kernel
flash-attn3 / flash-attn /mainloop_fwd_sm90_tma_gmma_ws.hpp
danieldk's picture
danieldk HF Staff
Convert FA3 to Kernel Hub format
eb8ddce
/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include "cutlass/pipeline/pipeline.hpp"
#include "cute/tensor.hpp"
#include "cutlass/gemm/collective/builders/sm90_common.inl"
#include "named_barrier.hpp"
#include "seqlen.h"
#include "block.h"
#include "mask.h"
#include "pack_gqa.h"
#include "paged_kv.h"
#include "rotary.h"
#include "utils.h"
#include "sm90_pipeline_no_cluster.hpp"
namespace flash {
using namespace cute;
template <int Stages, class ClusterShape_, class TileShape_MNK_, int kHeadDimV, class Element_, class ElementAccum_, class ArchTag_,
bool Is_causal_, bool Is_local_, bool Has_softcap_, bool Varlen_, bool PagedKVNonTMA_, bool AppendKV_, bool HasQv_,
bool MmaPV_is_RS, bool IntraWGOverlap, bool PackGQA_, bool Split_, bool V_colmajor_>
struct CollectiveMainloopFwdSm90 {
static constexpr int kStages = Stages;
using ClusterShape = ClusterShape_;
using TileShape_MNK = TileShape_MNK_;
using TileShape_MNK_PV = Shape<decltype(get<0>(TileShape_MNK{})), Int<kHeadDimV>, decltype(get<1>(TileShape_MNK{}))>;
using TileShape_MNK_QV = Shape<decltype(get<0>(TileShape_MNK{})), decltype(get<1>(TileShape_MNK{})), Int<kHeadDimV>>;
using Element = Element_;
using ElementAccum = ElementAccum_;
using ArchTag = ArchTag_;
static constexpr bool Is_FP8 = cute::is_same_v<Element, cutlass::float_e4m3_t> || cute::is_same_v<Element, cutlass::float_e5m2_t>;;
static constexpr bool Is_causal = Is_causal_;
static constexpr bool Is_local = Is_local_;
static constexpr bool Has_softcap = Has_softcap_;
static constexpr bool Varlen = Varlen_;
static constexpr bool PagedKVNonTMA = PagedKVNonTMA_;
static constexpr bool AppendKV = AppendKV_;
static constexpr bool HasQv = HasQv_;
static constexpr bool PackGQA = PackGQA_;
static constexpr bool Split = Split_;
static constexpr bool V_colmajor = V_colmajor_;
static constexpr bool Transpose_V = Is_FP8 && !V_colmajor;
static constexpr bool Use_TMA_Q = !PackGQA;
static constexpr bool Use_TMA_KV = !PagedKVNonTMA;
static_assert(Use_TMA_KV || CUTE_STATIC_V(size(ClusterShape{})) == 1, "If not using TMA for KV, ClusterShape must be 1");
static_assert(Use_TMA_KV || !V_colmajor, "If not using TMA for KV, V_colmajor is not supported");
static constexpr bool SameHeadDim = get<2>(TileShape_MNK{}) == kHeadDimV;
static constexpr bool LargeHeadDimV = kHeadDimV > 256;
static_assert(ArchTag::kMinComputeCapability >= 90);
static constexpr cute::GMMA::Major MmaMajorV = !Is_FP8 && !V_colmajor ? GMMA::Major::MN : GMMA::Major::K;
static constexpr cute::GMMA::Major TmaMajorV = !V_colmajor ? GMMA::Major::MN : GMMA::Major::K;
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr int kBlockN = get<1>(TileShape_MNK{});
static constexpr int kHeadDim = get<2>(TileShape_MNK{});
using SeqlenInfo_t = flash::SeqlenInfoQKNewK<Varlen, AppendKV>;
using BlockMN_t = flash::BlockMN<SeqlenInfo_t, kBlockM, kBlockN, Is_causal, Is_local, PackGQA, Split>;
static_assert(!LargeHeadDimV || kHeadDimV % 256 == 0);
static_assert(!LargeHeadDimV || kBlockM <= 64, "kBlockM must be 64 or less for large Headdim_V");
static_assert(!LargeHeadDimV || !MmaPV_is_RS, "MmaPV must be SS for large Headdim_V");
// Register bandwidth is actually a bottleneck so we don't want Q to be in registers.
// Leaving this option here for reference.
static constexpr bool MmaQK_is_RS = false;
// We can have MmaPV with P in smem in rmem to reduce register pressure at the cost of more smem.
static_assert(!(!MmaPV_is_RS && Is_FP8), "MmaPV must be RS if FP8");
static_assert(!(!MmaPV_is_RS && Transpose_V), "MmaPV must be RS if Transpose_V");
// Slightly faster in this case to have WG1 use RS instead of SS to avoid waiting for the P smem write
static constexpr bool MmaPV_use_RS_WG1 = !MmaPV_is_RS && kHeadDim == 64 && kHeadDimV == 512;
using AtomLayoutQK = Layout<Shape<Int<kBlockM / 64>, _1, _1>>;
using TiledMmaQK = decltype(cute::make_tiled_mma(
std::conditional_t<
!MmaQK_is_RS,
decltype(cute::GMMA::ss_op_selector<Element, Element, ElementAccum, TileShape_MNK>()),
decltype(cute::GMMA::rs_op_selector<Element, Element, ElementAccum, TileShape_MNK>())
>{},
AtomLayoutQK{}));
using AtomLayoutPV = std::conditional_t<
!LargeHeadDimV,
AtomLayoutQK,
Layout<Shape<_1, Int<kHeadDimV / 256>, _1>>
>;
using TiledMmaPV = decltype(cute::make_tiled_mma(
std::conditional_t<
!MmaPV_is_RS,
decltype(cute::GMMA::ss_op_selector<Element, Element, ElementAccum,
TileShape_MNK_PV, GMMA::Major::K, MmaMajorV>()),
decltype(cute::GMMA::rs_op_selector<Element, Element, ElementAccum,
TileShape_MNK_PV, GMMA::Major::K, MmaMajorV>())
>{},
AtomLayoutPV{}));
using TiledMmaQV = decltype(cute::make_tiled_mma(
cute::GMMA::ss_op_selector<Element, Element, ElementAccum, TileShape_MNK_QV>(),
AtomLayoutQK{}));
// For hdim64,512, WG1 can use RS but WG2 must use SS
using TiledMmaPV_RS = decltype(cute::make_tiled_mma(
cute::GMMA::rs_op_selector<Element, Element, ElementAccum, TileShape_MNK_PV, GMMA::Major::K, MmaMajorV>(),
AtomLayoutPV{}));
static constexpr int NumMmaThreadsQK = size(TiledMmaQK{});
static constexpr int NumMmaThreads = size(TiledMmaPV{});
static constexpr int NumProducerThreads = !Transpose_V && Use_TMA_KV && Use_TMA_Q ? cutlass::NumThreadsPerWarp : cutlass::NumThreadsPerWarpGroup;
static_assert(NumMmaThreadsQK % cutlass::NumThreadsPerWarpGroup == 0);
static_assert(NumMmaThreads % cutlass::NumThreadsPerWarpGroup == 0);
static constexpr int NumMmaWarpGroups = NumMmaThreads / cutlass::NumThreadsPerWarpGroup;
static_assert(NumMmaWarpGroups == 1 || NumMmaWarpGroups == 2 || NumMmaWarpGroups == 3);
using SmemLayoutAtomQ = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<0>(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>());
using SmemLayoutQ = decltype(tile_to_shape(SmemLayoutAtomQ{}, select<0, 2>(TileShape_MNK{})));
using SmemLayoutAtomK = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<1>(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>());
using SmemLayoutK = decltype(tile_to_shape(
SmemLayoutAtomK{},
make_shape(shape<1>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages>{})));
using SmemLayoutAtomVt = decltype(cutlass::gemm::collective::detail::ss_smem_selector<TmaMajorV, Element,
Int<kHeadDimV>, decltype(cute::get<2>(TileShape_MNK_PV{}))>());
using SmemLayoutVt = decltype(tile_to_shape(
SmemLayoutAtomVt{},
make_shape(Int<kHeadDimV>{}, shape<2>(TileShape_MNK_PV{}), Int<kStages>{}),
std::conditional_t<TmaMajorV == GMMA::Major::K, cute::Step<_1, _2, _3>, cute::Step<_2, _1, _3>>{}));
using SmemLayoutAtomVtMma = decltype(cutlass::gemm::collective::detail::ss_smem_selector<MmaMajorV, Element,
Int<kHeadDimV>, decltype(cute::get<2>(TileShape_MNK_PV{}))>());
using SmemLayoutVtMma = decltype(tile_to_shape(
SmemLayoutAtomVtMma{},
make_shape(Int<kHeadDimV>{}, shape<2>(TileShape_MNK_PV{}), Int<kStages>{}),
std::conditional_t<MmaMajorV == GMMA::Major::K, cute::Step<_1, _2, _3>, cute::Step<_2, _1, _3>>{}));
using SmemLayoutAtomQv = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<0>(TileShape_MNK_QV{})), decltype(cute::get<2>(TileShape_MNK_QV{}))>());
using SmemLayoutQv = decltype(tile_to_shape(SmemLayoutAtomQv{}, select<0, 2>(TileShape_MNK_QV{})));
using SmemLayoutAtomVMmaQV = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<1>(TileShape_MNK_QV{})), decltype(cute::get<2>(TileShape_MNK_QV{}))>());
using SmemLayoutVMmaQV = decltype(tile_to_shape(
SmemLayoutAtomVMmaQV{},
make_shape(shape<1>(TileShape_MNK_QV{}), Int<kHeadDimV>{}, Int<kStages>{})));
static_assert(CUTE_STATIC_V(size(SmemLayoutVMmaQV{})) == size(SmemLayoutVtMma{}));
// Only used if we're using cp.async to load V
using SmemLayoutAtomVCpAsync = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<1>(TileShape_MNK{})), Int<kHeadDimV>>());
using SmemLayoutVCpAsync = decltype(tile_to_shape(
SmemLayoutAtomVCpAsync{},
make_shape(shape<1>(TileShape_MNK{}), Int<kHeadDimV>{}, Int<kStages>{})));
using SmemLayoutAtomP = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<0>(TileShape_MNK{})), decltype(cute::get<1>(TileShape_MNK{}))>());
using SmemLayoutP = decltype(tile_to_shape(SmemLayoutAtomP{}, select<0, 1>(TileShape_MNK{})));
// Only for LargeHeadDimV where WG0 sends WG1 the scales
using SmemLayoutScale = cute::Layout<cute::Shape<Int<kBlockM>, Int<kStages>>>;
using SmemCopyAtomP = Copy_Atom<cute::SM90_U32x4_STSM_N, Element>;
// Use LDSM.T and STSM to transpose V in the case of FP8 and V being row-major.
// For FP16/BF16 we don't do any transposing.
static_assert(!Transpose_V || (kHeadDimV % 32 == 0 && kBlockN % 32 == 0));
static constexpr bool kHeadDimV_multiple_64 = kHeadDimV % 64 == 0;
// Either kHeadDimV is a multiple of 64 (in which case we use a block size of 64 x 32 for the transpose),
// or we need kBlockN to be a multiple of 64 (in which case we use a block size of 32 x 64 for the transpose).
static_assert(!Transpose_V || (kHeadDimV_multiple_64 || kBlockN % 64 == 0));
using LDSM_thread_shape = std::conditional_t<kHeadDimV_multiple_64, Shape<_32, _4, _1, _1>, Shape<_16, _4, _1, _2>>;
using LDSM_thread_stride = std::conditional_t<kHeadDimV_multiple_64, Stride<_4, _1, _0, _0>, Stride<_4, _1, _0, _64>>;
using LDSM_value_shape = Shape<_2, _2, _1, _4>;
using LDSM_value_stride = Stride<_1, _2, _16, _4>;
using LDSM_divide_shape = std::conditional_t<kHeadDimV_multiple_64, Shape<_64, _8>, Shape<_32, _8>>;
using S2RTiledCopyVt = decltype(make_tiled_copy(
Copy_Atom<SM75_U16x8_LDSM_T, Element>{}, Layout<LDSM_thread_shape, LDSM_thread_stride>{},
Layout<LDSM_value_shape, LDSM_value_stride>{}));
using STSM_thread_shape = std::conditional_t<kHeadDimV_multiple_64, Shape<_8, _4, _4, _1>, Shape<_8, _4, _2, _2>>;
using STSM_thread_stride = std::conditional_t<kHeadDimV_multiple_64, Stride<_4, _1, _32, _0>, Stride<_4, _1, _32, _64>>;
using STSM_value_shape = Shape<_1, _4, _2, _2>;
using STSM_value_stride = Stride<_0, _1, _4, _8>;
using STSM_divide_shape = Shape<_8, _16>;
// These will not permute the columns of V (the kHeadDimV dimension) but incur bank conflicts
// so a little slower (e.g. 1150 TFLOPS for hdim 256 instead of 1200 TFLOPS).
// Instead we will permute the cols of V, and un-permute the cols of O in the epilogue.
