File size: 21,111 Bytes
58c1d9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3157
- loss:TripletLoss
- dataset_size:2525
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: What is the role of the Public Information Officer during a radiological
emergency?
sentences:
- The Public Information Officer (PIO), assigned duties at the Emergency Operations
Center (EOC), and the Parish Spokesperson will be responsible for implementation
of this procedure.
- Be prepared to report to the Parish EOC if requested by the Director of the Office
of Homeland Security and Emergency Preparedness.
- HRI may proceed with its planned mining-related activities in these areas to the
extent authorized by its NRC Materials License SUA-1508.
- source_sentence: The NRC also regulates the licensing and reporting obligations
for materials that are byproducts in the medical field.
sentences:
- Parts 30, 31, 32 and 150
- 'Exemptions From Licensing, General Licenses, and Distribution of Byproduct Material:
Licensing and Reporting Requirements'
- Containment vessel (CNV) pressure/temperature response analysis method, similar
to method used in DCA technical report, responds to LOCA pipe break, secondary
line breaks, IORV events, or inadvertent ECCS actuation.
- source_sentence: What is the aging management program for concrete in nuclear facilities?
sentences:
- Further evaluation is required to determine if a plant-specific aging management
program is needed.
- The DCPP Structures Monitoring AMP (B.2.3.33) is credited with managing cracking
due to reaction with aggregates (such as ASR), for DCPP group 1, 3, 4, 5, and
7 structures, including inaccessible areas.
- The Survey Units listed in Figure 4 measure various acreage sizes, detailing the
land area covered by each unit within the Non-Industrialized section of the site.
- source_sentence: What is the purpose of an emergency core cooling system in nuclear
reactors?
sentences:
- The Commission issued Staff Requirements Memorandum (SRM) SECY-10-0113 directing
the staff to consider alternative options for resolving GSI-191 (Reference 5).
- preclude the formulation or implementation of reasonable and prudent alternatives
to avoid jeopardizing the continued existence of endangered or threatened species
or destroying or modifying critical habitat [Section 7(d)].
- ECCS must be designed so that calculated cooling performance following postulated
loss-of-coolant accidents conforms to the criteria set forth in paragraph (b)
of this section.
- source_sentence: corrosion related to nuclear components
sentences:
- This alternative is requested for the duration of the Brunswick Steam Electric
Plant, Units 1 & 2, Third Ten-Year Containment Inservice Inspection Interval,
which is currently scheduled to end no later than May 10, 2028.
- '*Note: Initiation of Reactor Enclosure isolation starts Reactor Enclosure Recirculation
System (RERS) and SGTS. Ref: UFSAR 6.2.3.2.3*'
- In the proposed alternative by the Owner (Duke Energy), corrosion or erosion that
has reduced the component wall thickness to less than 145% of the minimum design
wall thickness will be considered a relevant condition that will require evaluation
or corrective measures to the extent necessary to meet the acceptance standards
of IWE-3500 prior to continued service.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: triplet
name: Triplet
dataset:
name: validation
type: validation
metrics:
- type: cosine_accuracy
value: 0.8797468543052673
name: Cosine Accuracy
- type: cosine_accuracy
value: 0.9556962251663208
name: Cosine Accuracy
- type: cosine_accuracy
value: 0.9588607549667358
name: Cosine Accuracy
---
# SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'corrosion related to nuclear components',
'In the proposed alternative by the Owner (Duke Energy), corrosion or erosion that has reduced the component wall thickness to less than 145% of the minimum design wall thickness will be considered a relevant condition that will require evaluation or corrective measures to the extent necessary to meet the acceptance standards of IWE-3500 prior to continued service.',
'This alternative is requested for the duration of the Brunswick Steam Electric Plant, Units 1 & 2, Third Ten-Year Containment Inservice Inspection Interval, which is currently scheduled to end no later than May 10, 2028.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Dataset: `validation`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.8797** |
#### Triplet
* Dataset: `validation`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9557** |
#### Triplet
* Dataset: `validation`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9589** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 2,525 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | sentence_2 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 15.01 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 45.67 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 33.2 tokens</li><li>max: 228 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 | sentence_2 |
|:---------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What is the significance of groundwater monitoring wells in nuclear safety assessments?</code> | <code>Locations of monitoring wells B-22 and B-36 that showed groundwater “mounding” supported by maps of the stormwater drainage system near the wells (Related to Need GW-5)</code> | <code>To the extent that these components of the intake and discharge systems are accessible/viewable: - Submerged multi-port intake and intake tunnel, including depiction of location of intake - Traveling screens - Service water pumphouse - Emergency service water forebay - Cooling towers and cooling tower basin - Discharge tunnel and discharge outfall</code> |
| <code>An analysis of the stresses experienced by reactor vessel studs is crucial for evaluating operational safety.</code> | <code>Table 2. Calculation of Primary Stresses in Reactor Vessel Studs, Two Studs Out of Service provides detailed calculations of primary stresses for each stud in the reactor vessel.</code> | <code>Regulatory filings often require extensive documentation to demonstrate compliance with safety protocols.</code> |
| <code>An assessment was carried out to determine the potential for liquefaction at the EGC ESP Site.</code> | <code>An evaluation of liquefaction potential was conducted at the EGC ESP Site.</code> | <code>The static groundwater table within the Illinois till is approximately 30 ft below the ground surface, but that there are shallower perched groundwater layers closer to the surface.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 24
- `per_device_eval_batch_size`: 24
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 24
- `per_device_eval_batch_size`: 24
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | validation_cosine_accuracy |
|:------:|:----:|:-------------:|:--------------------------:|
| 2.5253 | 500 | 4.2171 | - |
| 0.6329 | 100 | - | 0.9177 |
| 1.0 | 158 | - | 0.8592 |
| 1.2658 | 200 | - | 0.8972 |
| 1.8987 | 300 | - | 0.875 |
| 2.0 | 316 | - | 0.8940 |
| 2.5316 | 400 | - | 0.8734 |
| 3.0 | 474 | - | 0.8956 |
| 3.1646 | 500 | 3.985 | 0.8813 |
| 3.7975 | 600 | - | 0.8703 |
| 4.0 | 632 | - | 0.9003 |
| 4.4304 | 700 | - | 0.8797 |
| 5.0 | 790 | - | 0.8797 |
| 0.6329 | 100 | - | 0.8228 |
| 1.0 | 158 | - | 0.9383 |
| 1.2658 | 200 | - | 0.9541 |
| 1.8987 | 300 | - | 0.9573 |
| 2.0 | 316 | - | 0.9589 |
| 2.5316 | 400 | - | 0.9541 |
| 3.0 | 474 | - | 0.9525 |
| 3.1646 | 500 | 2.0222 | 0.9525 |
| 3.7975 | 600 | - | 0.9541 |
| 4.0 | 632 | - | 0.9557 |
| 4.4304 | 700 | - | 0.9573 |
| 5.0 | 790 | - | 0.9557 |
| 0.9434 | 100 | - | 0.9509 |
| 1.0 | 106 | - | 0.9525 |
| 1.8868 | 200 | - | 0.9541 |
| 2.0 | 212 | - | 0.9573 |
| 2.8302 | 300 | - | 0.9557 |
| 3.0 | 318 | - | 0.9589 |
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 4.0.2
- Transformers: 4.51.3
- PyTorch: 2.2.2
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |