Jose Carlos
My first base_lines3 model, trained in lunar_lander... :)
44ae716
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d4d2deb2c20>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d4d2deb2cb0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d4d2deb2d40>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d4d2deb2dd0>",
"_build": "<function ActorCriticPolicy._build at 0x7d4d2deb2e60>",
"forward": "<function ActorCriticPolicy.forward at 0x7d4d2deb2ef0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d4d2deb2f80>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d4d2deb3010>",
"_predict": "<function ActorCriticPolicy._predict at 0x7d4d2deb30a0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d4d2deb3130>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d4d2deb31c0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d4d2deb3250>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7d4d2de5ec80>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1701061875751419624,
"learning_rate": 0.0003,
"tensorboard_log": null,
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYVAz12Siq8qkRZvKegFT0MqI69SybwPQAAgD8AAIA/RtAVPiOIvT62iR6+iZKtvgps/7sVDnq9AAAAAAAAAADNPAI8SGOiuuL10jZLkfk038rTuo1b+7UAAIA/AACAP82MEbpUmoU96PFOPczFhb6JN9E81l2hPAAAAAAAAAAAM4FpvR+t2rnP6ou6wmh4tkmtRLvGleM1AACAPwAAgD9mll67j6ZmutPJk7hbU2W2y/nVufQLrTcAAIA/AACAPybcnD32/Da6d3cuumA4TzYp9my6QrtKOQAAgD8AAIA/ZsLwu49OXrpalvw7QgkoOF4ITrk2sIq2AACAPwAAgD9a+aY9SMeeuqtco7vTZ0Y4uH3aOR7OpTYAAIA/AACAP3O2AT6kUl674RQ6OmB2Xre+4Yi8a0VouQAAgD8AAIA/zXg9PI8uG7p4kSO43KAjsw+0XboGuT03AACAPwAAgD9abYK96fafPvSyOz1x+YW+AuPAu3tFvzsAAAAAAAAAAM3cx7oULo66LkCCuoB+pLbkIOo6IhWVOQAAgD8AAIA/mpiVPFyLVrqMqre6XVxdtlZ2bzrAUNM5AACAPwAAgD8zF5Y8j7Zuupjn67oeHeG1/zaIu4RFCjoAAIA/AACAPzMY1jyFw9652jqtuokYZ7KIkrW5XQPMOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJzRcVxjrmMAWyUTegDjAF0lEdAppedOEdvKnV9lChoBkdAZnyzOX3QD2gHTegDaAhHQKaZKYpDu0F1fZQoaAZHQGPiuFQEZBNoB03oA2gIR0CmmWg6dUbUdX2UKGgGR0BlsqA8SwnqaAdN6ANoCEdAppl+nhsImnV9lChoBkdARxGVkc0cfmgHTQkBaAhHQKaflyrgflp1fZQoaAZHQFHxv/zasZJoB0vVaAhHQKagakeIVM51fZQoaAZHQEhyevpyIYZoB0veaAhHQKahNh4t6HF1fZQoaAZHQGKSo7V8Ti9oB03oA2gIR0CmojZXEIgOdX2UKGgGR0Bb5Q2/BWPtaAdN6ANoCEdApqREO09hZ3V9lChoBkdAYyL7hNucc2gHTegDaAhHQKambZFocrB1fZQoaAZHQGE5G3F1jiJoB03oA2gIR0CmpoV89fTkdX2UKGgGR0BjM12q1gIAaAdN6ANoCEdApqojoyKvV3V9lChoBkdAZ6WInBtUGWgHTegDaAhHQKaq3Hn2ZiN1fZQoaAZHQGZDjPfKp1loB03oA2gIR0Cmq2rJKaoddX2UKGgGR0BiKrNnoPkJaAdN6ANoCEdApqwPV9Wp63V9lChoBkdAYm2/s3Q2M2gHTegDaAhHQKa7xfShJy11fZQoaAZHQGeRl6iTMaFoB03oA2gIR0Cmvlv+XJHRdX2UKGgGR0BjGoAZKnNxaAdN6ANoCEdApr+mXw9aEHV9lChoBkdAYfOKZ2IO6WgHTegDaAhHQKbCDWPtD2J1fZQoaAZHQF6e2Xsw+MZoB03oA2gIR0CmxI5pSJj2dX2UKGgGR0BjzKMglnh9aAdN6ANoCEdApsycdNnGsHV9lChoBkdAZHNhWHUMHGgHTegDaAhHQKbNPRUm2LJ1fZQoaAZHQGW8CxeLNwBoB03oA2gIR0Cmzc/dqL0jdX2UKGgGR0BhWb3XZoPDaAdN6ANoCEdAps5/BxgiNnV9lChoBkdAZScAYHgP3GgHTegDaAhHQKbQASr5qM51fZQoaAZHQGctmXokiUxoB03oA2gIR0Cm0Zhh6SkkdX2UKGgGR0Bjxu5J9RaYaAdN6ANoCEdAptGo2AG0NXV9lChoBkdARyMW43FUAGgHS9poCEdAptNXWvr4WXV9lChoBkdAYcEBQN0/4mgHTegDaAhHQKbUQDdxhlV1fZQoaAZHQGCU2g3974VoB03oA2gIR0Cm1OaLOzIFdX2UKGgGR0BlUxFPSDywaAdN6ANoCEdAptV9IuoP1HV9lChoBkdAY+KQxN7BwmgHTegDaAhHQKbWJB0p3HJ1fZQoaAZHQF/DU8mrsB1oB03oA2gIR0Cm6f8Pe54GdX2UKGgGR0BkIwllbu+iaAdN6ANoCEdApu3h3cHnlnV9lChoBkdAZKtsXSBsh2gHTegDaAhHQKbu5nnuAqd1fZQoaAZHQGaSASWZ7XxoB03oA2gIR0Cm8LjQqqffdX2UKGgGR0BkDLpX6qKhaAdN6ANoCEdApvKL67/XG3V9lChoBkdARoittALRbGgHS9toCEdApvSFuNxVAHV9lChoBkdATN+oP07KaGgHS+9oCEdApvecu+RHPXV9lChoBkdAYGz1qWTouGgHTegDaAhHQKb4S2nbZe11fZQoaAZHQGhoUXYUWVNoB03oA2gIR0Cm+MYXoC+2dX2UKGgGR0Bloz/6wdKeaAdN6ANoCEdApvlfuqm0mnV9lChoBkdASIBjQRf4RGgHTQcBaAhHQKb5+Py08eV1fZQoaAZHQGDCMCkoF3ZoB03oA2gIR0Cm+qwX668QdX2UKGgGR0AbA7PppvgnaAdL4GgIR0Cm+r93jdYXdX2UKGgGR0BnEUroW56MaAdN6ANoCEdApvveMwUQCnV9lChoBkdAYagZZSvTw2gHTegDaAhHQKb76tYjjaR1fZQoaAZHQGa9bgjyFwloB03oA2gIR0Cm/Spb2USqdX2UKGgGR0BdOh19v0iAaAdN6ANoCEdApv3TImw7knV9lChoBkdAYTpvxYq5LGgHTegDaAhHQKb+V0IToMd1fZQoaAZHQGOGgmJFb3ZoB03oA2gIR0Cm/s9adMCcdX2UKGgGR0Bj+EJ0GNaRaAdN6ANoCEdApv9ZjWkJr3V9lChoBkfACtr1M/QjU2gHS/FoCEdApxDXOjZcs3V9lChoBkdAYdli3G4qgGgHTegDaAhHQKcTNOHnEEV1fZQoaAZHQF/2r5IpYtBoB03oA2gIR0CnFvUMPSUkdX2