// using STSM_value_shape = Shape<_2, _4, _1, _2>;
// using STSM_value_stride = Stride<_4, _1, _0, _8>;
// using STSM_divide_shape = Shape<_16, _16>;
using R2STiledCopyV = decltype(make_tiled_copy(
Copy_Atom<SM90_U32x4_STSM_N, Element>{}, Layout<STSM_thread_shape, STSM_thread_stride>{},
Layout<STSM_value_shape, STSM_value_stride>{}));
using GmemTiledCopyQ = cute::SM90_TMA_LOAD;
using GmemTiledCopyKV = decltype(cutlass::gemm::collective::detail::sm90_cluster_shape_to_tma_atom(shape<0>(ClusterShape{})));
// We use CpAsync for K and V if PagedKVNonTMA and AppendKV, since TMA doesn't work there
static constexpr int kHeadDimGCD = cute::gcd(kHeadDim, kHeadDimV);
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDimGCD % kGmemElemsPerLoad == 0, "Headdim and HeaddimV must be a multiple of kGmemElemsPerLoad");
// We want each "row" to have 64 elements (128 bytes, i.e. 1 cache line). E.g. if hdim=128, we want each
// thread to have 4 loads in the M direction and 2 vectorized load in the K direction.
// We want each thread to have at least 2 loads in the K direction since in the case of non-interleaved
// rotary (combining elements at indices 0 and rotary_dim/2, 1 and rotary_dim/2+1, etc), each thread will
// load twice from the same row.
static constexpr int kBytePerHalfRow = kHeadDimGCD / 2 * sizeof(Element);
static constexpr int kBlockKGmem = (kBytePerHalfRow % 128 == 0 ? 128 : (kBytePerHalfRow % 64 == 0 ? 64 : 32)) / sizeof(Element);
static constexpr int kGmemThreadsPerRow = kBlockKGmem / kGmemElemsPerLoad;
static_assert(NumMmaThreads % kGmemThreadsPerRow == 0, "NumMmaThreads must be a multiple of kGmemThreadsPerRow");
// We assume threads loading the same row are in the same warp. This is for an optimization in PagedKVNonTMA where
// these threads share the same page table entry and share the work of computing pointers to paged K and paged V.
static_assert(cutlass::NumThreadsPerWarp % kGmemThreadsPerRow == 0, "kGmemThreadsPerRow must divide NumThreadsPerWarp");
using GmemLayoutAtom = Layout<Shape <Int<NumMmaThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
// If AppendKV, we'll be loading Q for rotary, and we assume divisibility to avoid predication
static_assert(!AppendKV || kBlockM % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0, "kBlockM must be a multiple of NumMmaThreads / kGmemThreadsPerRow");
using GmemTiledCopyAppendKV = decltype(
make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
GmemLayoutAtom{},
Layout<Shape<_1, Int<kGmemElemsPerLoad>>>{})); // Val layout, 8 or 16 vals per store
using ShapeQKV = cute::Shape<int32_t, int32_t, int32_t, int32_t>; // (seqlen, d, head, batch)
using StrideQK = cute::Stride<int64_t, _1, int64_t, int64_t>;
using StrideV = std::conditional_t<!V_colmajor, StrideQK, cute::Stride<_1, int64_t, int64_t, int64_t>>;
// ((qhead_per_khead, seqlen_q), d, nheads_kv, batch, num_splits)
using ShapeQPacked = std::conditional_t<!PackGQA, ShapeQKV, cute::Shape<cute::Shape<int32_t, int32_t>, int32_t, int32_t, int32_t>>;
using StrideQPacked = std::conditional_t<!PackGQA, StrideQK, cute::Stride<cute::Stride<int64_t, int64_t>, _1, int64_t, int64_t>>;
using ShapePageTable = cute::Shape<int32_t, int32_t>; // (batch, max_num_pages_per_seq)
using StridePageTable = cute::Stride<int64_t, _1>;
using ShapeRotary = cute::Shape<int32_t, int32_t>; // (seqlen_ro, rotary_dim // 2)
using StrideRotary = cute::Stride<int64_t, _1>;
using StrideDescale = cute::Stride<int64_t, int64_t>;
using TMA_Q = decltype(make_tma_copy_A_sm90(
GmemTiledCopyQ{},
make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, StrideQK{}),
SmemLayoutQ{},
TileShape_MNK{},
ClusterShape{}));
using TMA_K = decltype(make_tma_copy_B_sm90(
GmemTiledCopyKV{},
make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, StrideQK{}),
take<0, 2>(SmemLayoutK{}),
TileShape_MNK{},
ClusterShape{})); // mcast along M mode for this N load, if any
using TMA_V = decltype(make_tma_copy(
GmemTiledCopyKV{},
make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, select<1, 0, 2, 3>(StrideV{})),
take<0, 2>(SmemLayoutVt{}),
select<1, 2>(TileShape_MNK_PV{}),
size<0>(ClusterShape{}))); // mcast along M mode for this N load, if any
using TMA_Qv_ = decltype(make_tma_copy_A_sm90(
GmemTiledCopyQ{},
make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, StrideQK{}),
SmemLayoutQv{},
TileShape_MNK_QV{},
ClusterShape{}));
using TMA_Qv = std::conditional_t<HasQv, TMA_Qv_, std::nullptr_t>;
// Set the bytes transferred in this TMA transaction (may involve multiple issues)
static constexpr uint32_t TmaTransactionBytesQ = static_cast<uint32_t>(size(SmemLayoutQ{}) * cutlass::sizeof_bits_v<Element> / 8);
static constexpr uint32_t TmaTransactionBytesK = static_cast<uint32_t>(size(take<0, 2>(SmemLayoutK{})) * cutlass::sizeof_bits_v<Element> / 8);
static constexpr uint32_t TmaTransactionBytesV = static_cast<uint32_t>(size(take<0, 2>(SmemLayoutVt{})) * cutlass::sizeof_bits_v<Element> / 8);
static constexpr uint32_t TmaTransactionBytesQv = static_cast<uint32_t>(size(SmemLayoutQv{}) * cutlass::sizeof_bits_v<Element> / 8);
using PipelineTmaAsync = std::conditional_t<CUTE_STATIC_V(size(ClusterShape{})) == 1, typename cutlass::PipelineTmaAsyncNoCluster<kStages>, typename cutlass::PipelineTmaAsync<kStages>>;
using MainloopPipelineK = std::conditional_t<Use_TMA_KV, PipelineTmaAsync, typename cutlass::PipelineAsync<kStages>>;
using MainloopPipelineV = std::conditional_t<!Transpose_V && Use_TMA_KV, PipelineTmaAsync, typename cutlass::PipelineAsync<kStages>>;
using MainloopPipelineVt = std::conditional_t<Use_TMA_KV, PipelineTmaAsync, typename cutlass::PipelineAsync<kStages>>;
// We always use TMA for K_new and V_new
using MainloopPipelineKVNew = PipelineTmaAsync;
using PipelineState = cutlass::PipelineState<kStages>;
// If PackGQA, we use cp.async (instead of TMA) to load Q, so we want smem_q to be aligned
// and have sQ being position_independent_swizzle_tensor.
// If !Use_TMA_KV, we use cp.async (instead of TMA) to load K & V, so we want smem_k and smem_v to be aligned.
static constexpr size_t SmemAlignmentQ = Use_TMA_Q && !MmaQK_is_RS ? 128 : cutlass::detail::alignment_for_swizzle(SmemLayoutQ{});
static constexpr size_t SmemAlignmentK = Use_TMA_KV && !AppendKV ? 128 : cutlass::detail::alignment_for_swizzle(SmemLayoutK{});
static constexpr size_t SmemAlignmentVtNoTranspose = cutlass::detail::alignment_for_swizzle(SmemLayoutVt{});
static constexpr size_t SmemAlignmentQv = Use_TMA_Q ? 128 : cutlass::detail::alignment_for_swizzle(SmemLayoutQv{});
static_assert(SmemAlignmentQ >= 128 and SmemAlignmentK >= 128 && SmemAlignmentVtNoTranspose >= 128, "Require at least 128B alignment");
static constexpr size_t SmemAlignmentP = cutlass::detail::alignment_for_swizzle(SmemLayoutP{});
static_assert(SmemAlignmentP >= 128, "Require at least 128B alignment");
using SmemP_t = std::conditional_t<MmaPV_is_RS, cute::array<Element, 0>, cute::array_aligned<Element, cute::cosize_v<SmemLayoutP>, SmemAlignmentP>>;
using SmemScale_t = std::conditional_t<!LargeHeadDimV, cute::array<float, 0>, cute::array_aligned<float, cute::cosize_v<SmemLayoutScale>, 128>>;
using SmemQv_t = std::conditional_t<!HasQv, cute::array<Element, 0>, cute::array_aligned<Element, cute::cosize_v<SmemLayoutQv>, SmemAlignmentQv>>;
// Sometimes even with SmemP_t = cute::array<Element, 0>, putting it in the TensorStorage struct causes
// smem size to go from 227KB to 228KB and we get "invalid argument".
struct TensorStorageWithoutPNoTranspose : cute::aligned_struct<cute::max(SmemAlignmentQ, SmemAlignmentK, SmemAlignmentVtNoTranspose), _0> {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutVt>, SmemAlignmentVtNoTranspose> smem_v;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>, SmemAlignmentQ> smem_q;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>, SmemAlignmentK> smem_k;
SmemQv_t smem_qv;
};
struct TensorStorageWithPNoTranspose : cute::aligned_struct<cute::max(SmemAlignmentQ, SmemAlignmentK, SmemAlignmentVtNoTranspose, SmemAlignmentP), _0> {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutVt>, SmemAlignmentVtNoTranspose> smem_v;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>, SmemAlignmentQ> smem_q;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>, SmemAlignmentK> smem_k;
SmemQv_t smem_qv;
SmemP_t smem_p;
};
struct TensorStorageWithPScaleNoTranspose : cute::aligned_struct<cute::max(SmemAlignmentQ, SmemAlignmentK, SmemAlignmentVtNoTranspose, SmemAlignmentP), _0> {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutVt>, SmemAlignmentVtNoTranspose> smem_v;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>, SmemAlignmentQ> smem_q;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>, SmemAlignmentK> smem_k;
SmemQv_t smem_qv;
SmemP_t smem_p;
SmemScale_t smem_scale;
};
using TensorStorageNoTranspose = std::conditional_t<
MmaPV_is_RS,
TensorStorageWithoutPNoTranspose,
std::conditional_t<!LargeHeadDimV, TensorStorageWithPNoTranspose, TensorStorageWithPScaleNoTranspose>
>;
static constexpr size_t SmemAlignmentVt = cutlass::detail::alignment_for_swizzle(SmemLayoutVt{});
static constexpr size_t SmemAlignmentV = cutlass::detail::alignment_for_swizzle(SmemLayoutVtMma{});
static_assert(SmemAlignmentVt >= 128 and SmemAlignmentV >= 128, "Require at least 128B alignment");
struct TensorStorageTransposeV : cute::aligned_struct<cute::max(SmemAlignmentQ, SmemAlignmentK, SmemAlignmentV), _0> {
cute::array_aligned<Element, cute::cosize_v<SmemLayoutVtMma>, SmemAlignmentV> smem_v;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutVt>, SmemAlignmentVt> smem_vt;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>, SmemAlignmentQ> smem_q;
cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>, SmemAlignmentK> smem_k;
SmemQv_t smem_qv;
SmemScale_t smem_scale;
};
using TensorStorage = std::conditional_t<!Transpose_V, TensorStorageNoTranspose, TensorStorageTransposeV>;
// These are tuned for speed. They don't affect correctness.
