|
import torch |
|
import torch.nn as nn |
|
from torch.utils.data import Dataset, DataLoader, default_collate |
|
from torch.distributions import constraints, TransformedDistribution, SigmoidTransform, AffineTransform |
|
from torch.distributions import Normal, Uniform |
|
from torch.distributions.kl import kl_divergence |
|
|
|
|
|
from tensorflow_compression.python.ops import gen_ops |
|
import tensorflow as tf |
|
|
|
from itertools import islice |
|
from ml_collections import ConfigDict |
|
import numpy as np |
|
import json |
|
import os |
|
from pathlib import Path |
|
from contextlib import contextmanager |
|
import zipfile |
|
from tqdm import tqdm |
|
|
|
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') |
|
|
|
DATASET_PATH = { |
|
'ImageNet64': 'data/imagenet64/', |
|
} |
|
|
|
""" |
|
PyTorch Implementation of 'Progressive Compression with Universally Quantized Diffusion Models', Yang et al., 2025. |
|
Written with focus on readability for a single GPU. |
|
|
|
Sections: |
|
Model: Denoising network |
|
Data: ImageNet64 data |
|
UQDM: Diffusion model + codec + simple trainer for the network + saving / loading |
|
|
|
Major changes from previous work are highlighted in the class UQDM |
|
""" |
|
|
|
""" |
|
Denoising network, Exponential Moving Average (EMA) |
|
""" |
|
|
|
|
|
class VDM_Net(torch.nn.Module): |
|
""" |
|
Based on score Net from |
|
https://github.com/addtt/variational-diffusion-models/blob/main/vdm_unet.py |
|
which itself is based on |
|
https://github.com/google-research/vdm/blob/main/model_vdm.py |
|
and maps parameters via |
|
|
|
vdm_unet -> model_vdm |
|
mcfg.n_attention_heads: 1 (fixed) |
|
mcfg.embedding_dim: sm_n_embd |
|
mcfg.n_blocks: sm_n_layer |
|
mcfg.dropout_prob: sm_pdrop |
|
mcfg.norm_groups: 32 (fixed, default setting for flax.linen.GroupNorm) |
|
|
|
In addition to predicting the noise, we (optionally) predict backward variances by doubling the output channels. |
|
""" |
|
|
|
@staticmethod |
|
def softplus_inverse(x): |
|
"""Helper which computes the inverse of `tf.nn.softplus`.""" |
|
import math |
|
import numpy as np |
|
return math.log(np.expm1(x)) |
|
|
|
def softplus_init1(self, x): |
|
|
|
return torch.nn.functional.softplus(x + self.SOFTPLUS_INV1) |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.mcfg = mcfg = config.model |
|
|
|
attention_params = dict( |
|
n_heads=mcfg.n_attention_heads, |
|
n_channels=mcfg.embedding_dim, |
|
norm_groups=mcfg.norm_groups, |
|
) |
|
resnet_params = dict( |
|
ch_in=mcfg.embedding_dim, |
|
ch_out=mcfg.embedding_dim, |
|
condition_dim=4 * mcfg.embedding_dim, |
|
dropout_prob=mcfg.dropout_prob, |
|
norm_groups=mcfg.norm_groups, |
|
) |
|
if mcfg.use_fourier_features: |
|
self.fourier_features = FourierFeatures() |
|
self.embed_conditioning = nn.Sequential( |
|
nn.Linear(mcfg.embedding_dim, mcfg.embedding_dim * 4), |
|
nn.SiLU(), |
|
nn.Linear(mcfg.embedding_dim * 4, mcfg.embedding_dim * 4), |
|
nn.SiLU(), |
|
) |
|
total_input_ch = mcfg.n_channels |
|
if mcfg.use_fourier_features: |
|
total_input_ch *= 1 + self.fourier_features.num_features |
|
self.conv_in = nn.Conv2d(total_input_ch, mcfg.embedding_dim, 3, padding=1) |
|
|
|
|
|
self.down_blocks = nn.ModuleList( |
|
UpDownBlock( |
|
resnet_block=ResnetBlock(**resnet_params), |
|
attention_block=AttentionBlock(**attention_params) |
|
if mcfg.attention_everywhere |
|
else None, |
|
) |
|
for _ in range(mcfg.n_blocks) |
|
) |
|
|
|
self.mid_resnet_block_1 = ResnetBlock(**resnet_params) |
|
self.mid_attn_block = AttentionBlock(**attention_params) |
|
self.mid_resnet_block_2 = ResnetBlock(**resnet_params) |
|
|
|
|
|
resnet_params["ch_in"] *= 2 |
|
self.up_blocks = nn.ModuleList( |
|
UpDownBlock( |
|
resnet_block=ResnetBlock(**resnet_params), |
|
attention_block=AttentionBlock(**attention_params) |
|
if mcfg.attention_everywhere |
|
else None, |
|
) |
|
for _ in range(mcfg.n_blocks + 1) |
|
) |
|
|
|
output_channels = mcfg.n_channels |
|
if config.model.get('learned_prior_scale'): |
|
output_channels *= 2 |
|
|
|
self.conv_out = nn.Sequential( |
|
nn.GroupNorm(num_groups=mcfg.norm_groups, num_channels=mcfg.embedding_dim), |
|
nn.SiLU(), |
|
zero_init(nn.Conv2d(mcfg.embedding_dim, output_channels, kernel_size=3, padding=1)), |
|
) |
|
|
|
self.SOFTPLUS_INV1 = self.softplus_inverse(1.0) |
|
|
|
def forward(self, z, g_t): |
|
|
|
g_t = g_t.expand(z.shape[0]) |
|
assert g_t.shape == (z.shape[0],) |
|
|
|
t = (g_t - self.mcfg.gamma_min) / (self.mcfg.gamma_max - self.mcfg.gamma_min) |
|
t_embedding = get_timestep_embedding(t, self.mcfg.embedding_dim) |
|
|
|
cond = self.embed_conditioning(t_embedding) |
|
|
|
h = self.maybe_concat_fourier(z) |
|
h = self.conv_in(h) |
|
hs = [] |
|
for down_block in self.down_blocks: |
|
hs.append(h) |
|
h = down_block(h, cond) |
|
hs.append(h) |
|
h = self.mid_resnet_block_1(h, cond) |
|
h = self.mid_attn_block(h) |
|
h = self.mid_resnet_block_2(h, cond) |
|
for up_block in self.up_blocks: |
|
h = torch.cat([h, hs.pop()], dim=1) |
|
h = up_block(h, cond) |
|
h = self.conv_out(h) |
|
|
|
if self.mcfg.get('learned_prior_scale'): |
|
|
|
eps_hat, pred_scale_factors = torch.split(h, self.mcfg.n_channels, dim=1) |
|
pred_scale_factors = self.softplus_init1(pred_scale_factors) |
|
else: |
|
eps_hat = h |
|
|
|
assert eps_hat.shape == z.shape, (eps_hat.shape, z.shape) |
|
eps_hat = eps_hat + z |
|
|
|
if self.mcfg.get('learned_prior_scale'): |
|
return eps_hat, pred_scale_factors |
|
else: |
|
return eps_hat |
|
|
|
def maybe_concat_fourier(self, z): |
|
if self.mcfg.use_fourier_features: |
|
return torch.cat([z, self.fourier_features(z)], dim=1) |
|
return z |
|
|
|
|
|
@torch.no_grad() |
|
def zero_init(module: nn.Module) -> nn.Module: |
|
|
|
for p in module.parameters(): |
|
nn.init.zeros_(p.data) |
|
return module |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__( |
|
self, |
|
ch_in, |
|
ch_out=None, |
|
condition_dim=None, |
|
dropout_prob=0.0, |
|
norm_groups=32, |
|
): |
|
super().__init__() |
|
ch_out = ch_in if ch_out is None else ch_out |
|
self.ch_out = ch_out |
|
self.condition_dim = condition_dim |
|
self.net1 = nn.Sequential( |
|
nn.GroupNorm(num_groups=norm_groups, num_channels=ch_in), |
|
nn.SiLU(), |
|
nn.Conv2d(ch_in, ch_out, kernel_size=3, padding=1), |
|
) |
|
if condition_dim is not None: |
|
self.cond_proj = zero_init(nn.Linear(condition_dim, ch_out, bias=False)) |
|
