yolo_finetuned_fruits
This model is a fine-tuned version of hustvl/yolos-tiny on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8676
- Map: 0.5394
- Map 50: 0.8117
- Map 75: 0.5772
- Map Small: -1.0
- Map Medium: 0.5578
- Map Large: 0.5596
- Mar 1: 0.4162
- Mar 10: 0.6989
- Mar 100: 0.7526
- Mar Small: -1.0
- Mar Medium: 0.6964
- Mar Large: 0.7625
- Map Banana: 0.3767
- Mar 100 Banana: 0.7025
- Map Orange: 0.6021
- Mar 100 Orange: 0.781
- Map Apple: 0.6395
- Mar 100 Apple: 0.7743
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Banana | Mar 100 Banana | Map Orange | Mar 100 Orange | Map Apple | Mar 100 Apple |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 60 | 2.0901 | 0.0074 | 0.0224 | 0.0017 | -1.0 | 0.0028 | 0.008 | 0.0246 | 0.0869 | 0.231 | -1.0 | 0.2071 | 0.2142 | 0.0197 | 0.47 | 0.0003 | 0.0286 | 0.0023 | 0.1943 |
No log | 2.0 | 120 | 1.7436 | 0.0145 | 0.0392 | 0.0075 | -1.0 | 0.0379 | 0.0145 | 0.1026 | 0.2509 | 0.3812 | -1.0 | 0.4464 | 0.3701 | 0.0175 | 0.465 | 0.0122 | 0.3071 | 0.0137 | 0.3714 |
No log | 3.0 | 180 | 1.7765 | 0.0153 | 0.0438 | 0.0066 | -1.0 | 0.1254 | 0.0127 | 0.0923 | 0.2462 | 0.3911 | -1.0 | 0.3452 | 0.391 | 0.0193 | 0.4775 | 0.0085 | 0.15 | 0.0181 | 0.5457 |
No log | 4.0 | 240 | 1.4905 | 0.0578 | 0.1483 | 0.0341 | -1.0 | 0.0389 | 0.0583 | 0.1225 | 0.2717 | 0.4299 | -1.0 | 0.325 | 0.4311 | 0.1009 | 0.565 | 0.0586 | 0.5333 | 0.014 | 0.1914 |
No log | 5.0 | 300 | 1.5330 | 0.0456 | 0.1036 | 0.0321 | -1.0 | 0.1046 | 0.042 | 0.1628 | 0.3144 | 0.4846 | -1.0 | 0.3512 | 0.4991 | 0.0605 | 0.5575 | 0.0272 | 0.1762 | 0.0492 | 0.72 |
No log | 6.0 | 360 | 1.4123 | 0.0756 | 0.1598 | 0.0707 | -1.0 | 0.1356 | 0.0839 | 0.2321 | 0.4085 | 0.5868 | -1.0 | 0.525 | 0.5984 | 0.0484 | 0.56 | 0.094 | 0.4833 | 0.0844 | 0.7171 |
No log | 7.0 | 420 | 1.2390 | 0.0987 | 0.1985 | 0.0931 | -1.0 | 0.26 | 0.1056 | 0.2354 | 0.4165 | 0.5435 | -1.0 | 0.4881 | 0.5502 | 0.0766 | 0.61 | 0.0658 | 0.2262 | 0.1536 | 0.7943 |
No log | 8.0 | 480 | 1.1741 | 0.135 | 0.229 | 0.1462 | -1.0 | 0.2255 | 0.1517 | 0.3017 | 0.5152 | 0.6331 | -1.0 | 0.5488 | 0.6469 | 0.1319 | 0.6275 | 0.118 | 0.5119 | 0.1551 | 0.76 |