static constexpr bool UseSchedulerBarrier = (IntraWGOverlap
? (NumMmaWarpGroups >= 2) && (!Is_FP8 ? kHeadDim <= 128 : kHeadDim >= 128)
: NumMmaWarpGroups == 2)
&& !LargeHeadDimV;
static constexpr bool RescaleOBeforeGemm = kHeadDim > 128 && (!Is_FP8 || V_colmajor) && IntraWGOverlap;
// Host side kernel arguments
struct Arguments {
Element const* const ptr_Q;
ShapeQKV const shape_Q;
StrideQK const stride_Q;
Element* const ptr_K; // not Element const* since we might append to KV cache in-place
ShapeQKV const shape_K;
StrideQK const stride_K;
Element* const ptr_V;
int32_t const headdim_v;
StrideV const stride_V;
Element const* const ptr_K_new;
ShapeQKV const shape_K_new;
StrideQK const stride_K_new;
Element const* const ptr_V_new;
StrideV const stride_V_new;
Element const* const ptr_Qv;
StrideQK const stride_Qv;
Element const* const ptr_rotary_cos;
ShapeRotary const shape_rotary;
StrideRotary const stride_rotary_cos;
Element const* const ptr_rotary_sin;
StrideRotary const stride_rotary_sin;
bool const is_rotary_interleaved;
int const* const ptr_pagetable;
ShapePageTable const shape_pagetable;
StridePageTable const stride_pagetable;
float const softmax_scale;
float const* ptr_q_descale, *ptr_k_descale, *ptr_v_descale;
StrideDescale const stride_q_descale, stride_k_descale, stride_v_descale;
int const window_size_left = -1, window_size_right = -1, attention_chunk = 0;
float const softcap_val;
int const num_splits;
int const* const kv_batch_idx = nullptr;
int const* const cu_seqlens_q = nullptr;
int const* const cu_seqlens_k = nullptr;
int const* const cu_seqlens_k_new = nullptr;
int const* const seqused_q = nullptr;
int const* const seqused_k = nullptr;
int const* const leftpad_k = nullptr;
int const* const seqlens_rotary = nullptr;
};
// Device side kernel params
struct Params {
Element const* const ptr_Q;
ShapeQKV const shape_Q;
StrideQK const stride_Q;
ShapeQPacked const shape_Q_packed;
StrideQPacked const stride_Q_packed;
Element* const ptr_K;
ShapeQKV const shape_K;
StrideQK const stride_K;
Element* const ptr_V;
int32_t const headdim_v;
StrideV const stride_V;
Element const* const ptr_K_new;
ShapeQKV const shape_K_new;
StrideQK const stride_K_new;
Element const* const ptr_V_new;
StrideV const stride_V_new;
Element const* const ptr_Qv;
StrideV const stride_Qv;
ShapeQPacked const shape_Qv_packed;
StrideQPacked const stride_Qv_packed;
Element const* const ptr_rotary_cos;
ShapeRotary const shape_rotary;
StrideRotary const stride_rotary_cos;
Element const* const ptr_rotary_sin;
StrideRotary const stride_rotary_sin;
bool const is_rotary_interleaved;
int const* const ptr_pagetable;
ShapePageTable const shape_pagetable;
StridePageTable const stride_pagetable;
cutlass::FastDivmod page_size_divmod;
cutlass::FastDivmod blockN_per_page_size_divmod;
cutlass::FastDivmod qhead_per_khead_divmod;
TMA_Q tma_load_Q;
TMA_K tma_load_K;
TMA_V tma_load_V;
TMA_K tma_load_K_new;
TMA_V tma_load_V_new;
TMA_Qv tma_load_Qv;
float const softmax_scale_log2;
float const* ptr_q_descale, *ptr_k_descale, *ptr_v_descale;
StrideDescale const stride_q_descale, stride_k_descale, stride_v_descale;
float const softcap_val;
int const window_size_left, window_size_right;
cutlass::FastDivmod attention_chunk_divmod;
int const num_splits;
int const* const kv_batch_idx = nullptr;
int const* const cu_seqlens_q = nullptr;
int const* const cu_seqlens_k = nullptr;
int const* const cu_seqlens_k_new = nullptr;
int const* const seqused_q = nullptr;
int const* const seqused_k = nullptr;
int const* const leftpad_k = nullptr;
int const *const seqlens_rotary = nullptr;
};
static Params
to_underlying_arguments(Arguments const& args) {
Tensor mQ = make_tensor(make_gmem_ptr(args.ptr_Q), args.shape_Q, args.stride_Q);
TMA_Q tma_load_Q = make_tma_copy_A_sm90(
GmemTiledCopyQ{},
mQ,
SmemLayoutQ{},
TileShape_MNK{},
ClusterShape{}); // no mcast for Q
Tensor mK = make_tensor(make_gmem_ptr(args.ptr_K), args.shape_K, args.stride_K);
TMA_K tma_load_K = make_tma_copy_B_sm90(
GmemTiledCopyKV{},
mK,
take<0, 2>(SmemLayoutK{}),
TileShape_MNK{},
ClusterShape{}); // mcast along M mode for this N load, if any
Tensor mV = make_tensor(make_gmem_ptr(args.ptr_V),
make_shape(args.headdim_v, get<0>(args.shape_K), get<2>(args.shape_K), get<3>(args.shape_K)),
select<1, 0, 2, 3>(args.stride_V));
TMA_V tma_load_V = make_tma_copy(
GmemTiledCopyKV{},
mV,
take<0, 2>(SmemLayoutVt{}),
select<1, 2>(TileShape_MNK_PV{}),
size<0>(ClusterShape{})); // mcast along M mode for this N load, if any
Tensor mKnew = make_tensor(make_gmem_ptr(args.ptr_K_new), args.shape_K_new, args.stride_K_new);
TMA_K tma_load_K_new = make_tma_copy_B_sm90(
GmemTiledCopyKV{},
cute::conditional_return<AppendKV>(mKnew, mK),
take<0, 2>(SmemLayoutK{}),
TileShape_MNK{},
ClusterShape{}); // mcast along M mode for this N load, if any
Tensor mVnew = make_tensor(make_gmem_ptr(args.ptr_V_new),
make_shape(args.headdim_v, get<0>(args.shape_K_new), get<2>(args.shape_K_new), get<3>(args.shape_K_new)),
select<1, 0, 2, 3>(args.stride_V_new));
TMA_V tma_load_V_new = make_tma_copy(
GmemTiledCopyKV{},
cute::conditional_return<AppendKV>(mVnew, mV),
take<0, 2>(SmemLayoutVt{}),
select<1, 2>(TileShape_MNK_PV{}),
size<0>(ClusterShape{})); // mcast along M mode for this N load, if any
auto shape_Qv = make_shape(get<0>(args.shape_Q), args.headdim_v, get<2>(args.shape_Q), get<3>(args.shape_Q));
Tensor mQv = make_tensor(make_gmem_ptr(args.ptr_Qv), shape_Qv, args.stride_Qv);
TMA_Qv tma_load_Qv = [&] {
if constexpr (HasQv) {
return make_tma_copy_A_sm90(
GmemTiledCopyQ{},
mQv,
SmemLayoutQv{},
TileShape_MNK_QV{},
ClusterShape{}); // no mcast for Qv
} else {
return nullptr;
}
}();
// If PackGQA, reshape Q to be ((qhead_per_khead, seqlen_q), head_size, nhead_k, batch_size)
int const qhead_per_khead = !PackGQA ? 1 : cute::ceil_div(get<2>(args.shape_Q), get<2>(args.shape_K));
auto const shape_Q_packed = cute::conditional_return<!PackGQA>(
args.shape_Q,
make_shape(make_shape(qhead_per_khead, get<0>(args.shape_Q)), get<1>(args.shape_Q), get<2>(args.shape_K), get<3>(args.shape_Q))
);
auto const stride_Q_packed = cute::conditional_return<!PackGQA>(
args.stride_Q,
make_stride(make_stride(get<2>(args.stride_Q), get<0>(args.stride_Q)), get<1>(args.stride_Q), get<2>(args.stride_Q) * qhead_per_khead, get<3>(args.stride_Q))
);
auto const shape_Qv_packed = cute::conditional_return<!PackGQA>(
shape_Qv,
make_shape(make_shape(qhead_per_khead, get<0>(shape_Qv)), get<1>(shape_Qv), get<2>(args.shape_K), get<3>(shape_Qv))
);
auto const stride_Qv_packed = cute::conditional_return<!PackGQA>(
args.stride_Qv,
make_stride(make_stride(get<2>(args.stride_Qv), get<0>(args.stride_Qv)), get<1>(args.stride_Qv), get<2>(args.stride_Qv) * qhead_per_khead, get<3>(args.stride_Qv))
);
if (get<1>(args.shape_rotary) > 0) {
assert(args.ptr_rotary_cos != nullptr && args.ptr_rotary_sin != nullptr);
}
assert(args.num_splits >= 1);
int page_size = !args.ptr_pagetable ? 1 : get<0>(args.shape_K);
if (!PagedKVNonTMA && args.ptr_pagetable != nullptr) {
assert(page_size % kBlockN == 0);
assert(!args.leftpad_k);
}
// Avoid dividing by zero
cutlass::FastDivmod attention_chunk_divmod(args.attention_chunk >= 1 ? args.attention_chunk : 1);
attention_chunk_divmod.divisor = args.attention_chunk;
// If there's tanh softcapping, we do tanh(scores * softmax_scale / softcap_val) * softcap_val.
// Right after this, we multiply by log2(e) before applying exp2.
// To reduce the number of instructions, we instead pre-multiply softmax_scale / softcap_val
// (assigning it to params.softcap_val) and pre-multiply softcap_val * log2(e)
// (assigning it to params.softmax_scale_log2).
return {args.ptr_Q, args.shape_Q, args.stride_Q, shape_Q_packed, stride_Q_packed,
args.ptr_K, args.shape_K, args.stride_K, args.ptr_V, args.headdim_v, args.stride_V,
args.ptr_K_new, args.shape_K_new, args.stride_K_new, args.ptr_V_new, args.stride_V_new,
args.ptr_Qv, args.stride_Qv, shape_Qv_packed, stride_Qv_packed,
args.ptr_rotary_cos, args.shape_rotary, args.stride_rotary_cos,
args.ptr_rotary_sin, args.stride_rotary_sin, args.is_rotary_interleaved,
args.ptr_pagetable, args.shape_pagetable, args.stride_pagetable,
cutlass::FastDivmod(page_size), // page_size_divmod
cutlass::FastDivmod(!args.ptr_pagetable ? 1 : cute::ceil_div(page_size, kBlockN)), // blockN_per_page_size_divmod
cutlass::FastDivmod(cute::ceil_div(get<2>(args.shape_Q), get<2>(args.shape_K))),
tma_load_Q, tma_load_K, tma_load_V, tma_load_K_new, tma_load_V_new, tma_load_Qv,
!Has_softcap ? float(args.softmax_scale * M_LOG2E) : float(args.softcap_val * M_LOG2E),
args.ptr_q_descale, args.ptr_k_descale, args.ptr_v_descale,
args.stride_q_descale, args.stride_k_descale, args.stride_v_descale,
!Has_softcap ? 0.f : args.softmax_scale / args.softcap_val,
args.window_size_left, args.window_size_right, attention_chunk_divmod,
!Split ? 1 : args.num_splits,
args.kv_batch_idx,
args.cu_seqlens_q, args.cu_seqlens_k, args.cu_seqlens_k_new,
args.seqused_q, args.seqused_k, args.leftpad_k, args.seqlens_rotary};
}
/// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance
CUTLASS_DEVICE
static void prefetch_tma_descriptors(Params const& params) {
if constexpr (Use_TMA_Q) {
cute::prefetch_tma_descriptor(params.tma_load_Q.get_tma_descriptor());
if constexpr (HasQv) {
cute::prefetch_tma_descriptor(params.tma_load_Qv.get_tma_descriptor());
}
}
if constexpr (Use_TMA_KV) {
cute::prefetch_tma_descriptor(params.tma_load_K.get_tma_descriptor());
cute::prefetch_tma_descriptor(params.tma_load_V.get_tma_descriptor());
}
if constexpr (AppendKV) {
cute::prefetch_tma_descriptor(params.tma_load_K_new.get_tma_descriptor());
cute::prefetch_tma_descriptor(params.tma_load_V_new.get_tma_descriptor());
}
}
template <typename SchedulerPrefetch, typename SharedStorage>
CUTLASS_DEVICE void
load(Params const& params,
MainloopPipelineK pipeline_k,
MainloopPipelineV pipeline_v,
MainloopPipelineVt pipeline_vt,
PipelineState& smem_pipe_write,
SharedStorage &shared_storage,
SchedulerPrefetch const& scheduler_prefetch,
SeqlenInfo_t const& seqlen_info,
cute::tuple<int32_t, int32_t, int32_t, int32_t> block_coord,
int &work_idx
) {
// some of these are captured in lambda so can't use structured binding
int const m_block = get<0>(block_coord);
int const bidh = get<1>(block_coord);
int const bidb = get<2>(block_coord);
int const split_idx = get<3>(block_coord);
auto [n_block_min, n_block_max] = BlockMN_t::get_n_block_min_max(
seqlen_info, m_block, bidb, split_idx, params.num_splits,
params.window_size_left, params.window_size_right, params.attention_chunk_divmod,
params.qhead_per_khead_divmod);
// It's possible to have n_block_max <= n_block_min. Loading K can cause illegal memory access.
if constexpr (Is_causal || Is_local || Varlen || Split) {
if (n_block_max <= n_block_min) {
scheduler_prefetch();
return;
}
}
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutQ{});
Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
Tensor sK_pi = as_position_independent_swizzle_tensor(sK);
// as_position_independent_swizzle_tensor makes address calculation easier when we do LDSM & STSM to transpose.
// But it requires smem_vt and smem_v to be aligned to e.g 512 bytes.