self.net2 = nn.Sequential( |
|
nn.GroupNorm(num_groups=norm_groups, num_channels=ch_out), |
|
nn.SiLU(), |
|
*([nn.Dropout(dropout_prob)] * (dropout_prob > 0.0)), |
|
zero_init(nn.Conv2d(ch_out, ch_out, kernel_size=3, padding=1)), |
|
) |
|
if ch_in != ch_out: |
|
self.skip_conv = nn.Conv2d(ch_in, ch_out, kernel_size=1) |
|
|
|
def forward(self, x, condition): |
|
h = self.net1(x) |
|
if condition is not None: |
|
assert condition.shape == (x.shape[0], self.condition_dim) |
|
condition = self.cond_proj(condition) |
|
condition = condition[:, :, None, None] |
|
h = h + condition |
|
h = self.net2(h) |
|
if x.shape[1] != self.ch_out: |
|
x = self.skip_conv(x) |
|
assert x.shape == h.shape |
|
return x + h |
|
|
|
|
|
def get_timestep_embedding( |
|
timesteps, |
|
embedding_dim: int, |
|
dtype=torch.float32, |
|
max_timescale=10_000, |
|
min_timescale=1, |
|
): |
|
|
|
assert timesteps.ndim == 1 |
|
assert embedding_dim % 2 == 0 |
|
timesteps *= 1000.0 |
|
num_timescales = embedding_dim // 2 |
|
inv_timescales = torch.logspace( |
|
-np.log10(min_timescale), |
|
-np.log10(max_timescale), |
|
num_timescales, |
|
device=timesteps.device, |
|
) |
|
emb = timesteps.to(dtype)[:, None] * inv_timescales[None, :] |
|
return torch.cat([emb.sin(), emb.cos()], dim=1) |
|
|
|
|
|
class FourierFeatures(nn.Module): |
|
def __init__(self, first=5.0, last=6.0, step=1.0): |
|
super().__init__() |
|
self.freqs_exponent = torch.arange(first, last + 1e-8, step) |
|
|
|
@property |
|
def num_features(self): |
|
return len(self.freqs_exponent) * 2 |
|
|
|
def forward(self, x): |
|
assert len(x.shape) >= 2 |
|
|
|
|
|
freqs_exponent = self.freqs_exponent.to(dtype=x.dtype, device=x.device) |
|
freqs = 2.0 ** freqs_exponent * 2 * torch.pi |
|
freqs = freqs.view(-1, *([1] * (x.dim() - 1))) |
|
|
|
|
|
features = freqs * x.unsqueeze(1) |
|
features = features.flatten(1, 2) |
|
|
|
|
|
return torch.cat([features.sin(), features.cos()], dim=1) |
|
|
|
|
|
def attention_inner_heads(qkv, num_heads): |
|
"""Computes attention with heads inside of qkv in the channel dimension. |
|
|
|
Args: |
|
qkv: Tensor of shape (B, 3*H*C, T) with Qs, Ks, and Vs, where: |
|
H = number of heads, |
|
C = number of channels per head. |
|
num_heads: number of heads. |
|
|
|
Returns: |
|
Attention output of shape (B, H*C, T). |
|
""" |
|
|
|
bs, width, length = qkv.shape |
|
ch = width // (3 * num_heads) |
|
|
|
|
|
q, k, v = qkv.chunk(3, dim=1) |
|
|
|
|
|
scale = ch ** (-1 / 4) |
|
q = q * scale |
|
k = k * scale |
|
|
|
|
|
new_shape = (bs * num_heads, ch, length) |
|
q = q.view(*new_shape) |
|
k = k.view(*new_shape) |
|
v = v.reshape(*new_shape) |
|
|
|
|
|
weight = torch.einsum("bct,bcs->bts", q, k) |
|
weight = torch.softmax(weight.float(), dim=-1).to(weight.dtype) |
|
out = torch.einsum("bts,bcs->bct", weight, v) |
|
return out.reshape(bs, num_heads * ch, length) |
|
|
|
|
|
class Attention(nn.Module): |
|
|
|
|
|
def __init__(self, n_heads): |
|
super().__init__() |
|
self.n_heads = n_heads |
|
|
|
def forward(self, qkv): |
|
assert qkv.dim() >= 3, qkv.dim() |
|
assert qkv.shape[1] % (3 * self.n_heads) == 0 |
|
spatial_dims = qkv.shape[2:] |
|
qkv = qkv.view(*qkv.shape[:2], -1) |
|
out = attention_inner_heads(qkv, self.n_heads) |
|
return out.view(*out.shape[:2], *spatial_dims) |
|
|
|
|
|
class AttentionBlock(nn.Module): |
|
"""Self-attention residual block.""" |
|
|
|
def __init__(self, n_heads, n_channels, norm_groups): |
|
super().__init__() |
|
assert n_channels % n_heads == 0 |
|
self.layers = nn.Sequential( |
|
nn.GroupNorm(num_groups=norm_groups, num_channels=n_channels), |
|
nn.Conv2d(n_channels, 3 * n_channels, kernel_size=1), |
|
Attention(n_heads), |
|
zero_init(nn.Conv2d(n_channels, n_channels, kernel_size=1)), |
|
) |
|
|
|
def forward(self, x): |
|
return self.layers(x) + x |
|
|
|
|
|
class UpDownBlock(nn.Module): |
|
def __init__(self, resnet_block, attention_block=None): |
|
super().__init__() |
|
self.resnet_block = resnet_block |
|
self.attention_block = attention_block |
|
|
|
def forward(self, x, cond): |
|
x = self.resnet_block(x, cond) |
|
if self.attention_block is not None: |
|
x = self.attention_block(x) |
|
return x |
|
|
|
|
|
class ExponentialMovingAverage: |
|
""" |
|
Maintains (exponential) moving average of a set of parameters. |
|
|
|
Code from https://github.com/yang-song/score_sde_pytorch/blob/main/models/ema.py |
|
which is modified from https://raw.githubusercontent.com/fadel/pytorch_ema/master/torch_ema/ema.py |
|
and partially based on https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/training/moving_averages.py |
|
""" |
|
|
|
def __init__(self, parameters, decay, use_num_updates=True): |
|
""" |
|
Args: |
|
parameters: Iterable of `torch.nn.Parameter`; usually the result of |
|
`model.parameters()`. |
|
decay: The exponential decay. |
|
use_num_updates: Whether to use number of updates when computing |
|
averages. |
|
""" |
|
if decay < 0.0 or decay > 1.0: |
|
raise ValueError('Decay must be between 0 and 1') |
|
self.decay = decay |
|
self.num_updates = 0 if use_num_updates else None |
|
self.shadow_params = [p.clone().detach() |
|
for p in parameters if p.requires_grad] |
|
self.collected_params = [] |
|
|
|
def update(self, parameters): |
|
""" |
|
Update currently maintained parameters. |
|
|
|
Call this every time the parameters are updated, such as the result of |
|
the `optimizer.step()` call. |
|
|
|
Args: |
|
parameters: Iterable of `torch.nn.Parameter`; usually the same set of |
|
parameters used to initialize this object. |
|
""" |
|
decay = self.decay |
|
if self.num_updates is not None: |
|
self.num_updates += 1 |
|
decay = min(decay, (1 + self.num_updates) / (10 + self.num_updates)) |
|
one_minus_decay = 1.0 - decay |
|
with torch.no_grad(): |
|
parameters = [p for p in parameters if p.requires_grad] |
|
for s_param, param in zip(self.shadow_params, parameters): |
|
s_param.sub_(one_minus_decay * (s_param - param)) |
|
|
|
def copy_to(self, parameters): |
|
""" |
|
Copy current parameters into given collection of parameters. |
|
|
|
Args: |
|
parameters: Iterable of `torch.nn.Parameter`; the parameters to be |
|
updated with the stored moving averages. |
|
""" |
|
parameters = [p for p in parameters if p.requires_grad] |
|
for s_param, param in zip(self.shadow_params, parameters): |
|
if param.requires_grad: |
|
param.data.copy_(s_param.data) |
|
