danieldk's picture
danieldk HF Staff
Import mamba-ssm kernels
23d26f4
# Copyright (c) 2024, Tri Dao.
# Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
# For the backward pass, we keep weight_grad and bias_grad in registers and accumulate.
# This backward pass is faster for dimensions up to 8k, but after that it's much slower due to register spilling.
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
import math
import torch
import torch.nn.functional as F
import triton
import triton.language as tl
from einops import rearrange
def rms_norm_ref(x, weight, bias, z=None, eps=1e-6, group_size=None, norm_before_gate=True, upcast=True):
dtype = x.dtype
N = x.shape[-1]
weight = weight.float()
bias = bias.float() if bias is not None else None
if upcast:
x = x.float()
z = z.float() if z is not None else z
if z is not None and not norm_before_gate:
x = x * F.silu(z)
if group_size is None:
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
out = (x * rstd * weight) + bias if bias is not None else (x * rstd * weight)
else:
x_group = rearrange(x, "... (g d) -> ... g d", d=group_size)
rstd = 1 / torch.sqrt((x_group.square()).mean(dim=-1, keepdim=True) + eps)
out = rearrange(x_group * rstd, "... g d -> ... (g d)") * weight
if bias is not None:
out = out + bias
if z is not None and norm_before_gate:
out *= F.silu(z)
return out.to(dtype)
@triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
@triton.heuristics({"HAS_Z": lambda args: args["Z"] is not None})
@triton.jit
def _layer_norm_fwd_1pass_kernel(
X, # pointer to the input
Y, # pointer to the output
W, # pointer to the weights
B, # pointer to the biases
Z, # pointer to the other branch
Mean, # pointer to the mean
Rstd, # pointer to the 1/std
stride_x_row, # how much to increase the pointer when moving by 1 row
stride_y_row,
stride_z_row,
M, # number of rows in X
N, # number of columns in X
eps, # epsilon to avoid division by zero
BLOCK_N: tl.constexpr,
HAS_BIAS: tl.constexpr,
HAS_Z: tl.constexpr,
NORM_BEFORE_GATE: tl.constexpr,
IS_RMS_NORM: tl.constexpr,
):
# Map the program id to the row of X and Y it should compute.
row = tl.program_id(0)
group = tl.program_id(1)
X += row * stride_x_row + group * N
Y += row * stride_y_row + group * N
if HAS_Z:
Z += row * stride_z_row + group * N
if not IS_RMS_NORM:
Mean += group * M
Rstd += group * M
W += group * N
if HAS_BIAS:
B += group * N
# Compute mean and variance
cols = tl.arange(0, BLOCK_N)
x = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32)
if HAS_Z and not NORM_BEFORE_GATE:
z = tl.load(Z + cols, mask=cols < N).to(tl.float32)
x *= z * tl.sigmoid(z)
if not IS_RMS_NORM:
mean = tl.sum(x, axis=0) / N
tl.store(Mean + row, mean)
xbar = tl.where(cols < N, x - mean, 0.)
var = tl.sum(xbar * xbar, axis=0) / N
else:
xbar = tl.where(cols < N, x, 0.)