Tensor sVt = [&] {
if constexpr (!Transpose_V) {
return make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVt{});
} else {
return cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_vt.data()), SmemLayoutVt{}));
}
}();
// Only used if Transpose_V
Tensor sV = cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVtMma{}));
// Only used if we're using cp.async to load V
Tensor sVcpasync = [&] {
if constexpr (!Transpose_V) {
return cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVCpAsync{}));
} else {
return cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_vt.data()), SmemLayoutVCpAsync{}));
}
}();
Tensor sQv = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_qv.data()), SmemLayoutQv{});
int const thread_idx = threadIdx.x % NumProducerThreads;
int const bidh_kv = !PackGQA ? params.qhead_per_khead_divmod.divide(bidh) : bidh;
int const bidb_kv = params.kv_batch_idx == nullptr ? bidb : params.kv_batch_idx[bidb];
// Prepare the TMA loads
uint32_t block_rank_in_cluster = cute::block_rank_in_cluster();
constexpr uint32_t cluster_shape_x = get<0>(ClusterShape());
uint2 cluster_local_block_id = {block_rank_in_cluster % cluster_shape_x, block_rank_in_cluster / cluster_shape_x};
bool const is_varlen_q = Varlen && params.cu_seqlens_q;
bool const is_varlen_k = Varlen && params.cu_seqlens_k;
Tensor mQ = params.tma_load_Q.get_tma_tensor(params.shape_Q)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor mK_TMA = params.tma_load_K.get_tma_tensor(params.shape_K)(_, _, bidh_kv, _);
auto shape_V = make_shape(params.headdim_v, get<0>(params.shape_K), get<2>(params.shape_K), get<3>(params.shape_K));
Tensor mVt_TMA = params.tma_load_V.get_tma_tensor(shape_V)(_, _, bidh_kv, _);
Tensor gQ = local_tile(domain_offset(make_coord(seqlen_info.offset_q, _0{}), mQ), select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{})); // (M, K)
// if (cute::thread0()) { printf("Varlen = %d, params.leftpad_k = %p, leftpad_k = %d\n", Varlen, params.leftpad_k, leftpad_k); }
Tensor gK_TMA = local_tile(domain_offset(make_coord(seqlen_info.offset_k, _0{}, _0{}), mK_TMA), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{}, _)); // (N, K, _, _)
Tensor gVt_TMA = local_tile(domain_offset(make_coord(_0{}, seqlen_info.offset_k, _0{}), mVt_TMA), select<1, 2>(TileShape_MNK_PV{}), make_coord(_0{}, _, _)); // (K, N, _, _)
auto block_tma_Q = params.tma_load_Q.get_slice(_0{});
Tensor tQgQ = group_modes<0, 3>(block_tma_Q.partition_S(gQ)); // (TMA)
Tensor tQsQ = group_modes<0, 3>(block_tma_Q.partition_D(sQ)); // (TMA)
if (Use_TMA_Q && thread_idx == 0) { prefetch(params.tma_load_Q, tQgQ); }
// tma_partition doesn't handle position_independent_swizzle_tensor correctly, so we need to do it manually
auto block_tma_K = params.tma_load_K.get_slice(cluster_local_block_id.x);
Tensor tKgK_TMA = group_modes<0, 3>(block_tma_K.partition_S(gK_TMA)); // (TMA, k, batch)
Tensor tKsK_TMA = group_modes<0, 3>(block_tma_K.partition_D(sK)); // (TMA, PIPE)
auto block_tma_V = params.tma_load_V.get_slice(cluster_local_block_id.x);
Tensor tVgVt_TMA = group_modes<0, 3>(block_tma_V.partition_S(gVt_TMA)); // (TMA, k, batch)
Tensor tVsVt_TMA = group_modes<0, 3>(block_tma_V.partition_D(sVt)); // (TMA, PIPE)
auto [tQvgQv, tQvsQv] = [&] {
if constexpr (HasQv) {
auto shape_Qv = make_shape(get<0>(params.shape_Q), params.headdim_v, get<2>(params.shape_Q), get<3>(params.shape_Q));
Tensor mQv = params.tma_load_Qv.get_tma_tensor(shape_Qv)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor gQv = local_tile(domain_offset(make_coord(seqlen_info.offset_q, _0{}), mQv), select<0, 2>(TileShape_MNK_QV{}), make_coord(m_block, _0{})); // (M, Kv)
auto block_tma_Qv = params.tma_load_Qv.get_slice(_0{});
Tensor tQvgQv = group_modes<0, 3>(block_tma_Qv.partition_S(gQv)); // (TMA)
Tensor tQvsQv = group_modes<0, 3>(block_tma_Qv.partition_D(sQv)); // (TMA)
return cute::make_tuple(tQvgQv, tQvsQv);
} else {
return cute::make_tuple(nullptr, nullptr);
}
}();
// This is used to index into the batch dimension of mK and mV
int const bidb_kv_idx = !is_varlen_k && !params.ptr_pagetable ? bidb_kv : 0;
using PagedKVManager_t = PagedKVManager<get<1>(TileShape_MNK{}), get<2>(TileShape_MNK{}), get<1>(TileShape_MNK_PV{}), NumProducerThreads, Element, Transpose_V || !IntraWGOverlap /*KV_Same_Iter*/>;
PagedKVManager_t paged_kv_manager(
params.ptr_pagetable, params.shape_pagetable, params.stride_pagetable,
params.ptr_K, params.shape_K, params.stride_K,
params.ptr_V, params.headdim_v, params.stride_V,
params.page_size_divmod, params.blockN_per_page_size_divmod,
bidb_kv, bidh_kv, thread_idx, seqlen_info.seqlen_k, seqlen_info.leftpad_k, bidb_kv_idx
);
// Set up for transposing V, only used if Transpose_V
S2RTiledCopyVt s2r_tiled_copy_vt;
R2STiledCopyV r2s_tiled_copy_v;
auto s2r_thr_copy_vt = s2r_tiled_copy_vt.get_thread_slice(thread_idx);
auto r2s_thr_copy_v = r2s_tiled_copy_v.get_thread_slice(thread_idx);
// flat_divide(sVt, LDSM_divide_shape{}): (64, 8, kHeadDim / 64, kBlockN / 8, kStages)
Tensor tTranssVt_ = s2r_thr_copy_vt.partition_S(flat_divide(sVt, LDSM_divide_shape{})); // ((16, 1), 1, 1, kHeadDim / 64, kBlockN / 32, kStages)
// flat_divide(sV, STSM_divide_shape{}): (8, 16, kHeadDim / 8, (4, kBlockN / 64), kStages)
Tensor tTranssV_ = r2s_thr_copy_v.partition_D(flat_divide(sV, STSM_divide_shape{})); // ((16, 1), 1, 1, kHeadDim / 64, (2, kBlockN / 64), kStages)
CUTE_STATIC_ASSERT_V(rank(tTranssVt_) == rank(tTranssV_));
CUTE_STATIC_ASSERT_V(size<0>(tTranssVt_) == size<0>(tTranssV_));
CUTE_STATIC_ASSERT_V(size<1>(tTranssVt_) == size<1>(tTranssV_));
CUTE_STATIC_ASSERT_V(size<2>(tTranssVt_) == size<2>(tTranssV_));
CUTE_STATIC_ASSERT_V(size<3>(tTranssVt_) == size<3>(tTranssV_));
CUTE_STATIC_ASSERT_V(size<4>(tTranssVt_) == size<4>(tTranssV_));
// Faster to have 2 LDSM.T, byte permute, STSM for better ILP
static constexpr int Transpose_ILP = (size<2>(tTranssVt_) * size<3>(tTranssVt_)) % 2 == 0 ? 2 : 1;
Tensor tTranssVt = logical_divide(group_modes<1, rank(tTranssVt_) - 1>(tTranssVt_), Shape<Underscore, Int<Transpose_ILP>>{}); // ((16, 1), (2, kHeadDim / 64 * kBlockN / 32 / 2), kStages)
Tensor tTranssV = logical_divide(group_modes<1, rank(tTranssV_) - 1>(tTranssV_), Shape<Underscore, Int<Transpose_ILP>>{}); // ((16, 1), (2, kHeadDim / 64 * kBlockN / 32 / 2), kStages)
auto transpose_V = [&](int stage) {
if constexpr (Transpose_V) {
#pragma unroll
for (int i = 0; i < size<1, 1>(tTranssVt); ++i) {
Tensor tTransrV = make_fragment_like(tTranssV(_, make_coord(_, _0{}), _0{}));
static_assert(size<0>(tTransrV) == 16);
Tensor tTransrV_64 = recast<uint2>(tTransrV);
cute::copy(s2r_tiled_copy_vt, tTranssVt(_, make_coord(_, i), stage), tTransrV);
#pragma unroll
for (int j = 0; j < size(tTransrV_64); ++j) {
uint32_t upper = tTransrV_64[j].x;
uint32_t lower = tTransrV_64[j].y;
tTransrV_64[j].x = __byte_perm(upper, lower, 0x6420);
tTransrV_64[j].y = __byte_perm(upper, lower, 0x7531);
}
cute::copy(r2s_tiled_copy_v, tTransrV, tTranssV(_, make_coord(_, i), stage));
}
}
};
uint16_t mcast_mask_kv = 0;
if constexpr (cute::is_same_v<GmemTiledCopyKV, SM90_TMA_LOAD_MULTICAST>) {
auto block_layout = Layout<ClusterShape>{}; // (m,n) -> block_id
for (int m = 0; m < size<0>(block_layout); ++m) {
mcast_mask_kv |= (uint16_t(1) << block_layout(m, cluster_local_block_id.y, _0{}));
}
}
auto load_K = [&] (int const n_block, auto const& smem_pipe_write, auto need_seqlenk_masking_type) {
pipeline_k.producer_acquire(smem_pipe_write);
if constexpr (!PagedKVNonTMA) {
auto [n_block_idx, bidb_kv_idx] = paged_kv_manager.get_indices_for_K_TMA();
copy(params.tma_load_K.with(*pipeline_k.producer_get_barrier(smem_pipe_write), mcast_mask_kv, TMA::CacheHintSm90::EVICT_LAST),
tKgK_TMA(_, n_block_idx, bidb_kv_idx), tKsK_TMA(_, smem_pipe_write.index()));
} else {
constexpr bool Seqlenk_mask = decltype(need_seqlenk_masking_type)::value;
paged_kv_manager.template load_K<Seqlenk_mask>(n_block, sK_pi(_, _, smem_pipe_write.index()));
pipeline_k.producer_commit(smem_pipe_write, cutlass::arch::cpasync_barrier_arrive);
}
};
auto load_V = [&] (int const n_block, auto const& smem_pipe_write, auto need_seqlenk_masking_type) {
auto pipeline_v_load = cute::conditional_return<!Transpose_V>(pipeline_v, pipeline_vt);
pipeline_v_load.producer_acquire(smem_pipe_write);
if constexpr (!PagedKVNonTMA) {
auto [n_block_idx, bidb_kv_idx] = paged_kv_manager.get_indices_for_V_TMA();
copy(params.tma_load_V.with(*pipeline_v_load.producer_get_barrier(smem_pipe_write), mcast_mask_kv, TMA::CacheHintSm90::EVICT_LAST),
tVgVt_TMA(_, n_block_idx, bidb_kv_idx), tVsVt_TMA(_, smem_pipe_write.index()));
} else {
constexpr bool Seqlenk_mask = decltype(need_seqlenk_masking_type)::value;
paged_kv_manager.template load_V<Seqlenk_mask>(n_block, sVcpasync(_, _, smem_pipe_write.index()));
pipeline_v_load.producer_commit(smem_pipe_write, cutlass::arch::cpasync_barrier_arrive);
}
};
auto copy_Vt_to_V = [&] (auto const& smem_pipe_write) {
// Instead of maintaining smem_pipe_read as a separate variable, we can just use smem_pipe_write,
// and exploit the invariance that smem_pipe_write.phase() == smem_pipe_read.phase() ^ 1.
// This saves 1 or 2 registers.
PipelineState smem_pipe_read{smem_pipe_write.index(), smem_pipe_write.phase() ^ 1, smem_pipe_write.count()};
pipeline_vt.consumer_wait(smem_pipe_read);
pipeline_v.producer_acquire(smem_pipe_write);
transpose_V(smem_pipe_write.index());
// SMEM fence to make sure V is transposed before math
cutlass::arch::fence_view_async_shared();
pipeline_v.producer_commit(smem_pipe_write);
// Very important: PipelineTmaAsync::consumer_release assumes that the warpgroup is synchronized
// before calling. Without this we get race conditions.
cutlass::arch::NamedBarrier::sync(cutlass::NumThreadsPerWarpGroup, cutlass::arch::ReservedNamedBarriers::TransposeBarrier /*id*/);
pipeline_vt.consumer_release(smem_pipe_read);
};
int n_block = n_block_max - 1;
int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
// If this is true, we're guaranteed that only the first warp will execute this function
static constexpr bool SingleProducerWarp = NumProducerThreads == cutlass::NumThreadsPerWarp;
bool should_load_KV = !Use_TMA_KV || ((SingleProducerWarp || warp_idx_in_warpgroup == 0) && cute::elect_one_sync());
if (should_load_KV) {
if constexpr (PagedKVNonTMA) {
paged_kv_manager.template load_page_table<true /*Seqlenk_mask*/, true /*First_iter*/>(n_block);
} else {
paged_kv_manager.template load_page_table_TMA<true /*First_iter*/>(n_block);
}
if constexpr (Transpose_V) { load_V(n_block, smem_pipe_write, cute::true_type{} /*Seqlenk_mask*/); }
// if (thread_idx == 0) { printf("Producer: main load, before load_K, index = %d\n", smem_pipe_write.index());}
load_K(n_block, smem_pipe_write, cute::true_type{} /*Seqlenk_mask*/);
// if (thread_idx == 0) { printf("Producer: main load, after load K, index = %d\n", smem_pipe_write.index());}
}
if constexpr (Use_TMA_Q) {
// Wait for the MMA warpgroups to signal that smem_q is ready
if (SingleProducerWarp || warp_idx_in_warpgroup == 0) {
cutlass::arch::NamedBarrier::sync(NumMmaThreadsQK + cutlass::NumThreadsPerWarp, static_cast<uint32_t>(FwdNamedBarriers::QueryEmpty) /*id*/);
}
if ((SingleProducerWarp || warp_idx_in_warpgroup == 0) && cute::elect_one_sync()) {
shared_storage.pipelines.barrier_Q.arrive_and_expect_tx(TmaTransactionBytesQ);
copy(params.tma_load_Q.with(reinterpret_cast<typename cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.pipelines.barrier_Q), 0 /*mcast_mask*/, !Split ? TMA::CacheHintSm90::EVICT_FIRST : TMA::CacheHintSm90::EVICT_LAST),
tQgQ, tQsQ);
if constexpr (HasQv) {
shared_storage.pipelines.barrier_Qv.arrive_and_expect_tx(TmaTransactionBytesQv);
copy(params.tma_load_Qv.with(reinterpret_cast<typename cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.pipelines.barrier_Qv), 0 /*mcast_mask*/, !Split ? TMA::CacheHintSm90::EVICT_FIRST : TMA::CacheHintSm90::EVICT_LAST),
tQvgQv, tQvsQv);
}
}
} else { // Load Q with cp.async
cutlass::arch::NamedBarrier::sync(NumMmaThreadsQK + NumProducerThreads, static_cast<uint32_t>(FwdNamedBarriers::QueryEmpty) /*id*/);
Tensor mQ = make_tensor(make_gmem_ptr(params.ptr_Q + seqlen_info.offset_q * get<0>(params.stride_Q)), params.shape_Q_packed, params.stride_Q_packed)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor sQ_pi = cute::as_position_independent_swizzle_tensor(sQ);
using PackGQAt = flash::PackGQAManager<get<0>(TileShape_MNK{}), get<2>(TileShape_MNK{}), NumProducerThreads, Element>;
PackGQAt::load_Q(mQ, sQ_pi, params.qhead_per_khead_divmod, thread_idx, seqlen_info.seqlen_q, m_block);
auto &barrier_Q = shared_storage.pipelines.barrier_Q;
cutlass::arch::cpasync_barrier_arrive(reinterpret_cast<uint64_t*>(&barrier_Q));
barrier_Q.arrive();
if constexpr (HasQv) {
Tensor mQv = make_tensor(make_gmem_ptr(params.ptr_Qv + seqlen_info.offset_q * get<0>(params.stride_Qv)), params.shape_Qv_packed, params.stride_Qv_packed)(_, _, bidh, !is_varlen_q ? bidb : 0);
Tensor sQv_pi = cute::as_position_independent_swizzle_tensor(sQv);
using PackGQAt = flash::PackGQAManager<get<0>(TileShape_MNK_QV{}), get<2>(TileShape_MNK_QV{}), NumProducerThreads, Element>;
PackGQAt::load_Q(mQv, sQv_pi, params.qhead_per_khead_divmod, thread_idx, seqlen_info.seqlen_q, m_block);
auto &barrier_Qv = shared_storage.pipelines.barrier_Qv;
cutlass::arch::cpasync_barrier_arrive(reinterpret_cast<uint64_t*>(&barrier_Qv));
barrier_Qv.arrive();
}
}
// Wait for the MMA WGs to signal that smem_v are ready and V can be copied from gmem
// Need ClusterBarrier, not just NamedBarrier. Otherwise we might have CTA 0 finishing the
// TMA store on O first, call TMA multicast load on V, before CTA 1 can finishing TMA store on O.