|
|
def store(self, parameters): |
|
""" |
|
Save the current parameters for restoring later. |
|
|
|
Args: |
|
parameters: Iterable of `torch.nn.Parameter`; the parameters to be |
|
temporarily stored. |
|
""" |
|
self.collected_params = [param.clone() for param in parameters] |
|
|
|
def restore(self, parameters): |
|
""" |
|
Restore the parameters stored with the `store` method. |
|
Useful to validate the model with EMA parameters without affecting the |
|
original optimization process. Store the parameters before the |
|
`copy_to` method. After validation (or model saving), use this to |
|
restore the former parameters. |
|
|
|
Args: |
|
parameters: Iterable of `torch.nn.Parameter`; the parameters to be |
|
updated with the stored parameters. |
|
""" |
|
for c_param, param in zip(self.collected_params, parameters): |
|
param.data.copy_(c_param.data) |
|
|
|
def state_dict(self): |
|
return dict(decay=self.decay, num_updates=self.num_updates, |
|
shadow_params=self.shadow_params) |
|
|
|
def load_state_dict(self, state_dict): |
|
self.decay = state_dict['decay'] |
|
self.num_updates = state_dict['num_updates'] |
|
self.shadow_params = state_dict['shadow_params'] |
|
|
|
|
|
""" |
|
Data and Checkpoint Loading |
|
""" |
|
|
|
|
|
def cycle(iterable): |
|
while True: |
|
for x in iterable: |
|
yield x |
|
|
|
|
|
class ToIntTensor: |
|
|
|
def __call__(self, image): |
|
image = torch.as_tensor(image.reshape(3, 64, 64), dtype=torch.uint8) |
|
return image |
|
|
|
|
|
class NPZLoader(Dataset): |
|
""" |
|
Load from a batched numpy dataset. |
|
Keeps one data batch loaded in memory, so load idx sequentially for fast sampling |
|
""" |
|
|
|
def __init__(self, path, train=True, transform=None, remove_duplicates=True): |
|
self.path = path |
|
if train: |
|
self.files = list(Path(path).glob('*train*.npz')) |
|
else: |
|
self.files = list(Path(path).glob('*val*.npz')) |
|
self.batch_lens = [self.npz_len(f) for f in self.files] |
|
self.anchors = np.cumsum([0] + self.batch_lens) |
|
self.removed_idxs = [[] for _ in range(len(self.files))] |
|
if not train and remove_duplicates: |
|
removed = np.load(os.path.join(path, 'removed.npy')) |
|
self.removed_idxs = [ |
|
removed[(removed >= self.anchors[i]) & (removed < self.anchors[i + 1])] - self.anchors[i] for i in |
|
range(len(self.files))] |
|
self.anchors -= np.cumsum([0] + [np.size(r) for r in self.removed_idxs]) |
|
self.transform = transform |
|
self.cache_fid = None |
|
self.cache_npy = None |
|
|
|
|
|
@staticmethod |
|
def npz_len(npz): |
|
""" |
|
Takes a path to an .npz file, which is a Zip archive of .npy files and returns the batch size of stored data, |
|
i.e. of the first .npy found |
|
""" |
|
with zipfile.ZipFile(npz) as archive: |
|
for name in archive.namelist(): |
|
if not name.endswith('.npy'): |
|
continue |
|
npy = archive.open(name) |
|
version = np.lib.format.read_magic(npy) |
|
shape, fortran, dtype = np.lib.format._read_array_header(npy, version) |
|
return shape[0] |
|
|
|
def load_npy(self, fid): |
|
if not fid == self.cache_fid: |
|
self.cache_fid = fid |
|
self.cache_npy = np.load(str(self.files[fid]))['data'] |
|
self.cache_npy = np.delete(self.cache_npy, self.removed_idxs[fid], axis=0) |
|
return self.cache_npy |
|
|
|
def __len__(self): |
|
|
|
return self.anchors[-1] |
|
|
|
def __getitem__(self, idx): |
|
fid = np.argmax(idx < self.anchors) - 1 |
|
idx = idx - self.anchors[fid] |
|
numpy_array = self.load_npy(fid)[idx] |
|
if self.transform is not None: |
|
torch_array = self.transform(numpy_array) |
|
return torch_array |
|
|
|
|
|
def load_data(dataspec, cfg): |
|
""" |
|
Load datasets, with finite eval set and infinitely looping training set |
|
""" |
|
if not dataspec in DATASET_PATH.keys(): |
|
raise ValueError('Unknown dataset. Add dataspec to load_data() or use one of \n%s' % list(DATASET_PATH.keys())) |
|
|
|
if dataspec in ['ImageNet64']: |
|
train_data, eval_data = [NPZLoader(DATASET_PATH[dataspec], train=mode, transform=ToIntTensor()) for mode in |
|
[True, False]] |
|
|
|
|
|
train_iter, eval_iter = [DataLoader(d, batch_size=cfg.batch_size, shuffle=cfg.get('shuffle', False), |
|
pin_memory=cfg.get('pin_memory', True), num_workers=cfg.get('num_workers', 1)) |
|
for d in [train_data, eval_data]] |
|
train_iter = cycle(train_iter) |
|
|
|
return train_iter, eval_iter |
|
|
|
|
|
def load_checkpoint(path): |
|
""" |
|
Load model from checkpoint. |
|
|
|
Input: |
|
------ |
|
path: path to a folder containing hyperparameters as config.json and parameters as checkpoint.pt |
|
""" |
|
with open(os.path.join(path, 'config.json'), 'r') as f: |
|
config = ConfigDict(json.load(f)) |
|
|
|
model = UQDM(config).to(device) |
|
cp_path = config.get('restore_ckpt', None) |
|
if cp_path is not None: |
|
model.load(os.path.join(path, cp_path)) |
|
|
|
return model |
|
|
|
|
|
""" |
|
UQDM: Diffusion model, Distributions, Entropy Coding, UQDM |
|
""" |
|
|
|
@contextmanager |
|
def local_seed(seed, i=0): |
|
|
|
if seed is None: |
|
yield |
|
else: |
|
with torch.random.fork_rng(): |
|
local_seed = hash((seed, i)) % (2 ** 32) |
|
torch.manual_seed(local_seed) |
|
yield |
|
|
|
|
|
class LogisticDistribution(TransformedDistribution): |
|
""" |
|
Creates a logistic distribution parameterized by :attr:`loc` and :attr:`scale` |
|
that define the affine transform of a standard logistic distribution. |
|
Patterned after https://github.com/pytorch/pytorch/blob/main/torch/distributions/logistic_normal.py |
|
|
|
Args: |
|
loc (float or Tensor): mean of the base distribution |
|
scale (float or Tensor): standard deviation of the base distribution |
|
|
|
""" |
|
arg_constraints = {"loc": constraints.real, "scale": constraints.positive} |
|
|
|
def __init__(self, loc, scale, validate_args=None): |
|
self.loc = loc |
|
self.scale = scale |
|
base_dist = Uniform(torch.tensor(0, dtype=loc.dtype, device=loc.device), |
|
torch.tensor(1, dtype=loc.dtype, device=loc.device)) |
|
if not base_dist.batch_shape: |
|
base_dist = base_dist.expand([1]) |
|
transforms = [SigmoidTransform().inv, AffineTransform(loc=loc, scale=scale)] |
|
super().__init__( |
|
base_dist, transforms, validate_args=validate_args |
|
) |
|
|
|
@property |
|
def mean(self): |
|
return self.loc |
|
|
|
def expand(self, batch_shape, _instance=None): |
|
new = self._get_checked_instance(LogisticDistribution, _instance) |
|
