howanching-clara's picture
Update README.md
a4a1831 verified
metadata
tags:
  - generated_from_trainer
base_model: sentence-transformers/multi-qa-MiniLM-L6-cos-v1
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: all_keywords_multi-qa-MiniLM-L6-cos-v1_another
    results: []

all_keywords_multi-qa-MiniLM-L6-cos-v1_another

This model is a fine-tuned version of sentence-transformers/multi-qa-MiniLM-L6-cos-v1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7780
  • Accuracy: 0.5526
  • Precision: 0.5526
  • Recall: 0.5526
  • F1: 0.5526

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.3017 1.0 712 2.0180 0.4362
2.09 2.0 1424 1.8306 0.4390
1.775 3.0 2136 1.7843 0.4783
1.5811 4.0 2848 1.7686 0.5175
1.2665 5.0 3560 1.7257 0.5147
1.0957 6.0 4272 1.8126 0.5568
0.9661 7.0 4984 2.0472 0.5386
0.7399 8.0 5696 2.1375 0.5428
0.6533 9.0 6408 2.2761 0.5400
0.5268 10.0 7120 2.4777 0.5400
0.5067 11.0 7832 2.6160 0.5372
0.4209 12.0 8544 2.6253 0.5512
0.4102 13.0 9256 2.7287 0.5442
0.3405 14.0 9968 2.7607 0.5470
0.3278 15.0 10680 2.7780 0.5526

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.14.7
  • Tokenizers 0.15.2