// if (thread_idx == 0) { printf("Producer: main load, before barrier_O, work_idx = %d\n", work_idx);}
shared_storage.pipelines.barrier_O.wait((work_idx + 1) % 2);
// if (thread_idx == 0) { printf("Producer: main load, after barrier_O\n");}
if constexpr (!Transpose_V && !IntraWGOverlap) {
if (should_load_KV) { load_V(n_block, smem_pipe_write, cute::true_type{} /*Seqlenk_mask*/); }
}
int n_block_prev = n_block;
--n_block;
#pragma unroll (!Transpose_V && Use_TMA_KV ? 2 : 1)
for (; n_block >= n_block_min; --n_block) {
PipelineState smem_pipe_write_v = smem_pipe_write; // copy the state, write_v is always 1 step behind
++smem_pipe_write;
if (should_load_KV) {
if constexpr (PagedKVNonTMA) {
paged_kv_manager.template load_page_table<false /*Seqlenk_mask*/>(n_block);
} else {
paged_kv_manager.load_page_table_TMA(n_block);
}
if constexpr (Transpose_V) { load_V(n_block, smem_pipe_write, cute::false_type{} /*Seqlenk_mask*/); }
load_K(n_block, smem_pipe_write, cute::false_type{} /*Seqlenk_mask*/);
if constexpr (!Transpose_V) {
if constexpr (IntraWGOverlap) {
load_V(n_block_prev, smem_pipe_write_v, cute::true_type{} /*Seqlenk_mask*/);
} else {
load_V(n_block, smem_pipe_write, cute::false_type{} /*Seqlenk_mask*/);
}
}
}
n_block_prev = n_block;
if constexpr (Transpose_V) { copy_Vt_to_V(smem_pipe_write_v); }
}
scheduler_prefetch();
if constexpr (!Transpose_V && IntraWGOverlap) {
if (should_load_KV) { load_V(n_block_prev, smem_pipe_write, cute::true_type{} /*Seqlenk_mask*/); }
}
if constexpr (Transpose_V) { copy_Vt_to_V(smem_pipe_write); }
++smem_pipe_write;
// At the end, all threads have the correct smem_pipe_write.
++work_idx;
}
template <typename SharedStorage>
CUTLASS_DEVICE void
load_tail(MainloopPipelineK pipeline_k, MainloopPipelineV pipeline_v, MainloopPipelineVt pipeline_vt,
PipelineState& smem_pipe_write, SharedStorage &shared_storage, int const work_idx) {
// If we don't wait for barrier_O here, when using Cluster, CTA0 might exit early and CTA1 will
// try to arrive on barrier_O of CTA0, causing "unspecified launch failure".
shared_storage.pipelines.barrier_O.wait((work_idx + 1) % 2);
int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
// Issue the epilogue waits
// TODO: check if this should be called by 1 thread or more
if (warp_idx_in_warpgroup == 0 && cute::elect_one_sync()) {
/* This helps avoid early exit of blocks in Cluster
* Waits for all stages to either be released (all Consumer UNLOCKs), or if the stage was never used
* then would just be acquired since the phase was still inverted from make_producer_start_state
*/
pipeline_k.producer_tail(smem_pipe_write);
pipeline_v.producer_tail(smem_pipe_write);
if constexpr (Transpose_V) { pipeline_vt.producer_tail(smem_pipe_write); }
}
}
CUTLASS_DEVICE void
warp_scheduler_barrier_sync() {
if constexpr (UseSchedulerBarrier) {
cutlass::arch::NamedBarrier::sync(2 * cutlass::NumThreadsPerWarpGroup, static_cast<uint32_t>(FwdNamedBarriers::WarpSchedulerWG1) - 1 + flash::canonical_warp_group_idx_nosync() /*id*/);
}
}
CUTLASS_DEVICE void
warp_scheduler_barrier_arrive() {
if constexpr (UseSchedulerBarrier) {
static_assert(NumMmaWarpGroups == 2 || NumMmaWarpGroups == 3);
int const cur_WG = flash::canonical_warp_group_idx_nosync() - 1;
int const next_WG = NumMmaWarpGroups == 2
? 1 - cur_WG
: (cur_WG < NumMmaWarpGroups - 1 ? cur_WG + 1 : 0);
cutlass::arch::NamedBarrier::arrive(2 * cutlass::NumThreadsPerWarpGroup, static_cast<uint32_t>(FwdNamedBarriers::WarpSchedulerWG1) + next_WG /*id*/);
}
}
CUTLASS_DEVICE void
mma_init() {
int warp_group_idx = flash::canonical_warp_group_idx_nosync();
// Tell producers that smem_q is ready
if (!LargeHeadDimV || warp_group_idx == 1) {
cutlass::arch::NamedBarrier::arrive(NumMmaThreadsQK + (Use_TMA_Q ? cutlass::NumThreadsPerWarp : NumProducerThreads), static_cast<uint32_t>(FwdNamedBarriers::QueryEmpty) /*id*/);
}
if (LargeHeadDimV && warp_group_idx > 1) {
cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PEmpty) /*id*/);
}
if constexpr (UseSchedulerBarrier) {
// We have NamedBarrier for up to 3 WGs
static_assert(NumMmaWarpGroups == 2 || NumMmaWarpGroups == 3);
// WG1 needs the very first signal to start
if (warp_group_idx == 1) {
cutlass::arch::NamedBarrier::arrive(2 * cutlass::NumThreadsPerWarpGroup, static_cast<uint32_t>(FwdNamedBarriers::WarpSchedulerWG1) /*id*/);
}
}
}
template <typename SharedStorage, typename FrgTensorO, typename Softmax>
CUTLASS_DEVICE bool
mma(Params const& params,
MainloopPipelineK pipeline_k,
MainloopPipelineV pipeline_v,
PipelineState& smem_pipe_read,
FrgTensorO& tOrO,
Softmax& softmax,
int const thread_idx,
int &work_idx,
SeqlenInfo_t const& seqlen_info,
cute::tuple<int32_t, int32_t, int32_t, int32_t> block_coord,
SharedStorage& shared_storage
) {
static_assert(is_rmem<FrgTensorO>::value, "O tensor must be rmem resident.");
static constexpr int kBlockM = get<0>(TileShape_MNK{});
static constexpr int kBlockN = get<1>(TileShape_MNK{});
// can't use auto [m_block, ...] = block_coord since structured binding cannot be captured in lambda
int const m_block = get<0>(block_coord);
int const bidh = get<1>(block_coord);
int const bidb = get<2>(block_coord);
int const split_idx = get<3>(block_coord);
int const bidh_kv = !PackGQA ? params.qhead_per_khead_divmod.divide(bidh) : bidh;
auto [n_block_min, n_block_max] = BlockMN_t::get_n_block_min_max(
seqlen_info, m_block, bidb, split_idx, params.num_splits,
params.window_size_left, params.window_size_right, params.attention_chunk_divmod,
params.qhead_per_khead_divmod);
// It's possible to have n_block_max <= n_block_min. We don't want to load Q or change any barrier
if constexpr (Is_causal || Is_local || Varlen || Split) {
if (n_block_max <= n_block_min) { return false; }
}
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutQ{});
Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
Tensor sV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVtMma{});
Tensor sP = [&] {
if constexpr (MmaPV_is_RS) {
// We might not have smem_p if !MmaPV_is_RS, just use smem_q as a placeholder since we don't use it
return make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutP{});
} else {
return make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_p.data()), SmemLayoutP{});
}
}();
Tensor sScale = [&] {
if constexpr (LargeHeadDimV) {
return make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_scale.data()), SmemLayoutScale{});
} else { // won't be used, just a placeholder
return make_tensor(make_smem_ptr(static_cast<float*>(nullptr)), SmemLayoutScale{});
}
}();
Tensor sQv = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_qv.data()), SmemLayoutQv{});
Tensor sVMmaQV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVMmaQV{});
if constexpr (!MmaQK_is_RS) {
static_assert(stride<0>(typename TiledMmaQK::ALayout{}) == 0 and
stride<0>(typename TiledMmaQK::BLayout{}) == 0 and
size<0>(typename TiledMmaQK::ALayout{}) == cutlass::NumThreadsPerWarpGroup and
size<0>(typename TiledMmaQK::BLayout{}) == cutlass::NumThreadsPerWarpGroup,
"Stride of the first mode must be 0 and the size of the mode must be NumThreadsPerWarpGroup");
}
static constexpr int MmaWarpGroups = size(TiledMmaPV{}) / cutlass::NumThreadsPerWarpGroup;
Layout warp_group_thread_layout = make_layout(make_shape(Int<MmaWarpGroups>{}),
make_stride(Int<cutlass::NumThreadsPerWarpGroup>{}));
int warp_group_idx = __shfl_sync(0xFFFFFFFF, thread_idx / cutlass::NumThreadsPerWarpGroup, 0);
TiledMmaQK tiled_mma_qk;
TiledMmaPV tiled_mma_pv;
TiledMmaQV tiled_mma_qv;
auto wg_mma_qk = tiled_mma_qk.get_slice(warp_group_thread_layout(warp_group_idx));
auto wg_mma_pv = tiled_mma_pv.get_slice(warp_group_thread_layout(warp_group_idx));
auto wg_mma_qv = tiled_mma_qv.get_slice(warp_group_thread_layout(warp_group_idx));
auto smem_tiled_copy_P = make_tiled_copy_C(SmemCopyAtomP{}, tiled_mma_qk);
auto smem_thr_copy_P = smem_tiled_copy_P.get_thread_slice(thread_idx);
// Allocate "fragments/descriptors"
Tensor tSrQ = wg_mma_qk.partition_fragment_A(sQ);
Tensor tSrK = wg_mma_qk.partition_fragment_B(sK);
Tensor tOrV = wg_mma_pv.partition_fragment_B(sV);
Tensor tOsP = wg_mma_pv.partition_fragment_A(sP);
Tensor tSrQv = wg_mma_qv.partition_fragment_A(sQv);
Tensor tSrV = wg_mma_qv.partition_fragment_B(sVMmaQV);
Tensor tPsP = smem_thr_copy_P.partition_D(cute::as_position_independent_swizzle_tensor(sP));
// For storing scales to smem, only used when LargeHeadDimV
auto thread_mma_pv = tiled_mma_pv.get_thread_slice(thread_idx);
Tensor taccOcO = thread_mma_pv.partition_C(cute::make_identity_tensor(select<0, 1>(TileShape_MNK_PV{})));
Tensor taccOcO_rowcol = make_tensor(taccOcO.data(), flash::convert_layout_acc_rowcol(taccOcO.layout()));
Tensor taccOcO_row = taccOcO_rowcol(_, _0{});
auto store_scales = [&](auto& scales, int stage) {
static_assert(CUTE_STATIC_V(size(scales)) == CUTE_STATIC_V(size(taccOcO_row)));
#pragma unroll
for (int mi = 0; mi < size(taccOcO_row); ++mi) {
if (get<1>(taccOcO_row(_0{})) == 0) {
sScale(get<0>(taccOcO_row(mi)), stage) = scales(mi);
}
}
};
auto consumer_wait = [](auto& pipeline, auto& smem_pipe_read) {
auto barrier_token = pipeline.consumer_try_wait(smem_pipe_read);
pipeline.consumer_wait(smem_pipe_read, barrier_token);
};
int const seqlen_q = seqlen_info.seqlen_q;
int const seqlen_k = seqlen_info.seqlen_k;
int n_block = n_block_max - 1;
flash::Mask<kBlockM, kBlockN, PackGQA, TiledMmaQK> mask(
thread_idx, seqlen_q, seqlen_k, params.window_size_left, params.window_size_right, 0 /*sink_token_length*/,
params.attention_chunk_divmod, params.qhead_per_khead_divmod
);
float softcap_val = params.softcap_val;
if constexpr (Has_softcap && Is_FP8) {
float const q_descale = params.ptr_q_descale == nullptr ? 1.0f : params.ptr_q_descale[bidb * get<0>(params.stride_q_descale) + bidh_kv * get<1>(params.stride_q_descale)];
float const k_descale = params.ptr_k_descale == nullptr ? 1.0f : params.ptr_k_descale[bidb * get<0>(params.stride_k_descale) + bidh_kv * get<1>(params.stride_k_descale)];
softcap_val *= q_descale * k_descale;
}
// Softcapping needs to happen before masking since if we apply after masking, softcapping
// can turn -inf to e.g. -50.0, which can affect the attention softmax.