var = tl.sum(xbar * xbar, axis=0) / N
rstd = 1 / tl.sqrt(var + eps)
tl.store(Rstd + row, rstd)
# Normalize and apply linear transformation
mask = cols < N
w = tl.load(W + cols, mask=mask).to(tl.float32)
if HAS_BIAS:
b = tl.load(B + cols, mask=mask).to(tl.float32)
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
y = x_hat * w + b if HAS_BIAS else x_hat * w
if HAS_Z and NORM_BEFORE_GATE:
z = tl.load(Z + cols, mask=mask).to(tl.float32)
y *= z * tl.sigmoid(z)
# Write output
tl.store(Y + cols, y, mask=mask)
def _layer_norm_fwd(x, weight, bias, eps, z=None, out=None, group_size=None, norm_before_gate=True, is_rms_norm=False):
M, N = x.shape
if group_size is None:
group_size = N
assert N % group_size == 0
ngroups = N // group_size
assert x.stride(-1) == 1
if z is not None:
assert z.stride(-1) == 1
assert z.shape == (M, N)
assert weight.shape == (N,)
assert weight.stride(-1) == 1
if bias is not None:
assert bias.stride(-1) == 1
assert bias.shape == (N,)
# allocate output
if out is not None:
assert out.shape == x.shape
else:
out = torch.empty_like(x)
assert out.stride(-1) == 1
mean = torch.empty((ngroups * M, ), dtype=torch.float32, device=x.device) if not is_rms_norm else None
rstd = torch.empty((ngroups * M, ), dtype=torch.float32, device=x.device)
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(group_size))
if group_size > BLOCK_N:
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
# heuristics for number of warps
num_warps = min(max(BLOCK_N // 256, 1), 8)
grid = (M, ngroups)
with torch.cuda.device(x.device.index):
_layer_norm_fwd_1pass_kernel[grid](x, out, weight, bias, z, mean, rstd,
x.stride(0), out.stride(0), z.stride(0) if z is not None else 0,
M, group_size, eps,
BLOCK_N=BLOCK_N,
NORM_BEFORE_GATE=norm_before_gate,
IS_RMS_NORM=is_rms_norm,
num_warps=num_warps)
return out, mean, rstd
@triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
@triton.heuristics({"HAS_Z": lambda args: args["Z"] is not None})
@triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
@triton.jit
def _layer_norm_bwd_kernel(
X, # pointer to the input
W, # pointer to the weights
B, # pointer to the biases
Z, # pointer to the other branch
Y, # pointer to the output to be recomputed
DY, # pointer to the output gradient
DX, # pointer to the input gradient
DW, # pointer to the partial sum of weights gradient
DB, # pointer to the partial sum of biases gradient
DZ, # pointer to the other branch
Mean, # pointer to the mean
Rstd, # pointer to the 1/std
stride_x_row, # how much to increase the pointer when moving by 1 row
stride_z_row,
stride_y_row,
stride_dy_row,
stride_dx_row,
stride_dz_row,
stride_dw_row,
stride_db_row,
M, # number of rows in X
N, # number of columns in X
eps, # epsilon to avoid division by zero
rows_per_program,
NORM_BEFORE_GATE: tl.constexpr,
IS_RMS_NORM: tl.constexpr,
HAS_BIAS: tl.constexpr,
HAS_Z: tl.constexpr,
RECOMPUTE_OUTPUT: tl.constexpr,
BLOCK_N: tl.constexpr,
):
# Map the program id to the elements of X, DX, and DY it should compute.
row_block_id = tl.program_id(0)
group = tl.program_id(1)
row_start = row_block_id * rows_per_program
cols = tl.arange(0, BLOCK_N)
mask = cols < N
X += row_start * stride_x_row + group * N
if HAS_Z:
Z += row_start * stride_z_row + group * N
DZ += row_start * stride_dz_row + group * N
DY += row_start * stride_dy_row + group * N
DX += row_start * stride_dx_row + group * N
if RECOMPUTE_OUTPUT:
Y += row_start * stride_y_row + group * N
if not IS_RMS_NORM:
Mean += group * M
Rstd += group * M
W += group * N
w = tl.load(W + cols, mask=mask).to(tl.float32)
if (RECOMPUTE_OUTPUT or HAS_Z) and HAS_BIAS:
B += group * N
b = tl.load(B + cols, mask=mask, other=0.).to(tl.float32)
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
if HAS_BIAS:
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
row_end = min((row_block_id + 1) * rows_per_program, M)
for row in range(row_start, row_end):
# Load data to SRAM
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
if not IS_RMS_NORM:
mean = tl.load(Mean + row)
if HAS_Z and not NORM_BEFORE_GATE:
z = tl.load(Z + cols, mask=mask, other=0.).to(tl.float32)
x_og = x
x = x_og * z * tl.sigmoid(z)
rstd = tl.load(Rstd + row)
# Compute dx
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
xhat = tl.where(mask, xhat, 0.)
