|
from __future__ import annotations |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torchvision import transforms |
|
|
|
from typing import List, Tuple, Optional, Union |
|
|
|
import PIL |
|
|
|
from transformers import AutoTokenizer, AutoConfig |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
|
|
from friday.model.vision_adapter import MLPAdapter |
|
from friday.model.vision_tower import ( |
|
SiglipVisionTower, |
|
SiglipVisionTowerS2, |
|
FastVitVisionTower, |
|
FastVitVisionTowerS2 |
|
) |
|
from friday.model.language_model.phi4 import ( |
|
Phi3Config, |
|
Phi3Model, |
|
Phi3ForCausalLM |
|
) |
|
from friday.constants import ( |
|
IMAGE_TOKEN, |
|
IMG_START_TOKEN, |
|
IMG_END_TOKEN, |
|
IGNORE_INDEX |
|
) |
|
|
|
DEFAULT_CFG_SPECIAL_TOKENS = { |
|
"image_token_id": 200029, |
|
"image_start_token_id": 200030, |
|
"image_end_token_id": 200031, |
|
} |
|
DEFAULT_CFG_VISION_TOWER = { |
|
"pretrained_model_name_or_path": "kevin510/fast-vit-hd", |
|
"type": "fastvit", |
|
"s2_scales": "512,1024", |
|
"use_s2": True, |
|
"pad_to_square": True, |
|
"freeze": False, |
|
"model_params": { "trust_remote_code": True } |
|
} |
|
DEFAULT_CFG_VISION_ADAPTER = { |
|
"input_dim": 6144, |
|
"hidden_dim": 3072, |
|
"output_dim": 3072, |
|
"layers": 2, |
|
"activation": "gelu", |
|
"freeze": False, |
|
} |
|
|
|
|
|
class FridayConfig(Phi3Config): |
|
model_type = "friday" |
|
|
|
def __init__(self, |
|
base_model_name_or_path: str | None = "microsoft/Phi-4-mini-reasoning", |
|
delay_load=False, |
|
tokenizer_model_max_length=None, |
|
**kwargs |
|
): |
|
base_kwargs = {} |
|
if base_model_name_or_path is not None: |
|
base_cfg = AutoConfig.from_pretrained( |
|
base_model_name_or_path, |
|
trust_remote_code=True, |
|
) |
|
base_kwargs = base_cfg.to_dict() |
|
|
|
merged = {**base_kwargs, **kwargs} |
|
self.delay_load = delay_load |
|
self.tokenizer_model_max_length = tokenizer_model_max_length |
|
|
|
self._cfg_vision_tower = DEFAULT_CFG_VISION_TOWER.copy() |
|
if "cfg_vision_tower" in kwargs: |
|
self._cfg_vision_tower.update(kwargs["cfg_vision_tower"]) |
|
|
|
self._cfg_vision_adapter = DEFAULT_CFG_VISION_ADAPTER.copy() |
|
if "cfg_vision_adapter" in kwargs: |
|
self._cfg_vision_adapter.update(kwargs["cfg_vision_adapter"]) |
|
|
|
self._cfg_special_tokens = DEFAULT_CFG_SPECIAL_TOKENS.copy() |
|
if "cfg_special_tokens" in kwargs: |
|
self._cfg_special_tokens.update(kwargs["cfg_special_tokens"]) |
|
|
|
super().__init__(**merged) |
|
|
|
|
|
@property |
|
def cfg_vision_tower(self): |
|
return self._cfg_vision_tower |
|
|
|
@cfg_vision_tower.setter |
|
def cfg_vision_tower(self, value): |
|
if not value: |
|
raise ValueError("Name cannot be empty") |
|
self._cfg_vision_tower.update(value) |
|
|
|
|
|
@property |
|
def cfg_vision_adapter(self): |
|
return self._cfg_vision_adapter |
|
|
|
@cfg_vision_adapter.setter |
|
def cfg_vision_adapter(self, value): |
|
if not value: |
|
raise ValueError("Name cannot be empty") |
|
self._cfg_vision_adapter.update(value) |
|
|
|
@property |
|
def cfg_special_tokens(self): |
|
return self._cfg_special_tokens |
|
|
|
@cfg_special_tokens.setter |
|
def cfg_special_tokens(self, value): |
|
if not value: |
|
raise ValueError("Name cannot be empty") |
|
self._cfg_special_tokens.update(value) |
|
|
|
|
|
class FridayModel(Phi3Model): |
|
config_class = FridayConfig |
|
|
|
def __init__(self, config: FridayConfig): |
|
super().__init__(config) |
|
|
|
self.cfg_vision_adapter = config.cfg_vision_adapter |
|
self.cfg_vision_tower = config.cfg_vision_tower |
|
|
|
self.vision_tower = None |
|
self.mm_projector = None |
|
if not config.delay_load: |
|
self.initialize_vision_modules() |
|
|
|
def get_vision_tower(self): |
|
return self.vision_tower |
|
|
|
def initialize_vision_modules(self): |
