UQDM / uqdm.py
justuswill's picture
Upload uqdm.py
86ddd89 verified
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, default_collate
from torch.distributions import constraints, TransformedDistribution, SigmoidTransform, AffineTransform
from torch.distributions import Normal, Uniform
from torch.distributions.kl import kl_divergence
# For compression to bits only
from tensorflow_compression.python.ops import gen_ops
import tensorflow as tf
from itertools import islice
from ml_collections import ConfigDict
import numpy as np
import json
import os
from pathlib import Path
from contextlib import contextmanager
import zipfile
from tqdm import tqdm
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
DATASET_PATH = {
'ImageNet64': 'data/imagenet64/',
}
"""
PyTorch Implementation of 'Progressive Compression with Universally Quantized Diffusion Models', Yang et al., 2025.
Written with focus on readability for a single GPU.
Sections:
Model: Denoising network
Data: ImageNet64 data
UQDM: Diffusion model + codec + simple trainer for the network + saving / loading
Major changes from previous work are highlighted in the class UQDM
"""
"""
Denoising network, Exponential Moving Average (EMA)
"""
class VDM_Net(torch.nn.Module):
"""
Based on score Net from
https://github.com/addtt/variational-diffusion-models/blob/main/vdm_unet.py
which itself is based on
https://github.com/google-research/vdm/blob/main/model_vdm.py
and maps parameters via
vdm_unet -> model_vdm
mcfg.n_attention_heads: 1 (fixed)
mcfg.embedding_dim: sm_n_embd
mcfg.n_blocks: sm_n_layer
mcfg.dropout_prob: sm_pdrop
mcfg.norm_groups: 32 (fixed, default setting for flax.linen.GroupNorm)
In addition to predicting the noise, we (optionally) predict backward variances by doubling the output channels.
"""
@staticmethod
def softplus_inverse(x):
"""Helper which computes the inverse of `tf.nn.softplus`."""
import math
import numpy as np
return math.log(np.expm1(x))
def softplus_init1(self, x):
# Softplus with a shift to bias the output towards 1.0.
return torch.nn.functional.softplus(x + self.SOFTPLUS_INV1)
def __init__(self, config):
super().__init__()
self.config = config
self.mcfg = mcfg = config.model
attention_params = dict(
n_heads=mcfg.n_attention_heads,
n_channels=mcfg.embedding_dim,
norm_groups=mcfg.norm_groups,
)
resnet_params = dict(
ch_in=mcfg.embedding_dim,
ch_out=mcfg.embedding_dim,
condition_dim=4 * mcfg.embedding_dim,
dropout_prob=mcfg.dropout_prob,
norm_groups=mcfg.norm_groups,
)
if mcfg.use_fourier_features:
self.fourier_features = FourierFeatures()
self.embed_conditioning = nn.Sequential(
nn.Linear(mcfg.embedding_dim, mcfg.embedding_dim * 4),
nn.SiLU(),
nn.Linear(mcfg.embedding_dim * 4, mcfg.embedding_dim * 4),
nn.SiLU(),
)
total_input_ch = mcfg.n_channels
if mcfg.use_fourier_features:
total_input_ch *= 1 + self.fourier_features.num_features
self.conv_in = nn.Conv2d(total_input_ch, mcfg.embedding_dim, 3, padding=1)
# Down path: n_blocks blocks with a resnet block and maybe attention.
self.down_blocks = nn.ModuleList(
UpDownBlock(
resnet_block=ResnetBlock(**resnet_params),
attention_block=AttentionBlock(**attention_params)
if mcfg.attention_everywhere
else None,
)
for _ in range(mcfg.n_blocks)
)
self.mid_resnet_block_1 = ResnetBlock(**resnet_params)
self.mid_attn_block = AttentionBlock(**attention_params)
self.mid_resnet_block_2 = ResnetBlock(**resnet_params)
# Up path: n_blocks+1 blocks with a resnet block and maybe attention.
resnet_params["ch_in"] *= 2 # double input channels due to skip connections
self.up_blocks = nn.ModuleList(
UpDownBlock(
resnet_block=ResnetBlock(**resnet_params),
attention_block=AttentionBlock(**attention_params)
if mcfg.attention_everywhere
else None,
)
for _ in range(mcfg.n_blocks + 1)
)
output_channels = mcfg.n_channels
if config.model.get('learned_prior_scale'):
output_channels *= 2
self.conv_out = nn.Sequential(
nn.GroupNorm(num_groups=mcfg.norm_groups, num_channels=mcfg.embedding_dim),
nn.SiLU(),
zero_init(nn.Conv2d(mcfg.embedding_dim, output_channels, kernel_size=3, padding=1)),
)
self.SOFTPLUS_INV1 = self.softplus_inverse(1.0)
def forward(self, z, g_t):
# Get gamma to shape (B, ).
g_t = g_t.expand(z.shape[0]) # assume shape () or (1,) or (B,)
assert g_t.shape == (z.shape[0],)
# Rescale to [0, 1], but only approximately since gamma0 & gamma1 are not fixed.
t = (g_t - self.mcfg.gamma_min) / (self.mcfg.gamma_max - self.mcfg.gamma_min)
t_embedding = get_timestep_embedding(t, self.mcfg.embedding_dim)
# We will condition on time embedding.
cond = self.embed_conditioning(t_embedding)
h = self.maybe_concat_fourier(z)
h = self.conv_in(h) # (B, embedding_dim, H, W)
hs = []
for down_block in self.down_blocks: # n_blocks times
hs.append(h)
h = down_block(h, cond)
hs.append(h)
h = self.mid_resnet_block_1(h, cond)
h = self.mid_attn_block(h)
h = self.mid_resnet_block_2(h, cond)
for up_block in self.up_blocks: # n_blocks+1 times
h = torch.cat([h, hs.pop()], dim=1)
h = up_block(h, cond)
h = self.conv_out(h)
if self.mcfg.get('learned_prior_scale'):
# Split the output into a mean and scale component. (B, C, H, W)
eps_hat, pred_scale_factors = torch.split(h, self.mcfg.n_channels, dim=1)
pred_scale_factors = self.softplus_init1(pred_scale_factors) # Make positive.
else:
eps_hat = h
assert eps_hat.shape == z.shape, (eps_hat.shape, z.shape)
eps_hat = eps_hat + z
if self.mcfg.get('learned_prior_scale'):
return eps_hat, pred_scale_factors
else:
return eps_hat
def maybe_concat_fourier(self, z):
if self.mcfg.use_fourier_features:
return torch.cat([z, self.fourier_features(z)], dim=1)
return z
@torch.no_grad()
def zero_init(module: nn.Module) -> nn.Module:
# Sets to zero all the parameters of a module, and returns the module.
for p in module.parameters():
nn.init.zeros_(p.data)
return module
class ResnetBlock(nn.Module):
def __init__(
self,
ch_in,
ch_out=None,
condition_dim=None,
dropout_prob=0.0,
norm_groups=32,
):
super().__init__()
ch_out = ch_in if ch_out is None else ch_out
self.ch_out = ch_out
self.condition_dim = condition_dim
self.net1 = nn.Sequential(
nn.GroupNorm(num_groups=norm_groups, num_channels=ch_in),
nn.SiLU(),
nn.Conv2d(ch_in, ch_out, kernel_size=3, padding=1),
)
if condition_dim is not None:
self.cond_proj = zero_init(nn.Linear(condition_dim, ch_out, bias=False))
self.net2 = nn.Sequential(
nn.GroupNorm(num_groups=norm_groups, num_channels=ch_out),
nn.SiLU(),
*([nn.Dropout(dropout_prob)] * (dropout_prob > 0.0)),
zero_init(nn.Conv2d(ch_out, ch_out, kernel_size=3, padding=1)),
)
if ch_in != ch_out:
self.skip_conv = nn.Conv2d(ch_in, ch_out, kernel_size=1)
def forward(self, x, condition):
h = self.net1(x)
if condition is not None:
assert condition.shape == (x.shape[0], self.condition_dim)
condition = self.cond_proj(condition)
condition = condition[:, :, None, None]
h = h + condition
h = self.net2(h)
if x.shape[1] != self.ch_out:
x = self.skip_conv(x)
assert x.shape == h.shape
return x + h
def get_timestep_embedding(
timesteps,
embedding_dim: int,
dtype=torch.float32,
max_timescale=10_000,
min_timescale=1,
):
# Adapted from tensor2tensor and VDM codebase.
assert timesteps.ndim == 1
assert embedding_dim % 2 == 0
timesteps *= 1000.0 # In DDPM the time step is in [0, 1000], here [0, 1]
num_timescales = embedding_dim // 2
inv_timescales = torch.logspace( # or exp(-linspace(log(min), log(max), n))
-np.log10(min_timescale),
-np.log10(max_timescale),
num_timescales,
device=timesteps.device,
)
emb = timesteps.to(dtype)[:, None] * inv_timescales[None, :] # (T, D/2)
return torch.cat([emb.sin(), emb.cos()], dim=1) # (T, D)
class FourierFeatures(nn.Module):
def __init__(self, first=5.0, last=6.0, step=1.0):
super().__init__()
self.freqs_exponent = torch.arange(first, last + 1e-8, step)
@property
def num_features(self):
return len(self.freqs_exponent) * 2
def forward(self, x):
assert len(x.shape) >= 2
# Compute (2pi * 2^n) for n in freqs.
freqs_exponent = self.freqs_exponent.to(dtype=x.dtype, device=x.device) # (F, )
freqs = 2.0 ** freqs_exponent * 2 * torch.pi # (F, )
freqs = freqs.view(-1, *([1] * (x.dim() - 1))) # (F, 1, 1, ...)
# Compute (2pi * 2^n * x) for n in freqs.
features = freqs * x.unsqueeze(1) # (B, F, X1, X2, ...)
features = features.flatten(1, 2) # (B, F * C, X1, X2, ...)
# Output features are cos and sin of above. Shape (B, 2 * F * C, H, W).
return torch.cat([features.sin(), features.cos()], dim=1)
def attention_inner_heads(qkv, num_heads):
"""Computes attention with heads inside of qkv in the channel dimension.
Args:
qkv: Tensor of shape (B, 3*H*C, T) with Qs, Ks, and Vs, where:
H = number of heads,
C = number of channels per head.
num_heads: number of heads.
Returns:
Attention output of shape (B, H*C, T).
"""
bs, width, length = qkv.shape
ch = width // (3 * num_heads)
# Split into (q, k, v) of shape (B, H*C, T).
q, k, v = qkv.chunk(3, dim=1)
# Rescale q and k. This makes them contiguous in memory.
scale = ch ** (-1 / 4) # scale with 4th root = scaling output by sqrt
q = q * scale
k = k * scale
# Reshape qkv to (B*H, C, T).
new_shape = (bs * num_heads, ch, length)
q = q.view(*new_shape)
k = k.view(*new_shape)
v = v.reshape(*new_shape)
# Compute attention.
weight = torch.einsum("bct,bcs->bts", q, k) # (B*H, T, T)
weight = torch.softmax(weight.float(), dim=-1).to(weight.dtype) # (B*H, T, T)
out = torch.einsum("bts,bcs->bct", weight, v) # (B*H, C, T)
return out.reshape(bs, num_heads * ch, length) # (B, H*C, T)
class Attention(nn.Module):
# Based on https://github.com/openai/guided-diffusion.
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
assert qkv.dim() >= 3, qkv.dim()
assert qkv.shape[1] % (3 * self.n_heads) == 0
spatial_dims = qkv.shape[2:]
qkv = qkv.view(*qkv.shape[:2], -1) # (B, 3*H*C, T)
out = attention_inner_heads(qkv, self.n_heads) # (B, H*C, T)
return out.view(*out.shape[:2], *spatial_dims)
class AttentionBlock(nn.Module):
"""Self-attention residual block."""
def __init__(self, n_heads, n_channels, norm_groups):
super().__init__()
assert n_channels % n_heads == 0
self.layers = nn.Sequential(
nn.GroupNorm(num_groups=norm_groups, num_channels=n_channels),
nn.Conv2d(n_channels, 3 * n_channels, kernel_size=1), # (B, 3 * C, H, W)
Attention(n_heads),
zero_init(nn.Conv2d(n_channels, n_channels, kernel_size=1)),
)
def forward(self, x):
return self.layers(x) + x
class UpDownBlock(nn.Module):
def __init__(self, resnet_block, attention_block=None):
super().__init__()
self.resnet_block = resnet_block
self.attention_block = attention_block
def forward(self, x, cond):
x = self.resnet_block(x, cond)
if self.attention_block is not None:
x = self.attention_block(x)
return x
class ExponentialMovingAverage:
"""
Maintains (exponential) moving average of a set of parameters.
Code from https://github.com/yang-song/score_sde_pytorch/blob/main/models/ema.py
which is modified from https://raw.githubusercontent.com/fadel/pytorch_ema/master/torch_ema/ema.py
and partially based on https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/training/moving_averages.py
"""
def __init__(self, parameters, decay, use_num_updates=True):
"""
Args:
parameters: Iterable of `torch.nn.Parameter`; usually the result of
`model.parameters()`.
decay: The exponential decay.
use_num_updates: Whether to use number of updates when computing
averages.
"""
if decay < 0.0 or decay > 1.0:
raise ValueError('Decay must be between 0 and 1')
self.decay = decay
self.num_updates = 0 if use_num_updates else None
self.shadow_params = [p.clone().detach()
for p in parameters if p.requires_grad]
self.collected_params = []
def update(self, parameters):
"""
Update currently maintained parameters.
Call this every time the parameters are updated, such as the result of
the `optimizer.step()` call.
Args:
parameters: Iterable of `torch.nn.Parameter`; usually the same set of
parameters used to initialize this object.
"""
decay = self.decay
if self.num_updates is not None:
self.num_updates += 1
decay = min(decay, (1 + self.num_updates) / (10 + self.num_updates))
one_minus_decay = 1.0 - decay
with torch.no_grad():
parameters = [p for p in parameters if p.requires_grad]
for s_param, param in zip(self.shadow_params, parameters):
s_param.sub_(one_minus_decay * (s_param - param))
def copy_to(self, parameters):
"""
Copy current parameters into given collection of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages.
"""
parameters = [p for p in parameters if p.requires_grad]
for s_param, param in zip(self.shadow_params, parameters):
if param.requires_grad:
param.data.copy_(s_param.data)
def store(self, parameters):
"""
Save the current parameters for restoring later.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
temporarily stored.
"""
self.collected_params = [param.clone() for param in parameters]
def restore(self, parameters):
"""
Restore the parameters stored with the `store` method.
Useful to validate the model with EMA parameters without affecting the
original optimization process. Store the parameters before the
`copy_to` method. After validation (or model saving), use this to
restore the former parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored parameters.
"""
for c_param, param in zip(self.collected_params, parameters):
param.data.copy_(c_param.data)
def state_dict(self):
return dict(decay=self.decay, num_updates=self.num_updates,
shadow_params=self.shadow_params)
def load_state_dict(self, state_dict):
self.decay = state_dict['decay']
self.num_updates = state_dict['num_updates']
self.shadow_params = state_dict['shadow_params']
"""
Data and Checkpoint Loading
"""
def cycle(iterable):
while True:
for x in iterable:
yield x
class ToIntTensor:
# for IMAGENET64
def __call__(self, image):
image = torch.as_tensor(image.reshape(3, 64, 64), dtype=torch.uint8)
return image
class NPZLoader(Dataset):
"""
Load from a batched numpy dataset.
Keeps one data batch loaded in memory, so load idx sequentially for fast sampling
"""
def __init__(self, path, train=True, transform=None, remove_duplicates=True):
self.path = path
if train:
self.files = list(Path(path).glob('*train*.npz'))
else:
self.files = list(Path(path).glob('*val*.npz'))
self.batch_lens = [self.npz_len(f) for f in self.files]
self.anchors = np.cumsum([0] + self.batch_lens)
self.removed_idxs = [[] for _ in range(len(self.files))]
if not train and remove_duplicates:
removed = np.load(os.path.join(path, 'removed.npy'))
self.removed_idxs = [
removed[(removed >= self.anchors[i]) & (removed < self.anchors[i + 1])] - self.anchors[i] for i in
range(len(self.files))]
self.anchors -= np.cumsum([0] + [np.size(r) for r in self.removed_idxs])
self.transform = transform
self.cache_fid = None
self.cache_npy = None
# https://stackoverflow.com/questions/68224572/how-to-determine-the-shape-size-of-npz-file
@staticmethod
def npz_len(npz):
"""
Takes a path to an .npz file, which is a Zip archive of .npy files and returns the batch size of stored data,
i.e. of the first .npy found
"""
with zipfile.ZipFile(npz) as archive:
for name in archive.namelist():
if not name.endswith('.npy'):
continue
npy = archive.open(name)
version = np.lib.format.read_magic(npy)
shape, fortran, dtype = np.lib.format._read_array_header(npy, version)
return shape[0]
def load_npy(self, fid):
if not fid == self.cache_fid:
self.cache_fid = fid
self.cache_npy = np.load(str(self.files[fid]))['data']
self.cache_npy = np.delete(self.cache_npy, self.removed_idxs[fid], axis=0)
return self.cache_npy
def __len__(self):
# return sum(self.batch_lens)
return self.anchors[-1]
def __getitem__(self, idx):
fid = np.argmax(idx < self.anchors) - 1
idx = idx - self.anchors[fid]
numpy_array = self.load_npy(fid)[idx]
if self.transform is not None:
torch_array = self.transform(numpy_array)
return torch_array
def load_data(dataspec, cfg):
"""
Load datasets, with finite eval set and infinitely looping training set
"""
if not dataspec in DATASET_PATH.keys():
raise ValueError('Unknown dataset. Add dataspec to load_data() or use one of \n%s' % list(DATASET_PATH.keys()))
if dataspec in ['ImageNet64']:
train_data, eval_data = [NPZLoader(DATASET_PATH[dataspec], train=mode, transform=ToIntTensor()) for mode in
[True, False]]
# elif: # Add more datasets here
train_iter, eval_iter = [DataLoader(d, batch_size=cfg.batch_size, shuffle=cfg.get('shuffle', False),
pin_memory=cfg.get('pin_memory', True), num_workers=cfg.get('num_workers', 1))
for d in [train_data, eval_data]]
train_iter = cycle(train_iter)
return train_iter, eval_iter
def load_checkpoint(path):
"""
Load model from checkpoint.
Input:
------
path: path to a folder containing hyperparameters as config.json and parameters as checkpoint.pt
"""
with open(os.path.join(path, 'config.json'), 'r') as f:
config = ConfigDict(json.load(f))
model = UQDM(config).to(device)
cp_path = config.get('restore_ckpt', None)
if cp_path is not None:
model.load(os.path.join(path, cp_path))
return model
"""
UQDM: Diffusion model, Distributions, Entropy Coding, UQDM
"""
@contextmanager
def local_seed(seed, i=0):
# Allow for local randomness, use hashing to get unique local seeds for subsequent draws
if seed is None:
yield
else:
with torch.random.fork_rng():
local_seed = hash((seed, i)) % (2 ** 32)
torch.manual_seed(local_seed)
yield
class LogisticDistribution(TransformedDistribution):
"""
Creates a logistic distribution parameterized by :attr:`loc` and :attr:`scale`
that define the affine transform of a standard logistic distribution.
Patterned after https://github.com/pytorch/pytorch/blob/main/torch/distributions/logistic_normal.py
Args:
loc (float or Tensor): mean of the base distribution
scale (float or Tensor): standard deviation of the base distribution
"""
arg_constraints = {"loc": constraints.real, "scale": constraints.positive}
def __init__(self, loc, scale, validate_args=None):
self.loc = loc
self.scale = scale
base_dist = Uniform(torch.tensor(0, dtype=loc.dtype, device=loc.device),
torch.tensor(1, dtype=loc.dtype, device=loc.device))
if not base_dist.batch_shape:
base_dist = base_dist.expand([1])
transforms = [SigmoidTransform().inv, AffineTransform(loc=loc, scale=scale)]
super().__init__(
base_dist, transforms, validate_args=validate_args
)
@property
def mean(self):
return self.loc
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(LogisticDistribution, _instance)
return super().expand(batch_shape, _instance=new)
def cdf(self, x):
# Should be numerically more stable than the default.
return torch.sigmoid((x - self.loc) / self.scale)
@staticmethod
def log_sigmoid(x):
# A numerically more stable implementation of torch.log(torch.sigmoid(x)).
# c.f. https://jax.readthedocs.io/en/latest/_autosummary/jax.nn.log_sigmoid.html#jax.nn.log_sigmoid
return -torch.nn.functional.softplus(-x)
def log_cdf(self, x):
standardized = (x - self.loc) / self.scale
return self.log_sigmoid(standardized)
def log_survival_function(self, x):
standardized = (x - self.loc) / self.scale
return self.log_sigmoid(- standardized)
class NormalDistribution(torch.distributions.Normal):
"""
Overrides the Normal distribution to add a numerically more stable log_cdf
"""
def log_cdf(self, x):
x = (x - self.loc) / self.scale
# more stable, for float32 ported from JAX, using log(1-x) ~= -x, x >> 1
# for small x
x_l = torch.clip(x, max=-10)
log_scale = -0.5 * x_l ** 2 - torch.log(-x_l) - 0.5 * np.log(2. * np.pi)
# asymptotic series
even_sum = torch.zeros_like(x)
odd_sum = torch.zeros_like(x)
x_2n = x_l ** 2
for n in range(1, 3 + 1):
y = np.prod(np.arange(2 * n - 1, 1, -2)) / x_2n
if n % 2:
odd_sum += y
else:
even_sum += y
x_2n *= x_l ** 2
x_lower = log_scale + torch.log(1 + even_sum - odd_sum)
return torch.where(
x > 5, -torch.special.ndtr(-x),
torch.where(x > -10, torch.special.ndtr(torch.clip(x, min=-10)).log(), x_lower))
def log_survival_function(self, x):
raise NotImplementedError
class UniformNoisyDistribution(torch.distributions.Distribution):
"""
Add uniform noise U[-delta/2, +delta/2] to a distribution.
Adapted from https://github.com/tensorflow/compression/blob/master/tensorflow_compression/python/distributions/uniform_noise.py
Also see https://pytorch.org/docs/stable/_modules/torch/distributions/distribution.html
"""
arg_constraints = {}
# arg_constraints = {"delta": torch.distributions.constraints.nonnegative}
def __init__(self, base_dist, delta):
super().__init__()
self.base_dist = base_dist
self.delta = delta # delta is the noise width.
self.half = delta / 2.
self.log_delta = torch.log(delta)
def sample(self, sample_shape=torch.Size([])):
x = self.base_dist.sample(sample_shape)
x += self.delta * torch.rand(x.shape, dtype=x.dtype, device=x.device) - self.half
return x
@property
def mean(self):
return self.base_dist.mean
def discretize(self, u, tail_mass=2 ** -8):
"""
Turn the continuous distribution into a discrete one by discretizing to the grid u + k * delta.
