Built with Axolotl

See axolotl config

axolotl version: 0.10.0.dev0

base_model: Qwen/Qwen3-4B-Base

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: qwen3
datasets:
  - path: GreenerPastures/All-Your-Base-Full
    type: chat_template
    split: train
    field_messages: conversations
    message_property_mappings:
      role: from
      content: value
val_set_size: 0.01
output_dir: ./outputs/out
dataset_prepared_path: last_run_prepared
shuffle_merged_datasets: true

hub_model_id: hardlyworking/Sugma4B
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true

sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

wandb_project: Qwen4B
wandb_entity:
wandb_watch:
wandb_name: Qwen4B
wandb_log_model:

evals_per_epoch: 8
eval_table_size:
eval_max_new_tokens: 128

gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: offload
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

deepspeed:

warmup_ratio: 0.05
saves_per_epoch: 1
debug:
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
   pad_token:

Sugma4B

This model is a fine-tuned version of Qwen/Qwen3-4B-Base on the GreenerPastures/All-Your-Base-Full dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9300

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 52
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
1.1154 0.0019 1 1.1372
0.9351 0.125 65 1.0074
0.8884 0.25 130 0.9758
0.9853 0.375 195 0.9608
0.8998 0.5 260 0.9490
0.8919 0.625 325 0.9420
0.914 0.75 390 0.9376
0.8873 0.875 455 0.9346
0.8854 1.0 520 0.9326
0.9365 1.125 585 0.9316
0.8865 1.25 650 0.9308
0.9696 1.375 715 0.9304
0.9119 1.5 780 0.9302
0.8793 1.625 845 0.9301
0.9265 1.75 910 0.9301
0.9375 1.875 975 0.9301
0.8473 2.0 1040 0.9300

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
332
Safetensors
Model size
4.02B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for hardlyworking/Sugma4B

Base model

Qwen/Qwen3-4B-Base
Finetuned
(45)
this model
Finetunes
1 model
Quantizations
1 model

Dataset used to train hardlyworking/Sugma4B