1.5201 | 9.0 | 540 | 1.1199 | 0.144 | 0.2737 | 0.1613 | -1.0 | 0.2836 | 0.133 | 0.3014 | 0.5292 | 0.6615 | -1.0 | 0.6571 | 0.6651 | 0.1324 | 0.6325 | 0.1457 | 0.5833 | 0.1538 | 0.7686 |
1.5201 | 10.0 | 600 | 1.1057 | 0.1897 | 0.3545 | 0.2102 | -1.0 | 0.3063 | 0.2052 | 0.3206 | 0.5446 | 0.6786 | -1.0 | 0.625 | 0.6912 | 0.1053 | 0.62 | 0.2139 | 0.5929 | 0.25 | 0.8229 |
1.5201 | 11.0 | 660 | 1.0601 | 0.2859 | 0.5094 | 0.3305 | -1.0 | 0.2939 | 0.3321 | 0.3744 | 0.605 | 0.7146 | -1.0 | 0.6524 | 0.7286 | 0.1843 | 0.6425 | 0.3504 | 0.7214 | 0.323 | 0.78 |
1.5201 | 12.0 | 720 | 0.9949 | 0.4173 | 0.6847 | 0.4656 | -1.0 | 0.4611 | 0.4292 | 0.368 | 0.6462 | 0.7211 | -1.0 | 0.6821 | 0.7285 | 0.2863 | 0.68 | 0.4488 | 0.7405 | 0.5169 | 0.7429 |
1.5201 | 13.0 | 780 | 0.9413 | 0.4504 | 0.7103 | 0.4867 | -1.0 | 0.5579 | 0.4581 | 0.3937 | 0.664 | 0.7316 | -1.0 | 0.6881 | 0.7424 | 0.2734 | 0.6525 | 0.5246 | 0.7452 | 0.5532 | 0.7971 |
1.5201 | 14.0 | 840 | 0.9419 | 0.4598 | 0.7369 | 0.4896 | -1.0 | 0.449 | 0.4773 | 0.3844 | 0.6482 | 0.7272 | -1.0 | 0.6917 | 0.7331 | 0.3544 | 0.6825 | 0.4781 | 0.719 | 0.5468 | 0.78 |
1.5201 | 15.0 | 900 | 0.8860 | 0.4941 | 0.7598 | 0.5238 | -1.0 | 0.5195 | 0.5081 | 0.408 | 0.6824 | 0.73 | -1.0 | 0.6786 | 0.7407 | 0.3449 | 0.6575 | 0.5216 | 0.7381 | 0.6159 | 0.7943 |
1.5201 | 16.0 | 960 | 0.8809 | 0.5304 | 0.8082 | 0.5719 | -1.0 | 0.5741 | 0.5432 | 0.4173 | 0.6913 | 0.7546 | -1.0 | 0.6952 | 0.7664 | 0.3713 | 0.69 | 0.5719 | 0.7595 | 0.648 | 0.8143 |
0.8101 | 17.0 | 1020 | 0.9158 | 0.4802 | 0.7448 | 0.5285 | -1.0 | 0.5376 | 0.4955 | 0.4039 | 0.6769 | 0.7491 | -1.0 | 0.6548 | 0.7643 | 0.3247 | 0.6925 | 0.4984 | 0.7548 | 0.6176 | 0.8 |
0.8101 | 18.0 | 1080 | 0.8549 | 0.5396 | 0.8097 | 0.6048 | -1.0 | 0.5375 | 0.5553 | 0.406 | 0.6998 | 0.7552 | -1.0 | 0.725 | 0.7632 | 0.3893 | 0.68 | 0.5748 | 0.7714 | 0.6548 | 0.8143 |
0.8101 | 19.0 | 1140 | 0.8724 | 0.5418 | 0.8146 | 0.6113 | -1.0 | 0.5818 | 0.551 | 0.4085 | 0.6925 | 0.7454 | -1.0 | 0.6893 | 0.7561 | 0.4059 | 0.69 | 0.5754 | 0.769 | 0.6442 | 0.7771 |
