See axolotl config
axolotl version: 0.12.2
base_model: openai/gpt-oss-20b
use_kernels: true
quantization_config:
load_in_4bit: true
bnb_4bit_compute_dtype: "bfloat16"
bnb_4bit_quant_type: "nf4"
bnb_4bit_use_double_quant: true
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
experimental_skip_move_to_device: true
hub_model_id: ikedachin/gpt-oss-20b-dp-v2
hub_strategy: "end"
hf_use_auth_token: true
wandb_project: axolotl
wandb_name: gpt-oss-20b-dp-v2-sft
logging_steps: 5
datasets:
- path: ikedachin/difficult_problem_dataset_v2
split: train
type:
field_instruction: input
field_output: output
format: |
User: {instruction}
Assistant:
no_input_format: |
User: {instruction}
Assistant:
train_on_inputs: false
dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./outputs/gpt-oss-out-merged/
sequence_len: 8192
sample_packing: true
adapter: lora
lora_r: 8
lora_alpha: 16
lora_dropout: 0.0
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- up_proj
- down_proj
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch_8bit
lr_scheduler: cosine
cosine_min_lr_ratio: 0.01
max_grad_norm: 1
learning_rate: 1e-5
bf16: true
tf32: true
flash_attention: true
attn_implementation: kernels-community/vllm-flash-attn3
gradient_checkpointing: true
activation_offloading: true
saves_per_epoch: 1
warmup_ratio: 0.1
special_tokens:
eot_tokens:
- "<|end|>"
merge_adapter: true
save_safetensors: true
gpt-oss-20b-dp-v2-merged
This model is a fine-tuned version of openai/gpt-oss-20b on the ikedachin/difficult_problem_dataset_v2 dataset.
Model description
This model was fine-tuned using LoRA (Low-Rank Adaptation) and merged with the base model (openai/gpt-oss-20b).
Intended uses & limitations
More information needed
Training and evaluation data
Not yet Eval
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 21
- training_steps: 216
Training results
Example usage
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
model_name = "ikedachin/gpt-oss-20b-dp-v2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# 推論パイプラインの作成
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
# テスト入力
input_text = "1~100の間の素数を見つけるPythonプログラムを作成してください。"
# 推論実行
output = generator(input_text, max_length=100, do_sample=True, temperature=0.7)
# 結果表示
print(output[0]["generated_text"])
Framework versions
- PEFT 0.17.0
- Transformers 4.55.2
- Pytorch 2.7.1+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- -
Model tree for ikedachin/gpt-oss-20b-dp-v2-merged
Base model
openai/gpt-oss-20b