|
from __future__ import annotations |
|
|
|
|
|
IMAGE_TOKEN = "<image>" |
|
IMG_START_TOKEN = "<img_start>" |
|
IMG_END_TOKEN = "<img_end>" |
|
IGNORE_INDEX = -100 |
|
PAD_FOR_EOS = -300 |
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from PIL import Image |
|
|
|
|
|
import torch |
|
|
|
def mask_token_segment( |
|
start_id: int, |
|
end_id: int, |
|
input_ids: torch.Tensor, |
|
fill_value: int = -100): |
|
""" |
|
Replace *every* token from each `start_id` **through** its matching `end_id` |
|
(boundaries included) with `fill_value`. Any spans that start with some |
|
other token are left untouched. |
|
|
|
Works on CUDA, TorchScript, batched via vmap, etc.—no Python loops. |
|
""" |
|
if input_ids.dim() != 1: |
|
raise ValueError("`input_ids` must be 1-D") |
|
|
|
device = input_ids.device |
|
n = input_ids.size(0) |
|
|
|
|
|
start_pos = (input_ids == start_id).nonzero(as_tuple=True)[0] |
|
end_pos = (input_ids == end_id).nonzero(as_tuple=True)[0] |
|
|
|
if start_pos.numel() == 0: |
|
return input_ids.clone() |
|
|
|
|
|
|
|
idx_in_end = torch.searchsorted(end_pos, start_pos, right=False) |
|
|
|
have_match = idx_in_end < end_pos.size(0) |
|
start_pos = start_pos[have_match] |
|
end_pos = end_pos[idx_in_end[have_match]] |
|
|
|
|
|
keep = end_pos > start_pos |
|
start_pos, end_pos = start_pos[keep], end_pos[keep] |
|
|
|
if start_pos.numel() == 0: |
|
return input_ids |
|
|
|
|
|
|
|
delta = torch.zeros(n + 1, dtype=torch.int8, device=device) |
|
delta[start_pos] += 1 |
|
delta[end_pos + 1] -= 1 |
|
|
|
inside = torch.cumsum(delta[:-1], dim=0) > 0 |
|
|
|
|
|
out = input_ids.clone() |
|
out[inside] = fill_value |
|
return out |
|
|
|
|
|
|
|
def maybe_zero_3(param, ignore_status=False, name=None): |
|
from deepspeed import zero |
|
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus |
|
if hasattr(param, "ds_id"): |
|
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: |
|
if not ignore_status: |
|
print(name, 'no ignore status') |
|
with zero.GatheredParameters([param]): |
|
param = param.data.detach().cpu().clone() |
|
else: |
|
param = param.detach().cpu().clone() |
|
return param |
|
|
|
|
|
|
|
def get_peft_state_maybe_zero_3(named_params, bias): |
|
if bias == "none": |
|
to_return = {k: t for k, t in named_params if "lora_" in k} |
|
elif bias == "all": |
|
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} |
|
elif bias == "lora_only": |
|
to_return = {} |
|
maybe_lora_bias = {} |
|
lora_bias_names = set() |
|
for k, t in named_params: |
|
if "lora_" in k: |
|
to_return[k] = t |
|
bias_name = k.split("lora_")[0] + "bias" |
|
lora_bias_names.add(bias_name) |
|
elif "bias" in k: |
|
maybe_lora_bias[k] = t |
|
for k, t in maybe_lora_bias: |
|
if bias_name in lora_bias_names: |
|
to_return[bias_name] = t |
|
else: |
|
raise NotImplementedError |
|
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} |
|
return to_return |
|
|
|
|
|
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): |
|
to_return = {k: t for k, t in named_params if "lora_" not in k} |
|
if require_grad_only: |
|
to_return = {k: t for k, t in to_return.items() if t.requires_grad} |
|
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} |
|
return to_return |
|
|
|
|
|
def find_all_linear_names(modules): |
|
lora_module_names = set() |
|
for name, module in modules(): |
|
if isinstance(module, torch.nn.Linear): |
|
names = name.split('.') |
|
lora_module_names.add(names[0] if len(names) == 1 else names[-1]) |
|
|
|
if 'lm_head' in lora_module_names: |
|
lora_module_names.remove('lm_head') |
|
return list(lora_module_names) |
|
|
|
|
|
def expand2square(pil_img, background_color): |
|
width, height = pil_img.size |
|
if width == height: |
|
return pil_img |
|
elif width > height: |
|
result = Image.new(pil_img.mode, (width, width), background_color) |
|
result.paste(pil_img, (0, (width - height) // 2)) |
|
return result |
|
else: |
|
result = Image.new(pil_img.mode, (height, height), background_color) |
|
result.paste(pil_img, ((height - width) // 2, 0)) |
|
return result |
|
|
|
def pad_and_stack(img_list, pad_value=0.0): |
|
""" |
|
img_list : list[Tensor] each (C, H, W) already *normalised* |
|
pad_value: float or tuple/list of 3 floats (one per channel) |
|
Use 0.0 if your processor has already centred to mean 0. |
|
Returns |
|
------- |
|
batch : Tensor (B, C, H_max, W_max) |
|
""" |
|
|
|
|
|
h_max = max(t.shape[1] for t in img_list) |
|
w_max = max(t.shape[2] for t in img_list) |
|
H, W = max(h_max, w_max), max(h_max, w_max) |