0.8101 | 20.0 | 1200 | 0.8617 | 0.5549 | 0.8222 | 0.6196 | -1.0 | 0.6036 | 0.5666 | 0.4141 | 0.6867 | 0.7508 | -1.0 | 0.6738 | 0.7637 | 0.3944 | 0.7025 | 0.6056 | 0.7786 | 0.6646 | 0.7714 |
0.8101 | 21.0 | 1260 | 0.8689 | 0.5427 | 0.8069 | 0.5713 | -1.0 | 0.562 | 0.5591 | 0.4159 | 0.689 | 0.7415 | -1.0 | 0.6631 | 0.7545 | 0.3838 | 0.6825 | 0.5622 | 0.7619 | 0.6822 | 0.78 |
0.8101 | 22.0 | 1320 | 0.8742 | 0.5497 | 0.8267 | 0.6029 | -1.0 | 0.5915 | 0.563 | 0.4059 | 0.6873 | 0.7472 | -1.0 | 0.681 | 0.7589 | 0.3903 | 0.695 | 0.5687 | 0.7667 | 0.6902 | 0.78 |
0.8101 | 23.0 | 1380 | 0.8810 | 0.5515 | 0.8169 | 0.6052 | -1.0 | 0.5805 | 0.5659 | 0.4156 | 0.6908 | 0.7519 | -1.0 | 0.6881 | 0.7627 | 0.3879 | 0.7075 | 0.5915 | 0.7595 | 0.675 | 0.7886 |
0.8101 | 24.0 | 1440 | 0.8649 | 0.5516 | 0.8241 | 0.6151 | -1.0 | 0.5987 | 0.5665 | 0.4212 | 0.6886 | 0.7512 | -1.0 | 0.6893 | 0.7621 | 0.3902 | 0.7025 | 0.6039 | 0.7738 | 0.6607 | 0.7771 |
0.5872 | 25.0 | 1500 | 0.8597 | 0.5432 | 0.8141 | 0.5873 | -1.0 | 0.5651 | 0.5612 | 0.4228 | 0.6995 | 0.7556 | -1.0 | 0.6964 | 0.7658 | 0.3837 | 0.705 | 0.6076 | 0.7905 | 0.6384 | 0.7714 |
0.5872 | 26.0 | 1560 | 0.8558 | 0.5455 | 0.8128 | 0.5911 | -1.0 | 0.5707 | 0.5635 | 0.4179 | 0.6965 | 0.7549 | -1.0 | 0.6893 | 0.766 | 0.3787 | 0.7075 | 0.6146 | 0.7857 | 0.6432 | 0.7714 |
0.5872 | 27.0 | 1620 | 0.8620 | 0.5494 | 0.8133 | 0.6002 | -1.0 | 0.5652 | 0.5681 | 0.4186 | 0.7004 | 0.7534 | -1.0 | 0.6964 | 0.7634 | 0.3837 | 0.7025 | 0.6187 | 0.7833 | 0.6459 | 0.7743 |
0.5872 | 28.0 | 1680 | 0.8668 | 0.5457 | 0.8118 | 0.589 | -1.0 | 0.5653 | 0.5655 | 0.4186 | 0.6971 | 0.7525 | -1.0 | 0.6964 | 0.7626 | 0.3839 | 0.7 | 0.6146 | 0.7833 | 0.6387 | 0.7743 |
0.5872 | 29.0 | 1740 | 0.8677 | 0.5392 | 0.8117 | 0.577 | -1.0 | 0.5573 | 0.5593 | 0.4162 | 0.6989 | 0.7526 | -1.0 | 0.6964 | 0.7625 | 0.3765 | 0.7025 | 0.6019 | 0.781 | 0.6392 | 0.7743 |
0.5872 | 30.0 | 1800 | 0.8676 | 0.5394 | 0.8117 | 0.5772 | -1.0 | 0.5578 | 0.5596 | 0.4162 | 0.6989 | 0.7526 | -1.0 | 0.6964 | 0.7625 | 0.3767 | 0.7025 | 0.6021 | 0.781 | 0.6395 | 0.7743 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for iancu003/yolo_finetuned_fruits
Base model
hustvl/yolos-tiny