triton_kernels / tests /test_swiglu.py
marcsun13's picture
marcsun13 HF Staff
Upload folder using huggingface_hub
567c8ad verified
from triton_kernels.routing import routing_torch
from triton_kernels.swiglu import swiglu, swiglu_torch, PrecisionConfig
from triton_kernels.testing import assert_close
import torch
import pytest
from .test_routing import init_data as init_routing_data
# ---------------
# initialize data
# ---------------
def alloc_rand(shape, device, dtype, requires_grad=True):
if dtype.itemsize == 1:
tmp = 2**-(torch.randint(4, 8, shape, device=device, dtype=torch.float16))
return tmp.to(dtype).requires_grad_(requires_grad)
return torch.randn(shape, device=device, dtype=dtype, requires_grad=requires_grad)
# ---------------
# unit tests
# ---------------
@pytest.mark.parametrize("M, N", [(1311, 4352)])
@pytest.mark.parametrize("limit", [1e-2, 10])
def test_op(M, N, limit, device, alpha=0.5):
torch.manual_seed(2)
# initialize expert data
n_expts_tot = 6
n_expts_act = 2
logits = init_routing_data(M, n_expts_tot).detach()
routing_data, _, _ = routing_torch(logits, n_expts_act)
n_tokens = routing_data.expt_hist.sum()
# initialize data
x = alloc_rand([n_tokens, N], device=device, dtype=torch.bfloat16)
precision_config = PrecisionConfig(limit=limit)
tri_y = swiglu(x, alpha, precision_config, routing_data)
ref_y = swiglu_torch(x, alpha, precision_config)
assert_close(tri_y, ref_y)