|
if self.vision_tower is not None: |
|
return |
|
|
|
if self.cfg_vision_tower.get("type", "siglip").lower() == "siglip": |
|
if self.cfg_vision_tower.get("use_s2", True): |
|
self.vision_tower = SiglipVisionTowerS2(**self.cfg_vision_tower) |
|
else: |
|
self.vision_tower = SiglipVisionTower(**self.cfg_vision_tower) |
|
elif self.cfg_vision_tower.get("type", "siglip").lower() == "fastvit": |
|
if self.cfg_vision_tower.get("use_s2", True): |
|
self.vision_tower = FastVitVisionTowerS2(**self.cfg_vision_tower) |
|
else: |
|
self.vision_tower = FastVitVisionTower(**self.cfg_vision_tower) |
|
else: |
|
raise ValueError(f"Unsupported vision tower type: {self.cfg_vision_tower.get('type', 'siglip')}. Supported types are 'siglip' and 'fastvit'.") |
|
|
|
self.vision_tower.load_model() |
|
self.mm_projector = MLPAdapter(**self.cfg_vision_adapter) |
|
|
|
if self.cfg_vision_tower.get("freeze", False): |
|
self.set_vision_tower_requires_grad(False) |
|
|
|
if self.cfg_vision_adapter.get("freeze", False): |
|
self.set_vision_adapter_requires_grad(False) |
|
|
|
def compute_image_features(self, imgs: torch.Tensor) -> torch.Tensor: |
|
features = self.vision_tower(imgs) |
|
if isinstance(features, list): |
|
features = torch.stack(features, dim=1) |
|
return self.mm_projector(features) |
|
|
|
def set_vision_tower_requires_grad(self, requires_grad: bool): |
|
if self.vision_tower is not None: |
|
for param in self.vision_tower.parameters(): |
|
param.requires_grad = requires_grad |
|
else: |
|
raise ValueError("Vision tower is not initialized. Please call initialize_vision_modules() first.") |
|
|
|
def set_vision_adapter_requires_grad(self, requires_grad: bool): |
|
if self.mm_projector is not None: |
|
for param in self.mm_projector.parameters(): |
|
param.requires_grad = requires_grad |
|
else: |
|
raise ValueError("Vision adapter is not initialized. Please call initialize_vision_modules() first.") |
|
|
|
def set_vision_tower_dtype(self, dtype: torch.dtype): |
|
if self.vision_tower is not None: |
|
for p in self.vision_tower.parameters(): |
|
p.data = p.data.to(dtype) |
|
else: |
|
raise ValueError("Vision tower is not initialized. Please call initialize_vision_modules() first.") |
|
|
|
def set_vision_adapter_dtype(self, dtype: torch.dtype): |
|
if self.mm_projector is not None: |
|
for p in self.mm_projector.parameters(): |
|
p.data = p.data.to(dtype) |
|
else: |
|
raise ValueError("Vision adapter is not initialized. Please call initialize_vision_modules() first.") |
|
|
|
def is_vision_tower_frozen(self): |
|
if self.vision_tower is not None: |
|
return all(not p.requires_grad for p in self.vision_tower.parameters()) |
|
else: |
|
raise ValueError("Vision tower is not initialized. Please call initialize_vision_modules() first.") |
|
|
|
def is_vision_adapter_frozen(self): |
|
if self.mm_projector is not None: |
|
return all(not p.requires_grad for p in self.mm_projector.parameters()) |
|
else: |
|
raise ValueError("Vision adapter is not initialized. Please call initialize_vision_modules() first.") |
|
|
|
|
|
class FridayForCausalLM(Phi3ForCausalLM): |
|
config_class = FridayConfig |
|
|
|
def __init__(self, config: FridayConfig): |
|
super().__init__(config) |
|
|
|
self.config = config |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.image_token_id = config.cfg_special_tokens["image_token_id"] |
|
self.image_start_id = config.cfg_special_tokens["image_start_token_id"] |
|
self.image_end_id = config.cfg_special_tokens["image_end_token_id"] |
|
|
|
self.model = FridayModel(config) |
|
self.post_init() |
|
|
|
def get_model(self) -> FridayModel: |
|
return self.model |
|
|
|
def get_vision_tower(self) -> SiglipVisionTower: |
|
return self.model.get_vision_tower() |
|
|
|
def get_vision_adapter(self) -> MLPAdapter: |