auto scoremod_premask_fn = [&](auto& tSrS) {
if constexpr (Has_softcap) { flash::apply_softcap(tSrS, softcap_val); }
};
auto write_P_to_smem = [&](auto& tOrP) {
if constexpr (LargeHeadDimV) {
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PEmpty) /*id*/);
}
cute::copy(smem_tiled_copy_P, smem_thr_copy_P.retile_S(tOrP), tPsP);
};
auto arrive_on_P_write_barrier = [&] {
cutlass::arch::fence_view_async_shared();
__syncwarp(); // Only need syncwarp since each warp is using its own P values for MmaPV
if constexpr (LargeHeadDimV) {
cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PFull) /*id*/);
}
};
auto &barrier_Q = shared_storage.pipelines.barrier_Q;
if constexpr (!AppendKV) {
barrier_Q.wait(work_idx % 2);
} else {
if (get<1>(params.shape_rotary) > 0) { // Apply rotary to Q
using Rotary_t = Rotary<kBlockM, kHeadDim, NumMmaThreadsQK, Element, !(Is_causal || Is_local) /*FixedPosition*/>;
Rotary_t rotary(params.ptr_rotary_cos, params.shape_rotary, params.stride_rotary_cos,
params.ptr_rotary_sin, params.stride_rotary_sin,
params.is_rotary_interleaved, thread_idx, seqlen_q,
seqlen_info.seqlen_rotary);
Tensor sQ_pi = cute::as_position_independent_swizzle_tensor(sQ);
int const qhead_per_khead = !PackGQA ? 1 : params.qhead_per_khead_divmod.divisor;
if (params.is_rotary_interleaved) {
auto [tRrCos, tRrSin] = cute::conditional_return<!PackGQA>(
rotary.template load_cos_sin<true /*kInterleaved*/>(m_block),
rotary.template load_cos_sin_packgqa<true /*kInterleaved*/>(m_block, params.qhead_per_khead_divmod)
);
barrier_Q.wait(work_idx % 2);
rotary.apply_Q_interleaved(sQ_pi, tRrCos, tRrSin, m_block, qhead_per_khead);
} else {
auto [tRrCosCont, tRrSinCont] = cute::conditional_return<!PackGQA>(
rotary.template load_cos_sin<false /*kInterleaved*/>(m_block),
rotary.template load_cos_sin_packgqa<false /*kInterleaved*/>(m_block, params.qhead_per_khead_divmod)
);
barrier_Q.wait(work_idx % 2);
rotary.apply_Q_contiguous(sQ_pi, tRrCosCont, tRrSinCont, m_block, qhead_per_khead);
}
// SMEM fence to make sure the rotated Q is visible to GMMA
cutlass::arch::fence_view_async_shared();
cutlass::arch::NamedBarrier::sync(NumMmaThreadsQK, static_cast<uint32_t>(FwdNamedBarriers::QueryRotated) /*id*/);
} else {
barrier_Q.wait(work_idx % 2);
}
}
if constexpr (MmaQK_is_RS) {
using SmemCopyAtomQ = Copy_Atom<cute::SM75_U32x4_LDSM_N, Element>;
auto smem_tiled_copy_Q = make_tiled_copy_A(SmemCopyAtomQ{}, tiled_mma_qk);
auto smem_thr_copy_Q = smem_tiled_copy_Q.get_thread_slice(thread_idx);
Tensor tSrQ_copy_view = smem_thr_copy_Q.retile_D(tSrQ);
Tensor tSsQ_copy_view = smem_thr_copy_Q.partition_S(cute::as_position_independent_swizzle_tensor(sQ));
cute::copy(smem_tiled_copy_Q, tSsQ_copy_view, tSrQ_copy_view);
}
if constexpr (IntraWGOverlap) {
Tensor tSrS = partition_fragment_C(tiled_mma_qk, select<0, 1>(TileShape_MNK{}));
consumer_wait(pipeline_k, smem_pipe_read);
flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiled_mma_qk, tSrQ, tSrK(_, _, _, smem_pipe_read.index()), tSrS);
warpgroup_wait<0>();
pipeline_k.consumer_release(smem_pipe_read);
if constexpr (HasQv) {
shared_storage.pipelines.barrier_Qv.wait(work_idx % 2);
consumer_wait(pipeline_v, smem_pipe_read);
flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiled_mma_qv, tSrQv, tSrV(_, _, _, smem_pipe_read.index()), tSrS);
}
scoremod_premask_fn(tSrS);
mask.template apply<true /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block);
Tensor scores_scale = softmax.template max_get_scale</*Is_first=*/true, /*Check_inf=*/true>(tSrS);
// Don't need to store scales to send to WG1 (in the case of LargeHeadDimV) since it's 1.f
softmax.template online_softmax</*Is_first=*/true, /*Check_inf=*/true>(tSrS);
if constexpr (Is_FP8 && !V_colmajor) { flash::permute_Cregs_fp8(tSrS); }
Tensor tOrP_acc = make_tensor(tSrS.data(), flash::convert_layout_acc_Aregs<TiledMmaPV>(tSrS.layout()));
Tensor tOrP = make_tensor_like<Element>(tOrP_acc);
convert_type_out(tOrP_acc, tOrP);
if constexpr (Is_FP8 && V_colmajor) { flash::permute_Aregs_fp8(tOrP); }
if constexpr (!MmaPV_is_RS) { write_P_to_smem(tOrP); }
if constexpr (!MmaPV_is_RS) { arrive_on_P_write_barrier(); }
--n_block;
// Need to initialize tOrO in the case of RescaleOBeforeGemm where we will scale tOrO even in the 1st iter
clear(tOrO);
// tiled_mma_pv.accumulate_ = GMMA::ScaleOut::Zero;
// Each step does gemm0 for iter n_block, gemm1 for iter n_block + 1, and softmax for iter n_block.
auto fwd_step = [&](int const n_block, auto mask_fn, auto check_inf_type) {
static constexpr bool Check_inf = decltype(check_inf_type)::value;
PipelineState smem_pipe_read_v(smem_pipe_read.index(), smem_pipe_read.phase(), smem_pipe_read.count());
++smem_pipe_read;
Tensor tSrS = partition_fragment_C(tiled_mma_qk, select<0, 1>(TileShape_MNK{}));
if (!UseSchedulerBarrier || warp_group_idx == 0) { consumer_wait(pipeline_k, smem_pipe_read); }
warp_scheduler_barrier_sync();
flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiled_mma_qk, tSrQ, tSrK(_, _, _, smem_pipe_read.index()), tSrS);
if constexpr (RescaleOBeforeGemm) { softmax.rescale_o(tOrO, scores_scale); }
if constexpr(!HasQv) {
if (!UseSchedulerBarrier || warp_group_idx == 0) { consumer_wait(pipeline_v, smem_pipe_read_v); }
}
flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiled_mma_pv, cute::conditional_return<MmaPV_is_RS>(tOrP, tOsP), tOrV(_, _, _, smem_pipe_read_v.index()), tOrO);
warp_scheduler_barrier_arrive();
warpgroup_wait<1>();
pipeline_k.consumer_release(smem_pipe_read); // release K
if constexpr (HasQv) {
warpgroup_wait<0>();
pipeline_v.consumer_release(smem_pipe_read_v); // release V
consumer_wait(pipeline_v, smem_pipe_read);
flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiled_mma_qv, tSrQv, tSrV(_, _, _, smem_pipe_read.index()), tSrS);
}
scoremod_premask_fn(tSrS);
mask_fn(tSrS, n_block);
cute::copy(softmax.template max_get_scale</*Is_first=*/false, Check_inf>(tSrS), scores_scale);
if constexpr (LargeHeadDimV) { store_scales(scores_scale, smem_pipe_read_v.index()); }
softmax.template online_softmax</*Is_first=*/false, Check_inf>(tSrS);
if constexpr (!HasQv) {
warpgroup_wait<0>();
pipeline_v.consumer_release(smem_pipe_read_v); // release V
}
if constexpr (Is_FP8 && !V_colmajor) { flash::permute_Cregs_fp8(tSrS); }
convert_type_out(make_tensor(tSrS.data(), tOrP.layout()), tOrP);
if constexpr (Is_FP8 && V_colmajor) { flash::permute_Aregs_fp8(tOrP); }
if constexpr (!MmaPV_is_RS) { write_P_to_smem(tOrP); }
if constexpr (!RescaleOBeforeGemm) { softmax.rescale_o(tOrO, scores_scale); }
if constexpr (!MmaPV_is_RS) { arrive_on_P_write_barrier(); }
};
if constexpr (Is_causal || Is_local) { // Separate iterations with causal or local masking
auto mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<false /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block); };
int const n_block_min_causal_local_mask = BlockMN_t::get_n_block_min_causal_local_mask(
seqlen_info, m_block, n_block_min, params.window_size_right,
params.attention_chunk_divmod, params.qhead_per_khead_divmod);
#pragma unroll 1
for (; n_block >= n_block_min_causal_local_mask; --n_block) {
fwd_step(n_block, mask_fn, cute::true_type{} /*check_inf*/);
}
}
int const n_block_min_before_local_mask = BlockMN_t::get_n_block_min_before_local_mask(
seqlen_info, m_block, n_block_min, params.window_size_left,
params.attention_chunk_divmod, params.qhead_per_khead_divmod);
auto no_mask_fn = [](auto& tSrS, int n_block) { };
#pragma unroll 1
for (; n_block >= n_block_min_before_local_mask; --n_block) {
fwd_step(n_block, no_mask_fn, cute::false_type{} /*check_inf*/);
}
// Separate masking iterations on the left for local attention
if constexpr (Is_local) {
auto local_mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<false /*Seqlenk_mask*/, false /*Causal_mask*/, Is_local>(tSrS, m_block, n_block); };
#pragma unroll 1
for (; n_block >= n_block_min; --n_block) {
fwd_step(n_block, local_mask_fn, cute::bool_constant<Is_local>{} /*check_inf*/);
}
}
// Tell producers that smem_q is ready
cutlass::arch::NamedBarrier::arrive(NumMmaThreadsQK + (Use_TMA_Q ? cutlass::NumThreadsPerWarp : NumProducerThreads), static_cast<uint32_t>(FwdNamedBarriers::QueryEmpty) /*id*/);
if constexpr (RescaleOBeforeGemm) { softmax.rescale_o(tOrO, scores_scale); }
if constexpr (!HasQv) { consumer_wait(pipeline_v, smem_pipe_read); }
flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiled_mma_pv, cute::conditional_return<MmaPV_is_RS>(tOrP, tOsP), tOrV(_, _, _, smem_pipe_read.index()), tOrO);
float const v_descale = !Is_FP8 || params.ptr_v_descale == nullptr ? 1.0f : params.ptr_v_descale[bidb * get<0>(params.stride_v_descale) + bidh_kv * get<1>(params.stride_v_descale)];
cute::copy(softmax.finalize(v_descale), scores_scale);
if constexpr (LargeHeadDimV) {
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PEmpty) /*id*/);
store_scales(scores_scale, smem_pipe_read.index());
cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PFull) /*id*/);
}
warpgroup_wait<0>();
pipeline_v.consumer_release(smem_pipe_read); // release V, otherwise producers will hang
softmax.rescale_o(tOrO, scores_scale);
if constexpr (Is_FP8 && !V_colmajor) { flash::permute_output_fp8(tOrO); }
++smem_pipe_read;
} else { // No intra-WG overlap
warp_scheduler_barrier_sync();
auto fwd_step = [&](int const n_block, auto mask_fn, auto is_first_iter_type, auto check_inf_type) {
static constexpr bool Is_first_iter = decltype(is_first_iter_type)::value;
static constexpr bool Check_inf = decltype(check_inf_type)::value;
auto smem_pipe_read_prev = smem_pipe_read;
if constexpr (!Is_first_iter) { ++smem_pipe_read; }
Tensor tSrS = partition_fragment_C(tiled_mma_qk, select<0, 1>(TileShape_MNK{}));
consumer_wait(pipeline_k, smem_pipe_read);
flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiled_mma_qk, tSrQ, tSrK(_, _, _, smem_pipe_read.index()), tSrS);
if constexpr (!HasQv) {
warp_scheduler_barrier_arrive();
warpgroup_wait<0>();
pipeline_k.consumer_release(smem_pipe_read); // release K
} else {
if constexpr (Is_first_iter) {
shared_storage.pipelines.barrier_Qv.wait(work_idx % 2);
}
consumer_wait(pipeline_v, smem_pipe_read);
flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiled_mma_qv, tSrQv, tSrV(_, _, _, smem_pipe_read.index()), tSrS);
warp_scheduler_barrier_arrive();
warpgroup_wait<1>();
pipeline_k.consumer_release(smem_pipe_read); // release K
warpgroup_wait<0>();
}
scoremod_premask_fn(tSrS);
mask_fn(tSrS, n_block);
Tensor scores_scale = softmax.template max_get_scale</*Is_first=*/Is_first_iter, Check_inf>(tSrS);
if constexpr (LargeHeadDimV && !Is_first_iter) { store_scales(scores_scale, smem_pipe_read_prev.index()); }
softmax.template online_softmax</*Is_first=*/Is_first_iter, Check_inf>(tSrS);
if constexpr (Is_FP8 && !V_colmajor) { flash::permute_Cregs_fp8(tSrS); }
Tensor tOrP_acc = make_tensor(tSrS.data(), flash::convert_layout_acc_Aregs<TiledMmaPV>(tSrS.layout()));
Tensor tOrP = make_tensor_like<Element>(tOrP_acc);
convert_type_out(tOrP_acc, tOrP);
if constexpr (Is_FP8 && V_colmajor) { flash::permute_Aregs_fp8(tOrP); }
if constexpr (!MmaPV_is_RS) { write_P_to_smem(tOrP); }
if constexpr (!Is_first_iter) { softmax.rescale_o(tOrO, scores_scale); }
if constexpr (!MmaPV_is_RS && !MmaPV_use_RS_WG1) { arrive_on_P_write_barrier(); }
if constexpr (!HasQv) { consumer_wait(pipeline_v, smem_pipe_read); }
warp_scheduler_barrier_sync();
if constexpr (!MmaPV_use_RS_WG1) {
flash::gemm</*zero_init=*/Is_first_iter, /*wg_wait=*/-1>(tiled_mma_pv, cute::conditional_return<MmaPV_is_RS>(tOrP, tOsP), tOrV(_, _, _, smem_pipe_read.index()), tOrO);
