Update README.md
#1
by
lysandre
HF Staff
- opened
This view is limited to 50 files because it contains too many changes.
See the raw diff here.
- README.md +0 -3
- activation/activation_kernels.cu +7 -28
- activation/cuda_compat.h +3 -3
- activation/dispatch_utils.h +0 -48
- build.toml +7 -8
- build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/__init__.py +9 -19
- build/{torch26-cxx11-cu118-x86_64-linux/activation/_activation_be5bedb.abi3.so → torch25-cxx11-cu118-x86_64-linux/activation/_activation_o63kkyjirmkf4.abi3.so} +2 -2
- build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/_ops.py +3 -3
- build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/__init__.py +9 -19
- build/{torch26-cxx11-cu126-x86_64-linux/activation/_activation_be5bedb.abi3.so → torch25-cxx11-cu121-x86_64-linux/activation/_activation_vrl36m2ejer54.abi3.so} +2 -2
- build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/_ops.py +3 -3
- build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/__init__.py +9 -19
- build/{torch26-cxx11-cu124-x86_64-linux/activation/_activation_be5bedb.abi3.so → torch25-cxx11-cu124-x86_64-linux/activation/_activation_va3moa75vw7c2.abi3.so} +2 -2
- build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/_ops.py +3 -3
- build/{torch28-cxx11-cu126-aarch64-linux → torch25-cxx98-cu118-x86_64-linux}/activation/__init__.py +9 -19
- build/{torch26-cxx98-cu118-x86_64-linux/activation/_activation_be5bedb.abi3.so → torch25-cxx98-cu118-x86_64-linux/activation/_activation_qr3gs3eckeig4.abi3.so} +2 -2
- build/{torch28-cxx11-cu126-aarch64-linux → torch25-cxx98-cu118-x86_64-linux}/activation/_ops.py +3 -3
- build/torch25-cxx98-cu121-x86_64-linux/activation/__init__.py +47 -0
- build/torch25-cxx98-cu121-x86_64-linux/activation/_activation_p7gbzt25w3zg2.abi3.so +3 -0
- build/torch25-cxx98-cu121-x86_64-linux/activation/_ops.py +9 -0
- build/torch25-cxx98-cu124-x86_64-linux/activation/__init__.py +47 -0
- build/torch25-cxx98-cu124-x86_64-linux/activation/_activation_jg7yaigtn7wco.abi3.so +3 -0
- build/torch25-cxx98-cu124-x86_64-linux/activation/_ops.py +9 -0
- build/torch26-cxx11-cu118-x86_64-linux/activation/__init__.py +9 -19
- build/torch26-cxx11-cu118-x86_64-linux/activation/_activation_ncisyrun7guwk.abi3.so +3 -0
- build/torch26-cxx11-cu118-x86_64-linux/activation/_ops.py +3 -3
- build/torch26-cxx11-cu118-x86_64-linux/activation/layers.py +0 -128
- build/torch26-cxx11-cu124-x86_64-linux/activation/__init__.py +9 -19
- build/torch26-cxx11-cu124-x86_64-linux/activation/_activation_ochhfvlnc3vyc.abi3.so +3 -0
- build/torch26-cxx11-cu124-x86_64-linux/activation/_ops.py +3 -3
- build/torch26-cxx11-cu124-x86_64-linux/activation/layers.py +0 -128
- build/torch26-cxx11-cu126-x86_64-linux/activation/__init__.py +9 -19
- build/torch26-cxx11-cu126-x86_64-linux/activation/_activation_u6vnqubnicksq.abi3.so +3 -0
- build/torch26-cxx11-cu126-x86_64-linux/activation/_ops.py +3 -3
- build/torch26-cxx11-cu126-x86_64-linux/activation/layers.py +0 -128
- build/torch26-cxx98-cu118-x86_64-linux/activation/__init__.py +9 -19
- build/torch26-cxx98-cu118-x86_64-linux/activation/_activation_2vn6ty3gfqfb6.abi3.so +3 -0
- build/torch26-cxx98-cu118-x86_64-linux/activation/_ops.py +3 -3
- build/torch26-cxx98-cu118-x86_64-linux/activation/layers.py +0 -128
- build/torch26-cxx98-cu124-x86_64-linux/activation/__init__.py +9 -19
- build/torch26-cxx98-cu124-x86_64-linux/activation/_activation_be5bedb.abi3.so +0 -3
- build/torch26-cxx98-cu124-x86_64-linux/activation/_activation_myvteedxdpqc6.abi3.so +3 -0
- build/torch26-cxx98-cu124-x86_64-linux/activation/_ops.py +3 -3
- build/torch26-cxx98-cu124-x86_64-linux/activation/layers.py +0 -128
- build/torch26-cxx98-cu126-x86_64-linux/activation/__init__.py +9 -19
- build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_be5bedb.abi3.so +0 -3
- build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_rbswus6emrhm2.abi3.so +3 -0
- build/torch26-cxx98-cu126-x86_64-linux/activation/_ops.py +3 -3
- build/torch26-cxx98-cu126-x86_64-linux/activation/layers.py +0 -128
- build/torch27-cxx11-cu118-x86_64-linux/activation/__pycache__/__init__.cpython-313.pyc +0 -0
README.md
CHANGED
@@ -2,9 +2,6 @@
|
|
2 |
tags:
|
3 |
- kernel
|
4 |
---
|
5 |
-
|
6 |
-

|
7 |
-
|
8 |
## Activation
|
9 |
|
10 |
Activation kernels from [vLLM](https://github.com/vllm-project/vllm/blob/main/csrc/activation_kernels.cu).
|
|
|
2 |
tags:
|
3 |
- kernel
|
4 |
---
|
|
|
|
|
|
|
5 |
## Activation
|
6 |
|
7 |
Activation kernels from [vLLM](https://github.com/vllm-project/vllm/blob/main/csrc/activation_kernels.cu).
|
activation/activation_kernels.cu
CHANGED
@@ -9,16 +9,8 @@
|
|
9 |
|
10 |
namespace vllm {
|
11 |
|
12 |
-
template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&),
|
13 |
-
bool act_first>
|
14 |
-
__device__ __forceinline__ scalar_t compute(const scalar_t& x,
|
15 |
-
const scalar_t& y) {
|
16 |
-
return act_first ? ACT_FN(x) * y : x * ACT_FN(y);
|
17 |
-
}
|
18 |
// Activation and gating kernel template.
|
19 |
-
|
20 |
-
template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&),
|
21 |
-
bool act_first>
|
22 |
__global__ void act_and_mul_kernel(
|
23 |
scalar_t* __restrict__ out, // [..., d]
|
24 |
const scalar_t* __restrict__ input, // [..., 2, d]
|
@@ -27,7 +19,7 @@ __global__ void act_and_mul_kernel(
|
|
27 |
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
|
28 |
const scalar_t x = VLLM_LDG(&input[token_idx * 2 * d + idx]);
|
29 |
const scalar_t y = VLLM_LDG(&input[token_idx * 2 * d + d + idx]);
|
30 |
-
out[token_idx * d + idx] =
|
31 |
}
|
32 |
}
|
33 |
|
@@ -63,21 +55,16 @@ __device__ __forceinline__ T gelu_tanh_kernel(const T& x) {
|
|
63 |
} // namespace vllm
|
64 |
|
65 |
// Launch activation and gating kernel.
|
66 |
-
|
67 |
-
// first.
|
68 |
-
#define LAUNCH_ACTIVATION_GATE_KERNEL(KERNEL, ACT_FIRST) \
|
69 |
int d = input.size(-1) / 2; \
|
70 |
int64_t num_tokens = input.numel() / input.size(-1); \
|
71 |
dim3 grid(num_tokens); \
|
72 |
dim3 block(std::min(d, 1024)); \
|
73 |
-
if (num_tokens == 0) { \
|
74 |
-
return; \
|
75 |
-
} \
|
76 |
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
|
77 |
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
|
78 |
VLLM_DISPATCH_FLOATING_TYPES( \
|
79 |
input.scalar_type(), "act_and_mul_kernel", [&] { \
|
80 |
-
vllm::act_and_mul_kernel<scalar_t, KERNEL<scalar_t
|
81 |
<<<grid, block, 0, stream>>>(out.data_ptr<scalar_t>(), \
|
82 |
input.data_ptr<scalar_t>(), d); \
|
83 |
});
|
@@ -85,27 +72,19 @@ __device__ __forceinline__ T gelu_tanh_kernel(const T& x) {
|
|
85 |
void silu_and_mul(torch::Tensor& out, // [..., d]
|
86 |
torch::Tensor& input) // [..., 2 * d]
|
87 |
{
|
88 |
-
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel
|
89 |
-
}
|
90 |
-
|
91 |
-
void mul_and_silu(torch::Tensor& out, // [..., d]
|
92 |
-
torch::Tensor& input) // [..., 2 * d]
|
93 |
-
{
|
94 |
-
// The difference between mul_and_silu and silu_and_mul is that mul_and_silu
|
95 |
-
// applies the silu to the latter half of the input.
|
96 |
-
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel, false);
|
97 |
}
|
98 |
|
99 |
void gelu_and_mul(torch::Tensor& out, // [..., d]
|
100 |
torch::Tensor& input) // [..., 2 * d]
|
101 |
{
|
102 |
-
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_kernel
|
103 |
}
|
104 |
|
105 |
void gelu_tanh_and_mul(torch::Tensor& out, // [..., d]
|
106 |
torch::Tensor& input) // [..., 2 * d]
|
107 |
{
|
108 |
-
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_tanh_kernel
|
109 |
}
|
110 |
|
111 |
namespace vllm {
|
|
|
9 |
|
10 |
namespace vllm {
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
// Activation and gating kernel template.