Returns the pmf of k = round((x - p_mean) / delta + u) as this is used for UQ, ignoring outlier values in the tails.
"""
# For quantiles: Because p(x) = (G(x+d/2) - G(x-d/2))/d,
# P(X <= x) = 1/d int_{x-d/2}^{x+d/2} G(u) du <= G(x+d/2) or >= G(x-d/2) which might be tighter for small d
# P(X <= G^-1(a) - d/2) <= a, P(K <= (G^-1(a) - p_mean)/d - 1/2 - p_mean/d + u) <= a
L = torch.floor((self.base_dist.icdf(tail_mass / 2) - self.base_dist.mean).min() / self.delta - 0.5)
R = torch.ceil((self.base_dist.icdf(1 - tail_mass / 2) - self.base_dist.mean).max() / self.delta + 0.5)
x = (torch.arange(L, R + 1, device=u.device).reshape(-1, *4*[1]) - u) * self.delta + self.base_dist.mean
# Assume pdf is locally linear then ln(p(x+-d/2)) = ln(p(x)*d) = ln(p(x)) + ln(d)
logits = self.log_prob(x) + torch.log(self.delta)
return OverflowCategorical(logits=logits, L=L, R=R)
def log_prob(self, y):
# return torch.log(self.base_dist.cdf(y + self.half) - self.base_dist.cdf(y - self.half)) - self.log_delta
if not hasattr(self.base_dist, "log_cdf"):
raise NotImplementedError(
"`log_prob()` is not implemented unless the base distribution implements `log_cdf()`.")
try:
return self._log_prob_with_logsf_and_logcdf(y)
except NotImplementedError:
return self._log_prob_with_logcdf(y)
@staticmethod
def _logsum_expbig_minus_expsmall(big, small):
# Numerically stable evaluation of log(exp(big) - exp(small)).
# https://github.com/tensorflow/compression/blob/a41fc70fc092bc6b72d5075deec34cbb47ef9077/tensorflow_compression/python/distributions/uniform_noise.py#L33
return torch.where(
torch.isinf(big), big, torch.log1p(-torch.exp(small - big)) + big
)
def _log_prob_with_logcdf(self, y):
return self._logsum_expbig_minus_expsmall(
self.base_dist.log_cdf(y + self.half), self.base_dist.log_cdf(y - self.half)) - self.log_delta
def _log_prob_with_logsf_and_logcdf(self, y):
"""Compute log_prob(y) using log survival_function and cdf together."""
# There are two options that would be equal if we had infinite precision:
# Log[ sf(y - .5) - sf(y + .5) ]
# = Log[ exp{logsf(y - .5)} - exp{logsf(y + .5)} ]
# Log[ cdf(y + .5) - cdf(y - .5) ]
# = Log[ exp{logcdf(y + .5)} - exp{logcdf(y - .5)} ]
h = self.half
base = self.base_dist
logsf_y_plus = base.log_survival_function(y + h)
logsf_y_minus = base.log_survival_function(y - h)
logcdf_y_plus = base.log_cdf(y + h)
logcdf_y_minus = base.log_cdf(y - h)
# Important: Here we use select in a way such that no input is inf, this
# prevents the troublesome case where the output of select can be finite,
# but the output of grad(select) will be NaN.
# In either case, we are doing Log[ exp{big} - exp{small} ]
# We want to use the sf items precisely when we are on the right side of the
# median, which occurs when logsf_y < logcdf_y.
condition = logsf_y_plus < logcdf_y_plus
big = torch.where(condition, logsf_y_minus, logcdf_y_plus)
small = torch.where(condition, logsf_y_plus, logcdf_y_minus)
return self._logsum_expbig_minus_expsmall(big, small) - self.log_delta
class OverflowCategorical(torch.distributions.Categorical):
"""
Discrete distribution over [L, L+1, ..., R-1, R] with LaPlace-based tail_masses for values <L and >R.
"""
def __init__(self, logits, L, R):
self.L = L
self.R = R
# stable version of log(1 - sum_i exp(logp_i))
self.overflow = torch.log(torch.clip(- torch.expm1(torch.logsumexp(logits, dim=0)), min=0))
super().__init__(logits=torch.movedim(torch.cat([logits, self.overflow[None]], dim=0), 0, -1))
class EntropyModel:
"""
Entropy codec for discrete data based on Arithmetic Coding / Range Coding.
Adapted from https://github.com/tensorflow/compression.
For learned backward variances every symbol has a unique coding prior that requires a unique cdf table,
which is computed in parallel here.
"""
def __init__(self, prior, range_coder_precision=16):
"""
Inputs:
-------
prior - [Categorical or OverflowCategorical] prior model over integers (optionally with allocated tail mass
which will be encoded via Elias gamma code embedded into the range coder).
range_coder_precision - precision passed to the range coding op, how accurately prior is quantized.
"""
super().__init__()
self.prior = prior
self.prior_shape = self.prior.probs.shape[:-1]
self.precision = range_coder_precision
# Build quantization tables
total = 2 ** self.precision
probs = self.prior.probs.reshape(-1, self.prior.probs.shape[-1])
quantized_pdf = torch.round(probs * total).to(torch.int32)
quantized_pdf = torch.clip(quantized_pdf, min=1)
# Normalize pdf so that sum pmf_i = 2 ** precision
while True:
mask = quantized_pdf.sum(dim=-1) > total
if not mask.any():
break
# m * (log2(v) - log2(v-1))
penalty = probs[mask] * (torch.log2(1 + 1 / (quantized_pdf[mask] - 1)))
# inf if v = 1 as intended but handle nan if also pmf = 0
idx = penalty.nan_to_num(torch.inf).argmin(dim=-1)
quantized_pdf[mask, idx] -= 1
while True:
mask = quantized_pdf.sum(axis=-1) < total
if not mask.any():
break
# m * (log2(v+1) - log2(v))
penalty = probs[mask] * (torch.log2(1 + 1 / quantized_pdf[mask]))
idx = penalty.argmax(dim=-1)
quantized_pdf[mask, idx] += 1
quantized_cdf = torch.cumsum(quantized_pdf, dim=-1)
self.quantized_cdf = torch.cat([
- self.precision * torch.ones((quantized_pdf.shape[0], 1), device=device),
torch.zeros((quantized_pdf.shape[0], 1), device=device),
quantized_cdf
], dim=-1).reshape(-1)
self.indexes = torch.arange(quantized_pdf.shape[0], dtype=torch.int32)
self.offsets = self.prior.L if type(self.prior) is OverflowCategorical else 0
def compress(self, x):
"""
Compresses a floating-point tensor to a bit string with the discretized prior.
"""
x = (x - self.offsets).to(torch.int32).reshape(-1).cpu()
codec = gen_ops.create_range_encoder([], self.quantized_cdf.cpu())
codec = gen_ops.entropy_encode_index(codec, self.indexes.cpu(), x)
bits = gen_ops.entropy_encode_finalize(codec).numpy()
return bits
def decompress(self, bits):
"""
Decompresses a tensor from bit strings. This requires knowledge of the image shape,
which for arbitrary images sizes needs to be sent as side-information.
"""
bits = tf.convert_to_tensor(bits, dtype=tf.string)
codec = gen_ops.create_range_decoder(bits, self.quantized_cdf.cpu())
codec, x = gen_ops.entropy_decode_index(codec, self.indexes.cpu(), self.indexes.shape, tf.int32)
# sanity = gen_ops.entropy_decode_finalize(codec)
x = torch.from_numpy(x.numpy()).reshape(self.prior_shape).to(device).to(torch.float32) + self.offsets
return x
class Diffusion(torch.nn.Module):
"""
Progressive Compression with Gaussian Diffusion as in [Ho et al., 2020; Theis et al., 2022].
