yolo_finetuned_fruits

This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8676
  • Map: 0.5394
  • Map 50: 0.8117
  • Map 75: 0.5772
  • Map Small: -1.0
  • Map Medium: 0.5578
  • Map Large: 0.5596
  • Mar 1: 0.4162
  • Mar 10: 0.6989
  • Mar 100: 0.7526
  • Mar Small: -1.0
  • Mar Medium: 0.6964
  • Mar Large: 0.7625
  • Map Banana: 0.3767
  • Mar 100 Banana: 0.7025
  • Map Orange: 0.6021
  • Mar 100 Orange: 0.781
  • Map Apple: 0.6395
  • Mar 100 Apple: 0.7743

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Banana Mar 100 Banana Map Orange Mar 100 Orange Map Apple Mar 100 Apple
No log 1.0 60 2.0901 0.0074 0.0224 0.0017 -1.0 0.0028 0.008 0.0246 0.0869 0.231 -1.0 0.2071 0.2142 0.0197 0.47 0.0003 0.0286 0.0023 0.1943
No log 2.0 120 1.7436 0.0145 0.0392 0.0075 -1.0 0.0379 0.0145 0.1026 0.2509 0.3812 -1.0 0.4464 0.3701 0.0175 0.465 0.0122 0.3071 0.0137 0.3714
No log 3.0 180 1.7765 0.0153 0.0438 0.0066 -1.0 0.1254 0.0127 0.0923 0.2462 0.3911 -1.0 0.3452 0.391 0.0193 0.4775 0.0085 0.15 0.0181 0.5457
No log 4.0 240 1.4905 0.0578 0.1483 0.0341 -1.0 0.0389 0.0583 0.1225 0.2717 0.4299 -1.0 0.325 0.4311 0.1009 0.565 0.0586 0.5333 0.014 0.1914
No log 5.0 300 1.5330 0.0456 0.1036 0.0321 -1.0 0.1046 0.042 0.1628 0.3144 0.4846 -1.0 0.3512 0.4991 0.0605 0.5575 0.0272 0.1762 0.0492 0.72
No log 6.0 360 1.4123 0.0756 0.1598 0.0707 -1.0 0.1356 0.0839 0.2321 0.4085 0.5868 -1.0 0.525 0.5984 0.0484 0.56 0.094 0.4833 0.0844 0.7171
No log 7.0 420 1.2390 0.0987 0.1985 0.0931 -1.0 0.26 0.1056 0.2354 0.4165 0.5435 -1.0 0.4881 0.5502 0.0766 0.61 0.0658 0.2262 0.1536 0.7943
No log 8.0 480 1.1741 0.135 0.229 0.1462 -1.0 0.2255 0.1517 0.3017 0.5152 0.6331 -1.0 0.5488 0.6469 0.1319 0.6275 0.118 0.5119 0.1551 0.76
1.5201 9.0 540 1.1199 0.144 0.2737 0.1613 -1.0 0.2836 0.133 0.3014 0.5292 0.6615 -1.0 0.6571 0.6651 0.1324 0.6325 0.1457 0.5833 0.1538 0.7686
1.5201 10.0 600 1.1057 0.1897 0.3545 0.2102 -1.0 0.3063 0.2052 0.3206 0.5446 0.6786 -1.0 0.625 0.6912 0.1053 0.62 0.2139 0.5929 0.25 0.8229
1.5201 11.0 660 1.0601 0.2859 0.5094 0.3305 -1.0 0.2939 0.3321 0.3744 0.605 0.7146 -1.0 0.6524 0.7286 0.1843 0.6425 0.3504 0.7214 0.323 0.78
1.5201 12.0 720 0.9949 0.4173 0.6847 0.4656 -1.0 0.4611 0.4292 0.368 0.6462 0.7211 -1.0 0.6821 0.7285 0.2863 0.68 0.4488 0.7405 0.5169 0.7429
1.5201 13.0 780 0.9413 0.4504 0.7103 0.4867 -1.0 0.5579 0.4581 0.3937 0.664 0.7316 -1.0 0.6881 0.7424 0.2734 0.6525 0.5246 0.7452 0.5532 0.7971
1.5201 14.0 840 0.9419 0.4598 0.7369 0.4896 -1.0 0.449 0.4773 0.3844 0.6482 0.7272 -1.0 0.6917 0.7331 0.3544 0.6825 0.4781 0.719 0.5468 0.78