|
13 |
+
template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&)>
|
|
|
|
|
14 |
__global__ void act_and_mul_kernel(
|
15 |
scalar_t* __restrict__ out, // [..., d]
|
16 |
const scalar_t* __restrict__ input, // [..., 2, d]
|
|
|
19 |
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
|
20 |
const scalar_t x = VLLM_LDG(&input[token_idx * 2 * d + idx]);
|
21 |
const scalar_t y = VLLM_LDG(&input[token_idx * 2 * d + d + idx]);
|
22 |
+
out[token_idx * d + idx] = ACT_FN(x) * y;
|
23 |
}
|
24 |
}
|
25 |
|
|
|
55 |
} // namespace vllm
|
56 |
|
57 |
// Launch activation and gating kernel.
|
58 |
+
#define LAUNCH_ACTIVATION_GATE_KERNEL(KERNEL) \
|
|
|
|
|
59 |
int d = input.size(-1) / 2; \
|
60 |
int64_t num_tokens = input.numel() / input.size(-1); \
|
61 |
dim3 grid(num_tokens); \
|
62 |
dim3 block(std::min(d, 1024)); \
|
|
|
|
|
|
|
63 |
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
|
64 |
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
|
65 |
VLLM_DISPATCH_FLOATING_TYPES( \
|
66 |
input.scalar_type(), "act_and_mul_kernel", [&] { \
|
67 |
+
vllm::act_and_mul_kernel<scalar_t, KERNEL<scalar_t>> \
|
68 |
<<<grid, block, 0, stream>>>(out.data_ptr<scalar_t>(), \
|
69 |
input.data_ptr<scalar_t>(), d); \
|
70 |
});
|
|
|
72 |
void silu_and_mul(torch::Tensor& out, // [..., d]
|
73 |
torch::Tensor& input) // [..., 2 * d]
|
74 |
{
|
75 |
+
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
}
|
77 |
|
78 |
void gelu_and_mul(torch::Tensor& out, // [..., d]
|
79 |
torch::Tensor& input) // [..., 2 * d]
|
80 |
{
|
81 |
+
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_kernel);
|
82 |
}
|
83 |
|
84 |
void gelu_tanh_and_mul(torch::Tensor& out, // [..., d]
|
85 |
torch::Tensor& input) // [..., 2 * d]
|
86 |
{
|
87 |
+
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::gelu_tanh_kernel);
|
88 |
}
|
89 |
|
90 |
namespace vllm {
|
activation/cuda_compat.h
CHANGED
@@ -4,10 +4,10 @@
|
|
4 |
#include <hip/hip_runtime.h>
|
5 |
#endif
|
6 |
|
7 |
-
#
|
8 |
-
#define WARP_SIZE 64
|
9 |
-
#else
|
10 |
#define WARP_SIZE 32
|
|
|
|
|
11 |
#endif
|
12 |
|
13 |
#ifndef USE_ROCM
|
|
|
4 |
#include <hip/hip_runtime.h>
|
5 |
#endif
|
6 |
|
7 |
+
#ifndef USE_ROCM
|
|
|
|
|
8 |
#define WARP_SIZE 32
|
9 |
+
#else
|
10 |
+
#define WARP_SIZE warpSize
|
11 |
#endif
|
12 |
|
13 |
#ifndef USE_ROCM
|
activation/dispatch_utils.h
CHANGED
@@ -6,11 +6,6 @@
|
|
6 |
|
7 |
#include <torch/all.h>
|
8 |
|
9 |
-
// Need a special dispatch case macro since we will nest the FP8 dispatch.
|
10 |
-
// Instead of the usual 'scalar_t', this names the dispatched type 'fp8_t'.
|
11 |
-
#define AT_DISPATCH_FP8_CASE(enum_type, ...) \
|
12 |
-
AT_PRIVATE_CASE_TYPE_USING_HINT(enum_type, fp8_t, __VA_ARGS__)
|
13 |
-
|
14 |
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
|
15 |
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
16 |
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
|
@@ -19,35 +14,6 @@
|
|
19 |
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
|
20 |
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
|
21 |
|
22 |
-
// ROCm devices might use either fn or fnuz, so set up dispatch table for both.
|
23 |
-
// A host-based check at runtime will create a preferred FP8 type for ROCm
|
24 |
-
// such that the correct kernel is dispatched.
|
25 |
-
#ifdef USE_ROCM
|
26 |
-
#define VLLM_DISPATCH_CASE_FP8_TYPES(...) \
|
27 |
-
AT_DISPATCH_FP8_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__) \
|
28 |
-
AT_DISPATCH_FP8_CASE(at::ScalarType::Float8_e4m3fnuz, __VA_ARGS__)
|
29 |
-
|
30 |
-
#define VLLM_DISPATCH_CASE_QUANT_TYPES(...) \
|
31 |
-
AT_DISPATCH_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__) \
|
32 |
-
AT_DISPATCH_CASE(at::ScalarType::Float8_e4m3fnuz, __VA_ARGS__) \
|
33 |
-
AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__)
|
34 |
-
#else
|
35 |
-
#define VLLM_DISPATCH_CASE_FP8_TYPES(...) \
|
36 |
-
AT_DISPATCH_FP8_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__)
|
37 |
-
|
38 |
-
#define VLLM_DISPATCH_CASE_QUANT_TYPES(...) \
|
39 |
-
AT_DISPATCH_CASE(at::ScalarType::Float8_e4m3fn, __VA_ARGS__) \
|
40 |
-
AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__)
|
41 |
-
#endif
|
42 |
-
|
43 |
-
// When using this dispatch macro, the type is 'fp8_t' not 'scalar_t'.
|
44 |
-
// See AT_DISPATCH_FP8_CASE above.
|
45 |
-
#define VLLM_DISPATCH_FP8_TYPES(TYPE, NAME, ...) \
|
46 |
-
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FP8_TYPES(__VA_ARGS__))
|
47 |
-
|
48 |
-
#define VLLM_DISPATCH_QUANT_TYPES(TYPE, NAME, ...) \
|
49 |
-
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_QUANT_TYPES(__VA_ARGS__))
|
50 |
-
|
51 |
#define VLLM_DISPATCH_CASE_FLOATING_AND_BYTE_TYPES(...) \
|
52 |
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
53 |
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
|
@@ -65,19 +31,5 @@
|
|
65 |
AT_DISPATCH_CASE(at::ScalarType::Int, __VA_ARGS__) \
|
66 |
AT_DISPATCH_CASE(at::ScalarType::Long, __VA_ARGS__)
|
67 |
|
68 |
-
#define VLLM_DISPATCH_CASE_INTEGRAL_AND_UNSIGNED_TYPES(...) \
|
69 |
-
AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__) \
|
70 |
-
AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__) \
|
71 |
-
AT_DISPATCH_CASE(at::ScalarType::Short, __VA_ARGS__) \
|
72 |
-
AT_DISPATCH_CASE(at::ScalarType::Int, __VA_ARGS__) \
|
73 |
-
AT_DISPATCH_CASE(at::ScalarType::Long, __VA_ARGS__) \
|
74 |
-
AT_DISPATCH_CASE(at::ScalarType::UInt16, __VA_ARGS__) \
|
75 |
-
AT_DISPATCH_CASE(at::ScalarType::UInt32, __VA_ARGS__) \
|
76 |
-
AT_DISPATCH_CASE(at::ScalarType::UInt64, __VA_ARGS__)
|
77 |
-
|
78 |
#define VLLM_DISPATCH_INTEGRAL_TYPES(TYPE, NAME, ...) \
|
79 |
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_INTEGRAL_TYPES(__VA_ARGS__))
|
80 |
-
|
81 |
-
#define VLLM_DISPATCH_INTEGRAL_AND_UNSIGNED_TYPES(TYPE, NAME, ...) \
|
82 |
-
AT_DISPATCH_SWITCH( \
|
83 |
-
TYPE, NAME, VLLM_DISPATCH_CASE_INTEGRAL_AND_UNSIGNED_TYPES(__VA_ARGS__))
|
|
|
6 |
|
7 |
#include <torch/all.h>
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
|
10 |
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
11 |
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
|
|
|
14 |
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
|
15 |
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
#define VLLM_DISPATCH_CASE_FLOATING_AND_BYTE_TYPES(...) \
|
18 |
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
19 |
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
|
|
|
31 |
AT_DISPATCH_CASE(at::ScalarType::Int, __VA_ARGS__) \
|
32 |
AT_DISPATCH_CASE(at::ScalarType::Long, __VA_ARGS__)
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
#define VLLM_DISPATCH_INTEGRAL_TYPES(TYPE, NAME, ...) \
|
35 |
AT_DISPATCH_SWITCH(TYPE, NAME, VLLM_DISPATCH_CASE_INTEGRAL_TYPES(__VA_ARGS__))
|
|
|
|
|
|
|
|
build.toml
CHANGED
@@ -1,18 +1,17 @@
|
|
1 |
[general]
|
2 |
name = "activation"
|
3 |
-
universal = false
|
4 |
|
5 |
[torch]
|
6 |
src = [
|
7 |
-
|
8 |
-
|
9 |
]
|
10 |
|
11 |
[kernel.activation]
|
12 |
-
|
13 |
-
depends = ["torch"]
|
14 |
src = [
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
]
|
|
|
|
1 |
[general]
|
2 |
name = "activation"
|
|
|
3 |
|
4 |
[torch]
|
5 |
src = [
|
6 |
+
"torch-ext/torch_binding.cpp",
|
7 |
+
"torch-ext/torch_binding.h"
|
8 |
]
|
9 |
|
10 |
[kernel.activation]
|
11 |
+
cuda-capabilities = [ "7.0", "7.2", "7.5", "8.0", "8.6", "8.7", "8.9", "9.0" ]
|
|
|
12 |
src = [
|
13 |
+
"activation/activation_kernels.cu",
|
14 |
+
"activation/cuda_compat.h",
|
15 |
+
"activation/dispatch_utils.h",
|
16 |
]
|
17 |
+
depends = [ "torch" ]
|
build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/__init__.py
RENAMED
@@ -1,8 +1,15 @@
|
|
1 |
import torch
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
6 |
|
7 |
|
8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
@@ -10,11 +17,6 @@ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
10 |
return out
|
11 |
|
12 |
|
13 |
-
def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
14 |
-
ops.mul_and_silu(out, x)
|
15 |
-
return out
|
16 |
-
|
17 |
-
|
18 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
19 |
ops.gelu_and_mul(out, x)
|
20 |
return out
|
@@ -43,15 +45,3 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
43 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
44 |
ops.gelu_quick(out, x)
|
45 |
return out
|
46 |
-
|
47 |
-
|
48 |
-
__all__ = [
|
49 |
-
"silu_and_mul",
|
50 |
-
"gelu_and_mul",
|
51 |
-
"gelu_tanh_and_mul",
|
52 |
-
"fatrelu_and_mul",
|
53 |
-
"gelu_fast",
|
54 |
-
"gelu_new",
|
55 |
-
"gelu_quick",
|
56 |
-
"layers",
|
57 |
-
]
|
|
|
1 |
import torch
|
2 |
|
3 |
+
try:
|
4 |
+
from ._ops import ops
|
5 |
+
except ImportError as e:
|
6 |
+
# Fallback for local development.
|
7 |
+
try:
|
8 |
+
import _activation
|
9 |
|
10 |
+
ops = torch.ops._activition
|
11 |
+
except ImportError:
|
12 |
+
raise e
|
13 |
|
14 |
|
15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
17 |
return out
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
21 |
ops.gelu_and_mul(out, x)
|
22 |
return out
|
|
|
45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
46 |
ops.gelu_quick(out, x)
|
47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/{torch26-cxx11-cu118-x86_64-linux/activation/_activation_be5bedb.abi3.so → torch25-cxx11-cu118-x86_64-linux/activation/_activation_o63kkyjirmkf4.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d50cdabfbed1df74e921ac34ff00bca0555977b14ef8082ddae7b1f30985a494
|
3 |
+
size 2370160
|
build/{torch27-cxx11-cu118-x86_64-linux → torch25-cxx11-cu118-x86_64-linux}/activation/_ops.py
RENAMED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_o63kkyjirmkf4
|
3 |
+
ops = torch.ops._activation_o63kkyjirmkf4
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_o63kkyjirmkf4::{op_name}"
|
build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/__init__.py
RENAMED
@@ -1,8 +1,15 @@
|
|
1 |
import torch
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
6 |
|
7 |
|
8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
@@ -10,11 +17,6 @@ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
10 |
return out
|
11 |
|
12 |
|
13 |
-
def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
14 |
-
ops.mul_and_silu(out, x)
|
15 |
-
return out
|
16 |
-
|
17 |
-
|
18 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
19 |
ops.gelu_and_mul(out, x)
|
20 |
return out
|
@@ -43,15 +45,3 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
43 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
44 |
ops.gelu_quick(out, x)
|
45 |
return out
|
46 |
-
|
47 |
-
|
48 |
-
__all__ = [
|
49 |
-
"silu_and_mul",
|
50 |
-
"gelu_and_mul",
|
51 |
-
"gelu_tanh_and_mul",
|
52 |
-
"fatrelu_and_mul",
|
53 |
-
"gelu_fast",
|
54 |
-
"gelu_new",
|
55 |
-
"gelu_quick",
|
56 |
-
"layers",
|
57 |
-
]
|
|
|
1 |
import torch
|
2 |
|
3 |
+
try:
|
4 |
+
from ._ops import ops
|
5 |
+
except ImportError as e:
|
6 |
+
# Fallback for local development.
|
7 |
+
try:
|
8 |
+
import _activation
|
9 |
|
10 |
+
ops = torch.ops._activition
|
11 |
+
except ImportError:
|
12 |
+
raise e
|
13 |
|
14 |
|
15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
17 |
return out
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
21 |
ops.gelu_and_mul(out, x)
|
22 |
return out
|
|
|
45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
46 |
ops.gelu_quick(out, x)
|
47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/{torch26-cxx11-cu126-x86_64-linux/activation/_activation_be5bedb.abi3.so → torch25-cxx11-cu121-x86_64-linux/activation/_activation_vrl36m2ejer54.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bd0709ef09c8f0c18d1dc4a36c8096c59459bece61f5f5dbea95d1e73f54d44
|
3 |
+
size 2393264
|
build/{torch27-cxx11-cu126-x86_64-linux → torch25-cxx11-cu121-x86_64-linux}/activation/_ops.py
RENAMED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_vrl36m2ejer54
|
3 |
+
ops = torch.ops._activation_vrl36m2ejer54
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_vrl36m2ejer54::{op_name}"
|
build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/__init__.py
RENAMED
@@ -1,8 +1,15 @@
|
|
1 |
import torch
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
6 |
|
7 |
|
8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
@@ -10,11 +17,6 @@ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
10 |
return out
|
11 |
|
12 |
|
13 |
-
def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
14 |
-
ops.mul_and_silu(out, x)
|
15 |
-
return out
|
16 |
-
|
17 |
-
|
18 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
19 |
ops.gelu_and_mul(out, x)
|
20 |
return out
|
@@ -43,15 +45,3 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
43 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
44 |
ops.gelu_quick(out, x)
|
45 |
return out
|
46 |
-
|
47 |
-
|
48 |
-
__all__ = [
|
49 |
-
"silu_and_mul",
|
50 |
-
"gelu_and_mul",
|
51 |
-
"gelu_tanh_and_mul",
|
52 |
-
"fatrelu_and_mul",
|
53 |
-
"gelu_fast",
|
54 |
-
"gelu_new",
|
55 |
-
"gelu_quick",
|
56 |
-
"layers",
|
57 |
-
]
|
|
|
1 |
import torch
|
2 |
|
3 |
+
try:
|
4 |
+
from ._ops import ops
|
5 |
+
except ImportError as e:
|
6 |
+
# Fallback for local development.
|
7 |
+
try:
|
8 |
+
import _activation
|
9 |
|
10 |
+
ops = torch.ops._activition
|
11 |
+
except ImportError:
|
12 |
+
raise e
|
13 |
|
14 |
|
15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
17 |
return out
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
21 |
ops.gelu_and_mul(out, x)
|
22 |
return out
|
|
|
45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
46 |
ops.gelu_quick(out, x)
|
47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/{torch26-cxx11-cu124-x86_64-linux/activation/_activation_be5bedb.abi3.so → torch25-cxx11-cu124-x86_64-linux/activation/_activation_va3moa75vw7c2.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8353447f64e7d2df1a6a341d9c53bced53abef267f079923ae774170d0d57c53
|
3 |
+
size 2427936
|
build/{torch27-cxx11-cu128-x86_64-linux → torch25-cxx11-cu124-x86_64-linux}/activation/_ops.py
RENAMED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_va3moa75vw7c2
|
3 |
+
ops = torch.ops._activation_va3moa75vw7c2
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_va3moa75vw7c2::{op_name}"
|
build/{torch28-cxx11-cu126-aarch64-linux → torch25-cxx98-cu118-x86_64-linux}/activation/__init__.py
RENAMED
@@ -1,8 +1,15 @@
|
|
1 |
import torch
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
6 |
|
7 |
|
8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
@@ -10,11 +17,6 @@ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
10 |
return out
|
11 |
|
12 |
|
13 |
-
def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
14 |
-
ops.mul_and_silu(out, x)
|
15 |
-
return out
|
16 |
-
|
17 |
-
|
18 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
19 |
ops.gelu_and_mul(out, x)
|
20 |
return out
|
@@ -43,15 +45,3 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
43 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
44 |
ops.gelu_quick(out, x)
|
45 |
return out
|
46 |
-
|
47 |
-
|
48 |
-
__all__ = [
|
49 |
-
"silu_and_mul",
|
50 |
-
"gelu_and_mul",
|
51 |
-
"gelu_tanh_and_mul",
|
52 |
-
"fatrelu_and_mul",
|
53 |
-
"gelu_fast",
|
54 |
-
"gelu_new",
|
55 |
-
"gelu_quick",
|
56 |
-
"layers",
|
57 |
-
]
|
|
|
1 |
import torch
|
2 |
|
3 |
+
try:
|
4 |
+
from ._ops import ops
|
5 |
+
except ImportError as e:
|
6 |
+
# Fallback for local development.
|
7 |
+
try:
|
8 |
+
import _activation
|
9 |
|
10 |
+
ops = torch.ops._activition
|
11 |
+
except ImportError:
|
12 |
+
raise e
|
13 |
|
14 |
|
15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
17 |
return out
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
21 |
ops.gelu_and_mul(out, x)
|
22 |
return out
|
|
|
45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
46 |
ops.gelu_quick(out, x)
|
47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/{torch26-cxx98-cu118-x86_64-linux/activation/_activation_be5bedb.abi3.so → torch25-cxx98-cu118-x86_64-linux/activation/_activation_qr3gs3eckeig4.abi3.so}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df184a6315118d787a1bd6b435cb45f1ca7828445a1f1c0e55c57645cfbba43a
|
3 |
+
size 2362600
|
build/{torch28-cxx11-cu126-aarch64-linux → torch25-cxx98-cu118-x86_64-linux}/activation/_ops.py
RENAMED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_qr3gs3eckeig4
|
3 |
+
ops = torch.ops._activation_qr3gs3eckeig4
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_qr3gs3eckeig4::{op_name}"
|
build/torch25-cxx98-cu121-x86_64-linux/activation/__init__.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
try:
|
4 |
+
from ._ops import ops
|
5 |
+
except ImportError as e:
|
6 |
+
# Fallback for local development.
|
7 |
+
try:
|
8 |
+
import _activation
|
9 |
+
|
10 |
+
ops = torch.ops._activition
|
11 |
+
except ImportError:
|
12 |
+
raise e
|
13 |
+
|
14 |
+
|
15 |
+
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
16 |
+
ops.silu_and_mul(out, x)
|
17 |
+
return out
|
18 |
+
|
19 |
+
|
20 |
+
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
21 |
+
ops.gelu_and_mul(out, x)
|
22 |
+
return out
|
23 |
+
|
24 |
+
|
25 |
+
def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
26 |
+
ops.gelu_tanh_and_mul(out, x)
|
27 |
+
return out
|
28 |
+
|
29 |
+
|
30 |
+
def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
|
31 |
+
ops.fatrelu_and_mul(out, x, threshold)
|
32 |
+
return out
|
33 |
+
|
34 |
+
|
35 |
+
def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
|
36 |
+
ops.gelu_fast(out, x)
|
37 |
+
return out
|
38 |
+
|
39 |
+
|
40 |
+
def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
41 |
+
ops.gelu_new(out, x)
|
42 |
+
return out
|
43 |
+
|
44 |
+
|
45 |
+
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
46 |
+
ops.gelu_quick(out, x)
|
47 |
+
return out
|
build/torch25-cxx98-cu121-x86_64-linux/activation/_activation_p7gbzt25w3zg2.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccb13cfc2e45cf483e8b9f77f1760f28b48bcf185508d51b32d45bc759c4e8bb
|
3 |
+
size 2385440
|
build/torch25-cxx98-cu121-x86_64-linux/activation/_ops.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from . import _activation_p7gbzt25w3zg2
|
3 |
+
ops = torch.ops._activation_p7gbzt25w3zg2
|
4 |
+
|
5 |
+
def add_op_namespace_prefix(op_name: str):
|
6 |
+
"""
|
7 |
+
Prefix op by namespace.
|
8 |
+
"""
|
9 |
+
return f"_activation_p7gbzt25w3zg2::{op_name}"
|
build/torch25-cxx98-cu124-x86_64-linux/activation/__init__.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
try:
|
4 |
+
from ._ops import ops
|
5 |
+
except ImportError as e:
|
6 |
+
# Fallback for local development.
|
7 |
+
try:
|
8 |
+
import _activation
|
9 |
+
|
10 |
+
ops = torch.ops._activition
|
11 |
+
except ImportError:
|
12 |
+
raise e
|
13 |
+
|
14 |
+
|
15 |
+
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
16 |
+
ops.silu_and_mul(out, x)
|
17 |
+
return out
|
18 |
+
|
19 |
+
|
20 |
+
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
21 |
+
ops.gelu_and_mul(out, x)
|
22 |
+
return out
|
23 |
+
|
24 |
+
|
25 |
+
def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
26 |
+
ops.gelu_tanh_and_mul(out, x)
|
27 |
+
return out
|
28 |
+
|
29 |
+
|
30 |
+
def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
|
31 |
+
ops.fatrelu_and_mul(out, x, threshold)
|
32 |
+
return out
|
33 |
+
|
34 |
+
|
35 |
+
def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
|
36 |
+
ops.gelu_fast(out, x)
|
37 |
+
return out
|
38 |
+
|
39 |
+
|
40 |
+
def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
41 |
+
ops.gelu_new(out, x)
|
42 |
+
return out
|
43 |
+
|
44 |
+
|
45 |
+
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
46 |
+
ops.gelu_quick(out, x)
|
47 |
+
return out
|
build/torch25-cxx98-cu124-x86_64-linux/activation/_activation_jg7yaigtn7wco.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f8048853e8cb06e8574a9a9497800d2be438f7989d79f44dcf2e0ced38a75a9
|
3 |
+
size 2420192
|
build/torch25-cxx98-cu124-x86_64-linux/activation/_ops.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from . import _activation_jg7yaigtn7wco
|
3 |
+
ops = torch.ops._activation_jg7yaigtn7wco
|
4 |
+
|
5 |
+
def add_op_namespace_prefix(op_name: str):
|
6 |
+
"""
|
7 |
+
Prefix op by namespace.
|
8 |
+
"""
|
9 |
+
return f"_activation_jg7yaigtn7wco::{op_name}"
|
build/torch26-cxx11-cu118-x86_64-linux/activation/__init__.py
CHANGED
@@ -1,8 +1,15 @@
|
|
1 |
import torch
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
6 |
|
7 |
|
8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
@@ -10,11 +17,6 @@ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
10 |
return out
|
11 |
|
12 |
|
13 |
-
def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
14 |
-
ops.mul_and_silu(out, x)
|
15 |
-
return out
|
16 |
-
|
17 |
-
|
18 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
19 |
ops.gelu_and_mul(out, x)
|
20 |
return out
|
@@ -43,15 +45,3 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
43 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
44 |
ops.gelu_quick(out, x)
|
45 |
return out
|
46 |
-
|
47 |
-
|
48 |
-
__all__ = [
|
49 |
-
"silu_and_mul",
|
50 |
-
"gelu_and_mul",
|
51 |
-
"gelu_tanh_and_mul",
|
52 |
-
"fatrelu_and_mul",
|
53 |
-
"gelu_fast",
|
54 |
-
"gelu_new",
|
55 |
-
"gelu_quick",
|
56 |
-
"layers",
|
57 |
-
]
|
|
|
1 |
import torch
|
2 |
|
3 |
+
try:
|
4 |
+
from ._ops import ops
|
5 |
+
except ImportError as e:
|
6 |
+
# Fallback for local development.
|
7 |
+
try:
|
8 |
+
import _activation
|
9 |
|
10 |
+
ops = torch.ops._activition
|
11 |
+
except ImportError:
|
12 |
+
raise e
|
13 |
|
14 |
|
15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
17 |
return out
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
21 |
ops.gelu_and_mul(out, x)
|
22 |
return out
|
|
|
45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
46 |
ops.gelu_quick(out, x)
|
47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx11-cu118-x86_64-linux/activation/_activation_ncisyrun7guwk.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cde5439e78ba0e1aaa1937d798b214b46d38cbab8e4384b93a22239fed1a4dd4
|
3 |
+
size 2370264
|
build/torch26-cxx11-cu118-x86_64-linux/activation/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_ncisyrun7guwk
|
3 |
+
ops = torch.ops._activation_ncisyrun7guwk
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_ncisyrun7guwk::{op_name}"
|
build/torch26-cxx11-cu118-x86_64-linux/activation/layers.py
DELETED
@@ -1,128 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
from ._ops import ops
|
5 |
-
|
6 |
-
|
7 |
-
class SiluAndMul(nn.Module):
|
8 |
-
"""An activation function for SwiGLU.
|
9 |
-
|
10 |
-
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
11 |
-
|
12 |
-
Shapes:
|
13 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
14 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
15 |
-
"""
|
16 |
-
|
17 |
-
can_torch_compile: bool = True
|
18 |
-
|
19 |
-
def forward(self, x: torch.Tensor):
|
20 |
-
d = x.shape[-1] // 2
|
21 |
-
output_shape = x.shape[:-1] + (d,)
|
22 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
23 |
-
ops.silu_and_mul(out, x)
|
24 |
-
return out
|
25 |
-
|
26 |
-
|
27 |
-
class MulAndSilu(nn.Module):
|
28 |
-
"""An activation function for SwiGLU.
|
29 |
-
|
30 |
-
The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
|
31 |
-
|
32 |
-
Shapes:
|
33 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
34 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
35 |
-
"""
|
36 |
-
|
37 |
-
can_torch_compile: bool = True
|
38 |
-
|
39 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40 |
-
d = x.shape[-1] // 2
|
41 |
-
output_shape = x.shape[:-1] + (d,)
|
42 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
43 |
-
ops.mul_and_silu(out, x)
|
44 |
-
return out
|
45 |
-
|
46 |
-
|
47 |
-
class GeluAndMul(nn.Module):
|
48 |
-
"""An activation function for GeGLU.