return super().expand(batch_shape, _instance=new) |
|
|
|
def cdf(self, x): |
|
|
|
return torch.sigmoid((x - self.loc) / self.scale) |
|
|
|
@staticmethod |
|
def log_sigmoid(x): |
|
|
|
|
|
return -torch.nn.functional.softplus(-x) |
|
|
|
def log_cdf(self, x): |
|
standardized = (x - self.loc) / self.scale |
|
return self.log_sigmoid(standardized) |
|
|
|
def log_survival_function(self, x): |
|
standardized = (x - self.loc) / self.scale |
|
return self.log_sigmoid(- standardized) |
|
|
|
|
|
class NormalDistribution(torch.distributions.Normal): |
|
""" |
|
Overrides the Normal distribution to add a numerically more stable log_cdf |
|
""" |
|
|
|
def log_cdf(self, x): |
|
x = (x - self.loc) / self.scale |
|
|
|
|
|
x_l = torch.clip(x, max=-10) |
|
log_scale = -0.5 * x_l ** 2 - torch.log(-x_l) - 0.5 * np.log(2. * np.pi) |
|
|
|
even_sum = torch.zeros_like(x) |
|
odd_sum = torch.zeros_like(x) |
|
x_2n = x_l ** 2 |
|
for n in range(1, 3 + 1): |
|
y = np.prod(np.arange(2 * n - 1, 1, -2)) / x_2n |
|
if n % 2: |
|
odd_sum += y |
|
else: |
|
even_sum += y |
|
x_2n *= x_l ** 2 |
|
x_lower = log_scale + torch.log(1 + even_sum - odd_sum) |
|
return torch.where( |
|
x > 5, -torch.special.ndtr(-x), |
|
torch.where(x > -10, torch.special.ndtr(torch.clip(x, min=-10)).log(), x_lower)) |
|
|
|
def log_survival_function(self, x): |
|
raise NotImplementedError |
|
|
|
|
|
class UniformNoisyDistribution(torch.distributions.Distribution): |
|
""" |
|
Add uniform noise U[-delta/2, +delta/2] to a distribution. |
|
Adapted from https://github.com/tensorflow/compression/blob/master/tensorflow_compression/python/distributions/uniform_noise.py |
|
Also see https://pytorch.org/docs/stable/_modules/torch/distributions/distribution.html |
|
""" |
|
|
|
arg_constraints = {} |
|
|
|
|
|
def __init__(self, base_dist, delta): |
|
super().__init__() |
|
self.base_dist = base_dist |
|
self.delta = delta |
|
self.half = delta / 2. |
|
self.log_delta = torch.log(delta) |
|
|
|
def sample(self, sample_shape=torch.Size([])): |
|
x = self.base_dist.sample(sample_shape) |
|
x += self.delta * torch.rand(x.shape, dtype=x.dtype, device=x.device) - self.half |
|
return x |
|
|
|
@property |
|
def mean(self): |
|
return self.base_dist.mean |
|
|
|
def discretize(self, u, tail_mass=2 ** -8): |
|
""" |
|
Turn the continuous distribution into a discrete one by discretizing to the grid u + k * delta. |
|
Returns the pmf of k = round((x - p_mean) / delta + u) as this is used for UQ, ignoring outlier values in the tails. |
|
""" |
|
|
|
|
|
|
|
L = torch.floor((self.base_dist.icdf(tail_mass / 2) - self.base_dist.mean).min() / self.delta - 0.5) |
|
R = torch.ceil((self.base_dist.icdf(1 - tail_mass / 2) - self.base_dist.mean).max() / self.delta + 0.5) |
|
x = (torch.arange(L, R + 1, device=u.device).reshape(-1, *4*[1]) - u) * self.delta + self.base_dist.mean |
|
|
|
logits = self.log_prob(x) + torch.log(self.delta) |
|
return OverflowCategorical(logits=logits, L=L, R=R) |
|
|
|
def log_prob(self, y): |
|
|
|
if not hasattr(self.base_dist, "log_cdf"): |
|
raise NotImplementedError( |
|
"`log_prob()` is not implemented unless the base distribution implements `log_cdf()`.") |
|
try: |
|
return self._log_prob_with_logsf_and_logcdf(y) |
|
except NotImplementedError: |
|
return self._log_prob_with_logcdf(y) |
|
|
|
@staticmethod |
|
def _logsum_expbig_minus_expsmall(big, small): |
|
|
|
|
|
return torch.where( |
|
torch.isinf(big), big, torch.log1p(-torch.exp(small - big)) + big |
|
) |
|
|
|
def _log_prob_with_logcdf(self, y): |
|
return self._logsum_expbig_minus_expsmall( |
|
self.base_dist.log_cdf(y + self.half), self.base_dist.log_cdf(y - self.half)) - self.log_delta |
|
|
|
def _log_prob_with_logsf_and_logcdf(self, y): |
|
"""Compute log_prob(y) using log survival_function and cdf together.""" |
|
|
|
|
|
|
|
|
|
|
|
h = self.half |
|
base = self.base_dist |
|
logsf_y_plus = base.log_survival_function(y + h) |
|
logsf_y_minus = base.log_survival_function(y - h) |
|
logcdf_y_plus = base.log_cdf(y + h) |
|
logcdf_y_minus = base.log_cdf(y - h) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
condition = logsf_y_plus < logcdf_y_plus |
|
big = torch.where(condition, logsf_y_minus, logcdf_y_plus) |
|
small = torch.where(condition, logsf_y_plus, logcdf_y_minus) |
|
return self._logsum_expbig_minus_expsmall(big, small) - self.log_delta |
|
|
|
|
|
class OverflowCategorical(torch.distributions.Categorical): |
|
""" |
|
Discrete distribution over [L, L+1, ..., R-1, R] with LaPlace-based tail_masses for values <L and >R. |
|
""" |
|
|
|
def __init__(self, logits, L, R): |
|
self.L = L |
|
self.R = R |
|
|
|
self.overflow = torch.log(torch.clip(- torch.expm1(torch.logsumexp(logits, dim=0)), min=0)) |
|
super().__init__(logits=torch.movedim(torch.cat([logits, self.overflow[None]], dim=0), 0, -1)) |
|
|
|
|
|
class EntropyModel: |
|
""" |
|
Entropy codec for discrete data based on Arithmetic Coding / Range Coding. |
|
Adapted from https://github.com/tensorflow/compression. |
|
For learned backward variances every symbol has a unique coding prior that requires a unique cdf table, |
|
which is computed in parallel here. |
|
""" |
|
|
|
def __init__(self, prior, range_coder_precision=16): |
|
""" |
|
|
|
Inputs: |
|
------- |
|
prior - [Categorical or OverflowCategorical] prior model over integers (optionally with allocated tail mass |
|
which will be encoded via Elias gamma code embedded into the range coder). |
|
range_coder_precision - precision passed to the range coding op, how accurately prior is quantized. |
|
""" |
|
super().__init__() |
|
self.prior = prior |
|
self.prior_shape = self.prior.probs.shape[:-1] |
|
self.precision = range_coder_precision |
|
|
|
|
|
total = 2 ** self.precision |
|
probs = self.prior.probs.reshape(-1, self.prior.probs.shape[-1]) |
|
quantized_pdf = torch.round(probs * total).to(torch.int32) |
|
quantized_pdf = torch.clip(quantized_pdf, min=1) |
|
|
|
|
|
while True: |
|
mask = quantized_pdf.sum(dim=-1) > total |
|
if not mask.any(): |
|
break |
|
|
|
penalty = probs[mask] * (torch.log2(1 + 1 / (quantized_pdf[mask] - 1))) |
|
|
|
idx = penalty.nan_to_num(torch.inf).argmin(dim=-1) |
|
quantized_pdf[mask, idx] -= 1 |
|
while True: |
|
mask = quantized_pdf.sum(axis=-1) < total |
|
if not mask.any(): |
|
break |
|
|
|
penalty = probs[mask] * (torch.log2(1 + 1 / quantized_pdf[mask])) |
|
idx = penalty.argmax(dim=-1) |