"""
def __init__(self, config):
"""
Hyperparamters are set via a config dict.
config.model
.n_timesteps - number of diffusion steps, should be the same for training and inference, default:4
.prior_type - type of base distribution g_t, 'logistic' or 'normal'
.base_prior_scale - variance of g_t, 'forward_kernel' or 'default'
.learned_prior_scale - if to learn the variance of g_t, default: true
.noise_schedule - 'fixed_linear' or 'learned_linear'
.fix_gamma_max - set if using 'learned_linear' to only learn gamma_min
.gamma_min - initial start value at t=0
.gamma_max - initial end value at t=T
.ema_rate - default: 0.9999
# network hyperparameters (c.f. VDM_Net.__init__)
.attention_everywhere -
.use_fourier_features -
.n_attention_heads -
.n_channels - default: 3
.vocab_size - default: 256
.embedding_dim -
.n_blocks -
.norm_groups -
.dropout_prob -
config.data (c.f. torch DataLoader)
.shuffle - false is recommended for faster loading with naive data loading,
.pin_memory -
.batch_size -
.num_workers -
.data_spec - "imagenet", add more in data_load
config.training
.n_steps - total steps on the training set, if continuing from a checkpoint
this should be set to desired fine-tuning steps + all previous steps
.log_metrics_every_steps - default: 1000
.checkpoint_every_steps - default: 10000
.eval_every_steps - default: 10000
.eval_steps_to_run - how many steps to evaluate on, set to None for the full eval set
config.optim (c.f. torch Adam)
.weight_decay -
.beta1 -
.eps -
.lr -
.warmup - linear learning rate warm-up, default: 1000
.grad_clip_norm - maximal gradient norm per step , default: 1.0
"""
super().__init__()
self.config = config
self.score_net = VDM_Net(config)
self.gamma = self.get_noise_schedule(config)
self.ema = ExponentialMovingAverage(self.score_net.parameters(), decay=config.model.ema_rate)
# Init optimizer now to allow loading/saving optimizer state from checkpoints
self.optimizer = torch.optim.Adam(self.parameters(), lr=config.optim.lr, betas=(config.optim.beta1, 0.999),
eps=config.optim.eps, weight_decay=config.optim.weight_decay)
self.step = 0
self.denoised = None
self.compress_bits = []
def sigma2(self, t):
return torch.sigmoid(self.gamma(t))
def sigma(self, t):
return torch.sqrt(self.sigma2(t))
def alpha(self, t):
return torch.sqrt(torch.sigmoid(-self.gamma(t)))
def q_t(self, x, t=1):
# q(z_t | x) = N(alpha_t x, sigma^2_t).
return Normal(loc=self.alpha(t) * x, scale=self.sigma(t))
def p_1(self):
# p(z_1) = N(0, 1)
return Normal(torch.tensor(0.0).to(device), torch.tensor(1.0).to(device))
def p_s_t(self, p_loc, p_scale, t, s):
# p(z_s | z_t) = N(p_loc, p_scale^2)
if self.config.model.prior_type == 'logistic':
base_dist = LogisticDistribution(loc=p_loc, scale=p_scale * np.sqrt(3. / np.pi ** 2))
elif self.config.model.prior_type in ('gaussian', 'normal'):
base_dist = NormalDistribution(loc=p_loc, scale=p_scale)
else:
try:
base_dist = getattr(torch.distributions, self.config.model.prior_type)
except AttributeError:
raise ValueError(f"Unknown prior type {self.config.model.prior_type}")
return base_dist
def q_s_t(self, q_loc, q_scale):
# q(z_s | z_t, x) = N(q_loc, q_scale^2)
return NormalDistribution(loc=q_loc, scale=q_scale)
def relative_entropy_coding(self, q, p, compress_mode=None):
# Exponential runtime with naive REC algorithms
raise NotImplementedError
def get_s_t_params(self, z_t, t, s, x=None, clip_denoised=True, cache_denoised=False, deterministic=False):
"""
Compute the (location, scale) parameters of either q(z_s | z_t, x)
or the reverse process distribution p(z_s | z_t) = q(z_s | z_t, x=x_hat) for the given z_t and times t, s.
Inputs:
-------
x - if not None compute the parameters of q(z_t | z, x) instead p(z_s | z_t)
clip_denoised - if True, will clip the denoised prediction x_hat(z_t) to [-1, 1];
this might be used to draw better samples.
cache_denoised - keep the denoised prediction in memory for later use
deterministic - if True, compute the mean needed for flow-based sampling instead, removing less noise overall
"""
gamma_t, gamma_s = self.gamma(t), self.gamma(s)
alpha_t, alpha_s = self.alpha(t), self.alpha(s)
sigma_t, sigma_s = self.sigma(t), self.sigma(s)
# expm1 = 1 - alpha_t^2 / alpha_s^2 * sigma_s^2 / sigma_t^2 = sigma_t|s^2 / sigma_t^2
expm1_term = - torch.special.expm1(gamma_s - gamma_t)
# Parameters of q(z_s | z_t, x)
# q_var = sigma_s^2 * sigma^2_t|s / sigma^2_t, c.f. VDM eq (25)
# = sigma_s^2 * expm1_term, c.f. VDM eq (33)
# q_loc = alpha_t / alpha_s * sigma_s^2 / sigma_t^2 * z_t + alpha_s * sigma_t|s^2 / sigma_t^2 * x, c.f. VDM eq (26)
# = alpha_s * ((1 - expm1_term) / alpha_t * z_t + expm1_term * x)
# = alpha_s / alpha_t * (z_t - sigma_t|s^2 / sigma_t * eps), c.f. VDM eq (29)
# = alpha_s / alpha_t * (z_t - sigma_t * expm1_term * eps), c.f. VDM eq (32)
# = alpha_s / alpha_t * (z_t - sigma_t * eps) + c * eps,
# with c = alpha_s / alpha_t * sigma_t * (1 - expm1_term) = alpha_t / alpha_s * sigma_s^2 / sigma_t
# = alpha_s / alpha_t * x + c * eps,
# for flow-based set var = 0 and c = sigma_s, c.f. DDIM eq (12)
# -> loc = alpha_s / alpha_t * z_t + (sigma_s - alpha_s / alpha_t * sigma_t) * eps
# = alpha_s / alpha_t * z_t + (sigma_s - alpha_s / alpha_t * sigma_t) * (z_t - alpha_t * x) / sigma_t
# = alpha_s / alpha_t * z_t + (sigma_s / sigma_t - alpha_s / alpha_t) * (z_t - alpha_t * x)
# = (alpha_s / alpha_t + sigma_s / sigma_t - alpha_s / alpha_t) * z_t - alpha_t * (sigma_s / sigma_t - alpha_s / alpha_t) * x
# = sigma_s / sigma_t * z_t - (alpha_t * sigma_s / sigma_t - alpha_s) * x
# Set x = x_hat or eps = eps_hat for p(z_s | z_t)
if x is None:
if self.config.model.get('learned_prior_scale'):
eps_hat, pred_scale_factors = self.score_net(z_t, gamma_t)
else:
eps_hat = self.score_net(z_t, gamma_t)
# Compute denoised prediction only if necessary
if clip_denoised or cache_denoised:
x = (z_t - sigma_t * eps_hat) / alpha_t # c.f. VDM eq (30)
if clip_denoised:
x.clamp_(-1.0, 1.0)
if cache_denoised:
self.denoised = x
# Variance of q(z_s | z_t, x)
scale = sigma_s * torch.sqrt(expm1_term)
# Additional modifications for p(z_s | z_t)
if self.config.model.get('base_prior_scale', 'forward_kernel') == 'forward_kernel':
# use sigma_t|s^2, the variance of q(z_t | z_s) instead
scale = sigma_t * torch.sqrt(expm1_term)
if self.config.model.get('learned_prior_scale'):
scale = scale * pred_scale_factors
else:
scale = sigma_s * torch.sqrt(expm1_term)
# Mean of q(z_s | z_t, x)
if x is not None:
if deterministic:
loc = sigma_s / sigma_t * z_t - (alpha_t * sigma_s / sigma_t - alpha_s) * x
else:
loc = alpha_s * ((1 - expm1_term) / alpha_t * z_t + expm1_term * x)
else:
if deterministic:
loc = alpha_s / alpha_t * z_t + (sigma_s - alpha_s / alpha_t * sigma_t) * eps_hat
else:
loc = alpha_s / alpha_t * (z_t - sigma_t * expm1_term * eps_hat)
return loc, scale
def transmit_q_s_t(self, x, z_t, t, s, compress_mode=None, cache_denoised=False):
"""
Perform a single transmission step of drawing a sample of z_t given z_s from q(z_t | z_s, x),
under the conditional prior p(z_t | z_s).