if HAS_Z and NORM_BEFORE_GATE:
z = tl.load(Z + cols, mask=mask, other=0.).to(tl.float32)
z_sigmoid = tl.sigmoid(z)
y = xhat * w + b if HAS_BIAS else xhat * w
if RECOMPUTE_OUTPUT:
tl.store(Y + cols, y * z * z_sigmoid, mask=mask)
dz = dy * y * z_sigmoid * (1 + z * (1 - z_sigmoid))
tl.store(DZ + cols, dz, mask=mask)
dy *= z * z_sigmoid
else:
if RECOMPUTE_OUTPUT:
y = xhat * w + b if HAS_BIAS else xhat * w
tl.store(Y + cols, y, mask=mask)
wdy = w * dy
c1 = tl.sum(xhat * wdy, axis=0) / N
if not IS_RMS_NORM:
c2 = tl.sum(wdy, axis=0) / N
dx = (wdy - (xhat * c1 + c2)) * rstd
else:
dx = (wdy - xhat * c1) * rstd
dw += dy * xhat
if HAS_BIAS:
db += dy
if HAS_Z and not NORM_BEFORE_GATE:
z_sigmoid = tl.sigmoid(z)
dz = dx * x_og * z_sigmoid * (1 + z * (1 - z_sigmoid))
tl.store(DZ + cols, dz, mask=mask)
dx *= z * z_sigmoid
# Write dx
tl.store(DX + cols, dx, mask=mask)
X += stride_x_row
if HAS_Z:
Z += stride_z_row
DZ += stride_dz_row
if RECOMPUTE_OUTPUT:
Y += stride_y_row
DY += stride_dy_row
DX += stride_dx_row
tl.store(DW + row_block_id * stride_dw_row + group * N + cols, dw, mask=mask)
if HAS_BIAS:
tl.store(DB + row_block_id * stride_db_row + group * N + cols, db, mask=mask)
def _layer_norm_bwd(dy, x, weight, bias, eps, mean, rstd, z=None, group_size=None,
norm_before_gate=True, is_rms_norm=False, recompute_output=False, dz=None, out=None):
M, N = x.shape
if group_size is None:
group_size = N
assert N % group_size == 0
ngroups = N // group_size
assert x.stride(-1) == 1
assert dy.stride(-1) == 1
assert dy.shape == (M, N)
if z is not None:
assert z.stride(-1) == 1
assert z.shape == (M, N)
assert weight.shape == (N,)
assert weight.stride(-1) == 1
if bias is not None:
assert bias.stride(-1) == 1
assert bias.shape == (N,)
# allocate output
dx = torch.empty_like(x)
if dz is not None:
assert z is not None
assert dz.shape == z.shape
assert dz.stride(-1) == 1
else:
dz = torch.empty_like(z) if z is not None else None
if recompute_output:
if out is None:
out = torch.empty_like(x)
assert out.shape == x.shape
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(group_size))
if group_size > BLOCK_N:
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
# heuristics for number of warps
num_warps = min(max(BLOCK_N // 256, 1), 8)