UKGgGR0BlQq+N96ToaAdN6ANoCEdApyFK3PRiPXV9lChoBkdAYtAxj8UEgWgHTegDaAhHQKciHacI7eV1fZQoaAZHQGDiSrPt2LZoB03oA2gIR0CnItawMYuTdX2UKGgGR0BikN8qnWJ8aAdN6ANoCEdApyO92JSBLHV9lChoBkdAYIcO09hZyWgHTegDaAhHQKckjVOsT391fZQoaAZHQGQIA1WKdhBoB03oA2gIR0CnJYQGOdXldX2UKGgGR0BmSV/YraufaAdN6ANoCEdApyWl8eCCjHV9lChoBkdAYstIV/MGHGgHTegDaAhHQKcnFFYMfA91fZQoaAZHQGeqPq9oN/hoB03oA2gIR0CnJyYtpVS5dX2UKGgGR0Be9MsUZeiSaAdN6ANoCEdApyjXEVFhHHV9lChoBkdAXf36XSjQA2gHTegDaAhHQKcpx/rjYI11fZQoaAZHQGESO0kWykdoB03oA2gIR0CnKzvP1L8KdX2UKGgGR0BlakYdhiLEaAdN6ANoCEdApywcofCAMHV9lChoBkdAXh5X0XgtOGgHTegDaAhHQKc9shi9Zid1fZQoaAZHQGE0QDmr8zhoB03oA2gIR0CnQBQGwA2idX2UKGgGR0Bng+HUMG5daAdN6ANoCEdAp0QakAPuonV9lChoBkdAYL+Rs/IKdGgHTegDaAhHQKdR1bGm1pl1fZQoaAZHQGLF00vXbudoB03oA2gIR0CnUp5ylvZRdX2UKGgGR0Bl4CKJl8PXaAdN6ANoCEdAp1MtpCa7VnV9lChoBkdAY6zkKeCkGmgHTegDaAhHQKdT1d7fHgh1fZQoaAZHQGLjMWfseGRoB03oA2gIR0CnVHh3qzJIdX2UKGgGR0BnLsYuTRplaAdN6ANoCEdAp1U+LpA2RHV9lChoBkdAZnwRTS9dvGgHTegDaAhHQKdVU93bEgp1fZQoaAZHQFySymALApNoB03oA2gIR0CnVoEvK2a2dX2UKGgGR0BllnLvCuU2aAdN6ANoCEdAp1aOPvKEFnV9lChoBkdAYxUJuVHFxWgHTegDaAhHQKdX+ouwost1fZQoaAZHQGS2ZoXbdrRoB03oA2gIR0CnWKxxT850dX2UKGgGR0BlaCNZNfw7aAdN6ANoCEdAp1mrLZBcA3V9lChoBkdAY6kzUI9kjGgHTegDaAhHQKdaN1wHZ9N1fZQoaAZHQGOViGFi8WdoB03oA2gIR0CnbE2cz67/dX2UKGgGR0BfzL+YMOPOaAdN6ANoCEdAp2+D6nBLwnV9lChoBkdAY66teUpuuWgHTegDaAhHQKd0VI1+AmR1fZQoaAZHQGVcGGEf1YhoB03oA2gIR0Cnfpj+BH09dX2UKGgGR0Bj9JsImgJ1aAdN6ANoCEdAp39pf6XSjXV9lChoBkdAYvV3FDOTq2gHTegDaAhHQKd//FTefqZ1fZQoaAZHQF+GCV8kUsZoB03oA2gIR0CngKRnezlcdX2UKGgGR0Be7ACGN70GaAdN6ANoCEdAp4FI1pCa7XV9lChoBkdAYSKbDuSfUWgHTegDaAhHQKeCDGQ0XP91fZQoaAZHQF7MHJtBOYZoB03oA2gIR0CngiBdD6WPdX2UKGgGR0Bi8IIIF/x2aAdN6ANoCEdAp4MrAi3XqnV9lChoBkdAZbkHrQgLZ2gHTegDaAhHQKeDN0OEug91fZQoaAZHQF0A7XxvvSdoB03oA2gIR0CnhIrwF1SwdX2UKGgGR0BjQuzOX3QEaAdN6ANoCEdAp4U6Kcd5p3V9lChoBkdAXfMA3kxREWgHTegDaAhHQKeGQT9sJpp1fZQoaAZHQGKoANwzch1oB03oA2gIR0CnhtnNX5nEdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_shape": [
8
],
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
"n": "4",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
}
}