T5LA

This model is part of the work published in the paper Interactive Text Games: Lookahead Is All You Need!

Four models are introduced in the above paper:

These models are implemented in this repository which is a customized version of nanoGPT.

The same variations are also implemented in this fork of Transformers library, on top of Google-t5/T5 implementation. These models are also trained and published as follows:

All the above models are on the scale of GPT2 (~100M parameters). The work is in progress to train them on larger scales.

Model description

This model is not fine-tuned on any instruction or human feedback datasets. It is just pre-trained on the HuggingFaceFW/fineweb sample-10BT dataset. It achieves the following results on the evaluation set:

  • Loss: 5.5467
  • Accuracy: 0.0322

Since the above fork is not merged into the main Transformers library yet, if you need to load it with AutoModel.from_pretrained(), you need to first install Transformers from this branch, which contains the code for T5LA models. This can be done by:

pip install git+https://github.com/HRezaei/transformers.git@feature/lookahead_models

Intended uses & limitations

The model is designed to predict not only the next immediate token after the prompt (which normal LLMs do), but also to predict the second, third, ..., up to K next tokens, conditioned on the prompt. These future predictions can be useful for approximated ranking, where a set of potential responses are needed to be ranked based on the approximated probability of their tokens conditioned on the prompt, rather than conditioned on their previous tokens.

The main limitation is that future predictions are generaly not suitable for generating text, as they don't consider token interdependencies, i.e. the future tokens are not conditioned on the previous tokens. Thus, for generation, one should rely only on the next immediate token. However, the quality of next immediate token prediction is also degraded, because during training, the loss function has more terms to minimize (one term for next immediate token like original LLMs, and one extra term per each future tokens).

Training and evaluation data

This model is not fine-tuned on any instruction or human feedback datasets. It is just pre-trained on the HuggingFaceFW/fineweb sample-10BT dataset. It achieves the following results on the evaluation set:

  • Loss: 5.5467
  • Accuracy: 0.0322

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 200000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Validation Loss
9.4056 0.01 1000 0.0435 9.1215
8.4062 0.02 2000 0.0443 8.1939
7.7307 0.03 3000 0.0444 7.6024
7.39 0.04 4000 0.0444 7.3338
7.2546 0.05 5000 0.0441 7.2452
7.1985 0.06 6000 0.0369 7.1682
7.1009 0.07 7000 0.0346 7.0718
7.004 0.08 8000 0.0332 6.9778
6.9159 0.09 9000 0.0325 6.8964
6.8548 0.1 10000 0.0325 6.8307
6.7833 0.11 11000 0.0326 6.7702
6.7376 0.12 12000 0.0337 6.7163
6.6821 0.13 13000 0.0346 6.6615
6.6373 0.14 14000 0.0349 6.6086
6.5895 0.15 15000 0.0344 6.5569
6.5421 0.16 16000 0.0354 6.5119
6.5051 0.17 17000 0.0355 6.4678
6.4391 0.18 18000 0.0360 6.4324
6.4242 0.19 19000 0.0355 6.4015
6.3889 0.2 20000 0.0373 6.3553
6.3631 0.21 21000 0.0367 6.3285
6.3296 0.22 22000 0.0369 6.3015
6.3081 0.23 23000 0.0364 6.2699
6.2784 0.24 24000 0.0370 6.2454
6.2589 0.25 25000 0.0374 6.2167
6.2371 0.26 26000 0.0370 6.1890
6.1978 0.27 27000 0.0376 6.1660
6.1895 0.28 28000 0.0375 6.1378
6.1636 0.29 29000 0.0366 6.1213
6.1262 0.3 30000 0.0370 6.0967
6.1345 0.31 31000 0.0361 6.0745
6.1096 0.32 32000 0.0360 6.0556
6.0794 0.33 33000 0.0357 6.0413
6.0643 0.34 34000 0.0363 6.0136
6.057 0.35 35000 0.0362 5.9965
6.0337 0.36 36000 0.0354 5.9806
6.0217 0.37 37000 0.0363 5.9584
6.0045 0.38 38000 0.0359 5.9526
5.9896 0.39 39000 0.0355 5.9288
5.9711 0.4 40000 0.0352 5.9152
5.9629 0.41 41000 0.0349 5.8962
5.9465 0.42 42000 0.0359 5.8821
5.9463 0.43 43000 0.0345 5.8692
5.9317 0.44 44000 0.0343 5.8699
5.9097 1.0034 45000 0.0346 5.8483
5.9107 1.0134 46000 0.0348 5.8352
5.8838 1.0234 47000 0.0343 5.8188
5.887 1.0334 48000 0.0340 5.8086
5.8563 1.0434 49000 0.0338 5.7971
5.8576 1.0534 50000 0.0339 5.7968
5.8567 1.0635 51000 0.0343 5.7797
5.841 1.0735 52000 0.0337 5.7677
5.8192 1.0835 53000 0.0332 5.7613
5.8214 1.0935 54000 0.0338 5.7486
5.8166 1.1035 55000 0.0338 5.7409
5.806 1.1135 56000 0.0333 5.7342
5.7961 1.1235 57000 0.0335 5.7236
5.7847 1.1335 58000 0.0333 5.7164
5.787 1.1435 59000 0.0330 5.7096
5.7711 1.1535 60000 0.0328 5.7035
5.7699 1.1635 61000 0.0331 5.6888
5.763 1.1734 62000 0.0334 5.6875
5.7434 1.1835 63000 0.0330 5.6809
5.7477 1.1934 64000 0.0329 5.6686
5.7409 1.2034 65000 0.0330 5.6624
5.737 1.2134 66000 0.0339 5.6758
5.729 1.2234 67000 0.0326 5.6546
5.7232 1.2334 68000 0.0329 5.6467
5.7127 1.2434 69000 0.0329 5.6449
5.7187 1.2534 70000 0.0329 5.6352
5.717 1.2634 71000 0.0326 5.6264
5.714 1.2734 72000 0.0330 5.6219
5.7079 1.2834 73000 0.0330 5.6169
5.7034 1.2934 74000 0.0326 5.6131
5.6768 1.3034 75000 0.0325 5.6125
5.6955 1.3135 76000 0.0328 5.6075
5.6947 1.3235 77000 0.0325 5.6017
5.7056 1.3335 78000 0.0323 5.5956
5.6636 1.3435 79000 0.0326 5.5921
5.6723 1.3535 80000 0.0326 5.5881
5.659 1.3635 81000 0.0324 5.5823
5.6729 1.3735 82000 0.0326 5.5795
5.6595 1.3835 83000 0.0322 5.5794
5.6565 1.3935 84000 0.0328 5.5758
5.6649 1.4034 85000 0.0325 5.5716
5.6561 1.4135 86000 0.0321 5.5695
5.6405 1.4234 87000 0.0323 5.5654
5.6482 1.4335 88000 0.0321 5.5628
5.6425 1.4434 89000 0.0323 5.5622
5.6379 2.0069 90000 0.0323 5.5582
5.6357 2.0169 91000 0.0322 5.5573
5.6381 2.0269 92000 0.0320 5.5568
5.6427 2.0369 93000 0.0324 5.5526
5.6364 2.0469 94000 0.0323 5.5526
5.626 2.0569 95000 0.0321 5.5501
5.636 2.0669 96000 0.0324 5.5492
5.632 2.0769 97000 0.0323 5.5489
5.6133 2.0869 98000 0.0323 5.5479
5.6291 2.0969 99000 0.0323 5.5477
5.6271 2.1069 100000 0.0322 5.5470

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for hrezaei/T5LA

Base model

google-t5/t5-base
Finetuned
(718)
this model

Dataset used to train hrezaei/T5LA

Evaluation results