|
quantized_pdf[mask, idx] += 1 |
|
|
|
quantized_cdf = torch.cumsum(quantized_pdf, dim=-1) |
|
self.quantized_cdf = torch.cat([ |
|
- self.precision * torch.ones((quantized_pdf.shape[0], 1), device=device), |
|
torch.zeros((quantized_pdf.shape[0], 1), device=device), |
|
quantized_cdf |
|
], dim=-1).reshape(-1) |
|
self.indexes = torch.arange(quantized_pdf.shape[0], dtype=torch.int32) |
|
self.offsets = self.prior.L if type(self.prior) is OverflowCategorical else 0 |
|
|
|
def compress(self, x): |
|
""" |
|
Compresses a floating-point tensor to a bit string with the discretized prior. |
|
""" |
|
x = (x - self.offsets).to(torch.int32).reshape(-1).cpu() |
|
codec = gen_ops.create_range_encoder([], self.quantized_cdf.cpu()) |
|
codec = gen_ops.entropy_encode_index(codec, self.indexes.cpu(), x) |
|
bits = gen_ops.entropy_encode_finalize(codec).numpy() |
|
return bits |
|
|
|
def decompress(self, bits): |
|
""" |
|
Decompresses a tensor from bit strings. This requires knowledge of the image shape, |
|
which for arbitrary images sizes needs to be sent as side-information. |
|
""" |
|
bits = tf.convert_to_tensor(bits, dtype=tf.string) |
|
codec = gen_ops.create_range_decoder(bits, self.quantized_cdf.cpu()) |
|
codec, x = gen_ops.entropy_decode_index(codec, self.indexes.cpu(), self.indexes.shape, tf.int32) |
|
|
|
x = torch.from_numpy(x.numpy()).reshape(self.prior_shape).to(device).to(torch.float32) + self.offsets |
|
return x |
|
|
|
|
|
class Diffusion(torch.nn.Module): |
|
""" |
|
Progressive Compression with Gaussian Diffusion as in [Ho et al., 2020; Theis et al., 2022]. |
|
""" |
|
|
|
def __init__(self, config): |
|
""" |
|
Hyperparamters are set via a config dict. |
|
|
|
config.model |
|
.n_timesteps - number of diffusion steps, should be the same for training and inference, default:4 |
|
.prior_type - type of base distribution g_t, 'logistic' or 'normal' |
|
.base_prior_scale - variance of g_t, 'forward_kernel' or 'default' |
|
.learned_prior_scale - if to learn the variance of g_t, default: true |
|
.noise_schedule - 'fixed_linear' or 'learned_linear' |
|
.fix_gamma_max - set if using 'learned_linear' to only learn gamma_min |
|
.gamma_min - initial start value at t=0 |
|
.gamma_max - initial end value at t=T |
|
.ema_rate - default: 0.9999 |
|
# network hyperparameters (c.f. VDM_Net.__init__) |
|
.attention_everywhere - |
|
.use_fourier_features - |
|
.n_attention_heads - |
|
.n_channels - default: 3 |
|
.vocab_size - default: 256 |
|
.embedding_dim - |
|
.n_blocks - |
|
.norm_groups - |
|
.dropout_prob - |
|
config.data (c.f. torch DataLoader) |
|
.shuffle - false is recommended for faster loading with naive data loading, |
|
.pin_memory - |
|
.batch_size - |
|
.num_workers - |
|
.data_spec - "imagenet", add more in data_load |
|
config.training |
|
.n_steps - total steps on the training set, if continuing from a checkpoint |
|
this should be set to desired fine-tuning steps + all previous steps |
|
.log_metrics_every_steps - default: 1000 |
|
.checkpoint_every_steps - default: 10000 |
|
.eval_every_steps - default: 10000 |
|
.eval_steps_to_run - how many steps to evaluate on, set to None for the full eval set |
|
config.optim (c.f. torch Adam) |
|
.weight_decay - |
|
.beta1 - |
|
.eps - |
|
.lr - |
|
.warmup - linear learning rate warm-up, default: 1000 |
|
.grad_clip_norm - maximal gradient norm per step , default: 1.0 |
|
""" |
|
super().__init__() |
|
self.config = config |
|
self.score_net = VDM_Net(config) |
|
self.gamma = self.get_noise_schedule(config) |
|
self.ema = ExponentialMovingAverage(self.score_net.parameters(), decay=config.model.ema_rate) |
|
|
|
|
|
self.optimizer = torch.optim.Adam(self.parameters(), lr=config.optim.lr, betas=(config.optim.beta1, 0.999), |
|
eps=config.optim.eps, weight_decay=config.optim.weight_decay) |
|
self.step = 0 |
|
self.denoised = None |
|
self.compress_bits = [] |
|
|
|
def sigma2(self, t): |
|
return torch.sigmoid(self.gamma(t)) |
|
|
|
def sigma(self, t): |
|
return torch.sqrt(self.sigma2(t)) |
|
|
|
def alpha(self, t): |
|
return torch.sqrt(torch.sigmoid(-self.gamma(t))) |
|
|
|
def q_t(self, x, t=1): |
|
|
|
return Normal(loc=self.alpha(t) * x, scale=self.sigma(t)) |
|
|
|
def p_1(self): |
|
|
|
return Normal(torch.tensor(0.0).to(device), torch.tensor(1.0).to(device)) |
|
|
|
def p_s_t(self, p_loc, p_scale, t, s): |
|
|
|
if self.config.model.prior_type == 'logistic': |
|
base_dist = LogisticDistribution(loc=p_loc, scale=p_scale * np.sqrt(3. / np.pi ** 2)) |
|
elif self.config.model.prior_type in ('gaussian', 'normal'): |
|
base_dist = NormalDistribution(loc=p_loc, scale=p_scale) |
|
else: |
|
try: |
|
base_dist = getattr(torch.distributions, self.config.model.prior_type) |
|
except AttributeError: |
|
raise ValueError(f"Unknown prior type {self.config.model.prior_type}") |
|
return base_dist |
|
|
|
def q_s_t(self, q_loc, q_scale): |
|
|
|
return NormalDistribution(loc=q_loc, scale=q_scale) |
|
|
|
def relative_entropy_coding(self, q, p, compress_mode=None): |
|
|
|
raise NotImplementedError |
|
|
|
def get_s_t_params(self, z_t, t, s, x=None, clip_denoised=True, cache_denoised=False, deterministic=False): |
|
""" |
|
Compute the (location, scale) parameters of either q(z_s | z_t, x) |
|
or the reverse process distribution p(z_s | z_t) = q(z_s | z_t, x=x_hat) for the given z_t and times t, s. |
|
|
|
Inputs: |
|
------- |
|
x - if not None compute the parameters of q(z_t | z, x) instead p(z_s | z_t) |
|
clip_denoised - if True, will clip the denoised prediction x_hat(z_t) to [-1, 1]; |
|
this might be used to draw better samples. |
|
cache_denoised - keep the denoised prediction in memory for later use |
|
deterministic - if True, compute the mean needed for flow-based sampling instead, removing less noise overall |
|
""" |
|
gamma_t, gamma_s = self.gamma(t), self.gamma(s) |
|
alpha_t, alpha_s = self.alpha(t), self.alpha(s) |
|
sigma_t, sigma_s = self.sigma(t), self.sigma(s) |
|
|
|
expm1_term = - torch.special.expm1(gamma_s - gamma_t) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if x is None: |
|
if self.config.model.get('learned_prior_scale'): |
|
eps_hat, pred_scale_factors = self.score_net(z_t, gamma_t) |
|
else: |
|
eps_hat = self.score_net(z_t, gamma_t) |
|
|
|
if clip_denoised or cache_denoised: |
|
x = (z_t - sigma_t * eps_hat) / alpha_t |
|
if clip_denoised: |
|
x.clamp_(-1.0, 1.0) |
|