|
return self.model.mm_projector |
|
|
|
def get_llm_parameters(self, exclude_lora: bool = False): |
|
return [ |
|
p for n, p in self.named_parameters() |
|
if "vision_tower" not in n and "mm_projector" not in n and (not exclude_lora or ("lora_" not in n)) |
|
] |
|
|
|
def get_llm_named_modules(self): |
|
return {n: m for n, m in self.named_modules() if "vision_tower" not in n and "mm_projector" not in n} |
|
|
|
def set_llm_requires_grad(self, requires_grad: bool, exclude_lora: bool = True): |
|
for n, p in self.named_parameters(): |
|
if exclude_lora and ("lora_A" in n or "lora_B" in n): |
|
continue |
|
if "vision_tower" in n or "mm_projector" in n: |
|
continue |
|
p.requires_grad = requires_grad |
|
|
|
def set_vision_tower_requires_grad(self, requires_grad: bool): |
|
self.model.set_vision_tower_requires_grad(requires_grad) |
|
|
|
def set_vision_adapter_requires_grad(self, requires_grad: bool): |
|
self.model.set_vision_adapter_requires_grad(requires_grad) |
|
|
|
def set_llm_dtype(self, dtype: torch.dtype): |
|
for p in self.get_llm_parameters(): |
|
p.data = p.data.to(dtype) |
|
|
|
def set_vision_tower_dtype(self, dtype: torch.dtype): |
|
self.model.set_vision_tower_dtype(dtype) |
|
|
|
def set_vision_adapter_dtype(self, dtype: torch.dtype): |
|
self.model.set_vision_adapter_dtype(dtype) |
|
|
|
def is_llm_frozen(self): |
|
return all(not p.requires_grad for p in self.get_llm_parameters()) |
|
|
|
def is_vision_tower_frozen(self): |
|
return self.model.is_vision_tower_frozen() |
|
|
|
def is_vision_adapter_frozen(self): |
|
return self.model.is_vision_adapter_frozen() |
|
|
|
|
|
|
|
def initialize_vision_modules(self): |
|
self.model.initialize_vision_modules() |
|
|
|
def get_multimodal_input_embeddings(self, input_ids, image_features, return_labels=True) -> torch.Tensor: |
|
emb_start_image_id = self.model.embed_tokens(torch.tensor([self.image_start_id], device=self.device)) |
|
emb_end_image_id = self.model.embed_tokens(torch.tensor([self.image_end_id], device=self.device)) |
|
id_ignore = torch.tensor([IGNORE_INDEX], device=self.device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
embeds_list, labels_list = [], [] |
|
for batch_id, item_ids in enumerate(input_ids): |
|
|
|
image_token_positions = (item_ids == self.image_token_id).nonzero(as_tuple=True)[0] |
|
if len(image_token_positions) != image_features[batch_id].shape[0]: |
|
raise ValueError( |
|
f"Mismatch between number of image tokens ({len(image_token_positions)}) and number of image features ({image_features[batch_id].shape[0]})" |
|
) |
|
|
|
|
|
cursor = 0 |
|
emb_parts, lbl_parts = [], [] |
|
for indx_image, image_token_pos in enumerate(image_token_positions): |
|
if image_token_pos > cursor: |
|
span = item_ids[cursor:image_token_pos] |
|
emb_parts.append(self.model.embed_tokens(span)) |
|
lbl_parts.append(span) |
|
|
|
|
|
emb_parts.append(emb_start_image_id) |
|
lbl_parts.append(id_ignore) |
|
|
|
|
|
image_tokens = image_features[batch_id][indx_image] |
|
if image_tokens.shape[0] == 1 and image_tokens.ndim == 3: |
|
image_tokens = image_tokens.squeeze(0) |
|
emb_parts.append(image_tokens) |
|
lbl_parts.append(id_ignore.repeat(image_tokens.shape[0])) |
|
|
|
|
|
emb_parts.append(emb_end_image_id) |
|
lbl_parts.append(id_ignore) |
|
|
|
cursor = image_token_pos + 1 |
|
|
|
|
|
if cursor < item_ids.shape[0]: |
|
tail = item_ids[cursor:] |
|
emb_parts.append(self.model.embed_tokens(tail)) |
|
lbl_parts.append(tail) |
|
|
|
embeds_list.append(torch.cat(emb_parts, dim=0)) |
|
labels_list.append(torch.cat(lbl_parts, dim=0)) |
|
|
|
return (embeds_list, labels_list) if return_labels else embeds_list |
|
|
|
def prepare_inputs_for_multimodal( |
|
self, |
|
input_ids: torch.LongTensor, |
|
images: List[List[PIL.Image.Image]], |
