SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'corrosion related to nuclear components',
'In the proposed alternative by the Owner (Duke Energy), corrosion or erosion that has reduced the component wall thickness to less than 145% of the minimum design wall thickness will be considered a relevant condition that will require evaluation or corrective measures to the extent necessary to meet the acceptance standards of IWE-3500 prior to continued service.',
'This alternative is requested for the duration of the Brunswick Steam Electric Plant, Units 1 & 2, Third Ten-Year Containment Inservice Inspection Interval, which is currently scheduled to end no later than May 10, 2028.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
validation
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8797 |
Triplet
- Dataset:
validation
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9557 |
Triplet
- Dataset:
validation
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9589 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,525 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 4 tokens
- mean: 15.01 tokens
- max: 44 tokens
- min: 6 tokens
- mean: 45.67 tokens
- max: 512 tokens
- min: 4 tokens
- mean: 33.2 tokens
- max: 228 tokens
- Samples:
sentence_0 sentence_1 sentence_2 What is the significance of groundwater monitoring wells in nuclear safety assessments?
Locations of monitoring wells B-22 and B-36 that showed groundwater โmoundingโ supported by maps of the stormwater drainage system near the wells (Related to Need GW-5)
To the extent that these components of the intake and discharge systems are accessible/viewable: - Submerged multi-port intake and intake tunnel, including depiction of location of intake - Traveling screens - Service water pumphouse - Emergency service water forebay - Cooling towers and cooling tower basin - Discharge tunnel and discharge outfall
An analysis of the stresses experienced by reactor vessel studs is crucial for evaluating operational safety.
Table 2. Calculation of Primary Stresses in Reactor Vessel Studs, Two Studs Out of Service provides detailed calculations of primary stresses for each stud in the reactor vessel.
Regulatory filings often require extensive documentation to demonstrate compliance with safety protocols.
An assessment was carried out to determine the potential for liquefaction at the EGC ESP Site.
An evaluation of liquefaction potential was conducted at the EGC ESP Site.
The static groundwater table within the Illinois till is approximately 30 ft below the ground surface, but that there are shallower perched groundwater layers closer to the surface.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 24per_device_eval_batch_size
: 24num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 24per_device_eval_batch_size
: 24per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | validation_cosine_accuracy |
---|---|---|---|
2.5253 | 500 | 4.2171 | - |
0.6329 | 100 | - | 0.9177 |
1.0 | 158 | - | 0.8592 |
1.2658 | 200 | - | 0.8972 |
1.8987 | 300 | - | 0.875 |
2.0 | 316 | - | 0.8940 |
2.5316 | 400 | - | 0.8734 |
3.0 | 474 | - | 0.8956 |
3.1646 | 500 | 3.985 | 0.8813 |
3.7975 | 600 | - | 0.8703 |
4.0 | 632 | - | 0.9003 |
4.4304 | 700 | - | 0.8797 |
5.0 | 790 | - | 0.8797 |
0.6329 | 100 | - | 0.8228 |
1.0 | 158 | - | 0.9383 |
1.2658 | 200 | - | 0.9541 |
1.8987 | 300 | - | 0.9573 |
2.0 | 316 | - | 0.9589 |
2.5316 | 400 | - | 0.9541 |
3.0 | 474 | - | 0.9525 |
3.1646 | 500 | 2.0222 | 0.9525 |
3.7975 | 600 | - | 0.9541 |
4.0 | 632 | - | 0.9557 |
4.4304 | 700 | - | 0.9573 |
5.0 | 790 | - | 0.9557 |
0.9434 | 100 | - | 0.9509 |
1.0 | 106 | - | 0.9525 |
1.8868 | 200 | - | 0.9541 |
2.0 | 212 | - | 0.9573 |
2.8302 | 300 | - | 0.9557 |
3.0 | 318 | - | 0.9589 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 4.0.2
- Transformers: 4.51.3
- PyTorch: 2.2.2
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- -
Model tree for gridwayai/bge-nuclear-finetuned-5
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy on validationself-reported0.880
- Cosine Accuracy on validationself-reported0.956
- Cosine Accuracy on validationself-reported0.959