Model Card for Model ID
This is an embedding model for clinical papers
How to Use
Simple finetuned model
from transformers import AutoTokenizer, AutoModel
import torch
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
PATH = "josh-oo/aspect-based-embeddings-v3"
tokenizer = AutoTokenizer.from_pretrained(PATH)
model = AutoModel.from_pretrained(PATH)
dummy_text = "This is a title of a medical paper"
dummy_input = tokenizer([dummy_text], return_tensors="pt")
dummy_input.to(DEVICE)
model.to(DEVICE)
with torch.no_grad():
output = model(**dummy_input)
embeddings = output.last_hidden_state[:, 0] #cls pooling
Aspect guided model
from transformers import AutoTokenizer, AutoModel
import torch
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
PATH = "josh-oo/aspect-based-embeddings-v3"
REVISION = "4f43387343acaacd9bfafec0a304c51ed140f078"
PREFIXES = ["<participants>","<intervention>","<condition>","<outcome>"]
tokenizer = AutoTokenizer.from_pretrained(PATH, revision=REVISION)
model = AutoModel.from_pretrained(PATH, revision=REVISION)
model.register_buffer("position_ids", torch.relu(torch.arange(model.config.max_position_embeddings + len(PREFIXES)).expand((1, -1)) - len(PREFIXES)), persistent=False)
model.register_buffer("token_type_ids", torch.zeros(model.position_ids.size(), dtype=torch.long), persistent=False) #set token type ids to 0
model.token_type_ids[:,1:1+len(PREFIXES)] = 1 #set prefix token type ids to 1
dummy_text = "".join(PREFIXES) + "This is a title of a medical paper"
dummy_input = tokenizer([dummy_text], return_tensors="pt")
dummy_input.pop('token_type_ids')
dummy_input.to(DEVICE)
model.to(DEVICE)
with torch.no_grad():
output = model(**dummy_input)
embeddings = output.last_hidden_state[:, 0] #cls pooling
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support