metadata
library_name: keras-hub
Model Overview
This class represents the CSPDarkNet architecture.
Reference
For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.
Links
- CSPNet Quickstart Notebook
- CSPDarkNet API Documentation
- CSPDarkNet Model Card
- KerasHub Beginner Guide
- KerasHub Model Publishing Guide
Installation
Keras and KerasHub can be installed with:
pip install -U -q keras-hub
pip install -U -q keras
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the Keras Getting Started page.
Presets
The following model checkpoints are provided by the Keras team. Weights have been ported from: https://huggingface.co/timm. Full code examples for each are available below.
Preset name | Parameters | Description |
---|---|---|
csp_darknet_53_ra_imagenet |
27642184 | A CSP-DarkNet (Cross-Stage-Partial) image classification model pre-trained on the Randomly Augmented ImageNet 1k dataset at a 256x256 resolution. |
csp_resnext_50_ra_imagenet |
20569896 | A CSP-ResNeXt (Cross-Stage-Partial) image classification model pre-trained on the Randomly Augmented ImageNet 1k dataset at a 256x256 resolution. |
csp_resnet_50_ra_imagenet |
21616168 | A CSP-ResNet (Cross-Stage-Partial) image classification model pre-trained on the Randomly Augmented ImageNet 1k dataset at a 256x256 resolution. |
darknet_53_imagenet |
41609928 | A DarkNet image classification model pre-trained on the Randomly Augmented ImageNet 1k dataset at a 256x256 resolution. |
Example Usage
input_data = np.ones(shape=(8, 224, 224, 3))
# Pretrained backbone
model = keras_hub.models.CSPNetBackbone.from_preset("darknet_53_imagenet")
model(input_data)
# Randomly initialized backbone with a custom config
model = keras_hub.models.CSPNetBackbone(
stem_filters=32,
stem_kernel_size=3,
stem_strides=1,
stackwise_depth=[1, 2, 4],
stackwise_strides=[1, 2, 2],
stackwise_num_filters=[32, 64, 128],
block_type="dark",
)
model(input_data)
#Use cspnet for image classification task
model = keras_hub.models.ImageClassifier.from_preset("darknet_53_imagenet")
#Use Timm presets directly from HuggingFace
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/cspdarknet53.ra_in1k')
Example Usage with Hugging Face URI
input_data = np.ones(shape=(8, 224, 224, 3))
# Pretrained backbone
model = keras_hub.models.CSPNetBackbone.from_preset("hf://keras/darknet_53_imagenet")
model(input_data)
# Randomly initialized backbone with a custom config
model = keras_hub.models.CSPNetBackbone(
stem_filters=32,
stem_kernel_size=3,
stem_strides=1,
stackwise_depth=[1, 2, 4],
stackwise_strides=[1, 2, 2],
stackwise_num_filters=[32, 64, 128],
block_type="dark",
)
model(input_data)
#Use cspnet for image classification task
model = keras_hub.models.ImageClassifier.from_preset("hf://keras/darknet_53_imagenet")
#Use Timm presets directly from HuggingFace
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/cspdarknet53.ra_in1k')