license: mit ---# CHG Algorithm Package
CHG (Covariance-based Hilbert Geometry) Algorithm is a sophisticated implementation of Gaussian Process regression with enhanced multi-head attention mechanisms for improved covariance computation and uncertainty quantification.
Features
- Multi-head Attention: Advanced attention mechanism for better feature representation
- Enhanced Covariance: Sophisticated covariance computation using neural network components
- Uncertainty Quantification: Built-in uncertainty estimation for predictions
- Optimization Support: Gradient-based parameter optimization
- Robust Implementation: Handles numerical instabilities gracefully
Installation
From Source
git clone <repository-url>
cd chg_package
pip install -e .
Development Installation
pip install -e ".[dev]"
Quick Start
Basic Usage
from chg_algorithm import CHG
import numpy as np
# Initialize model
model = CHG(input_dim=3, hidden_dim=24, num_heads=4)
# Generate sample data
X_train = np.random.randn(100, 3)
y_train = np.sum(X_train**2, axis=1) + 0.1 * np.random.randn(100)
X_test = np.random.randn(20, 3)
# Make predictions
pred_mean, pred_var = model.fit_predict(X_train, y_train, X_test)
print(f"Predictions: {pred_mean}")
print(f"Uncertainties: {np.sqrt(pred_var)}")
Running Demo
from chg_algorithm import run_chg_experiment
# Run complete demonstration
model, predictions, variances = run_chg_experiment()
Using Optimizer
from chg_algorithm import CHG, CHGOptimizer
# Initialize model and optimizer
model = CHG(input_dim=3, hidden_dim=24, num_heads=4)
optimizer = CHGOptimizer(model, learning_rate=0.001)
# Optimize model parameters
for epoch in range(10):
optimizer.step(X_train, y_train)
lml = model.log_marginal_likelihood(X_train, y_train)
print(f"Epoch {epoch}: Log Marginal Likelihood = {lml:.4f}")
API Reference
CHG Class
Main model class implementing the CHG algorithm.
Parameters:
input_dim(int): Dimensionality of input featureshidden_dim(int): Hidden dimension for feature transformationnum_heads(int): Number of attention heads
Key Methods:
fit_predict(X_train, y_train, X_test, noise_var=1e-6): Fit model and predictlog_marginal_likelihood(X, y, noise_var=1e-6): Compute log marginal likelihoodget_covariance_matrix(X): Get covariance matrix for inputs
CHGOptimizer Class
Optimizer for CHG model parameters.
Parameters:
model(CHG): CHG model instance to optimizelearning_rate(float): Learning rate for parameter updates
Key Methods:
step(X, y, noise_var=1e-6): Perform one optimization stepcompute_gradients(X, y, noise_var=1e-6): Compute parameter gradients
Algorithm Details
The CHG algorithm combines several advanced techniques:
- Multi-head Attention: Uses multiple attention heads to capture different aspects of feature relationships
- Enhanced Covariance: Computes covariance using feedforward networks and layer normalization
- Gaussian Process Framework: Built on solid GP foundations for uncertainty quantification
- Numerical Stability: Includes fallback methods for numerical edge cases
Requirements
- Python >= 3.7
- NumPy >= 1.19.0
- typing-extensions >= 3.7.4
License
This project is licensed under the MIT License - see the LICENSE file for details.
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add some amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
Citation
If you use this software in your research, please cite:
@software{chg_algorithm,
title={CHG Algorithm: Covariance-based Hilbert Geometry for Gaussian Processes},
author={CHG Algorithm Team},
year={2024},
url={https://github.com/your-username/chg-algorithm}
}
Contact
For questions and support, please contact:guanwencan123@outlook.com
If you need the while of it,you can emali to me. Cite it must be email to me. Good luck for everyone!