Mixture of Experts
frankenmoe
Merge
mergekit
lazymergekit
allenai/Olmo-3-7B
allenai/Olmo-3-7B-Instruct
allenai/Olmo-3-7B-Think
allenai/Olmo-3-7B-Think-SFT
allenai/Olmo-3-7B-Think-DPO
allenai/Olmo-3-7B-RL-Zero-IF
allenai/Olmo-3-7B-RL-Zero-Math
allenai/Olmo-3-7B-RL-Zero-Code
allenai/Olmo-3-7B-RL-Zero-Mix
olmo3-7b-slerp
olmo3-7b-slerp is a Mixture of Experts (MoE) made with the following models using LazyMergekit:
- allenai/Olmo-3-7B
- allenai/Olmo-3-7B-Instruct
- allenai/Olmo-3-7B-Think
- allenai/Olmo-3-7B-Think-SFT
- allenai/Olmo-3-7B-Think-DPO
- allenai/Olmo-3-7B-RL-Zero-IF
- allenai/Olmo-3-7B-RL-Zero-Math
- allenai/Olmo-3-7B-RL-Zero-Code
- allenai/Olmo-3-7B-RL-Zero-Mix
π§© Configuration
slices:
- sources:
- model: allenai/Olmo-3-7B
layer_range: [0, 32]
- model: allenai/Olmo-3-7B-Instruct
layer_range: [0, 32]
- model: allenai/Olmo-3-7B-Think
layer_range: [0, 32]
- model: allenai/Olmo-3-7B-Think-SFT
layer_range: [0, 32]
- model: allenai/Olmo-3-7B-Think-DPO
layer_range: [0, 32]
- model: allenai/Olmo-3-7B-RL-Zero-IF
layer_range: [0, 32]
- model: allenai/Olmo-3-7B-RL-Zero-Math
layer_range: [0, 32]
- model: allenai/Olmo-3-7B-RL-Zero-Code
layer_range: [0, 32]
- model: allenai/Olmo-3-7B-RL-Zero-Mix
base_model: allenai/Olmo-3-7B
experts:
- source_model: allenai/Olmo-3-7B
weight: 0.2
- source_model: allenai/Olmo-3-7B-Instruct
weight: 0.1
- source_model: allenai/Olmo-3-7B-Think
weight: 0.1
- source_model: allenai/Olmo-3-7B-Think-SFT
weight: 0.1
- source_model: allenai/Olmo-3-7B-Think-DPO
weight: 0.1
- source_model: allenai/Olmo-3-7B-RL-Zero-IF
weight: 0.1
- source_model: allenai/Olmo-3-7B-RL-Zero-Math
weight: 0.1
- source_model: allenai/Olmo-3-7B-RL-Zero-Code
weight: 0.1
- source_model: allenai/Olmo-3-7B-RL-Zero-Mix
weight: 0.1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
merge_type: slerp
dtype: bfloat16
layer_range: [0, 32]
π» Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jsuheb/olmo3-7b-slerp"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support