} else {
TiledMmaPV_RS tiled_mma_pv_rs;
flash::gemm</*zero_init=*/Is_first_iter, /*wg_wait=*/-1>(tiled_mma_pv_rs, tOrP, tOrV(_, _, _, smem_pipe_read.index()), tOrO);
}
if constexpr (!MmaPV_is_RS && MmaPV_use_RS_WG1) { arrive_on_P_write_barrier(); }
warpgroup_wait<0>();
pipeline_v.consumer_release(smem_pipe_read); // release V
};
auto first_iter_mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<true /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block); };
fwd_step(n_block, first_iter_mask_fn, cute::true_type{} /*is_first_iter*/, cute::true_type{} /*check_inf*/);
--n_block;
if constexpr (Is_causal || Is_local) { // Separate iterations with causal or local masking
auto mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<false /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block); };
int const n_block_min_causal_local_mask = BlockMN_t::get_n_block_min_causal_local_mask(
seqlen_info, m_block, n_block_min, params.window_size_right,
params.attention_chunk_divmod, params.qhead_per_khead_divmod);
#pragma unroll 1
for (; n_block >= n_block_min_causal_local_mask; --n_block) {
fwd_step(n_block, mask_fn, cute::false_type{} /*is_first_iter*/, cute::true_type{} /*check_inf*/);
}
}
int const n_block_min_before_local_mask = BlockMN_t::get_n_block_min_before_local_mask(
seqlen_info, m_block, n_block_min, params.window_size_left,
params.attention_chunk_divmod, params.qhead_per_khead_divmod);
auto no_mask_fn = [](auto& tSrS, int n_block) { };
#pragma unroll 1
for (; n_block >= n_block_min_before_local_mask; --n_block) {
fwd_step(n_block, no_mask_fn, cute::false_type{} /*is_first_iter*/, cute::false_type{} /*check_inf*/);
}
// Separate masking iterations on the left for local attention
if constexpr (Is_local) {
auto local_mask_fn = [&](auto& tSrS, int n_block) { mask.template apply<false /*Seqlenk_mask*/, false /*Causal_mask*/, Is_local>(tSrS, m_block, n_block); };
#pragma unroll 1
for (; n_block >= n_block_min; --n_block) {
fwd_step(n_block, local_mask_fn, cute::false_type{} /*is_first_iter*/, cute::bool_constant<Is_local>{} /*check_inf*/);
}
}
warp_scheduler_barrier_arrive();
// Tell producers that smem_q is ready
cutlass::arch::NamedBarrier::arrive(NumMmaThreadsQK + (Use_TMA_Q ? cutlass::NumThreadsPerWarp : NumProducerThreads), static_cast<uint32_t>(FwdNamedBarriers::QueryEmpty) /*id*/);
float const v_descale = !Is_FP8 || params.ptr_v_descale == nullptr ? 1.0f : params.ptr_v_descale[bidb * get<0>(params.stride_v_descale) + bidh_kv * get<1>(params.stride_v_descale)];
Tensor scores_scale = softmax.finalize(v_descale);
if constexpr (LargeHeadDimV) {
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PEmpty) /*id*/);
store_scales(scores_scale, smem_pipe_read.index());
cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PFull) /*id*/);
}
softmax.rescale_o(tOrO, scores_scale);
if constexpr (Is_FP8 && !V_colmajor) { flash::permute_output_fp8(tOrO); }
++smem_pipe_read;
}
++work_idx;
return true;
}
template <typename SharedStorage, typename FrgTensorO, typename Softmax>
CUTLASS_DEVICE bool
mma_pv(Params const& params,
MainloopPipelineV pipeline_v,
PipelineState& smem_pipe_read,
FrgTensorO& tOrO,
Softmax& softmax,
int const thread_idx,
SeqlenInfo_t const& seqlen_info,
cute::tuple<int32_t, int32_t, int32_t, int32_t> block_coord,
SharedStorage& shared_storage
) {
static_assert(is_rmem<FrgTensorO>::value, "O tensor must be rmem resident.");
// can't use auto [m_block, ...] = block_coord since structured binding cannot be captured in lambda
int const m_block = get<0>(block_coord);
int const bidb = get<2>(block_coord);
int const split_idx = get<3>(block_coord);
auto [n_block_min, n_block_max] = BlockMN_t::get_n_block_min_max(
seqlen_info, m_block, bidb, split_idx, params.num_splits,
params.window_size_left, params.window_size_right, params.attention_chunk_divmod,
params.qhead_per_khead_divmod);
// It's possible to have n_block_max <= n_block_min. We don't want to load Q or change any barrier
if constexpr (Is_causal || Is_local || Varlen || Split) {
if (n_block_max <= n_block_min) { return false; }
}
Tensor sV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVtMma{});
Tensor sP = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_p.data()), SmemLayoutP{});
Tensor sScale = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_scale.data()), SmemLayoutScale{});
static constexpr int MmaWarpGroups = size(TiledMmaPV{}) / cutlass::NumThreadsPerWarpGroup;
Layout warp_group_thread_layout = make_layout(make_shape(Int<MmaWarpGroups>{}),
make_stride(Int<cutlass::NumThreadsPerWarpGroup>{}));
int warp_group_idx = __shfl_sync(0xFFFFFFFF, thread_idx / cutlass::NumThreadsPerWarpGroup, 0);
TiledMmaPV tiled_mma_pv;
auto wg_mma_pv = tiled_mma_pv.get_slice(warp_group_thread_layout(warp_group_idx));
// Allocate "fragments/descriptors"
Tensor tOrV = wg_mma_pv.partition_fragment_B(sV);
Tensor tOsP = wg_mma_pv.partition_fragment_A(sP);
// For load scales to smem, pretend thread_idx is thread_idx % 128
auto thread_mma_pv = tiled_mma_pv.get_thread_slice(thread_idx % cutlass::NumThreadsPerWarpGroup);
Tensor taccOcO = thread_mma_pv.partition_C(cute::make_identity_tensor(select<0, 1>(TileShape_MNK_PV{})));
Tensor taccOcO_rowcol = make_tensor(taccOcO.data(), flash::convert_layout_acc_rowcol(taccOcO.layout()));
Tensor taccOcO_row = taccOcO_rowcol(_, _0{});
auto load_scales = [&](auto& scales, int stage) {
static_assert(CUTE_STATIC_V(size(scales)) == CUTE_STATIC_V(size(taccOcO_row)));
#pragma unroll
for (int mi = 0; mi < size(taccOcO_row); ++mi) {
scales(mi) = sScale(get<0>(taccOcO_row(mi)), stage);
}
};
// clear(tOrO);
// tiled_mma_pv.accumulate_ = GMMA::ScaleOut::Zero;
typename Softmax::TensorT scores_scale;
int n_block = n_block_max - 1;
// If HasQv, then by the time P is ready, V must have been ready as well
if constexpr (!HasQv) { pipeline_v.consumer_wait(smem_pipe_read); }
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PFull) /*id*/);
flash::gemm</*zero_init=*/true, /*wg_wait=*/0>(tiled_mma_pv, tOsP, tOrV(_, _, _, smem_pipe_read.index()), tOrO);
cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PEmpty) /*id*/);
pipeline_v.consumer_release(smem_pipe_read); // release V
--n_block;
#pragma unroll 1
for (; n_block >= n_block_min; --n_block) {
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PFull) /*id*/);
load_scales(scores_scale, smem_pipe_read.index());
softmax.rescale_o(tOrO, scores_scale);
++smem_pipe_read;
if constexpr (!HasQv) {
auto barrier_token = pipeline_v.consumer_try_wait(smem_pipe_read);
pipeline_v.consumer_wait(smem_pipe_read, barrier_token);
}
flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiled_mma_pv, tOsP, tOrV(_, _, _, smem_pipe_read.index()), tOrO);
cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PEmpty) /*id*/);
pipeline_v.consumer_release(smem_pipe_read); // release V
};
cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PFull) /*id*/);
load_scales(scores_scale, smem_pipe_read.index());
cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<uint32_t>(FwdNamedBarriers::PEmpty) /*id*/);
softmax.rescale_o(tOrO, scores_scale);
if constexpr (Is_FP8 && !V_colmajor) { flash::permute_output_fp8(tOrO); }
++smem_pipe_read;
return true;
}
template <typename SharedStorage>
CUTLASS_DEVICE bool
load_kv_new(Params const& params,
MainloopPipelineKVNew pipeline_k_new,
MainloopPipelineKVNew pipeline_v_new,
PipelineState& smem_pipe_write,
SharedStorage &shared_storage,
SeqlenInfo_t const& seqlen_info,
cute::tuple<int32_t, int32_t, int32_t, int32_t> block_coord,
int const work_idx
) {
auto [m_block, bidh, bidb, split_idx] = block_coord;
auto [n_block_new_min, n_block_new_max] = BlockMN_t::get_n_block_k_new_min_max(
seqlen_info, m_block, bidb, split_idx, params.num_splits,
params.window_size_left, params.window_size_right, params.attention_chunk_divmod,
params.qhead_per_khead_divmod);
if (n_block_new_max <= n_block_new_min) { return false; }
Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
Tensor sVt = [&] {
if constexpr (!Transpose_V) {
return make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVt{});
} else {
return make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_vt.data()), SmemLayoutVt{});
}
}();
// int const thread_idx = threadIdx.x % NumProducerThreads;
int const bidh_kv = !PackGQA ? params.qhead_per_khead_divmod.divide(bidh) : bidh;
// Prepare the TMA loads
uint32_t block_rank_in_cluster = cute::block_rank_in_cluster();
constexpr uint32_t cluster_shape_x = get<0>(ClusterShape());
uint2 cluster_local_block_id = {block_rank_in_cluster % cluster_shape_x, block_rank_in_cluster / cluster_shape_x};
bool const is_varlen_k_new = Varlen && params.cu_seqlens_k_new;
Tensor mKnew_TMA = params.tma_load_K_new.get_tma_tensor(params.shape_K_new)(_, _, bidh_kv, !is_varlen_k_new ? bidb : 0);
auto shape_Vnew = make_shape(params.headdim_v, get<0>(params.shape_K_new), get<2>(params.shape_K_new), get<3>(params.shape_K_new));
Tensor mVnewt_TMA = params.tma_load_V_new.get_tma_tensor(shape_Vnew)(_, _, bidh_kv, !is_varlen_k_new ? bidb : 0);
Tensor gKnew_TMA = local_tile(domain_offset(make_coord(seqlen_info.offset_k_new, _0{}), mKnew_TMA), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
Tensor gVnewt_TMA = local_tile(domain_offset(make_coord(_0{}, seqlen_info.offset_k_new), mVnewt_TMA), select<1, 2>(TileShape_MNK_PV{}), make_coord(_0{}, _)); // (K, N, _)
auto block_tma_K_new = params.tma_load_K_new.get_slice(cluster_local_block_id.x);
Tensor tKgKnew_TMA = group_modes<0, 3>(block_tma_K_new.partition_S(gKnew_TMA)); // (TMA, k)
Tensor tKsK_TMA = group_modes<0, 3>(block_tma_K_new.partition_D(sK)); // (TMA, PIPE)
auto block_tma_V_new = params.tma_load_V_new.get_slice(cluster_local_block_id.x);
Tensor tVgVnewt_TMA = group_modes<0, 3>(block_tma_V_new.partition_S(gVnewt_TMA)); // (TMA, k)
Tensor tVsVt_TMA = group_modes<0, 3>(block_tma_V_new.partition_D(sVt)); // (TMA, PIPE)
uint16_t mcast_mask_kv = 0;
if constexpr (cute::is_same_v<GmemTiledCopyKV, SM90_TMA_LOAD_MULTICAST>) {
auto block_layout = Layout<ClusterShape>{}; // (m,n) -> block_id
for (int m = 0; m < size<0>(block_layout); ++m) {
mcast_mask_kv |= (uint16_t(1) << block_layout(m, cluster_local_block_id.y, _0{}));
}
}
auto load_K_new = [&] (int const n_block, auto const& smem_pipe_write) {
pipeline_k_new.producer_acquire(smem_pipe_write);
copy(params.tma_load_K_new.with(*pipeline_k_new.producer_get_barrier(smem_pipe_write), mcast_mask_kv, TMA::CacheHintSm90::EVICT_FIRST),
tKgKnew_TMA(_, n_block), tKsK_TMA(_, smem_pipe_write.index()));
};
auto load_V_new = [&] (int const n_block, auto const& smem_pipe_write) {
pipeline_v_new.producer_acquire(smem_pipe_write);
copy(params.tma_load_V_new.with(*pipeline_v_new.producer_get_barrier(smem_pipe_write), mcast_mask_kv, TMA::CacheHintSm90::EVICT_FIRST),
tVgVnewt_TMA(_, n_block), tVsVt_TMA(_, smem_pipe_write.index()));
};
int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
// If this is true, we're guaranteed that only the first warp will execute this function
static constexpr bool SingleProducerWarp = NumProducerThreads == cutlass::NumThreadsPerWarp;
bool should_load_KV = (SingleProducerWarp || warp_idx_in_warpgroup == 0) && cute::elect_one_sync();
int n_block = n_block_new_max - 1;
// Need to wait for barrier_O even before load_K_new since the pipelines for AppendKV
// and the main attention are not the same. We want to make sure the consumers
// have finished reading all smem_k and smem_v for the previous iteration.