1.5201 15.0 900 0.8860 0.4941 0.7598 0.5238 -1.0 0.5195 0.5081 0.408 0.6824 0.73 -1.0 0.6786 0.7407 0.3449 0.6575 0.5216 0.7381 0.6159 0.7943
1.5201 16.0 960 0.8809 0.5304 0.8082 0.5719 -1.0 0.5741 0.5432 0.4173 0.6913 0.7546 -1.0 0.6952 0.7664 0.3713 0.69 0.5719 0.7595 0.648 0.8143
0.8101 17.0 1020 0.9158 0.4802 0.7448 0.5285 -1.0 0.5376 0.4955 0.4039 0.6769 0.7491 -1.0 0.6548 0.7643 0.3247 0.6925 0.4984 0.7548 0.6176 0.8
0.8101 18.0 1080 0.8549 0.5396 0.8097 0.6048 -1.0 0.5375 0.5553 0.406 0.6998 0.7552 -1.0 0.725 0.7632 0.3893 0.68 0.5748 0.7714 0.6548 0.8143
0.8101 19.0 1140 0.8724 0.5418 0.8146 0.6113 -1.0 0.5818 0.551 0.4085 0.6925 0.7454 -1.0 0.6893 0.7561 0.4059 0.69 0.5754 0.769 0.6442 0.7771
0.8101 20.0 1200 0.8617 0.5549 0.8222 0.6196 -1.0 0.6036 0.5666 0.4141 0.6867 0.7508 -1.0 0.6738 0.7637 0.3944 0.7025 0.6056 0.7786 0.6646 0.7714
0.8101 21.0 1260 0.8689 0.5427 0.8069 0.5713 -1.0 0.562 0.5591 0.4159 0.689 0.7415 -1.0 0.6631 0.7545 0.3838 0.6825 0.5622 0.7619 0.6822 0.78
0.8101 22.0 1320 0.8742 0.5497 0.8267 0.6029 -1.0 0.5915 0.563 0.4059 0.6873 0.7472 -1.0 0.681 0.7589 0.3903 0.695 0.5687 0.7667 0.6902 0.78
0.8101 23.0 1380 0.8810 0.5515 0.8169 0.6052 -1.0 0.5805 0.5659 0.4156 0.6908 0.7519 -1.0 0.6881 0.7627 0.3879 0.7075 0.5915 0.7595 0.675 0.7886
0.8101 24.0 1440 0.8649 0.5516 0.8241 0.6151 -1.0 0.5987 0.5665 0.4212 0.6886 0.7512 -1.0 0.6893 0.7621 0.3902 0.7025 0.6039 0.7738 0.6607 0.7771
0.5872 25.0 1500 0.8597 0.5432 0.8141 0.5873 -1.0 0.5651 0.5612 0.4228 0.6995 0.7556 -1.0 0.6964 0.7658 0.3837 0.705 0.6076 0.7905 0.6384 0.7714
0.5872 26.0 1560 0.8558 0.5455 0.8128 0.5911 -1.0 0.5707 0.5635 0.4179 0.6965 0.7549 -1.0 0.6893 0.766 0.3787 0.7075 0.6146 0.7857 0.6432 0.7714
0.5872 27.0 1620 0.8620 0.5494 0.8133 0.6002 -1.0 0.5652 0.5681 0.4186 0.7004 0.7534 -1.0 0.6964 0.7634 0.3837 0.7025 0.6187 0.7833 0.6459 0.7743
0.5872 28.0 1680 0.8668 0.5457 0.8118 0.589 -1.0 0.5653 0.5655 0.4186 0.6971 0.7525 -1.0 0.6964 0.7626 0.3839 0.7 0.6146 0.7833 0.6387 0.7743
0.5872 29.0 1740 0.8677 0.5392 0.8117 0.577 -1.0 0.5573 0.5593 0.4162 0.6989 0.7526 -1.0 0.6964 0.7625 0.3765 0.7025 0.6019 0.781 0.6392 0.7743
0.5872 30.0 1800 0.8676 0.5394 0.8117 0.5772 -1.0 0.5578 0.5596 0.4162 0.6989 0.7526 -1.0 0.6964 0.7625 0.3767 0.7025 0.6021 0.781 0.6395 0.7743

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
6.47M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for iancu003/yolo_finetuned_fruits

Base model

hustvl/yolos-tiny
Finetuned
(54)
this model