Text Generation
MLX
Safetensors
English
qwen3
Merge
programming
code generation
code
coding
coder
chat
brainstorm
qwen
qwencoder
brainstorm20x
esper
esper-3
valiant
valiant-labs
qwen-3
qwen-3-14b
14b
reasoning
code-instruct
python
javascript
dev-ops
jenkins
terraform
scripting
powershell
azure
aws
gcp
cloud
problem-solving
architect
engineer
developer
creative
analytical
expert
rationality
conversational
instruct
float32
mlx-my-repo
6-bit
introvoyz041/Qwen3-Esper3-Reasoning-CODER-Instruct-21B-Brainstorm20x-q6-mlx-mlx-8Bit
The Model introvoyz041/Qwen3-Esper3-Reasoning-CODER-Instruct-21B-Brainstorm20x-q6-mlx-mlx-8Bit was converted to MLX format from nightmedia/Qwen3-Esper3-Reasoning-CODER-Instruct-21B-Brainstorm20x-q6-mlx using mlx-lm version 0.28.3.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("introvoyz041/Qwen3-Esper3-Reasoning-CODER-Instruct-21B-Brainstorm20x-q6-mlx-mlx-8Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 57