This will be approximated by REC/channel simulation at test time for actual compression.
Inputs:
-------
x - the continuous data; belongs to the diffusion space (usually scaled to [-1, 1])
z_t - the previously communicated latent state
t, s - the previous and current time steps, in [0, 1]; s < t.
compress_mode - if to compress to bits in inference mode (which is slower), one of [None, 'encode', 'decode']
Returns:
--------
z_s - the new latent state
rate - (estimate of) the KL divergence between q(z_s | z_t, x) and p(z_s | z_t)
"""
# Compute parameters of q(z_s | z_t, x) and the prior p(z_s | z_t)
p_loc, p_scale = self.get_s_t_params(z_t, t, s, cache_denoised=cache_denoised)
q_loc, q_scale = self.get_s_t_params(z_t, t, s, x=x)
p_s_t = self.p_s_t(p_loc, p_scale, t, s)
q_s_t = self.q_s_t(q_loc, q_scale)
z_s, rate = self.relative_entropy_coding(q_s_t, p_s_t, compress_mode=compress_mode)
return z_s, rate
def transmit_image(self, z_0, x_raw, compress_mode=None):
if compress_mode in ['encode', 'decode']:
p = torch.distributions.Categorical(logits=self.log_probs_x_z0(z_0=z_0))
if compress_mode == 'decode':
# consume bits
x_raw = self.entropy_decode(self.compress_bits.pop(0), p)
elif compress_mode == 'encode':
# accumulate bits
self.compress_bits += [self.entropy_encode(x_raw, p)]
return x_raw
def forward(self, x_raw, z_1=None, recon_method=None, compress_mode=None, seed=None):
"""
Run a given data batch through the encoding/decoding path and compute the loss and other metrics.
Inputs:
-------
x - batch of shape [B, C, H, W]
z_1 - if provided, will use this as the topmost latent state instead of sampling from q(z_1 | x).
recon_method - (optional) one of ['ancestral', 'denoise', 'flow-based']; determines how a progressive
reconstruction will be computed based on an intermediate latent state.
compress_mode - if to compress to bits in inference mode (which is slower), one of [None, 'encode', 'decode']
seed - allow for common randomness
"""
rescale_to_bpd = 1. / (np.prod(x_raw.shape[1:]) * np.log(2.))
# Transform from uint8 in [0, 255] to float in [-1, 1]; the first r.v. of the diffusion process.
x = 2 * ((x_raw.float() + .5) / self.config.model.vocab_size) - 1
# 1. PRIOR/LATENT LOSS
# KL z1 with N(0,1) prior; should be close to 0.
if z_1 is None and not torch.is_inference_mode_enabled():
# During training me might want to optimize the noise schedule so use the full NELBO
q_1 = self.q_t(x)
p_1 = self.p_1()
with local_seed(seed, i=0):
z_1 = q_1.sample()
loss_prior = kl_divergence(q_1, p_1).sum(dim=[1, 2, 3])
else:
# In actual compression, we can't do REC for the Gaussian q(z_1|x) under p(z_1), so
# instead both encoder/decoder will draw from p(z_1).
if z_1 is None:
p_1 = self.p_1()
with local_seed(seed, i=0):
z_1 = p_1.sample(x.shape)
loss_prior = torch.zeros(x.shape[0], device=device)
# 2. DIFFUSION LOSS
# Sample through the hierarchy and sum together KL[q(z_s | z_t, x)||p(z_s | z_t)) for the diffusion loss.
z_s = z_1
rate_s = loss_prior
loss_diff = 0.
times = torch.linspace(1, 0, self.config.model.n_timesteps + 1, device=device)
assert len(times) >= 2, "Need at least one diffusion step."
metrics = []
for i in range(len(times) - 1):
z_t = z_s
rate_t = rate_s
t, s = times[i], times[i + 1]
with local_seed(seed, i=i + 1):
z_s, rate_s = self.transmit_q_s_t(x, z_t, t, s, compress_mode=compress_mode,
cache_denoised=recon_method == 'denoise')
loss_diff += rate_s
if recon_method is not None:
x_hat_t = self.denoise_z_t(z_t, recon_method, times=times[i:])
metrics += [{
'prog_bpds': rate_t.cpu() * rescale_to_bpd,
'prog_x_hats': x_hat_t.detach().cpu(),
'prog_mses': torch.mean((x_hat_t - x_raw).float() ** 2, dim=[1, 2, 3]).cpu(),
}]
z_0 = z_s
if recon_method is not None:
if recon_method == 'ancestral':
x_hat_t = self.decode_p_x_z_0(z_0=z_0, method='sample')
else:
x_hat_t = self.decode_p_x_z_0(z_0=z_0, method='argmax')
metrics += [{
'prog_bpds': rate_s.cpu() * rescale_to_bpd,
'prog_x_hats': x_hat_t.detach().cpu(),
'prog_mses': torch.mean((x_hat_t - x_raw).float() ** 2, dim=[1, 2, 3]).cpu(),
}]
# 3. RECONSTRUCTION LOSS.
# Using the same likelihood model as in VDM.
log_probs = self.log_probs_x_z0(z_0=z_0, x_raw=x_raw)
loss_recon = -log_probs.sum(dim=[1, 2, 3])
x_raw = self.transmit_image(z_0, x_raw, compress_mode=compress_mode)
if recon_method is not None:
metrics += [{
'prog_bpds': loss_recon.cpu() * rescale_to_bpd,
'prog_x_hats': x_raw.cpu(),
'prog_mses': torch.zeros(x.shape[:1]),
}]
metrics = default_collate(metrics)
else:
metrics = {}
bpd_latent = torch.mean(loss_prior) * rescale_to_bpd
bpd_recon = torch.mean(loss_recon) * rescale_to_bpd
bpd_diff = torch.mean(loss_diff) * rescale_to_bpd
loss = bpd_recon + bpd_latent + bpd_diff
metrics.update({
"bpd": loss,
"bpd_latent": bpd_latent,
"bpd_recon": bpd_recon,
"bpd_diff": bpd_diff,
})
return loss, metrics
@torch.no_grad()
def sample(self, init_z=None, shape=None, times=None, deterministic=False,
clip_samples=False, decode_method='argmax', return_hist=False):
"""
Perform ancestral / flow-based sampling.