|
position_ids: Optional[torch.LongTensor], |
|
attention_mask: Optional[torch.Tensor], |
|
past_key_values: Optional[List[torch.FloatTensor]], |
|
labels: Optional[torch.LongTensor], |
|
) -> Tuple[Optional[torch.Tensor], Optional[torch.LongTensor], Optional[torch.Tensor], Optional[List[torch.FloatTensor]], torch.Tensor, Optional[torch.Tensor]]: |
|
|
|
|
|
|
|
|
|
|
|
if past_key_values is not None and attention_mask is not None and input_ids.shape[1] == 1: |
|
tgt = past_key_values[-1][-1].shape[-2] + 1 |
|
attention_mask = torch.cat( |
|
[attention_mask, |
|
torch.ones((attention_mask.size(0), |
|
tgt - attention_mask.size(1)), |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device)], |
|
dim=1, |
|
) |
|
position_ids = (attention_mask.sum(dim=1, keepdim=True) - 1).long() |
|
|
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels |
|
|
|
|
|
if isinstance(images, list) and isinstance(images[0], list): |
|
|
|
|
|
assert len(images) == input_ids.shape[0], f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}" |
|
image_features = [] |
|
for sublst_images in images: |
|
if len(sublst_images) == 0: |
|
image_features.append(torch.zeros((0, self.get_model().mm_projector.output_dim), device=self.device)) |
|
else: |
|
if isinstance(sublst_images[0], PIL.Image.Image): |
|
image_features.append( |
|
self.model.compute_image_features( |
|
self.model.vision_tower.preprocess_images(sublst_images, pad_and_stack_tensors=True) |
|
) |
|
) |
|
elif isinstance(sublst_images[0], torch.Tensor): |
|
|
|
image_features.append( |
|
self.model.compute_image_features(sublst_images) |
|
) |
|
elif isinstance(images, list) and isinstance(images[0], PIL.Image.Image): |
|
|
|
|
|
assert input_ids.shape[0] == 1, f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}" |
|
image_features = [ |
|
self.model.compute_image_features( |
|
self.model.vision_tower.preprocess_images(images, pad_and_stack_tensors=True) |
|
) |
|
] |
|
elif isinstance(images, list) and isinstance(images[0], torch.Tensor): |
|
|
|
|
|
assert input_ids.shape[0] == len(images), f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}" |
|
image_features = [ |
|
self.model.compute_image_features(imgs) for imgs in images |
|
] |
|
elif isinstance(images, PIL.Image.Image): |
|
|
|
|
|
assert input_ids.shape[0] == 1, f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}" |
|
image_features = [ |
|
self.model.compute_image_features( |
|
self.model.vision_tower.preprocess_images([images]) |
|
) |
|
] |
|
else: |
|
raise ValueError(f"Unsupported images format: {type(images)}. Expected list of PIL images, a single PIL image or a Tensor of pre-processed images") |
|
|
|
|
|
if isinstance(image_features, list): |
|
assert input_ids.shape[0] == len(image_features), f"Incorrectly formatted image_features: list length should match batch size" |
|
assert isinstance(image_features[0], torch.Tensor), f"Incorrectly formatted image_features: list items should be tensors" |
|
elif isinstance(image_features, torch.Tensor): |
|
assert input_ids.shape[0] == image_features.shape[0], f"Incorrectly formatted image_features: tensor should match batch size" |
|
|
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
else: |
|
attention_mask = attention_mask.bool() |
|
if position_ids is None: |
|
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) |
|
|
|
input_ids_nopad = [ids[mask] for ids, mask in zip(input_ids, attention_mask)] |
|
embeds_list, labels_list = self.get_multimodal_input_embeddings( |
|
input_ids_nopad, |
|
image_features, |
|
return_labels=True |
|
) |
|
|
|
|
|
new_input_embeds = torch.nn.utils.rnn.pad_sequence( |
|
embeds_list, |
|
batch_first=True, |
|
padding_value=0.0 |
|
).to(dtype=self.dtype) |
|
|
|
new_labels = torch.nn.utils.rnn.pad_sequence( |
