SentenceTransformer based on kategosari/cliffsofdover_tsdae
This is a sentence-transformers model finetuned from kategosari/cliffsofdover_tsdae. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: kategosari/cliffsofdover_tsdae
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: ElectraModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("kategosari/cliffsofdover_tsdae2")
# Run inference
sentences = [
'길이에 녹색광을 [MASK] 것 시간 따라',
' 시간 길이에 따라 녹색광을 제어하는 것',
' 데이터 처리 및 클라우드 컴퓨팅에 관한 것이며, 코드로서 기술된 클라우드 인프라스트럭처 환경에 적용될 수 있다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 53,333 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 7 tokens
- mean: 28.68 tokens
- max: 50 tokens
- min: 7 tokens
- mean: 29.45 tokens
- max: 53 tokens
- Samples:
sentence_0 sentence_1 장치를 헤더 제공한다 코스웨어 [MASK] 제작 방법과 인공지능에인공지능에 기초한 코스웨어 헤더 제작 방법과 장치를 제공한다단어와 입력 값으로 가장 [MASK] 정보를 모델은 기반 사용하여 수 적합한 모델 지능 현재 입력된 사용자에게 컨텍스트 규칙 및/또는 컨텍스트에 제공할 인공 있다규칙 기반 모델 및/또는 인공 지능 모델은 입력된 단어와 컨텍스트 정보를 입력 값으로 사용하여 현재 컨텍스트에 가장 적합한 문장을 사용자에게 제공할 수 있다한다. 이전에 있어서의 AI 및 비효율성 적용함에 지침을 기초하여 위한 주관성을 모델을 식별하고 방사선치료를 수행된 활용하여 방사선치료에 구현하기 해결하고자 [MASK]이전에 수행된 방사선치료에 기초하여 훈련된 AI 모델을 활용하여 방사선치료를 구현하기 위한 지침을 식별하고 적용함에 있어서의 비효율성 및 주관성을 해결하고자 한다. - Loss:
DenoisingAutoEncoderLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 32per_device_eval_batch_size: 32num_train_epochs: 5multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.2999 | 500 | 3.383 |
| 0.5999 | 1000 | 2.6709 |
| 0.8998 | 1500 | 2.4958 |
| 1.1998 | 2000 | 2.317 |
| 1.4997 | 2500 | 2.2062 |
| 1.7996 | 3000 | 2.1348 |
| 2.0996 | 3500 | 2.0467 |
| 2.3995 | 4000 | 1.9364 |
| 2.6995 | 4500 | 1.8734 |
| 2.9994 | 5000 | 1.8382 |
| 3.2993 | 5500 | 1.7141 |
| 3.5993 | 6000 | 1.6808 |
| 3.8992 | 6500 | 1.6515 |
| 4.1992 | 7000 | 1.5583 |
| 4.4991 | 7500 | 1.5173 |
| 4.7990 | 8000 | 1.4834 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.53.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 2.20.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
DenoisingAutoEncoderLoss
@inproceedings{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
pages = "671--688",
url = "https://arxiv.org/abs/2104.06979",
}
- Downloads last month
- 2