if cache_denoised: |
|
self.denoised = x |
|
|
|
|
|
scale = sigma_s * torch.sqrt(expm1_term) |
|
|
|
if self.config.model.get('base_prior_scale', 'forward_kernel') == 'forward_kernel': |
|
|
|
scale = sigma_t * torch.sqrt(expm1_term) |
|
if self.config.model.get('learned_prior_scale'): |
|
scale = scale * pred_scale_factors |
|
else: |
|
scale = sigma_s * torch.sqrt(expm1_term) |
|
|
|
|
|
if x is not None: |
|
if deterministic: |
|
loc = sigma_s / sigma_t * z_t - (alpha_t * sigma_s / sigma_t - alpha_s) * x |
|
else: |
|
loc = alpha_s * ((1 - expm1_term) / alpha_t * z_t + expm1_term * x) |
|
else: |
|
if deterministic: |
|
loc = alpha_s / alpha_t * z_t + (sigma_s - alpha_s / alpha_t * sigma_t) * eps_hat |
|
else: |
|
loc = alpha_s / alpha_t * (z_t - sigma_t * expm1_term * eps_hat) |
|
|
|
return loc, scale |
|
|
|
def transmit_q_s_t(self, x, z_t, t, s, compress_mode=None, cache_denoised=False): |
|
""" |
|
Perform a single transmission step of drawing a sample of z_t given z_s from q(z_t | z_s, x), |
|
under the conditional prior p(z_t | z_s). |
|
This will be approximated by REC/channel simulation at test time for actual compression. |
|
|
|
Inputs: |
|
------- |
|
x - the continuous data; belongs to the diffusion space (usually scaled to [-1, 1]) |
|
z_t - the previously communicated latent state |
|
t, s - the previous and current time steps, in [0, 1]; s < t. |
|
compress_mode - if to compress to bits in inference mode (which is slower), one of [None, 'encode', 'decode'] |
|
|
|
Returns: |
|
-------- |
|
z_s - the new latent state |
|
rate - (estimate of) the KL divergence between q(z_s | z_t, x) and p(z_s | z_t) |
|
""" |
|
|
|
p_loc, p_scale = self.get_s_t_params(z_t, t, s, cache_denoised=cache_denoised) |
|
q_loc, q_scale = self.get_s_t_params(z_t, t, s, x=x) |
|
p_s_t = self.p_s_t(p_loc, p_scale, t, s) |
|
q_s_t = self.q_s_t(q_loc, q_scale) |
|
z_s, rate = self.relative_entropy_coding(q_s_t, p_s_t, compress_mode=compress_mode) |
|
return z_s, rate |
|
|
|
def transmit_image(self, z_0, x_raw, compress_mode=None): |
|
if compress_mode in ['encode', 'decode']: |
|
p = torch.distributions.Categorical(logits=self.log_probs_x_z0(z_0=z_0)) |
|
if compress_mode == 'decode': |
|
|
|
x_raw = self.entropy_decode(self.compress_bits.pop(0), p) |
|
elif compress_mode == 'encode': |
|
|
|
self.compress_bits += [self.entropy_encode(x_raw, p)] |
|
return x_raw |
|
|
|
def forward(self, x_raw, z_1=None, recon_method=None, compress_mode=None, seed=None): |
|
""" |
|
Run a given data batch through the encoding/decoding path and compute the loss and other metrics. |
|
|
|
Inputs: |
|
------- |
|
x - batch of shape [B, C, H, W] |
|
z_1 - if provided, will use this as the topmost latent state instead of sampling from q(z_1 | x). |
|
recon_method - (optional) one of ['ancestral', 'denoise', 'flow-based']; determines how a progressive |
|
reconstruction will be computed based on an intermediate latent state. |
|
compress_mode - if to compress to bits in inference mode (which is slower), one of [None, 'encode', 'decode'] |
|
seed - allow for common randomness |
|
""" |
|
rescale_to_bpd = 1. / (np.prod(x_raw.shape[1:]) * np.log(2.)) |
|
|
|
|
|
x = 2 * ((x_raw.float() + .5) / self.config.model.vocab_size) - 1 |
|
|
|
|
|
|
|
if z_1 is None and not torch.is_inference_mode_enabled(): |
|
|
|
q_1 = self.q_t(x) |
|
p_1 = self.p_1() |
|
with local_seed(seed, i=0): |
|
z_1 = q_1.sample() |
|
loss_prior = kl_divergence(q_1, p_1).sum(dim=[1, 2, 3]) |
|
else: |
|
|
|
|
|
if z_1 is None: |
|
p_1 = self.p_1() |
|
with local_seed(seed, i=0): |
|
z_1 = p_1.sample(x.shape) |
|
loss_prior = torch.zeros(x.shape[0], device=device) |
|
|
|
|
|
|
|
z_s = z_1 |
|
rate_s = loss_prior |
|
loss_diff = 0. |
|
times = torch.linspace(1, 0, self.config.model.n_timesteps + 1, device=device) |
|
assert len(times) >= 2, "Need at least one diffusion step." |
|
metrics = [] |
|
for i in range(len(times) - 1): |
|
z_t = z_s |
|
rate_t = rate_s |
|
t, s = times[i], times[i + 1] |
|
with local_seed(seed, i=i + 1): |
|
z_s, rate_s = self.transmit_q_s_t(x, z_t, t, s, compress_mode=compress_mode, |
|
cache_denoised=recon_method == 'denoise') |
|
loss_diff += rate_s |
|
|
|
if recon_method is not None: |
|
x_hat_t = self.denoise_z_t(z_t, recon_method, times=times[i:]) |
|
metrics += [{ |
|
'prog_bpds': rate_t.cpu() * rescale_to_bpd, |
|
'prog_x_hats': x_hat_t.detach().cpu(), |
|
'prog_mses': torch.mean((x_hat_t - x_raw).float() ** 2, dim=[1, 2, 3]).cpu(), |
|
}] |
|
|
|
z_0 = z_s |
|
if recon_method is not None: |
|
if recon_method == 'ancestral': |
|
x_hat_t = self.decode_p_x_z_0(z_0=z_0, method='sample') |
|
else: |
|
x_hat_t = self.decode_p_x_z_0(z_0=z_0, method='argmax') |
|
metrics += [{ |
|
'prog_bpds': rate_s.cpu() * rescale_to_bpd, |
|
'prog_x_hats': x_hat_t.detach().cpu(), |
|
'prog_mses': torch.mean((x_hat_t - x_raw).float() ** 2, dim=[1, 2, 3]).cpu(), |
|
}] |
|
|
|
|
|
|
|
log_probs = self.log_probs_x_z0(z_0=z_0, x_raw=x_raw) |
|
loss_recon = -log_probs.sum(dim=[1, 2, 3]) |
|
x_raw = self.transmit_image(z_0, x_raw, compress_mode=compress_mode) |
|
if recon_method is not None: |
|
metrics += [{ |
|
'prog_bpds': loss_recon.cpu() * rescale_to_bpd, |
|
'prog_x_hats': x_raw.cpu(), |
|
'prog_mses': torch.zeros(x.shape[:1]), |
|
}] |
|
metrics = default_collate(metrics) |
|
else: |
|
metrics = {} |
|
|
|
bpd_latent = torch.mean(loss_prior) * rescale_to_bpd |
|
bpd_recon = torch.mean(loss_recon) * rescale_to_bpd |
|
bpd_diff = torch.mean(loss_diff) * rescale_to_bpd |
|
loss = bpd_recon + bpd_latent + bpd_diff |
|
metrics.update({ |
|
"bpd": loss, |
|
"bpd_latent": bpd_latent, |
|
"bpd_recon": bpd_recon, |
|
"bpd_diff": bpd_diff, |
|
}) |
|
|
|
return loss, metrics |
|
|
|
@torch.no_grad() |
|
def sample(self, init_z=None, shape=None, times=None, deterministic=False, |
|
clip_samples=False, decode_method='argmax', return_hist=False): |
|
""" |
|
Perform ancestral / flow-based sampling. |
|
|
|
Inputs: |
|
------- |
|
init_z - latent state [B, C, H, W] |
|
shape - if no init_z is given specify the shape of z instead |
|
times - (optional) provide a custom (e.g. partial) sequence of steps |
|
deterministic - use flow-based sampling instead of ancestral sampling |
|
clip_samples - clip latents to [-1, 1] |
|
decode_method - 'argmax' or 'sample' |
|
return_hist - if set return full history of latent states |
|
""" |
|