|
49 |
-
|
50 |
-
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
51 |
-
|
52 |
-
Shapes:
|
53 |
-
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
|
54 |
-
return: (batch_size, seq_len, d) or (num_tokens, d)
|
55 |
-
"""
|
56 |
-
|
57 |
-
can_torch_compile: bool = True
|
58 |
-
|
59 |
-
def forward(self, x: torch.Tensor):
|
60 |
-
d = x.shape[-1] // 2
|
61 |
-
output_shape = x.shape[:-1] + (d,)
|
62 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
63 |
-
ops.gelu_and_mul(out, x)
|
64 |
-
return out
|
65 |
-
|
66 |
-
|
67 |
-
class GeluTanhAndMul(nn.Module):
|
68 |
-
can_torch_compile: bool = True
|
69 |
-
|
70 |
-
def forward(self, x: torch.Tensor):
|
71 |
-
d = x.shape[-1] // 2
|
72 |
-
output_shape = x.shape[:-1] + (d,)
|
73 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
74 |
-
ops.gelu_tanh_and_mul(out, x)
|
75 |
-
return out
|
76 |
-
|
77 |
-
|
78 |
-
class FatreluAndMul(nn.Module):
|
79 |
-
"""An activation function for FATReLU.
|
80 |
-
|
81 |
-
The function computes x -> FATReLU(x[:d]) * x[d:] where
|
82 |
-
d = x.shape[-1] // 2.
|
83 |
-
This is used in openbmb/MiniCPM-S-1B-sft.
|
84 |
-
|
85 |
-
Shapes:
|
86 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
87 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
88 |
-
"""
|
89 |
-
|
90 |
-
can_torch_compile: bool = True
|
91 |
-
|
92 |
-
def __init__(self, threshold: float = 0.0):
|
93 |
-
super().__init__()
|
94 |
-
self.threshold = threshold
|
95 |
-
|
96 |
-
def forward(self, x: torch.Tensor):
|
97 |
-
d = x.shape[-1] // 2
|
98 |
-
output_shape = x.shape[:-1] + (d,)
|
99 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
100 |
-
ops.fatrelu_and_mul(out, x, self.threshold)
|
101 |
-
return out
|
102 |
-
|
103 |
-
|
104 |
-
class FastGELU(nn.Module):
|
105 |
-
can_torch_compile: bool = True
|
106 |
-
|
107 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
108 |
-
out = torch.empty_like(x)
|
109 |
-
ops.gelu_fast(out, x)
|
110 |
-
return out
|
111 |
-
|
112 |
-
|
113 |
-
class NewGELU(nn.Module):
|
114 |
-
can_torch_compile: bool = True
|
115 |
-
|
116 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
117 |
-
out = torch.empty_like(x)
|
118 |
-
ops.gelu_new(out, x)
|
119 |
-
return out
|
120 |
-
|
121 |
-
|
122 |
-
class QuickGELU(nn.Module):
|
123 |
-
can_torch_compile: bool = True
|
124 |
-
|
125 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
126 |
-
out = torch.empty_like(x)
|
127 |
-
ops.gelu_quick(out, x)
|
128 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx11-cu124-x86_64-linux/activation/__init__.py
CHANGED
@@ -1,8 +1,15 @@
|
|
1 |
import torch
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
6 |
|
7 |
|
8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
@@ -10,11 +17,6 @@ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
10 |
return out
|
11 |
|
12 |
|
13 |
-
def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
14 |
-
ops.mul_and_silu(out, x)
|
15 |
-
return out
|
16 |
-
|
17 |
-
|
18 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
19 |
ops.gelu_and_mul(out, x)
|
20 |
return out
|
@@ -43,15 +45,3 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
43 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
44 |
ops.gelu_quick(out, x)
|
45 |
return out
|
46 |
-
|
47 |
-
|
48 |
-
__all__ = [
|
49 |
-
"silu_and_mul",
|
50 |
-
"gelu_and_mul",
|
51 |
-
"gelu_tanh_and_mul",
|
52 |
-
"fatrelu_and_mul",
|
53 |
-
"gelu_fast",
|
54 |
-
"gelu_new",
|
55 |
-
"gelu_quick",
|
56 |
-
"layers",
|
57 |
-
]
|
|
|
1 |
import torch
|
2 |
|
3 |
+
try:
|
4 |
+
from ._ops import ops
|
5 |
+
except ImportError as e:
|
6 |
+
# Fallback for local development.
|
7 |
+
try:
|
8 |
+
import _activation
|
9 |
|
10 |
+
ops = torch.ops._activition
|
11 |
+
except ImportError:
|
12 |
+
raise e
|
13 |
|
14 |
|
15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
17 |
return out
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
21 |
ops.gelu_and_mul(out, x)
|
22 |
return out
|
|
|
45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
46 |
ops.gelu_quick(out, x)
|
47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx11-cu124-x86_64-linux/activation/_activation_ochhfvlnc3vyc.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6bd20d411c51fc8729b15cab6a60c5c9185222474aa035489e1bff299d76682
|
3 |
+
size 2428040
|
build/torch26-cxx11-cu124-x86_64-linux/activation/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_ochhfvlnc3vyc
|
3 |
+
ops = torch.ops._activation_ochhfvlnc3vyc
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_ochhfvlnc3vyc::{op_name}"
|
build/torch26-cxx11-cu124-x86_64-linux/activation/layers.py
DELETED
@@ -1,128 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
from ._ops import ops
|
5 |
-
|
6 |
-
|
7 |
-
class SiluAndMul(nn.Module):
|
8 |
-
"""An activation function for SwiGLU.
|
9 |
-
|
10 |
-
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
11 |
-
|
12 |
-
Shapes:
|
13 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
14 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
15 |
-
"""
|
16 |
-
|
17 |
-
can_torch_compile: bool = True
|
18 |
-
|
19 |
-
def forward(self, x: torch.Tensor):
|
20 |
-
d = x.shape[-1] // 2
|
21 |
-
output_shape = x.shape[:-1] + (d,)
|
22 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
23 |
-
ops.silu_and_mul(out, x)
|
24 |
-
return out
|
25 |
-
|
26 |
-
|
27 |
-
class MulAndSilu(nn.Module):
|
28 |
-
"""An activation function for SwiGLU.
|
29 |
-
|
30 |
-
The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
|
31 |
-
|
32 |
-
Shapes:
|
33 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
34 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
35 |
-
"""
|
36 |
-
|
37 |
-
can_torch_compile: bool = True
|
38 |
-
|
39 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40 |
-
d = x.shape[-1] // 2
|
41 |
-
output_shape = x.shape[:-1] + (d,)
|
42 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
43 |
-
ops.mul_and_silu(out, x)
|
44 |
-
return out
|
45 |
-
|
46 |
-
|
47 |
-
class GeluAndMul(nn.Module):
|
48 |
-
"""An activation function for GeGLU.
|
49 |
-
|
50 |
-
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
51 |
-
|
52 |
-
Shapes:
|
53 |
-
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
|
54 |
-
return: (batch_size, seq_len, d) or (num_tokens, d)
|
55 |
-
"""
|
56 |
-
|
57 |
-
can_torch_compile: bool = True
|
58 |
-
|
59 |
-
def forward(self, x: torch.Tensor):
|
60 |
-
d = x.shape[-1] // 2
|
61 |
-
output_shape = x.shape[:-1] + (d,)
|
62 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
63 |
-
ops.gelu_and_mul(out, x)
|
64 |
-
return out
|
65 |
-
|
66 |
-
|
67 |
-
class GeluTanhAndMul(nn.Module):
|
68 |
-
can_torch_compile: bool = True
|
69 |
-
|
70 |
-
def forward(self, x: torch.Tensor):
|
71 |
-
d = x.shape[-1] // 2
|
72 |
-
output_shape = x.shape[:-1] + (d,)
|
73 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
74 |
-
ops.gelu_tanh_and_mul(out, x)
|
75 |
-
return out
|
76 |
-
|
77 |
-
|
78 |
-
class FatreluAndMul(nn.Module):
|
79 |
-
"""An activation function for FATReLU.
|
80 |
-
|
81 |
-
The function computes x -> FATReLU(x[:d]) * x[d:] where
|
82 |
-
d = x.shape[-1] // 2.
|
83 |
-
This is used in openbmb/MiniCPM-S-1B-sft.
|
84 |
-
|
85 |
-
Shapes:
|
86 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
87 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
88 |
-
"""
|
89 |
-
|
90 |
-
can_torch_compile: bool = True
|
91 |
-
|
92 |
-
def __init__(self, threshold: float = 0.0):
|
93 |
-
super().__init__()
|
94 |
-
self.threshold = threshold
|
95 |
-
|
96 |
-
def forward(self, x: torch.Tensor):
|
97 |
-
d = x.shape[-1] // 2
|
98 |
-
output_shape = x.shape[:-1] + (d,)
|
99 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
100 |
-
ops.fatrelu_and_mul(out, x, self.threshold)
|
101 |
-
return out
|
102 |
-
|
103 |
-
|
104 |
-
class FastGELU(nn.Module):
|
105 |
-
can_torch_compile: bool = True
|
106 |
-
|
107 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
108 |
-
out = torch.empty_like(x)
|
109 |
-
ops.gelu_fast(out, x)
|
110 |
-
return out
|
111 |
-
|
112 |
-
|
113 |
-
class NewGELU(nn.Module):
|
114 |
-
can_torch_compile: bool = True
|
115 |
-
|
116 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
117 |
-
out = torch.empty_like(x)
|
118 |
-
ops.gelu_new(out, x)
|
119 |
-
return out
|
120 |
-
|
121 |
-
|
122 |
-
class QuickGELU(nn.Module):
|
123 |
-
can_torch_compile: bool = True
|
124 |
-
|
125 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
126 |
-
out = torch.empty_like(x)
|
127 |
-
ops.gelu_quick(out, x)
|
128 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx11-cu126-x86_64-linux/activation/__init__.py
CHANGED
@@ -1,8 +1,15 @@
|
|
1 |
import torch
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
6 |
|
7 |
|
8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
@@ -10,11 +17,6 @@ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
10 |
return out
|
11 |
|
12 |
|
13 |
-
def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
14 |
-
ops.mul_and_silu(out, x)
|
15 |
-
return out
|
16 |
-
|
17 |
-
|
18 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
19 |
ops.gelu_and_mul(out, x)
|
20 |
return out
|
@@ -43,15 +45,3 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
43 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
44 |
ops.gelu_quick(out, x)
|
45 |
return out
|
46 |
-
|
47 |
-
|
48 |
-
__all__ = [
|
49 |
-
"silu_and_mul",
|
50 |
-
"gelu_and_mul",
|
51 |
-
"gelu_tanh_and_mul",
|
52 |
-
"fatrelu_and_mul",
|
53 |
-
"gelu_fast",
|
54 |
-
"gelu_new",
|
55 |
-
"gelu_quick",
|
56 |
-
"layers",
|
57 |
-
]
|
|
|
1 |
import torch
|
2 |
|
3 |
+
try:
|
4 |
+
from ._ops import ops
|
5 |
+
except ImportError as e:
|
6 |
+
# Fallback for local development.
|
7 |
+
try:
|
8 |
+
import _activation
|
9 |
|
10 |
+
ops = torch.ops._activition
|
11 |
+
except ImportError:
|
12 |
+
raise e
|
13 |
|
14 |
|
15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
17 |
return out
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
21 |
ops.gelu_and_mul(out, x)
|
22 |
return out
|
|
|
45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
46 |
ops.gelu_quick(out, x)
|
47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx11-cu126-x86_64-linux/activation/_activation_u6vnqubnicksq.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41c18b20c2bf8c49d2d3088a9bc1aad4293df0b57eafc9b141a9e8e595fe551a
|
3 |
+
size 2436672
|
build/torch26-cxx11-cu126-x86_64-linux/activation/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_u6vnqubnicksq
|
3 |
+
ops = torch.ops._activation_u6vnqubnicksq
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_u6vnqubnicksq::{op_name}"
|
build/torch26-cxx11-cu126-x86_64-linux/activation/layers.py
DELETED
@@ -1,128 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
from ._ops import ops
|
5 |
-
|
6 |
-
|
7 |
-
class SiluAndMul(nn.Module):
|
8 |
-
"""An activation function for SwiGLU.
|
9 |
-
|
10 |
-
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
11 |
-
|
12 |
-
Shapes:
|
13 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
14 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
15 |
-
"""
|
16 |
-
|
17 |
-
can_torch_compile: bool = True
|
18 |
-
|
19 |
-
def forward(self, x: torch.Tensor):
|
20 |
-
d = x.shape[-1] // 2
|
21 |
-
output_shape = x.shape[:-1] + (d,)
|
22 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
23 |
-
ops.silu_and_mul(out, x)
|
24 |
-
return out
|
25 |
-
|
26 |
-
|
27 |
-
class MulAndSilu(nn.Module):
|
28 |
-
"""An activation function for SwiGLU.
|
29 |
-
|
30 |
-
The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
|
31 |
-
|
32 |
-
Shapes:
|
33 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
34 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
35 |
-
"""
|
36 |
-
|
37 |
-
can_torch_compile: bool = True
|
38 |
-
|
39 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40 |
-
d = x.shape[-1] // 2
|
41 |
-
output_shape = x.shape[:-1] + (d,)
|
42 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
43 |
-
ops.mul_and_silu(out, x)
|
44 |
-
return out
|
45 |
-
|
46 |
-
|
47 |
-
class GeluAndMul(nn.Module):
|
48 |
-
"""An activation function for GeGLU.
|
49 |
-
|
50 |
-
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
51 |
-
|
52 |
-
Shapes:
|
53 |
-
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
|
54 |
-
return: (batch_size, seq_len, d) or (num_tokens, d)
|
55 |
-
"""
|
56 |
-
|
57 |
-
can_torch_compile: bool = True
|
58 |
-
|
59 |
-
def forward(self, x: torch.Tensor):
|
60 |
-
d = x.shape[-1] // 2
|
61 |
-
output_shape = x.shape[:-1] + (d,)
|
62 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
63 |
-
ops.gelu_and_mul(out, x)
|
64 |
-
return out
|
65 |
-
|
66 |
-
|
67 |
-
class GeluTanhAndMul(nn.Module):
|
68 |
-
can_torch_compile: bool = True
|
69 |
-
|
70 |
-
def forward(self, x: torch.Tensor):
|
71 |
-
d = x.shape[-1] // 2
|
72 |
-
output_shape = x.shape[:-1] + (d,)
|
73 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
74 |
-
ops.gelu_tanh_and_mul(out, x)
|
75 |
-
return out
|
76 |
-
|
77 |
-
|
78 |
-
class FatreluAndMul(nn.Module):
|
79 |
-
"""An activation function for FATReLU.
|
80 |
-
|
81 |
-
The function computes x -> FATReLU(x[:d]) * x[d:] where
|
82 |
-
d = x.shape[-1] // 2.
|
83 |
-
This is used in openbmb/MiniCPM-S-1B-sft.
|
84 |
-
|
85 |
-
Shapes:
|
86 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
87 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
88 |
-
"""
|
89 |
-
|
90 |
-
can_torch_compile: bool = True
|
91 |
-
|
92 |
-
def __init__(self, threshold: float = 0.0):
|
93 |
-
super().__init__()
|
94 |
-
self.threshold = threshold
|
95 |
-
|
96 |
-
def forward(self, x: torch.Tensor):
|
97 |
-
d = x.shape[-1] // 2
|
98 |
-
output_shape = x.shape[:-1] + (d,)
|
99 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
100 |
-
ops.fatrelu_and_mul(out, x, self.threshold)
|
101 |
-
return out
|
102 |
-
|
103 |
-
|
104 |
-
class FastGELU(nn.Module):
|
105 |
-
can_torch_compile: bool = True
|
106 |
-
|
107 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
108 |
-
out = torch.empty_like(x)
|
109 |
-
ops.gelu_fast(out, x)
|
110 |
-
return out
|
111 |
-
|
112 |
-
|
113 |
-
class NewGELU(nn.Module):
|
114 |
-
can_torch_compile: bool = True
|
115 |
-
|
116 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
117 |
-
out = torch.empty_like(x)
|
118 |
-
ops.gelu_new(out, x)
|
119 |
-
return out
|
120 |
-
|
121 |
-
|
122 |
-
class QuickGELU(nn.Module):
|
123 |
-
can_torch_compile: bool = True
|
124 |
-
|
125 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
126 |
-
out = torch.empty_like(x)
|
127 |
-
ops.gelu_quick(out, x)
|
128 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu118-x86_64-linux/activation/__init__.py
CHANGED
@@ -1,8 +1,15 @@
|
|
1 |
import torch
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
6 |
|
7 |
|
8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
@@ -10,11 +17,6 @@ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
10 |
return out
|
11 |
|
12 |
|
13 |
-
def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
14 |
-
ops.mul_and_silu(out, x)
|
15 |
-
return out
|
16 |
-
|
17 |
-
|
18 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
19 |
ops.gelu_and_mul(out, x)
|
20 |
return out
|
@@ -43,15 +45,3 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
43 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
44 |
ops.gelu_quick(out, x)
|
45 |
return out
|
46 |
-
|
47 |
-
|
48 |
-
__all__ = [
|
49 |
-
"silu_and_mul",
|
50 |
-
"gelu_and_mul",
|
51 |
-
"gelu_tanh_and_mul",
|
52 |
-
"fatrelu_and_mul",
|
53 |
-
"gelu_fast",
|
54 |
-
"gelu_new",
|
55 |
-
"gelu_quick",
|
56 |
-
"layers",
|
57 |
-
]
|
|
|
1 |
import torch
|
2 |
|
3 |
+
try:
|
4 |
+
from ._ops import ops
|
5 |
+
except ImportError as e:
|
6 |
+
# Fallback for local development.
|
7 |
+
try:
|
8 |
+
import _activation
|
9 |
|
10 |
+
ops = torch.ops._activition
|
11 |
+
except ImportError:
|
12 |
+
raise e
|
13 |
|
14 |
|
15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
17 |
return out
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
21 |
ops.gelu_and_mul(out, x)
|
22 |
return out
|
|
|
45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
46 |
ops.gelu_quick(out, x)
|
47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu118-x86_64-linux/activation/_activation_2vn6ty3gfqfb6.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfbcd5da358cd5cb7982d19c8880cf4db6f08b46622a7a953f755ad59e4e1492
|
3 |
+
size 2362752
|
build/torch26-cxx98-cu118-x86_64-linux/activation/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_2vn6ty3gfqfb6
|
3 |
+
ops = torch.ops._activation_2vn6ty3gfqfb6
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_2vn6ty3gfqfb6::{op_name}"
|
build/torch26-cxx98-cu118-x86_64-linux/activation/layers.py
DELETED
@@ -1,128 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
from ._ops import ops
|
5 |
-
|
6 |
-
|
7 |
-
class SiluAndMul(nn.Module):
|
8 |
-
"""An activation function for SwiGLU.
