See axolotl config
axolotl version: 0.10.0.dev0
base_model: Qwen/Qwen3-4B-Base
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: qwen3
datasets:
- path: GreenerPastures/All-Your-Base-Full
type: chat_template
split: train
field_messages: conversations
message_property_mappings:
role: from
content: value
val_set_size: 0.01
output_dir: ./outputs/out
dataset_prepared_path: last_run_prepared
shuffle_merged_datasets: true
hub_model_id: hardlyworking/Sugma4B
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: Qwen4B
wandb_entity:
wandb_watch:
wandb_name: Qwen4B
wandb_log_model:
evals_per_epoch: 8
eval_table_size:
eval_max_new_tokens: 128
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
deepspeed:
warmup_ratio: 0.05
saves_per_epoch: 1
debug:
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
pad_token:
Sugma4B
This model is a fine-tuned version of Qwen/Qwen3-4B-Base on the GreenerPastures/All-Your-Base-Full dataset. It achieves the following results on the evaluation set:
- Loss: 0.9300
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 52
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1154 | 0.0019 | 1 | 1.1372 |
0.9351 | 0.125 | 65 | 1.0074 |
0.8884 | 0.25 | 130 | 0.9758 |
0.9853 | 0.375 | 195 | 0.9608 |
0.8998 | 0.5 | 260 | 0.9490 |
0.8919 | 0.625 | 325 | 0.9420 |
0.914 | 0.75 | 390 | 0.9376 |
0.8873 | 0.875 | 455 | 0.9346 |
0.8854 | 1.0 | 520 | 0.9326 |
0.9365 | 1.125 | 585 | 0.9316 |
0.8865 | 1.25 | 650 | 0.9308 |
0.9696 | 1.375 | 715 | 0.9304 |
0.9119 | 1.5 | 780 | 0.9302 |
0.8793 | 1.625 | 845 | 0.9301 |
0.9265 | 1.75 | 910 | 0.9301 |
0.9375 | 1.875 | 975 | 0.9301 |
0.8473 | 2.0 | 1040 | 0.9300 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 332
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support