if init_z is None: |
|
assert shape is not None |
|
p_1 = self.p_1() |
|
z = p_1.sample(shape) |
|
else: |
|
z = init_z |
|
if return_hist: |
|
samples = [z] |
|
if times is None: |
|
times = torch.linspace(1.0, 0.0, self.config.model.n_timesteps + 1, device=device) |
|
|
|
|
|
for i in range(len(times) - 1): |
|
t, s = times[i], times[i + 1] |
|
p_loc, p_scale = self.get_s_t_params(z, t, s, clip_denoised=clip_samples, deterministic=deterministic) |
|
if deterministic: |
|
z = p_loc |
|
else: |
|
z = self.p_s_t(p_loc, p_scale, t, s).sample() |
|
if return_hist: |
|
samples.append(z) |
|
x_raw = self.decode_p_x_z_0(z_0=z, method=decode_method) |
|
|
|
if return_hist: |
|
return x_raw, samples + [x_raw] |
|
else: |
|
return x_raw |
|
|
|
def entropy_encode(self, k, p): |
|
""" |
|
Encode integer array k to bits using a prior / coding distribution p. |
|
We might want to quantize scale for determinism and added stability across multiple machines. |
|
""" |
|
|
|
assert self.config.model.learned_prior_scale |
|
em = EntropyModel(p) |
|
bitstring = em.compress(k) |
|
return bitstring |
|
|
|
def entropy_decode(self, bits, p): |
|
""" |
|
Decode integer array from bits using the prior p. |
|
""" |
|
assert self.config.model.learned_prior_scale |
|
em = EntropyModel(p) |
|
k = em.decompress(bits) |
|
return k |
|
|
|
@torch.inference_mode() |
|
def compress(self, image): |
|
|
|
self.compress_bits = [] |
|
|
|
self.forward(image.to(device), compress_mode='encode', seed=0) |
|
return self.compress_bits |
|
|
|
@torch.inference_mode() |
|
def decompress(self, bits, image_shape, recon_method='denoise'): |
|
|
|
self.compress_bits = bits.copy() |
|
|
|
_, metrics = self.forward(torch.zeros(image_shape, device=device), compress_mode='decode', |
|
recon_method=recon_method, seed=0) |
|
return metrics['prog_x_hats'] |
|
|
|
def log_probs_x_z0(self, z_0, x_raw=None): |
|
""" |
|
Computes log p(x_raw | z_0), under the Gaussian approximation of q(z_0|x) introduced in VDM, section 3.3. |
|
If `x_raw` is not provided, this method computes the log probs of every |
|
possible value of x_raw under a factorized categorical distribution; otherwise, |
|
it will evaluate the log probs of the given `x_raw`. |
|
|
|
Internally we compute p(x_i | z_0i), with i = pixel index, for all possible values |
|
of x_i in the vocabulary. We approximate this with q(z_0i | x_i). |
|
Un-normalized logits are: -1/2 SNR_0 (z_0 / alpha_0 - k)^2 |
|
where k takes all possible x_i values. Logits are then normalized to logprobs. |
|
|
|
If `x_raw` is None, the method returns a tensor of shape (B, C, H, W, |
|
vocab_size) containing, for each pixel, the log probabilities for all |
|
`vocab_size` possible values of that pixel. The output sums to 1 over |
|
the last dimension. Otherwise, we will select the log probs of the given `x_raw`. |
|
|
|
Inputs: |
|
------- |
|
z_0 - z_0 to be decoded, shape (B, C, H, W). |
|
x_raw - Input uint8 image, shape (B, C, H, W). |
|
|
|
Returns: |
|
-------- |
|
log_probs - Log probabilities [B, C, H, W, vocab_size] if `x_raw` is None else [B, C, H, W] |
|
""" |
|
gamma_0 = self.gamma(torch.tensor([0.0], device=device)) |
|
z_0_rescaled = z_0 / torch.sqrt(torch.sigmoid(-gamma_0)) |
|
|
|
|
|
x_vals = torch.arange(self.config.model.vocab_size, device=z_0_rescaled.device) |
|
x_vals = 2 * ((x_vals + .5) / self.config.model.vocab_size) - 1 |
|
x_vals = torch.reshape(x_vals, [1] * z_0_rescaled.ndim + [-1]) |
|
z = z_0_rescaled.unsqueeze(-1) |
|
logits = -0.5 * torch.exp(-gamma_0) * (z - x_vals) ** 2 |
|
logprobs = torch.log_softmax(logits, dim=-1) |
|
|
|
if x_raw is None: |
|
|
|
return logprobs |
|
else: |
|
|
|
x_one_hot = nn.functional.one_hot(x_raw.long(), num_classes=self.config.model.vocab_size) |
|
|
|
log_probs = (x_one_hot * logprobs).sum(-1) |
|
return log_probs |
|
|
|
def decode_p_x_z_0(self, z_0, method='argmax'): |
|
""" |
|
Decode the given latent state z_0 to the data space, |
|
using the observation model p(x | z_0). |
|
|
|
Inputs: |
|
------- |
|
z_0 - the latent state [B, C, H, W] |
|
method - 'argmax' or 'sample' |
|
|
|
Returns: |
|
-------- |
|
x_raw - the decoded x, mapped to data (integer) space |
|
""" |
|
logprobs = self.log_probs_x_z0(z_0=z_0) |
|
if method == 'argmax': |
|
x_raw = torch.argmax(logprobs, dim=-1) |
|
elif method == 'sample': |
|
x_raw = torch.distributions.Categorical(logits=logprobs).sample() |
|
else: |
|
raise ValueError(f"Unknown decoding method {method}") |
|
return x_raw |
|
|
|
def denoise_z_t(self, z_t, recon_method, times=None): |
|
""" |
|
Make a progressive data reconstruction based on z_t and compute its reconstruction quality. |
|
|
|
Inputs: |
|
------- |
|
z_t - noisy diffusion latent variable |
|
recon_method - one of 'denoise', 'ancestral', 'flow_based' |
|
times - remaining time steps including current t, for ancestral / flow-based sampling |
|
""" |
|
if recon_method == 'ancestral': |
|
x_hat_t = self.sample( |
|
times=times, init_z=z_t, |
|
clip_samples=True, decode_method='argmax', return_hist=False |
|
) |
|
elif recon_method == 'flow_based': |
|
x_hat_t = self.sample( |
|
times=times, init_z=z_t, deterministic=True, |
|
clip_samples=False, decode_method='argmax', return_hist=False |
|
) |
|
elif recon_method == 'denoise': |
|
|
|
assert self.denoised is not None |
|
|
|
x_hat_t = self.decode_p_x_z_0(z_0=self.denoised, method='argmax') |
|
self.denoised = None |
|
else: |
|
raise ValueError(f"Unknown progressive reconstruction method {recon_method}") |
|
|
|
return x_hat_t |
|
|
|
@staticmethod |
|
def get_noise_schedule(config): |
|
|
|
gamma_min, gamma_max, schedule = [getattr(config.model, k) for k in |
|
['gamma_min', 'gamma_max', 'noise_schedule']] |
|
assert gamma_max > gamma_min, "SNR should be decreasing in time" |
|
if schedule == "fixed_linear": |
|
gamma = Diffusion.FixedLinearSchedule(gamma_min, gamma_max) |
|
elif schedule == "learned_linear": |
|
gamma = Diffusion.LearnedLinearSchedule(gamma_min, gamma_max, config.model.get('fix_gamma_max')) |
|
|
|
else: |
|
raise ValueError('Unknown noise schedule %s' % schedule) |
|
return gamma |
|
|
|
class FixedLinearSchedule(torch.nn.Module): |
|
def __init__(self, gamma_min, gamma_max): |
|
super().__init__() |
|
self.gamma_min = gamma_min |
|
self.gamma_max = gamma_max |
|
|
|
def forward(self, t): |
|
return self.gamma_min + (self.gamma_max - self.gamma_min) * t |
|
