add tp1 deployment
#8
by
Mingke977
- opened
- docs/deploy_guidance.md +16 -3
docs/deploy_guidance.md
CHANGED
|
@@ -7,7 +7,7 @@
|
|
| 7 |
|
| 8 |
## vLLM Deployment
|
| 9 |
|
| 10 |
-
Here is the example to serve this model on a H200 single node
|
| 11 |
|
| 12 |
1. pull the Docker image.
|
| 13 |
```bash
|
|
@@ -15,6 +15,12 @@ docker pull jdopensource/joyai-llm-vllm:v0.13.0-joyai_llm_flash
|
|
| 15 |
```
|
| 16 |
2. launch JoyAI-LLM Flash model with dense MTP.
|
| 17 |
```bash
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
vllm serve ${MODEL_PATH} --tp 8 --trust-remote-code \
|
| 19 |
--tool-call-parser qwen3_coder --enable-auto-tool-choice \
|
| 20 |
--speculative-config $'{"method": "mtp", "num_speculative_tokens": 3}'
|
|
@@ -24,7 +30,7 @@ vllm serve ${MODEL_PATH} --tp 8 --trust-remote-code \
|
|
| 24 |
|
| 25 |
## SGLang Deployment
|
| 26 |
|
| 27 |
-
Similarly, here is the example to run
|
| 28 |
|
| 29 |
1. pull the Docker image.
|
| 30 |
```bash
|
|
@@ -33,10 +39,17 @@ docker pull jdopensource/joyai-llm-sglang:v0.5.8-joyai_llm_flash
|
|
| 33 |
2. launch JoyAI-LLM Flash model with dense MTP.
|
| 34 |
|
| 35 |
```bash
|
| 36 |
-
|
|
|
|
| 37 |
--tool-call-parser qwen3_coder \
|
| 38 |
--speculative-algorithm EAGLE --speculative-draft-model-path ${MTP_MODEL_PATH} \
|
| 39 |
--speculative-num-steps 2 --speculative-eagle-topk 2 --speculative-num-draft-tokens 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
```
|
| 41 |
**Key notes:**
|
| 42 |
- `--tool-call-parser qwen3_coder`: Required when enabling tool usage.
|
|
|
|
| 7 |
|
| 8 |
## vLLM Deployment
|
| 9 |
|
| 10 |
+
Here is the example to serve this model on a H200 single node via vLLM:
|
| 11 |
|
| 12 |
1. pull the Docker image.
|
| 13 |
```bash
|
|
|
|
| 15 |
```
|
| 16 |
2. launch JoyAI-LLM Flash model with dense MTP.
|
| 17 |
```bash
|
| 18 |
+
# TP1 for memory efficiency
|
| 19 |
+
vllm serve ${MODEL_PATH} --tp 1 --trust-remote-code \
|
| 20 |
+
--tool-call-parser qwen3_coder --enable-auto-tool-choice \
|
| 21 |
+
--speculative-config $'{"method": "mtp", "num_speculative_tokens": 3}'
|
| 22 |
+
|
| 23 |
+
# TP8 for extreme speed and long context
|
| 24 |
vllm serve ${MODEL_PATH} --tp 8 --trust-remote-code \
|
| 25 |
--tool-call-parser qwen3_coder --enable-auto-tool-choice \
|
| 26 |
--speculative-config $'{"method": "mtp", "num_speculative_tokens": 3}'
|
|
|
|
| 30 |
|
| 31 |
## SGLang Deployment
|
| 32 |
|
| 33 |
+
Similarly, here is the example to run on a H200 single node via SGLang:
|
| 34 |
|
| 35 |
1. pull the Docker image.
|
| 36 |
```bash
|
|
|
|
| 39 |
2. launch JoyAI-LLM Flash model with dense MTP.
|
| 40 |
|
| 41 |
```bash
|
| 42 |
+
# TP1 for memory efficiency
|
| 43 |
+
python3 -m sglang.launch_server --model-path ${MODEL_PATH} --tp-size 1 --trust-remote-code \
|
| 44 |
--tool-call-parser qwen3_coder \
|
| 45 |
--speculative-algorithm EAGLE --speculative-draft-model-path ${MTP_MODEL_PATH} \
|
| 46 |
--speculative-num-steps 2 --speculative-eagle-topk 2 --speculative-num-draft-tokens 3
|
| 47 |
+
|
| 48 |
+
# TP8 for extreme speed and long context
|
| 49 |
+
python3 -m sglang.launch_server --model-path ${MODEL_PATH} --tp-size 8 --trust-remote-code \
|
| 50 |
+
--tool-call-parser qwen3_coder \
|
| 51 |
+
--speculative-algorithm EAGLE \
|
| 52 |
+
--speculative-num-steps 2 --speculative-eagle-topk 2 --speculative-num-draft-tokens 3
|
| 53 |
```
|
| 54 |
**Key notes:**
|
| 55 |
- `--tool-call-parser qwen3_coder`: Required when enabling tool usage.
|