Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

📱 WazapSplitter-LLM

Splits text into natural WhatsApp-style message segments.

Input: "buenos dias queria confirmar la hora de la reunion"
Output: ["buenos días", "quería confirmar la hora de la reunión"]

Quick Usage

TypeScript/JavaScript

async function splitMessage(text: string): Promise<string[]> {
  const prompt = `Split messages at natural breaks into JSON array. Common patterns: greeting+question, statement+question, topic+followup. Keep original words, only add logical splits.

User: ${text}
Assistant:`;

  const response = await fetch("https://api-inference.huggingface.co/models/joseAndres777/WazapSplitter-LLM", {
    method: "POST",
    headers: {
      "Authorization": "Bearer YOUR_HF_TOKEN",
      "Content-Type": "application/json"
    },
    body: JSON.stringify({
      inputs: prompt,
      parameters: { max_new_tokens: 100, temperature: 0.3 }
    })
  });
  
  const data = await response.json();
  return JSON.parse(data[0].generated_text);
}

// Example
const segments = await splitMessage("hola como estas que tal todo?");
console.log(segments); // ["hola", "como estas", "que tal todo?"]

Chatbot Integration

// Make responses feel more human
const segments = await splitMessage(botResponse);
for (const segment of segments) {
  await sendMessage(segment);
  await delay(1000 + Math.random() * 2000); // Human-like timing
}
Downloads last month
27
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 1 Ask for provider support

Model tree for joseAndres777/WazapSplitter-LLM

Adapter
(112)
this model

Space using joseAndres777/WazapSplitter-LLM 1