Inputs:
-------
init_z - latent state [B, C, H, W]
shape - if no init_z is given specify the shape of z instead
times - (optional) provide a custom (e.g. partial) sequence of steps
deterministic - use flow-based sampling instead of ancestral sampling
clip_samples - clip latents to [-1, 1]
decode_method - 'argmax' or 'sample'
return_hist - if set return full history of latent states
"""
if init_z is None:
assert shape is not None
p_1 = self.p_1()
z = p_1.sample(shape)
else:
z = init_z
if return_hist:
samples = [z]
if times is None:
times = torch.linspace(1.0, 0.0, self.config.model.n_timesteps + 1, device=device)
# for i in trange(len(times) - 1, desc="sampling"):
for i in range(len(times) - 1):
t, s = times[i], times[i + 1]
p_loc, p_scale = self.get_s_t_params(z, t, s, clip_denoised=clip_samples, deterministic=deterministic)
if deterministic:
z = p_loc
else:
z = self.p_s_t(p_loc, p_scale, t, s).sample()
if return_hist:
samples.append(z)
x_raw = self.decode_p_x_z_0(z_0=z, method=decode_method)
if return_hist:
return x_raw, samples + [x_raw]
else:
return x_raw
def entropy_encode(self, k, p):
"""
Encode integer array k to bits using a prior / coding distribution p.
We might want to quantize scale for determinism and added stability across multiple machines.
"""
# When using a scalar prior it would be better to quantize u as in tfc.UniversalBatchedEntropyModel
assert self.config.model.learned_prior_scale
em = EntropyModel(p)
bitstring = em.compress(k)
return bitstring
def entropy_decode(self, bits, p):
"""
Decode integer array from bits using the prior p.
"""
assert self.config.model.learned_prior_scale
em = EntropyModel(p)
k = em.decompress(bits)
return k
@torch.inference_mode()
def compress(self, image):
# return the bits for each step
self.compress_bits = []
# accumulate bits
self.forward(image.to(device), compress_mode='encode', seed=0)
return self.compress_bits
@torch.inference_mode()
def decompress(self, bits, image_shape, recon_method='denoise'):
# consume the bits for each step, return the intermediate reconstructions for each step
self.compress_bits = bits.copy()
# consume the bits for each step
_, metrics = self.forward(torch.zeros(image_shape, device=device), compress_mode='decode',
recon_method=recon_method, seed=0)
return metrics['prog_x_hats']
def log_probs_x_z0(self, z_0, x_raw=None):
"""
Computes log p(x_raw | z_0), under the Gaussian approximation of q(z_0|x) introduced in VDM, section 3.3.
If `x_raw` is not provided, this method computes the log probs of every
possible value of x_raw under a factorized categorical distribution; otherwise,
it will evaluate the log probs of the given `x_raw`.
Internally we compute p(x_i | z_0i), with i = pixel index, for all possible values
of x_i in the vocabulary. We approximate this with q(z_0i | x_i).
Un-normalized logits are: -1/2 SNR_0 (z_0 / alpha_0 - k)^2
where k takes all possible x_i values. Logits are then normalized to logprobs.
If `x_raw` is None, the method returns a tensor of shape (B, C, H, W,
vocab_size) containing, for each pixel, the log probabilities for all
`vocab_size` possible values of that pixel. The output sums to 1 over
the last dimension. Otherwise, we will select the log probs of the given `x_raw`.
Inputs:
-------
z_0 - z_0 to be decoded, shape (B, C, H, W).
x_raw - Input uint8 image, shape (B, C, H, W).
Returns:
--------
log_probs - Log probabilities [B, C, H, W, vocab_size] if `x_raw` is None else [B, C, H, W]
"""
gamma_0 = self.gamma(torch.tensor([0.0], device=device))
z_0_rescaled = z_0 / torch.sqrt(torch.sigmoid(-gamma_0))
# Compute a tensor of log p(x | z) for all possible values of x.
# Logits are exact if there are no dependencies between dimensions of x
x_vals = torch.arange(self.config.model.vocab_size, device=z_0_rescaled.device)
x_vals = 2 * ((x_vals + .5) / self.config.model.vocab_size) - 1
x_vals = torch.reshape(x_vals, [1] * z_0_rescaled.ndim + [-1])
z = z_0_rescaled.unsqueeze(-1) # (B, D1, ..., D_n) -> (B, D1, ..., D_n, 1) for broadcasting
logits = -0.5 * torch.exp(-gamma_0) * (z - x_vals) ** 2 # (B, D1, ..., D_n, V)
logprobs = torch.log_softmax(logits, dim=-1) # (B, C, H, W, V)
if x_raw is None:
# Has an extra dimension for vocab_size.
return logprobs
else:
# elementwise log prob, same shape as x_raw
x_one_hot = nn.functional.one_hot(x_raw.long(), num_classes=self.config.model.vocab_size)
# Select the correct log probabilities.
log_probs = (x_one_hot * logprobs).sum(-1) # (B, C, H, W)
return log_probs
def decode_p_x_z_0(self, z_0, method='argmax'):
"""
Decode the given latent state z_0 to the data space,
using the observation model p(x | z_0).
Inputs:
-------
z_0 - the latent state [B, C, H, W]
method - 'argmax' or 'sample'
Returns:
--------
x_raw - the decoded x, mapped to data (integer) space
"""
logprobs = self.log_probs_x_z0(z_0=z_0) # (B, C, H, W, vocab_size)
if method == 'argmax':
x_raw = torch.argmax(logprobs, dim=-1) # (B, C, H, W)
elif method == 'sample':
x_raw = torch.distributions.Categorical(logits=logprobs).sample()
else:
raise ValueError(f"Unknown decoding method {method}")
return x_raw
def denoise_z_t(self, z_t, recon_method, times=None):
"""
Make a progressive data reconstruction based on z_t and compute its reconstruction quality.
Inputs:
-------
z_t - noisy diffusion latent variable
recon_method - one of 'denoise', 'ancestral', 'flow_based'
times - remaining time steps including current t, for ancestral / flow-based sampling
"""
if recon_method == 'ancestral':
x_hat_t = self.sample(
times=times, init_z=z_t,
clip_samples=True, decode_method='argmax', return_hist=False
)
elif recon_method == 'flow_based':
x_hat_t = self.sample(
times=times, init_z=z_t, deterministic=True,
clip_samples=False, decode_method='argmax', return_hist=False
)
elif recon_method == 'denoise':
# Load from cache
assert self.denoised is not None
# Map to data space
x_hat_t = self.decode_p_x_z_0(z_0=self.denoised, method='argmax')
self.denoised = None
else:
raise ValueError(f"Unknown progressive reconstruction method {recon_method}")
return x_hat_t
@staticmethod
def get_noise_schedule(config):
# gamma is the negative log-snr as in VDM eq (3)
gamma_min, gamma_max, schedule = [getattr(config.model, k) for k in
['gamma_min', 'gamma_max', 'noise_schedule']]
assert gamma_max > gamma_min, "SNR should be decreasing in time"
if schedule == "fixed_linear":
gamma = Diffusion.FixedLinearSchedule(gamma_min, gamma_max)
elif schedule == "learned_linear":
gamma = Diffusion.LearnedLinearSchedule(gamma_min, gamma_max, config.model.get('fix_gamma_max'))
# elif: # add different noise schedules here
else:
raise ValueError('Unknown noise schedule %s' % schedule)
return gamma
class FixedLinearSchedule(torch.nn.Module):
def __init__(self, gamma_min, gamma_max):
super().__init__()
self.gamma_min = gamma_min
self.gamma_max = gamma_max
def forward(self, t):
return self.gamma_min + (self.gamma_max - self.gamma_min) * t
class LearnedLinearSchedule(torch.nn.Module):
def __init__(self, gamma_min, gamma_max, fix_gamma_max=False):
super().__init__()
self.fix_gamma_max = fix_gamma_max
if fix_gamma_max:
self.gamma_max = torch.tensor(gamma_max)
else:
self.b = torch.nn.Parameter(torch.tensor(gamma_min))
self.w = torch.nn.Parameter(torch.tensor(gamma_max - gamma_min))
def forward(self, t):
w = self.w.abs()
if self.fix_gamma_max:
return w * (t - 1.) + self.gamma_max
else:
return self.b + w * t
def save(self):
torch.save({
'model': self.score_net.state_dict(),
'ema': self.ema.state_dict(),
'optimizer': self.optimizer.state_dict(),
'step': self.step
}, self.self.config.checkpoint_path)
def load(self, path):
cp = torch.load(path, map_location=device, weights_only=False)
# score_net + gamma
self.score_net.load_state_dict(cp['model'])
self.ema.load_state_dict(cp['ema'])
self.optimizer.load_state_dict(cp['optimizer'])
self.step = cp['step']
def trainer(self, train_iter, eval_iter=None):
"""
Train UQDM for a specified number of steps on a train set.