|
9 |
-
|
10 |
-
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
11 |
-
|
12 |
-
Shapes:
|
13 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
14 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
15 |
-
"""
|
16 |
-
|
17 |
-
can_torch_compile: bool = True
|
18 |
-
|
19 |
-
def forward(self, x: torch.Tensor):
|
20 |
-
d = x.shape[-1] // 2
|
21 |
-
output_shape = x.shape[:-1] + (d,)
|
22 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
23 |
-
ops.silu_and_mul(out, x)
|
24 |
-
return out
|
25 |
-
|
26 |
-
|
27 |
-
class MulAndSilu(nn.Module):
|
28 |
-
"""An activation function for SwiGLU.
|
29 |
-
|
30 |
-
The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
|
31 |
-
|
32 |
-
Shapes:
|
33 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
34 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
35 |
-
"""
|
36 |
-
|
37 |
-
can_torch_compile: bool = True
|
38 |
-
|
39 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40 |
-
d = x.shape[-1] // 2
|
41 |
-
output_shape = x.shape[:-1] + (d,)
|
42 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
43 |
-
ops.mul_and_silu(out, x)
|
44 |
-
return out
|
45 |
-
|
46 |
-
|
47 |
-
class GeluAndMul(nn.Module):
|
48 |
-
"""An activation function for GeGLU.
|
49 |
-
|
50 |
-
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
51 |
-
|
52 |
-
Shapes:
|
53 |
-
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
|
54 |
-
return: (batch_size, seq_len, d) or (num_tokens, d)
|
55 |
-
"""
|
56 |
-
|
57 |
-
can_torch_compile: bool = True
|
58 |
-
|
59 |
-
def forward(self, x: torch.Tensor):
|
60 |
-
d = x.shape[-1] // 2
|
61 |
-
output_shape = x.shape[:-1] + (d,)
|
62 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
63 |
-
ops.gelu_and_mul(out, x)
|
64 |
-
return out
|
65 |
-
|
66 |
-
|
67 |
-
class GeluTanhAndMul(nn.Module):
|
68 |
-
can_torch_compile: bool = True
|
69 |
-
|
70 |
-
def forward(self, x: torch.Tensor):
|
71 |
-
d = x.shape[-1] // 2
|
72 |
-
output_shape = x.shape[:-1] + (d,)
|
73 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
74 |
-
ops.gelu_tanh_and_mul(out, x)
|
75 |
-
return out
|
76 |
-
|
77 |
-
|
78 |
-
class FatreluAndMul(nn.Module):
|
79 |
-
"""An activation function for FATReLU.
|
80 |
-
|
81 |
-
The function computes x -> FATReLU(x[:d]) * x[d:] where
|
82 |
-
d = x.shape[-1] // 2.
|
83 |
-
This is used in openbmb/MiniCPM-S-1B-sft.
|
84 |
-
|
85 |
-
Shapes:
|
86 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
87 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
88 |
-
"""
|
89 |
-
|
90 |
-
can_torch_compile: bool = True
|
91 |
-
|
92 |
-
def __init__(self, threshold: float = 0.0):
|
93 |
-
super().__init__()
|
94 |
-
self.threshold = threshold
|
95 |
-
|
96 |
-
def forward(self, x: torch.Tensor):
|
97 |
-
d = x.shape[-1] // 2
|
98 |
-
output_shape = x.shape[:-1] + (d,)
|
99 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
100 |
-
ops.fatrelu_and_mul(out, x, self.threshold)
|
101 |
-
return out
|
102 |
-
|
103 |
-
|
104 |
-
class FastGELU(nn.Module):
|
105 |
-
can_torch_compile: bool = True
|
106 |
-
|
107 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
108 |
-
out = torch.empty_like(x)
|
109 |
-
ops.gelu_fast(out, x)
|
110 |
-
return out
|
111 |
-
|
112 |
-
|
113 |
-
class NewGELU(nn.Module):
|
114 |
-
can_torch_compile: bool = True
|
115 |
-
|
116 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
117 |
-
out = torch.empty_like(x)
|
118 |
-
ops.gelu_new(out, x)
|
119 |
-
return out
|
120 |
-
|
121 |
-
|
122 |
-
class QuickGELU(nn.Module):
|
123 |
-
can_torch_compile: bool = True
|
124 |
-
|
125 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
126 |
-
out = torch.empty_like(x)
|
127 |
-
ops.gelu_quick(out, x)
|
128 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu124-x86_64-linux/activation/__init__.py
CHANGED
@@ -1,8 +1,15 @@
|
|
1 |
import torch
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
6 |
|
7 |
|
8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
@@ -10,11 +17,6 @@ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
10 |
return out
|
11 |
|
12 |
|
13 |
-
def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
14 |
-
ops.mul_and_silu(out, x)
|
15 |
-
return out
|
16 |
-
|
17 |
-
|
18 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
19 |
ops.gelu_and_mul(out, x)
|
20 |
return out
|
@@ -43,15 +45,3 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
43 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
44 |
ops.gelu_quick(out, x)
|
45 |
return out
|
46 |
-
|
47 |
-
|
48 |
-
__all__ = [
|
49 |
-
"silu_and_mul",
|
50 |
-
"gelu_and_mul",
|
51 |
-
"gelu_tanh_and_mul",
|
52 |
-
"fatrelu_and_mul",
|
53 |
-
"gelu_fast",
|
54 |
-
"gelu_new",
|
55 |
-
"gelu_quick",
|
56 |
-
"layers",
|
57 |
-
]
|
|
|
1 |
import torch
|
2 |
|
3 |
+
try:
|
4 |
+
from ._ops import ops
|
5 |
+
except ImportError as e:
|
6 |
+
# Fallback for local development.
|
7 |
+
try:
|
8 |
+
import _activation
|
9 |
|
10 |
+
ops = torch.ops._activition
|
11 |
+
except ImportError:
|
12 |
+
raise e
|
13 |
|
14 |
|
15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
17 |
return out
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
21 |
ops.gelu_and_mul(out, x)
|
22 |
return out
|
|
|
45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
46 |
ops.gelu_quick(out, x)
|
47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu124-x86_64-linux/activation/_activation_be5bedb.abi3.so
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:53ddfb42466bfe01feb98348f5c2d6beefd589aeb3dec4c5c36609e11a6bde4c
|
3 |
-
size 2605136
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu124-x86_64-linux/activation/_activation_myvteedxdpqc6.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1bc928823117c800904bcd3492bf1a0c65a32f6d8a842dc039f55e29831ab49
|
3 |
+
size 2420344
|
build/torch26-cxx98-cu124-x86_64-linux/activation/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_myvteedxdpqc6
|
3 |
+
ops = torch.ops._activation_myvteedxdpqc6
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_myvteedxdpqc6::{op_name}"
|
build/torch26-cxx98-cu124-x86_64-linux/activation/layers.py
DELETED
@@ -1,128 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
from ._ops import ops
|
5 |
-
|
6 |
-
|
7 |
-
class SiluAndMul(nn.Module):
|
8 |
-
"""An activation function for SwiGLU.
|
9 |
-
|
10 |
-
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
11 |
-
|
12 |
-
Shapes:
|
13 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
14 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
15 |
-
"""
|
16 |
-
|
17 |
-
can_torch_compile: bool = True
|
18 |
-
|
19 |
-
def forward(self, x: torch.Tensor):
|
20 |
-
d = x.shape[-1] // 2
|
21 |
-
output_shape = x.shape[:-1] + (d,)
|
22 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
23 |
-
ops.silu_and_mul(out, x)
|
24 |
-
return out
|
25 |
-
|
26 |
-
|
27 |
-
class MulAndSilu(nn.Module):
|
28 |
-
"""An activation function for SwiGLU.
|
29 |
-
|
30 |
-
The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
|
31 |
-
|
32 |
-
Shapes:
|
33 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
34 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
35 |
-
"""
|
36 |
-
|
37 |
-
can_torch_compile: bool = True
|
38 |
-
|
39 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40 |
-
d = x.shape[-1] // 2
|
41 |
-
output_shape = x.shape[:-1] + (d,)
|
42 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
43 |
-
ops.mul_and_silu(out, x)
|
44 |
-
return out
|
45 |
-
|
46 |
-
|
47 |
-
class GeluAndMul(nn.Module):
|
48 |
-
"""An activation function for GeGLU.
|
49 |
-
|
50 |
-
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
51 |
-
|
52 |
-
Shapes:
|
53 |
-
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
|
54 |
-
return: (batch_size, seq_len, d) or (num_tokens, d)
|
55 |
-
"""
|
56 |
-
|
57 |
-
can_torch_compile: bool = True
|
58 |
-
|
59 |
-
def forward(self, x: torch.Tensor):
|
60 |
-
d = x.shape[-1] // 2
|
61 |
-
output_shape = x.shape[:-1] + (d,)
|
62 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
63 |
-
ops.gelu_and_mul(out, x)
|
64 |
-
return out
|
65 |
-
|
66 |
-
|
67 |
-
class GeluTanhAndMul(nn.Module):
|
68 |
-
can_torch_compile: bool = True
|
69 |
-
|
70 |
-
def forward(self, x: torch.Tensor):
|
71 |
-
d = x.shape[-1] // 2
|
72 |
-
output_shape = x.shape[:-1] + (d,)
|
73 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
74 |
-
ops.gelu_tanh_and_mul(out, x)
|
75 |
-
return out
|
76 |
-
|
77 |
-
|
78 |
-
class FatreluAndMul(nn.Module):
|
79 |
-
"""An activation function for FATReLU.
|
80 |
-
|
81 |
-
The function computes x -> FATReLU(x[:d]) * x[d:] where
|
82 |
-
d = x.shape[-1] // 2.
