nuatmochoi's picture
Update README.md
2b5dfe5 verified
---
language:
- ko
license: apache-2.0
tags:
- text2sql
- spider
- korean
- llama
- text-generation
- table-question-answering
datasets:
- spider
- huggingface-KREW/spider-ko
base_model: unsloth/Meta-Llama-3.1-8B-Instruct
model-index:
- name: Llama-3.1-8B-Spider-SQL-Ko
results:
- task:
type: text2sql
name: Text to SQL
dataset:
name: Spider (Korean)
type: text2sql
metrics:
- type: exact_match
value: 42.65
- type: execution_accuracy
value: 65.47
---
# Llama-3.1-8B-Spider-SQL-Ko
ํ•œ๊ตญ์–ด ์งˆ๋ฌธ์„ SQL ์ฟผ๋ฆฌ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” Text-to-SQL ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.
[Spider](https://yale-lily.github.io/spider) train ๋ฐ์ดํ„ฐ์…‹์„ ํ•œ๊ตญ์–ด๋กœ ๋ฒˆ์—ญํ•œ [spider-ko](https://huggingface.co/datasets/huggingface-KREW/spider-ko) ๋ฐ์ดํ„ฐ์…‹์„ ํ™œ์šฉํ•˜์—ฌ ๋ฏธ์„ธ์กฐ์ •ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
## ๐Ÿ“Š ์ฃผ์š” ์„ฑ๋Šฅ
Spider ํ•œ๊ตญ์–ด ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์…‹(1,034๊ฐœ) ํ‰๊ฐ€ ๊ฒฐ๊ณผ:
- **์ •ํ™• ์ผ์น˜์œจ**: 42.65% (441/1034)
- **์‹คํ–‰ ์ •ํ™•๋„**: 65.47% (677/1034)
> ๐Ÿ’ก ์‹คํ–‰ ์ •ํ™•๋„๊ฐ€ ์ •ํ™• ์ผ์น˜์œจ๋ณด๋‹ค ๋†’์€ ์ด์œ ๋Š”, SQL ๋ฌธ๋ฒ•์ด ๋‹ค๋ฅด๋”๋ผ๋„ ๋™์ผํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ˜ํ™˜ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.
## ๐Ÿš€ ๋ฐ”๋กœ ์‹œ์ž‘ํ•˜๊ธฐ
```python
from unsloth import FastLanguageModel
# ๋ชจ๋ธ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="huggingface-KREW/Llama-3.1-8B-Spider-SQL-Ko",
max_seq_length=2048,
dtype=None,
load_in_4bit=True,
)
# ํ•œ๊ตญ์–ด ์งˆ๋ฌธ โ†’ SQL ๋ณ€ํ™˜
question = "๊ฐ€์ˆ˜๋Š” ๋ช‡ ๋ช…์ด ์žˆ๋‚˜์š”?"
schema = """ํ…Œ์ด๋ธ”: singer
์ปฌ๋Ÿผ: singer_id, name, country, age"""
prompt = f"""๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์Šคํ‚ค๋งˆ:
{schema}
์งˆ๋ฌธ: {question}
SQL:"""
# ๊ฒฐ๊ณผ: SELECT count(*) FROM singer
```
## ๐Ÿ“ ๋ชจ๋ธ ์†Œ๊ฐœ
- **๊ธฐ๋ฐ˜ ๋ชจ๋ธ**: Llama 3.1 8B Instruct (4bit ์–‘์žํ™”)
- **ํ•™์Šต ๋ฐ์ดํ„ฐ**: [spider-ko](https://huggingface.co/datasets/huggingface-KREW/spider-ko) (1-epoch)
- **์ง€์› DB**: 166๊ฐœ์˜ ๋‹ค์–‘ํ•œ ๋„๋ฉ”์ธ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ( [spider dataset](https://yale-lily.github.io/spider) )
- **ํ•™์Šต ๋ฐฉ๋ฒ•**: LoRA (r=16, alpha=32)
## ๐Ÿ’ฌ ํ™œ์šฉ ์˜ˆ์‹œ
### ๊ธฐ๋ณธ ์‚ฌ์šฉ๋ฒ•
```python
def generate_sql(question, schema_info):
"""ํ•œ๊ตญ์–ด ์งˆ๋ฌธ์„ SQL๋กœ ๋ณ€ํ™˜"""
prompt = f"""๋‹ค์Œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์Šคํ‚ค๋งˆ๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ ์งˆ๋ฌธ์— ๋Œ€ํ•œ SQL ์ฟผ๋ฆฌ๋ฅผ ์ƒ์„ฑํ•˜์„ธ์š”.
### ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์Šคํ‚ค๋งˆ:
{schema_info}
### ์งˆ๋ฌธ: {question}
### SQL ์ฟผ๋ฆฌ:"""
messages = [{"role": "user", "content": prompt}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(inputs, max_new_tokens=150, temperature=0.1)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response.split("### SQL ์ฟผ๋ฆฌ:")[-1].strip()
```
### ์‹ค์ œ ์‚ฌ์šฉ ์˜ˆ์‹œ
```python
# ์˜ˆ์‹œ 1: ์ง‘๊ณ„ ํ•จ์ˆ˜
question = "๋ถ€์„œ์žฅ๋“ค ์ค‘ 56์„ธ๋ณด๋‹ค ๋‚˜์ด๊ฐ€ ๋งŽ์€ ์‚ฌ๋žŒ์ด ๋ช‡ ๋ช…์ž…๋‹ˆ๊นŒ?"
# ๊ฒฐ๊ณผ: SELECT count(*) FROM head WHERE age > 56
# ์˜ˆ์‹œ 2: ์กฐ์ธ
question = "๊ฐ€์žฅ ๋งŽ์€ ๋Œ€ํšŒ๋ฅผ ๊ฐœ์ตœํ•œ ๋„์‹œ์˜ ์ƒํƒœ๋Š” ๋ฌด์—‡์ธ๊ฐ€์š”?"
# ๊ฒฐ๊ณผ: SELECT T1.Status FROM city AS T1 JOIN farm_competition AS T2 ON T1.City_ID = T2.Host_city_ID GROUP BY T2.Host_city_ID ORDER BY COUNT(*) DESC LIMIT 1
# ์˜ˆ์‹œ 3: ์„œ๋ธŒ์ฟผ๋ฆฌ
question = "๊ธฐ์—…๊ฐ€๊ฐ€ ์•„๋‹Œ ์‚ฌ๋žŒ๋“ค์˜ ์ด๋ฆ„์€ ๋ฌด์—‡์ž…๋‹ˆ๊นŒ?"
# ๊ฒฐ๊ณผ: SELECT Name FROM people WHERE People_ID NOT IN (SELECT People_ID FROM entrepreneur)
```
## โš ๏ธ ์‚ฌ์šฉ ์‹œ ์ฃผ์˜์‚ฌํ•ญ
### ์ œํ•œ์‚ฌํ•ญ
- โœ… ์˜์–ด ํ…Œ์ด๋ธ”/์ปฌ๋Ÿผ๋ช… ์‚ฌ์šฉ (ํ•œ๊ตญ์–ด ์งˆ๋ฌธ โ†’ ์˜์–ด SQL)
- โœ… Spider ๋ฐ์ดํ„ฐ์…‹ ๋„๋ฉ”์ธ์— ์ตœ์ ํ™”
- โŒ NoSQL, ๊ทธ๋ž˜ํ”„ DB ๋ฏธ์ง€์›
- โŒ ๋งค์šฐ ๋ณต์žกํ•œ ์ค‘์ฒฉ ์ฟผ๋ฆฌ๋Š” ์ •ํ™•๋„ ํ•˜๋ฝ
## ๐Ÿ”ง ๊ธฐ์ˆ  ์‚ฌ์–‘
### ํ•™์Šต ํ™˜๊ฒฝ
- **GPU**: NVIDIA Tesla T4 (16GB)
- **ํ•™์Šต ์‹œ๊ฐ„**: ์•ฝ 4์‹œ๊ฐ„
- **๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ**: ์ตœ๋Œ€ 7.6GB VRAM
### ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ
```python
training_args = {
"per_device_train_batch_size": 2,
"gradient_accumulation_steps": 4,
"learning_rate": 5e-4,
"num_train_epochs": 1,
"optimizer": "adamw_8bit",
"lr_scheduler_type": "cosine",
"warmup_ratio": 0.05
}
lora_config = {
"r": 16,
"lora_alpha": 32,
"lora_dropout": 0,
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"]
}
```
## ๐Ÿ“š ์ฐธ๊ณ  ์ž๋ฃŒ
### ์ธ์šฉ
```bibtex
@misc{llama31_spider_sql_ko_2025,
title={Llama-3.1-8B-Spider-SQL-Ko: Korean Text-to-SQL Model},
author={[Sohyun Sim, Youngjun Cho, Seongwoo Choi]},
year={2025},
publisher={Hugging Face KREW},
url={https://huggingface.co/huggingface-KREW/Llama-3.1-8B-Spider-SQL-Ko}
}
```
### ๊ด€๋ จ ๋…ผ๋ฌธ
- [Spider: A Large-Scale Human-Labeled Dataset](https://arxiv.org/abs/1809.08887) (Yu et al., 2018)
## ๐Ÿค ๊ธฐ์—ฌ์ž
[@sim-so](https://huggingface.co/sim-so), [@choincnp](https://huggingface.co/choincnp), [@nuatmochoi](https://huggingface.co/nuatmochoi)