|
|
class LearnedLinearSchedule(torch.nn.Module): |
|
def __init__(self, gamma_min, gamma_max, fix_gamma_max=False): |
|
super().__init__() |
|
self.fix_gamma_max = fix_gamma_max |
|
if fix_gamma_max: |
|
self.gamma_max = torch.tensor(gamma_max) |
|
else: |
|
self.b = torch.nn.Parameter(torch.tensor(gamma_min)) |
|
self.w = torch.nn.Parameter(torch.tensor(gamma_max - gamma_min)) |
|
|
|
def forward(self, t): |
|
w = self.w.abs() |
|
if self.fix_gamma_max: |
|
return w * (t - 1.) + self.gamma_max |
|
else: |
|
return self.b + w * t |
|
|
|
def save(self): |
|
torch.save({ |
|
'model': self.score_net.state_dict(), |
|
'ema': self.ema.state_dict(), |
|
'optimizer': self.optimizer.state_dict(), |
|
'step': self.step |
|
}, self.self.config.checkpoint_path) |
|
|
|
def load(self, path): |
|
cp = torch.load(path, map_location=device, weights_only=False) |
|
|
|
self.score_net.load_state_dict(cp['model']) |
|
self.ema.load_state_dict(cp['ema']) |
|
self.optimizer.load_state_dict(cp['optimizer']) |
|
self.step = cp['step'] |
|
|
|
def trainer(self, train_iter, eval_iter=None): |
|
""" |
|
Train UQDM for a specified number of steps on a train set. |
|
Hyperparameters are set via self.config.training, self.config.eval, and self.config.optim. |
|
""" |
|
|
|
if self.step >= self.config.training.n_steps: |
|
print('Skipping training, increase training.n_steps if more steps are desired.') |
|
|
|
while self.step < self.config.training.n_steps: |
|
|
|
batch = next(train_iter).to(device) |
|
self.optimizer.zero_grad() |
|
model.train() |
|
loss, metrics = self(batch) |
|
loss.backward() |
|
if self.config.optim.warmup > 0: |
|
for g in self.optimizer.param_groups: |
|
g['lr'] = self.config.optim.lr * np.minimum(self.step / self.config.optim.warmup, 1.0) |
|
if self.config.optim.grad_clip_norm >= 0: |
|
torch.nn.utils.clip_grad_norm_(self.parameters(), max_norm=self.config.optim.grad_clip_norm) |
|
self.optimizer.step() |
|
self.step += 1 |
|
self.ema.update(model.parameters()) |
|
|
|
last = self.step == self.config.training.n_steps |
|
|
|
if self.step % self.config.training.log_metrics_every_steps == 0 or last: |
|
self.save() |
|
|
|
if self.step % self.config.training.log_metrics_every_steps == 0 or last: |
|
print(metrics) |
|
|
|
if eval_iter is not None and (self.step % self.config.training.eval_every_steps == 0 or last): |
|
n_batches = self.config.training.eval_steps_to_run |
|
res = [] |
|
for batch in tqdm(islice(eval_iter, n_batches), total=n_batches or len(eval_iter), |
|
desc='Evaluating on test set'): |
|
batch = batch.to(device) |
|
with torch.inference_mode(): |
|
self.ema.store(model.parameters()) |
|
self.ema.copy_to(model.parameters()) |
|
model.eval() |
|
_, ths_metrics = self(batch) |
|
self.ema.restore(model.parameters()) |
|
res += [ths_metrics] |
|
res = default_collate(res) |
|
print({k: v.mean().item() for k, v in res.items()}) |
|
|
|
@staticmethod |
|
def mse_to_psnr(mse, max_val): |
|
with np.errstate(divide='ignore'): |
|
return -10 * (np.log10(mse) - 2 * np.log10(max_val)) |
|
|
|
@torch.inference_mode() |
|
def evaluate(self, eval_iter, n_batches=None, seed=None): |
|
""" |
|
Evaluate rate-distortion on the test set. |
|
|
|
Inputs: |
|
------- |
|
n_batches - (optionally) give a number of batches to evaluate |
|
""" |
|
|
|
res = [] |
|
for X in tqdm(islice(eval_iter, n_batches), total=n_batches or len(eval_iter), desc='Evaluating UQDM'): |
|
X = X.to(device) |
|
ths_res = {} |
|
for recon_method in ('denoise', 'ancestral', 'flow_based'): |
|
|
|
|
|
|
|
|
|
loss, metrics = self(X, recon_method=recon_method, seed=seed) |
|
bpds = np.cumsum(metrics['prog_bpds'].mean(dim=1)) |
|
psnrs = self.mse_to_psnr(metrics['prog_mses'].mean(dim=1), max_val=255.) |
|
ths_res[recon_method] = dict(bpds=bpds, psnrs=psnrs) |
|
res += [ths_res] |
|
res = default_collate(res) |
|
|
|
for recon_method in res.keys(): |
|
bpps = np.round(3 * res[recon_method]['bpds'].mean(axis=0).numpy(), 4) |
|
psnrs = np.round(res[recon_method]['psnrs'].mean(axis=0).numpy(), 4) |
|
print('Reconstructions via: %s\nbpps: %s\npsnrs: %s\n' % (recon_method, bpps, psnrs)) |
|
|
|
|
|
class UQDM(Diffusion): |
|
""" |
|
Making Progressive Compression tractable with Universal Quantization. |
|
""" |
|
|
|
def __init__(self, config): |
|
""" |
|
See Diffusion.__init__ for hyperparameters. |
|
""" |
|
super().__init__(config) |
|
self.compress_bits = None |
|
|
|
def p_s_t(self, p_loc, p_scale, t, s): |
|
|
|
delta_t = self.sigma(s) * torch.sqrt(- 12 * torch.special.expm1(self.gamma(s) - self.gamma(t))) |
|
base_dist = super().p_s_t(p_loc, p_scale, t, s) |
|
return UniformNoisyDistribution(base_dist, delta_t) |
|
|
|
def q_s_t(self, q_loc, q_scale): |
|
|
|
return Uniform(low=q_loc - np.sqrt(3) * q_scale, high=q_loc + np.sqrt(3) * q_scale) |
|
|
|
def relative_entropy_coding(self, q, p, compress_mode=None): |
|
|
|
if not torch.is_inference_mode_enabled(): |
|
z_s = q.sample() |
|
else: |
|
|
|
|
|
u = torch.rand(q.mean.shape, device=q.mean.device) - 0.5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if compress_mode in ['encode', 'decode']: |
|
p_discrete = p.discretize(u) |
|
if compress_mode == 'decode': |
|
|
|
quantized = self.entropy_decode(self.compress_bits.pop(0), p_discrete) |
|
else: |
|
|
|
|
|
quantized = torch.round((q.mean - p.mean + p.delta * u) / p.delta) |
|
if compress_mode == 'encode': |
|
|
|
self.compress_bits += [self.entropy_encode(quantized, p_discrete)] |
|
|
|
z_s = quantized * p.delta + p.mean - p.delta * u |
|
|
|
|
|
rate = - p.log_prob(z_s) - torch.log(p.delta) |
|
rate = torch.sum(rate, dim=[1, 2, 3]) |
|
return z_s, rate |
|
|
|
|
|
if __name__ == '__main__': |
|
seed = 0 |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.use_deterministic_algorithms(True) |
|
|
|
|
|
|
|
model = load_checkpoint('checkpoints/uqdm-medium') |
|
|
|
train_iter, eval_iter = load_data('ImageNet64', model.config.data) |
|
|
|
|
|
model.evaluate(eval_iter, n_batches=10, seed=seed) |
|
|
|
|
|
image = next(iter(eval_iter)) |
|
compressed = model.compress(image) |
|
bits = [len(b) * 8 for b in compressed] |
|
reconstructions = model.decompress(compressed, image.shape, recon_method='denoise') |
|
assert (reconstructions[-1] == image).all() |
|
print('Reconstructions via: denoise, compression to bits\nbpps: %s' |
|
% np.round(np.cumsum(bits) / np.prod(image.shape) * 3, 4)) |
|
|