802 0.8073 0.8618 nan 0.9282 0.6863 0.0 0.8577 0.5829 0.8601 0.9058
0.2344 91.2 2280 0.2240 0.4777 0.8025 0.8594 nan 0.9286 0.6764 0.0 0.8573 0.5758 0.8583 0.9052
0.2241 92.0 2300 0.2175 0.4823 0.8070 0.8649 nan 0.9356 0.6784 0.0 0.8620 0.5848 0.8624 0.9083
0.2408 92.8 2320 0.2278 0.4729 0.7934 0.8584 nan 0.9382 0.6485 0.0 0.8559 0.5628 0.8535 0.9033
0.2196 93.6 2340 0.2193 0.4815 0.8076 0.8622 nan 0.9294 0.6858 0.0 0.8596 0.5850 0.8621 0.9072
0.2362 94.4 2360 0.2169 0.4802 0.8021 0.8641 nan 0.9414 0.6628 0.0 0.8608 0.5798 0.8604 0.9079
0.2374 95.2 2380 0.2235 0.4780 0.8049 0.8598 nan 0.9272 0.6826 0.0 0.8560 0.5780 0.8593 0.9055
0.2591 96.0 2400 0.2369 0.4689 0.7909 0.8494 nan 0.9218 0.6600 0.0 0.8506 0.5561 0.8512 0.9000
0.2254 96.8 2420 0.2148 0.4846 0.8101 0.8672 nan 0.9365 0.6837 0.0 0.8635 0.5902 0.8643 0.9096
0.2433 97.6 2440 0.2322 0.4689 0.7879 0.8517 nan 0.9294 0.6464 0.0 0.8553 0.5515 0.8508 0.9009
0.2353 98.4 2460 0.2309 0.4721 0.7939 0.8557 nan 0.9312 0.6566 0.0 0.8531 0.5631 0.8528 0.9020
0.2301 99.2 2480 0.2252 0.4774 0.8014 0.8584 nan 0.9287 0.6740 0.0 0.8571 0.5751 0.8574 0.9044
0.2322 100.0 2500 0.2247 0.4779 0.8016 0.8593 nan 0.9306 0.6727 0.0 0.8576 0.5761 0.8589 0.9055

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
3.72M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for greenkwd/lr5e-05_bs16_0509_1701

Base model

nvidia/mit-b0
Finetuned
(454)
this model