|
labels_list, |
|
batch_first=True, |
|
padding_value=IGNORE_INDEX |
|
).long() |
|
|
|
if self.config.tokenizer_model_max_length is not None: |
|
new_input_embeds = new_input_embeds[:, :self.config.tokenizer_model_max_length] |
|
new_labels = new_labels[:, :self.config.tokenizer_model_max_length] |
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = ( |
|
torch.arange(new_input_embeds.size(1), device=input_ids.device) |
|
.unsqueeze(0) |
|
< torch.tensor([e.size(0) for e in embeds_list], |
|
device=input_ids.device).unsqueeze(1) |
|
) |
|
|
|
raw_pos = attention_mask.cumsum(dim=1) - 1 |
|
position_ids = raw_pos.masked_fill(~attention_mask, 0).long() |
|
|
|
if not self.training: |
|
new_labels = None |
|
|
|
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
|
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
images: Optional[PIL.Image.Image] = None, |
|
**kwargs: Unpack[KwargsForCausalLM], |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
is_multi_modal = images is not None and not ( |
|
( |
|
isinstance(images, list) and (len(images) == 0 or all(i == [] for i in images)) |
|
) |
|
) |
|
|
|
|
|
if inputs_embeds is None and is_multi_modal: |
|
( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
labels |
|
) = self.prepare_inputs_for_multimodal( |
|
input_ids=input_ids, |
|
images=images, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
labels=labels, |
|
) |
|
|
|
if cache_position is not None and inputs_embeds is not None and cache_position.shape[0] != inputs_embeds.shape[1]: |
|
cache_position = torch.arange(inputs_embeds.shape[1], device=self.device) |
|
|
|
|
|
return Phi3ForCausalLM.forward( |
|
self, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
logits_to_keep=logits_to_keep, |
|
**kwargs |
|
) |
|
|
|
def print_device_configuration(self): |
|
print("*************Device Configuration*********") |
|
if len(self.get_llm_parameters()) > 0: |
|
llm_device = set({str(p.device) for p in self.get_llm_parameters()}) |
|
llm_dtype = set({p.dtype for p in self.get_llm_parameters()}) |
|
print(f"LLM Parameters:\t\t\tdevice: {llm_device}\tdtype: {llm_dtype}\tfrozen: {self.is_llm_frozen()}") |
|
else: |
|
print("LLM parameters have not been initialized") |
|
|
|
if self.get_model().vision_tower is not None: |
|
vt_device = set({str(p.device) for p in self.get_model().vision_tower.parameters()}) |
|
vt_dtype = set({p.dtype for p in self.get_model().vision_tower.parameters()}) |
|
print(f"Vision Tower Parameters:\tdevice: {vt_device}\tdtype: {vt_dtype}\tfrozen: {self.is_vision_tower_frozen()}") |
|
else: |
|
print("Vision tower parameters have not been initialized") |
|
|
|
if self.get_model().mm_projector is not None: |
|
mm_device = set({str(p.device) for p in self.get_model().mm_projector.parameters()}) |
|
mm_dtype = set({p.dtype for p in self.get_model().mm_projector.parameters()}) |
|
print(f"MM Projector Parameters:\tdevice: {mm_device}\tdtype: {mm_dtype}\tfrozen: {self.is_vision_adapter_frozen()}") |
|
else: |
|
print("MM Projector parameters have not been initialized") |
|
print("******************************************") |
|
|
|
|
|
|
|
def build_tokenizer(base_model_id: str) -> Tuple[AutoTokenizer, dict]: |
|
tok = AutoTokenizer.from_pretrained(base_model_id, padding_side="right") |
|
specials = {t: tok.convert_tokens_to_ids(t) for t in [IMAGE_TOKEN, IMG_START_TOKEN, IMG_END_TOKEN] if t in tok.vocab} |
|
if len(specials) < 3: |
|
n = tok.add_tokens([IMAGE_TOKEN, IMG_START_TOKEN, IMG_END_TOKEN], special_tokens=True) |
|
tok.pad_token = tok.eos_token |
|
specials = { |
|
"image": tok.convert_tokens_to_ids(IMAGE_TOKEN), |
|
"start": tok.convert_tokens_to_ids(IMG_START_TOKEN), |
|
"end": tok.convert_tokens_to_ids(IMG_END_TOKEN), |
|
} |
|
return tok, specials |
|
|
|
|