shared_storage.pipelines.barrier_O.wait((work_idx + 1) % 2);
if (should_load_KV) { load_K_new(n_block, smem_pipe_write); }
// if (thread_idx == 0) { printf("Producer: Done loading K, n_block = %d, n_block_new_min = %d\n", n_block, n_block_new_min); }
if (should_load_KV) { load_V_new(n_block, smem_pipe_write); }
// if (thread_idx == 0) { printf("Producer: Done loading V, n_block = %d, n_block_new_min = %d\n", n_block, n_block_new_min); }
++smem_pipe_write;
--n_block;
// if (thread_idx == 0) { printf("Producer: before for loop\n"); }
#pragma unroll 1
for (; n_block >= n_block_new_min; --n_block) {
if (should_load_KV) {
load_K_new(n_block, smem_pipe_write);
// if (thread_idx == 0) { printf("Producer: Done loading K, n_block = %d, n_block_new_min = %d\n", n_block, n_block_new_min); }
load_V_new(n_block, smem_pipe_write);
// if (thread_idx == 0) { printf("Producer: Done loading V, n_block = %d, n_block_new_min = %d\n", n_block, n_block_new_min); }
}
++smem_pipe_write;
}
// if (thread_idx == 0) { printf("Producer: after for loop\n"); }
// At the end, all threads have the correct smem_pipe_write.
return true;
}
template <typename SharedStorage>
CUTLASS_DEVICE bool
store_kv_new(Params const& params,
MainloopPipelineKVNew pipeline_k_new,
MainloopPipelineKVNew pipeline_v_new,
PipelineState& smem_pipe_read,
int const thread_idx,
SharedStorage &shared_storage,
SeqlenInfo_t const& seqlen_info,
cute::tuple<int32_t, int32_t, int32_t, int32_t> block_coord
) {
auto [m_block, bidh, bidb, split_idx] = block_coord;
auto [n_block_new_min, n_block_new_max] = BlockMN_t::get_n_block_k_new_min_max(
seqlen_info, m_block, bidb, split_idx, params.num_splits,
params.window_size_left, params.window_size_right, params.attention_chunk_divmod,
params.qhead_per_khead_divmod);
if (n_block_new_max <= n_block_new_min) { return false; }
// as_position_independent_swizzle_tensor makes address calculation easier
Tensor sK = cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{}));
// We want to use SmemLayoutVCpAsync to have shape (kBlockN, kHeadDim) instead of (kHeadDim, kBlockN)
Tensor sV = [&] {
if constexpr (!Transpose_V) {
return cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutVCpAsync{}));
} else {
return cute::as_position_independent_swizzle_tensor(make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_vt.data()), SmemLayoutVCpAsync{}));
}
}();
int const bidh_kv = !PackGQA ? params.qhead_per_khead_divmod.divide(bidh) : bidh;
int const bidb_kv = params.kv_batch_idx == nullptr ? bidb : params.kv_batch_idx[bidb];
bool const is_varlen_k = Varlen && params.cu_seqlens_k;
Tensor mK = make_tensor(make_gmem_ptr(params.ptr_K), params.shape_K, params.stride_K)(_, _, bidh_kv, !is_varlen_k ? bidb_kv : 0);
auto shape_V = make_shape(params.headdim_v, get<0>(params.shape_K), get<2>(params.shape_K), get<3>(params.shape_K));
Tensor mV = make_tensor(make_gmem_ptr(params.ptr_V), shape_V, params.stride_V)(_, _, bidh_kv, !is_varlen_k ? bidb_kv : 0);
int const offset_k = seqlen_info.offset_k + seqlen_info.seqlen_k_og;
Tensor gK = local_tile(domain_offset(make_coord(offset_k, _0{}), mK), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
Tensor gV = local_tile(domain_offset(make_coord(offset_k, _0{}), mV), select<2, 1>(TileShape_MNK_PV{}), make_coord(_, _0{})); // (N, K_v, _)
static constexpr int kBlockN = get<1>(TileShape_MNK{});
static constexpr int kHeadDim = get<2>(TileShape_MNK{});
int const seqlen_k_new = seqlen_info.seqlen_k_new;
using Rotary_t = Rotary<kBlockN, kHeadDim, NumMmaThreads, Element>;
Rotary_t rotary(params.ptr_rotary_cos, params.shape_rotary, params.stride_rotary_cos,
params.ptr_rotary_sin, params.stride_rotary_sin,
params.is_rotary_interleaved, thread_idx, seqlen_k_new,
seqlen_info.seqlen_rotary);
// This is used to index into the batch dimension of mK and mV
int const bidb_kv_idx = !is_varlen_k && !params.ptr_pagetable ? bidb_kv : 0;
using PagedKVManager_t = PagedKVManager<get<1>(TileShape_MNK{}), get<2>(TileShape_MNK{}), get<1>(TileShape_MNK_PV{}), NumMmaThreads, Element, true /*KV_Same_Iter*/, 2 /*LoadsPerRow_LB*/>;
PagedKVManager_t paged_kv_manager(
params.ptr_pagetable, params.shape_pagetable, params.stride_pagetable,
params.ptr_K, params.shape_K, params.stride_K,
params.ptr_V, params.headdim_v, params.stride_V,
params.page_size_divmod, params.blockN_per_page_size_divmod,
bidb_kv, bidh_kv, thread_idx, seqlen_k_new, offset_k, bidb_kv_idx
// passing offset_k instead of leftpad_k will move the PageTable pointer to the right position
);
if constexpr (UseSchedulerBarrier) {
// WG1 already got the very first signal from mma_init(), but we'll be using the same NamedBarrier.
// So we'll need to "cancel it out" here and then re-signal it at the end.
if (flash::canonical_warp_group_idx_nosync() == 1) {
cutlass::arch::NamedBarrier::sync(2 * cutlass::NumThreadsPerWarpGroup, static_cast<uint32_t>(FwdNamedBarriers::WarpSchedulerWG1) /*id*/);
}
}
static_assert(std::is_same_v<GmemLayoutAtom, typename Rotary_t::LayoutAtom>);
static_assert(!PagedKVNonTMA || std::is_same_v<GmemLayoutAtom, typename PagedKVManager_t::GmemLayoutAtomKVCpAsync>);
GmemTiledCopyAppendKV gmem_tiled_copy_kv;
auto gmem_thr_copy_kv = gmem_tiled_copy_kv.get_thread_slice(thread_idx);
Tensor tKsK = gmem_thr_copy_kv.partition_S(sK); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tKgK = gmem_thr_copy_kv.partition_D(gK);
Tensor tVsV = gmem_thr_copy_kv.partition_S(sV); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tVgV = gmem_thr_copy_kv.partition_D(gV);
Tensor cK = cute::make_identity_tensor(select<1, 2>(TileShape_MNK{})); // (BLK_N,BLK_K) -> (blk_n,blk_k)
Tensor tKcK = gmem_thr_copy_kv.partition_D(cK);
Tensor tKpK = make_tensor<bool>(make_shape(size<2>(tKsK)));
#pragma unroll
for (int k = 0; k < size(tKpK); ++k) { tKpK(k) = get<1>(tKcK(_0{}, _0{}, k)) < get<1>(params.shape_K); }
Tensor cV = cute::make_identity_tensor(select<2, 1>(TileShape_MNK_PV{})); // (BLK_N,BLK_K_V) -> (blk_n,blk_k_v)
Tensor tVcV = cute::conditional_return<SameHeadDim>(tKcK, gmem_thr_copy_kv.partition_D(cV));
Tensor tVpV_ = make_tensor<bool>(make_shape(size<2>(tVsV)));
#pragma unroll
for (int k = 0; k < size(tVpV_); ++k) { tVpV_(k) = get<1>(tVcV(_0{}, _0{}, k)) < params.headdim_v; }
Tensor tVpV = cute::conditional_return<SameHeadDim>(tKpK, tVpV_);
auto store_K = [&] (int const n_block, auto const& smem_pipe_read) {
int const n_limit = std::min(seqlen_k_new - n_block * kBlockN, kBlockN);
if (get<1>(params.shape_rotary) <= 0) {
pipeline_k_new.consumer_wait(smem_pipe_read);
Tensor tKsK_cur = tKsK(_, _, _, smem_pipe_read.index());
if constexpr (!PagedKVNonTMA) {
Tensor tKgK_cur = tKgK(_, _, _, n_block);
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_kv, tKsK_cur, tKgK_cur, tKcK, tKpK, std::min(seqlen_k_new - n_block * kBlockN, kBlockN)
);
} else {
paged_kv_manager.store_K(n_block, tKsK_cur);
}
} else {
Tensor gK_cur = gK(_, _, n_block);
auto tPrKPtr = cute::conditional_return<PagedKVNonTMA>(paged_kv_manager.compute_K_ptr(), nullptr);
if (params.is_rotary_interleaved) {
auto [tRrCos, tRrSin] = rotary.template load_cos_sin<true /*kInterleaved*/>(n_block);
pipeline_k_new.consumer_wait(smem_pipe_read);
rotary.template apply_K_interleaved<PagedKVNonTMA>(sK(_, _, smem_pipe_read.index()), gK_cur, tKpK, tRrCos, tRrSin, tPrKPtr, n_block);
} else {
auto [tRrCosCont, tRrSinCont] = rotary.template load_cos_sin<false /*kInterleaved*/>(n_block);
pipeline_k_new.consumer_wait(smem_pipe_read);
rotary.template apply_K_contiguous<PagedKVNonTMA>(sK(_, _, smem_pipe_read.index()), gK_cur, tKpK, tRrCosCont, tRrSinCont, tPrKPtr, n_block, get<1>(params.shape_K));
}
}
// Without this fence I'm getting race condition when seqlen_k is large
cutlass::arch::fence_view_async_shared();
// Very important: PipelineTmaAsync::consumer_release assumes that the warpgroup is synchronized
// before calling.
cutlass::arch::NamedBarrier::sync(cutlass::NumThreadsPerWarpGroup, static_cast<uint32_t>(FwdNamedBarriers::WarpSchedulerWG1) - 1 + flash::canonical_warp_group_idx_nosync() /*id*/);
pipeline_k_new.consumer_release(smem_pipe_read);
// if (thread_idx == 0) { print_tensor(tKpK); printf("\n"); printf("seqlen_limit = %d\n", seqlen_k_new - n_block * kBlockN);}
};
auto store_V = [&] (int const n_block, auto const& smem_pipe_read) {
pipeline_v_new.consumer_wait(smem_pipe_read);
int const n_limit = std::min(seqlen_k_new - n_block * kBlockN, kBlockN);
Tensor tVsV_cur = tVsV(_, _, _, smem_pipe_read.index());
if constexpr (!PagedKVNonTMA) {
Tensor tVgV_cur = tVgV(_, _, _, n_block);
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_kv, tVsV_cur, tVgV_cur, tVcV, tVpV, n_limit);
} else {
paged_kv_manager.store_V(n_block, tVsV_cur);
}
cutlass::arch::fence_view_async_shared();
cutlass::arch::NamedBarrier::sync(cutlass::NumThreadsPerWarpGroup, static_cast<uint32_t>(FwdNamedBarriers::WarpSchedulerWG1) - 1 + flash::canonical_warp_group_idx_nosync() /*id*/);
pipeline_v_new.consumer_release(smem_pipe_read);
};
#pragma unroll 1
for (int n_block = n_block_new_max - 1; n_block >= n_block_new_min; --n_block) {
if constexpr (PagedKVNonTMA) { paged_kv_manager.template load_page_table<true /*Seqlenk_mask*/>(n_block); }
store_K(n_block, smem_pipe_read);
// if (thread_idx == 0) { printf("Done storing K, n_block = %d, n_block_new_min = %d\n", n_block, n_block_new_min); }
store_V(n_block, smem_pipe_read);
// if (thread_idx == 0) { printf("Done storing V, n_block = %d, n_block_new_min = %d\n", n_block, n_block_new_min); }
++smem_pipe_read;
}
// if (thread_idx == 0) { printf("After for loop\n"); }
// Re-signaling the NamedBarrier that we "canceled out"
if constexpr (UseSchedulerBarrier) {
if (flash::canonical_warp_group_idx_nosync() == 1) {
cutlass::arch::NamedBarrier::arrive(2 * cutlass::NumThreadsPerWarpGroup, static_cast<uint32_t>(FwdNamedBarriers::WarpSchedulerWG1) /*id*/);
}
}
return true;
}
};
} // namespace flash