|
83 |
-
This is used in openbmb/MiniCPM-S-1B-sft.
|
84 |
-
|
85 |
-
Shapes:
|
86 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
87 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
88 |
-
"""
|
89 |
-
|
90 |
-
can_torch_compile: bool = True
|
91 |
-
|
92 |
-
def __init__(self, threshold: float = 0.0):
|
93 |
-
super().__init__()
|
94 |
-
self.threshold = threshold
|
95 |
-
|
96 |
-
def forward(self, x: torch.Tensor):
|
97 |
-
d = x.shape[-1] // 2
|
98 |
-
output_shape = x.shape[:-1] + (d,)
|
99 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
100 |
-
ops.fatrelu_and_mul(out, x, self.threshold)
|
101 |
-
return out
|
102 |
-
|
103 |
-
|
104 |
-
class FastGELU(nn.Module):
|
105 |
-
can_torch_compile: bool = True
|
106 |
-
|
107 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
108 |
-
out = torch.empty_like(x)
|
109 |
-
ops.gelu_fast(out, x)
|
110 |
-
return out
|
111 |
-
|
112 |
-
|
113 |
-
class NewGELU(nn.Module):
|
114 |
-
can_torch_compile: bool = True
|
115 |
-
|
116 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
117 |
-
out = torch.empty_like(x)
|
118 |
-
ops.gelu_new(out, x)
|
119 |
-
return out
|
120 |
-
|
121 |
-
|
122 |
-
class QuickGELU(nn.Module):
|
123 |
-
can_torch_compile: bool = True
|
124 |
-
|
125 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
126 |
-
out = torch.empty_like(x)
|
127 |
-
ops.gelu_quick(out, x)
|
128 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu126-x86_64-linux/activation/__init__.py
CHANGED
@@ -1,8 +1,15 @@
|
|
1 |
import torch
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
6 |
|
7 |
|
8 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
@@ -10,11 +17,6 @@ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
10 |
return out
|
11 |
|
12 |
|
13 |
-
def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
|
14 |
-
ops.mul_and_silu(out, x)
|
15 |
-
return out
|
16 |
-
|
17 |
-
|
18 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
19 |
ops.gelu_and_mul(out, x)
|
20 |
return out
|
@@ -43,15 +45,3 @@ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
43 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
44 |
ops.gelu_quick(out, x)
|
45 |
return out
|
46 |
-
|
47 |
-
|
48 |
-
__all__ = [
|
49 |
-
"silu_and_mul",
|
50 |
-
"gelu_and_mul",
|
51 |
-
"gelu_tanh_and_mul",
|
52 |
-
"fatrelu_and_mul",
|
53 |
-
"gelu_fast",
|
54 |
-
"gelu_new",
|
55 |
-
"gelu_quick",
|
56 |
-
"layers",
|
57 |
-
]
|
|
|
1 |
import torch
|
2 |
|
3 |
+
try:
|
4 |
+
from ._ops import ops
|
5 |
+
except ImportError as e:
|
6 |
+
# Fallback for local development.
|
7 |
+
try:
|
8 |
+
import _activation
|
9 |
|
10 |
+
ops = torch.ops._activition
|
11 |
+
except ImportError:
|
12 |
+
raise e
|
13 |
|
14 |
|
15 |
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
|
|
17 |
return out
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
|
21 |
ops.gelu_and_mul(out, x)
|
22 |
return out
|
|
|
45 |
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
|
46 |
ops.gelu_quick(out, x)
|
47 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_be5bedb.abi3.so
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ac7174352dea307231f308c84ca32ee001cdbcefd976de860e76501c52aae591
|
3 |
-
size 2613776
|
|
|
|
|
|
|
|
build/torch26-cxx98-cu126-x86_64-linux/activation/_activation_rbswus6emrhm2.abi3.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:474727e434a9cd4ec984a6da7124992ead4ca0fefce9581d0fd503e36c065aed
|
3 |
+
size 2424888
|
build/torch26-cxx98-cu126-x86_64-linux/activation/_ops.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import torch
|
2 |
-
from . import
|
3 |
-
ops = torch.ops.
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
-
return f"
|
|
|
1 |
import torch
|
2 |
+
from . import _activation_rbswus6emrhm2
|
3 |
+
ops = torch.ops._activation_rbswus6emrhm2
|
4 |
|
5 |
def add_op_namespace_prefix(op_name: str):
|
6 |
"""
|
7 |
Prefix op by namespace.
|
8 |
"""
|
9 |
+
return f"_activation_rbswus6emrhm2::{op_name}"
|
build/torch26-cxx98-cu126-x86_64-linux/activation/layers.py
DELETED
@@ -1,128 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
from ._ops import ops
|
5 |
-
|
6 |
-
|
7 |
-
class SiluAndMul(nn.Module):
|
8 |
-
"""An activation function for SwiGLU.
|
9 |
-
|
10 |
-
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
11 |
-
|
12 |
-
Shapes:
|
13 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
14 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
15 |
-
"""
|
16 |
-
|
17 |
-
can_torch_compile: bool = True
|
18 |
-
|
19 |
-
def forward(self, x: torch.Tensor):
|
20 |
-
d = x.shape[-1] // 2
|
21 |
-
output_shape = x.shape[:-1] + (d,)
|
22 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
23 |
-
ops.silu_and_mul(out, x)
|
24 |
-
return out
|
25 |
-
|
26 |
-
|
27 |
-
class MulAndSilu(nn.Module):
|
28 |
-
"""An activation function for SwiGLU.
|
29 |
-
|
30 |
-
The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
|
31 |
-
|
32 |
-
Shapes:
|
33 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
34 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
35 |
-
"""
|
36 |
-
|
37 |
-
can_torch_compile: bool = True
|
38 |
-
|
39 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40 |
-
d = x.shape[-1] // 2
|
41 |
-
output_shape = x.shape[:-1] + (d,)
|
42 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
43 |
-
ops.mul_and_silu(out, x)
|
44 |
-
return out
|
45 |
-
|
46 |
-
|
47 |
-
class GeluAndMul(nn.Module):
|
48 |
-
"""An activation function for GeGLU.
|
49 |
-
|
50 |
-
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
|
51 |
-
|
52 |
-
Shapes:
|
53 |
-
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
|
54 |
-
return: (batch_size, seq_len, d) or (num_tokens, d)
|
55 |
-
"""
|
56 |
-
|
57 |
-
can_torch_compile: bool = True
|
58 |
-
|
59 |
-
def forward(self, x: torch.Tensor):
|
60 |
-
d = x.shape[-1] // 2
|
61 |
-
output_shape = x.shape[:-1] + (d,)
|
62 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
63 |
-
ops.gelu_and_mul(out, x)
|
64 |
-
return out
|
65 |
-
|
66 |
-
|
67 |
-
class GeluTanhAndMul(nn.Module):
|
68 |
-
can_torch_compile: bool = True
|
69 |
-
|
70 |
-
def forward(self, x: torch.Tensor):
|
71 |
-
d = x.shape[-1] // 2
|
72 |
-
output_shape = x.shape[:-1] + (d,)
|
73 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
74 |
-
ops.gelu_tanh_and_mul(out, x)
|
75 |
-
return out
|
76 |
-
|
77 |
-
|
78 |
-
class FatreluAndMul(nn.Module):
|
79 |
-
"""An activation function for FATReLU.
|
80 |
-
|
81 |
-
The function computes x -> FATReLU(x[:d]) * x[d:] where
|
82 |
-
d = x.shape[-1] // 2.
|
83 |
-
This is used in openbmb/MiniCPM-S-1B-sft.
|
84 |
-
|
85 |
-
Shapes:
|
86 |
-
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
|
87 |
-
return: (num_tokens, d) or (batch_size, seq_len, d)
|
88 |
-
"""
|
89 |
-
|
90 |
-
can_torch_compile: bool = True
|
91 |
-
|
92 |
-
def __init__(self, threshold: float = 0.0):
|
93 |
-
super().__init__()
|
94 |
-
self.threshold = threshold
|
95 |
-
|
96 |
-
def forward(self, x: torch.Tensor):
|
97 |
-
d = x.shape[-1] // 2
|
98 |
-
output_shape = x.shape[:-1] + (d,)
|
99 |
-
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
|
100 |
-
ops.fatrelu_and_mul(out, x, self.threshold)
|
101 |
-
return out
|
102 |
-
|
103 |
-
|
104 |
-
class FastGELU(nn.Module):
|
105 |
-
can_torch_compile: bool = True
|
106 |
-
|
107 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
108 |
-
out = torch.empty_like(x)
|
109 |
-
ops.gelu_fast(out, x)
|
110 |
-
return out
|
111 |
-
|
112 |
-
|
113 |
-
class NewGELU(nn.Module):
|
114 |
-
can_torch_compile: bool = True
|
115 |
-
|
116 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
117 |
-
out = torch.empty_like(x)
|
118 |
-
ops.gelu_new(out, x)
|
119 |
-
return out
|
120 |
-
|
121 |
-
|
122 |
-
class QuickGELU(nn.Module):
|
123 |
-
can_torch_compile: bool = True
|
124 |
-
|
125 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
126 |
-
out = torch.empty_like(x)
|
127 |
-
ops.gelu_quick(out, x)
|
128 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
build/torch27-cxx11-cu118-x86_64-linux/activation/__pycache__/__init__.cpython-313.pyc
DELETED
Binary file (2.5 kB)
|
|