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
# If group size is small (e.g., 64), we're only using 1 warp. So having just 108 programs
# would limit the occupancy.
nrow_groups = math.ceil(sm_count * math.ceil(4 / num_warps) / ngroups)
_dw = torch.empty((nrow_groups, N), dtype=torch.float32, device=weight.device)
_db = torch.empty((nrow_groups, N), dtype=torch.float32, device=bias.device) if bias is not None else None
rows_per_program = math.ceil(M / nrow_groups)
grid = (nrow_groups, ngroups)
with torch.cuda.device(x.device.index):
_layer_norm_bwd_kernel[grid](x, weight, bias, z, out if recompute_output else None,
dy, dx, _dw, _db, dz, mean, rstd,
x.stride(0),
z.stride(0) if z is not None else 0,
0 if not recompute_output else out.stride(0),
dy.stride(0), dx.stride(0),
dz.stride(0) if dz is not None else 0,
_dw.stride(0),
_db.stride(0) if _db is not None else 0,
M, group_size, eps,
rows_per_program,
BLOCK_N=BLOCK_N,
NORM_BEFORE_GATE=norm_before_gate,
IS_RMS_NORM=is_rms_norm,
num_warps=num_warps)
dw = _dw.sum(0).to(weight.dtype)
db = _db.sum(0).to(bias.dtype) if bias is not None else None
return (dx, dw, db, dz) if not recompute_output else (dx, dw, db, dz, out)
class LayerNormFn(torch.autograd.Function):
@staticmethod
def forward(ctx, x, weight, bias, z=None, eps=1e-6, group_size=None, norm_before_gate=True,
is_rms_norm=False):
"""If z is not None, we do norm(x) * silu(z) if norm_before_gate, else norm(x * silu(z))
"""
x_shape_og = x.shape
# reshape input data into 2D tensor
x = x.reshape(-1, x.shape[-1])
if x.stride(-1) != 1:
x = x.contiguous()
if z is not None:
assert z.shape == x_shape_og
z = z.reshape(-1, z.shape[-1])
if z.stride(-1) != 1:
z = z.contiguous()
weight = weight.contiguous()
if bias is not None:
bias = bias.contiguous()
y, mean, rstd = _layer_norm_fwd(x, weight, bias, eps, z=z, group_size=group_size, norm_before_gate=norm_before_gate, is_rms_norm=is_rms_norm)
ctx.save_for_backward(x, weight, bias, mean, rstd, z)
ctx.x_shape_og = x_shape_og
ctx.eps = eps
ctx.group_size = group_size
ctx.norm_before_gate = norm_before_gate
ctx.is_rms_norm = is_rms_norm
return y.reshape(x_shape_og)
@staticmethod
def backward(ctx, dy):
x, weight, bias, mean, rstd, z = ctx.saved_tensors
dy = dy.reshape(-1, dy.shape[-1])
if dy.stride(-1) != 1:
dy = dy.contiguous()
assert dy.shape == x.shape
dx, dw, db, dz = _layer_norm_bwd(dy, x, weight, bias, ctx.eps, mean, rstd, z, ctx.group_size,
ctx.norm_before_gate, ctx.is_rms_norm)
return dx.reshape(ctx.x_shape_og), dw, db, dz.reshape(ctx.x_shape_og) if dz is not None else None, None, None, None, None
def layernorm_fn(x, weight, bias, z=None, eps=1e-6, group_size=None, norm_before_gate=True, is_rms_norm=False):
return LayerNormFn.apply(x, weight, bias, z, eps, group_size, norm_before_gate, is_rms_norm)
def rmsnorm_fn(x, weight, bias, z=None, eps=1e-6, group_size=None, norm_before_gate=True):
return LayerNormFn.apply(x, weight, bias, z, eps, group_size, norm_before_gate, True)
class LayerNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-5, group_size=None, norm_before_gate=True, device=None, dtype=None):
"""If group_size is not None, we do GroupNorm with each group having group_size elements.
group_size=None is equivalent to group_size=hidden_size (i.e. there's only 1 group).
"""
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
self.bias = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
self.group_size = group_size
self.norm_before_gate = norm_before_gate
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.ones_(self.weight)
torch.nn.init.zeros_(self.bias)
def forward(self, x, z=None):
"""If z is not None, we do norm(x) * silu(z) if norm_before_gate, else norm(x * silu(z))
"""
return layernorm_fn(x, self.weight, self.bias, z=z, group_size=self.group_size, eps=self.eps,
norm_before_gate=self.norm_before_gate)
class RMSNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-5, group_size=None, norm_before_gate=True, device=None, dtype=None):
"""If group_size is not None, we do GroupNorm with each group having group_size elements.
group_size=None is equivalent to group_size=hidden_size (i.e. there's only 1 group).
"""
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
self.register_parameter("bias", None)
self.group_size = group_size
self.norm_before_gate = norm_before_gate
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.ones_(self.weight)
def forward(self, x, z=None):
"""If z is not None, we do norm(x) * silu(z) if norm_before_gate, else norm(x * silu(z))
"""
return rmsnorm_fn(x, self.weight, self.bias, z=z, eps=self.eps, group_size=self.group_size,
norm_before_gate=self.norm_before_gate)