Hyperparameters are set via self.config.training, self.config.eval, and self.config.optim.
"""
if self.step >= self.config.training.n_steps:
print('Skipping training, increase training.n_steps if more steps are desired.')
while self.step < self.config.training.n_steps:
# Parameter update step
batch = next(train_iter).to(device)
self.optimizer.zero_grad()
model.train()
loss, metrics = self(batch)
loss.backward()
if self.config.optim.warmup > 0:
for g in self.optimizer.param_groups:
g['lr'] = self.config.optim.lr * np.minimum(self.step / self.config.optim.warmup, 1.0)
if self.config.optim.grad_clip_norm >= 0:
torch.nn.utils.clip_grad_norm_(self.parameters(), max_norm=self.config.optim.grad_clip_norm)
self.optimizer.step()
self.step += 1
self.ema.update(model.parameters())
last = self.step == self.config.training.n_steps
# Save model checkpoint
if self.step % self.config.training.log_metrics_every_steps == 0 or last:
self.save()
# Print train metrics
if self.step % self.config.training.log_metrics_every_steps == 0 or last:
print(metrics)
# Compute and print validation metrics
if eval_iter is not None and (self.step % self.config.training.eval_every_steps == 0 or last):
n_batches = self.config.training.eval_steps_to_run
res = []
for batch in tqdm(islice(eval_iter, n_batches), total=n_batches or len(eval_iter),
desc='Evaluating on test set'):
batch = batch.to(device)
with torch.inference_mode():
self.ema.store(model.parameters())
self.ema.copy_to(model.parameters())
model.eval()
_, ths_metrics = self(batch)
self.ema.restore(model.parameters())
res += [ths_metrics]
res = default_collate(res)
print({k: v.mean().item() for k, v in res.items()})
@staticmethod
def mse_to_psnr(mse, max_val):
with np.errstate(divide='ignore'):
return -10 * (np.log10(mse) - 2 * np.log10(max_val))
@torch.inference_mode()
def evaluate(self, eval_iter, n_batches=None, seed=None):
"""
Evaluate rate-distortion on the test set.
Inputs:
-------
n_batches - (optionally) give a number of batches to evaluate
"""
res = []
for X in tqdm(islice(eval_iter, n_batches), total=n_batches or len(eval_iter), desc='Evaluating UQDM'):
X = X.to(device)
ths_res = {}
for recon_method in ('denoise', 'ancestral', 'flow_based'):
# If evaluating bpds as file sizes:
# self.compress_bits = []
# loss, metrics = self(X, recon_method=recon_method, seed=seed, compress_mode='encode')
# bpds = np.cumsum([len(b) * 8 for b in self.compress_bits]) / np.prod(X.shape)
loss, metrics = self(X, recon_method=recon_method, seed=seed)
bpds = np.cumsum(metrics['prog_bpds'].mean(dim=1))
psnrs = self.mse_to_psnr(metrics['prog_mses'].mean(dim=1), max_val=255.)
ths_res[recon_method] = dict(bpds=bpds, psnrs=psnrs)
res += [ths_res]
res = default_collate(res)
for recon_method in res.keys():
bpps = np.round(3 * res[recon_method]['bpds'].mean(axis=0).numpy(), 4)
psnrs = np.round(res[recon_method]['psnrs'].mean(axis=0).numpy(), 4)
print('Reconstructions via: %s\nbpps: %s\npsnrs: %s\n' % (recon_method, bpps, psnrs))
class UQDM(Diffusion):
"""
Making Progressive Compression tractable with Universal Quantization.
"""
def __init__(self, config):
"""
See Diffusion.__init__ for hyperparameters.
"""
super().__init__(config)
self.compress_bits = None
def p_s_t(self, p_loc, p_scale, t, s):
# p(z_s | z_t) is a convolution of g_t and U(+- d_t), d_t = sqrt(12) * sigma_s * sqrt(exmp1term)
delta_t = self.sigma(s) * torch.sqrt(- 12 * torch.special.expm1(self.gamma(s) - self.gamma(t)))
base_dist = super().p_s_t(p_loc, p_scale, t, s)
return UniformNoisyDistribution(base_dist, delta_t)
def q_s_t(self, q_loc, q_scale):
# q(z_s | z_t, x) = U(q_loc +- sqrt(3) * q_scale)
return Uniform(low=q_loc - np.sqrt(3) * q_scale, high=q_loc + np.sqrt(3) * q_scale)
def relative_entropy_coding(self, q, p, compress_mode=None):
# Transmit sample z_s ~ q(z_s | z_t, x)
if not torch.is_inference_mode_enabled():
z_s = q.sample()
else:
# Apply universal quantization
# shared U(-0.5, 0.5), seeds have already been set in self.forward
u = torch.rand(q.mean.shape, device=q.mean.device) - 0.5
# very slow, ~ 25 symbols/s
# cp = tfc.NoisyLogistic(loc=0.0, scale=(p.base_dist.scale / p.delta).cpu().numpy())
# em2 = tfc.UniversalBatchedEntropyModel(cp, coding_rank=4, compression=True, num_noise_levels=30)
# k = (q.mean - p.mean) / p.delta
# bitstring = em2.compress(k.cpu())
# k_hat = em2.decompress(bitstring, [])
if compress_mode in ['encode', 'decode']:
p_discrete = p.discretize(u)
if compress_mode == 'decode':
# consume bits
quantized = self.entropy_decode(self.compress_bits.pop(0), p_discrete)
else:
# Add dither U(-delta/2, delta/2)
# Transmit residual q - p for greater numerical stability
quantized = torch.round((q.mean - p.mean + p.delta * u) / p.delta)
if compress_mode == 'encode':
# accumulate bits
self.compress_bits += [self.entropy_encode(quantized, p_discrete)]
# Subtract the same (pseudo-random) dither using shared randomness
z_s = quantized * p.delta + p.mean - p.delta * u
# Evaluate z_s under log (posterior/prior) to get MC estimate of KL.
rate = - p.log_prob(z_s) - torch.log(p.delta)
rate = torch.sum(rate, dim=[1, 2, 3])
return z_s, rate
if __name__ == '__main__':
seed = 0
np.random.seed(seed)
torch.manual_seed(seed)
torch.use_deterministic_algorithms(True)
# model = load_checkpoint('checkpoints/uqdm-tiny')
# model = load_checkpoint('checkpoints/uqdm-small')
model = load_checkpoint('checkpoints/uqdm-medium')
# model = load_checkpoint('checkpoints/uqdm-big')
train_iter, eval_iter = load_data('ImageNet64', model.config.data)
# model.trainer(train_iter, eval_iter)
model.evaluate(eval_iter, n_batches=10, seed=seed)
# Compress one image
image = next(iter(eval_iter))
compressed = model.compress(image)
bits = [len(b) * 8 for b in compressed]
reconstructions = model.decompress(compressed, image.shape, recon_method='denoise')
assert (reconstructions[-1] == image).all()
print('Reconstructions via: denoise, compression to bits\nbpps: %s'
% np.round(np.cumsum(bits) / np.prod(image.shape) * 3, 4))