speecht5_mahinda_work_aug

This model is a fine-tuned version of microsoft/speecht5_tts on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4271

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.9639 0.9639 10 0.7799
0.8011 1.9639 20 0.6695
0.7549 2.9639 30 0.6462
0.7131 3.9639 40 0.6086
0.6548 4.9639 50 0.5548
0.5983 5.9639 60 0.5237
0.5618 6.9639 70 0.4978
0.5547 7.9639 80 0.4905
0.5479 8.9639 90 0.4727
0.5284 9.9639 100 0.4907
0.5189 10.9639 110 0.4742
0.5166 11.9639 120 0.4603
0.5056 12.9639 130 0.4541
0.5127 13.9639 140 0.4897
0.4959 14.9639 150 0.4633
0.4939 15.9639 160 0.4496
0.4649 16.9639 170 0.4403
0.4672 17.9639 180 0.4327
0.461 18.9639 190 0.4349
0.4558 19.9639 200 0.4271

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
144M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for kavinda123321/speecht5_mahinda_work_aug

Finetuned
(1211)
this model