|
|
|
|
|
padded = [] |
|
for img in img_list: |
|
c, h, w = img.shape |
|
canvas = img.new_full((c, H, W), pad_value) |
|
canvas[:, :h, :w] = img |
|
padded.append(canvas) |
|
|
|
return torch.stack(padded, 0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
def split_chessboard(x, num_split): |
|
""" |
|
x: b * c * h * w |
|
Deividing x into num_split**2 sub-squares, and concatenate all the sub-squares on the batch dimension |
|
""" |
|
B, C, H, W = x.shape |
|
assert H % num_split == 0 and W % num_split == 0 |
|
h, w = H // num_split, W // num_split |
|
x_split = torch.cat([x[:, :, i*h:(i+1)*h, j*w:(j+1)*w] for i in range(num_split) for j in range(num_split)], dim=0) |
|
return x_split |
|
|
|
def merge_chessboard(x, num_split): |
|
""" |
|
x: b * c * h * w |
|
Assuming x contains num_split**2 sub-squares concatenated along batch dimension, merge the sub-squares back to the original whole square. |
|
(inverse of split_chessboard) |
|
""" |
|
B, C, H, W = x.shape |
|
assert B % (num_split**2) == 0 |
|
b = B // (num_split**2) |
|
x_merge = torch.cat([torch.cat([x[(i*num_split + j)*b:(i*num_split + j + 1)*b] for j in range(num_split)], dim=-1) |
|
for i in range(num_split)], dim=-2) |
|
return x_merge |
|
|
|
def batched_forward(model, x, batch_size=-1): |
|
if batch_size == -1: |
|
return model(x) |
|
else: |
|
x_batched = x.split(batch_size) |
|
outs = [model(x) for x in x_batched] |
|
return torch.cat(outs, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import torch |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
|
|
def multiscale_forward(model, input, scales=None, img_sizes=None, max_split_size=None, resize_output_to_idx=0, num_prefix_token=0, |
|
output_shape='bnc', split_forward=False): |
|
|
|
|
|
|
|
assert input.dim() == 4, "Input image must be in the shape of BxCxHxW." |
|
assert input.shape[2] == input.shape[3], "Currently only square images are supported." |
|
assert output_shape in ['bnc', 'bchw'], "Output shape should be either BxNxC (e.g., ViT) or BxCxHxW (e.g., ConvNet)." |
|
assert output_shape == 'bnc' or num_prefix_token == 0, "For ConvNet there shouldn't be any prefix token." |
|
|
|
b, c, input_size, _ = input.shape |
|
|
|
|
|
assert scales is not None or img_sizes is not None, "Please assign either scales or img_sizes." |
|
img_sizes = img_sizes or [int(input_size * scale) for scale in scales] |
|
|
|
|
|
max_split_size = max_split_size or input_size |
|
num_splits = [math.ceil(size / max_split_size) for size in img_sizes] |
|
input_multiscale = [] |
|
for size, num_split in zip(img_sizes, num_splits): |
|
x = F.interpolate(input.to(torch.float32), size=size, mode='bicubic').to(input.dtype) |
|
x = split_chessboard(x, num_split=num_split) |
|
input_multiscale.append(x) |
|
|
|
|
|
outs_multiscale = [batched_forward(model, x, b) if split_forward else model(x) for x in input_multiscale] |
|
if num_prefix_token > 0: |
|
outs_prefix_multiscale = [out[:, :num_prefix_token] for out in outs_multiscale] |
|
outs_multiscale = [out[:, num_prefix_token:] for out in outs_multiscale] |
|
if output_shape == 'bnc': |
|
outs_multiscale = [rearrange(out, 'b (h w) c -> b c h w', h=int(out.shape[1] ** 0.5), w=int(out.shape[1] ** 0.5)) |
|
for out in outs_multiscale] |
|
|
|
|
|
outs_multiscale = [merge_chessboard(out, num_split=num_split) for num_split, out in zip(num_splits, outs_multiscale)] |
|
|
|
|
|
output_size = outs_multiscale[resize_output_to_idx].shape[-2] |
|
out = torch.cat([F.interpolate(outs_multiscale[i].to(torch.float32), size=output_size, |
|
mode='area').to(outs_multiscale[i].dtype) |
|
for i in range(len(outs_multiscale))], dim=1) |
|
if output_shape == 'bnc': |
|
out = rearrange(out, 'b c h w -> b (h w) c') |
|
if num_prefix_token > 0: |
|
|
|
outs_prefix_multiscale = [torch.stack(out.split(b, dim=0), dim=0).mean(dim=0) for out in outs_prefix_multiscale] |
|
out_prefix_multiscale = torch.cat(outs_prefix_multiscale, dim=-1) |
|
out = torch.cat([out_prefix_multiscale, out], dim=1) |
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
class MLPAdapter(nn.Module): |
|
|
|
def __init__(self, input_dim, hidden_dim, output_dim, num_layers=2, activation='gelu', checkpoint_path=None, device=None, **kwargs): |
|
""" |
|
Initialize the MLPAdapter with the given dimensions and activation function. |
|
|
|
Args: |
|
input_dim (int): Input dimension. |
|
hidden_dim (int): Hidden dimension. |
|
output_dim (int): Output dimension. |
|
layers (int): Number of layers in the MLP. |
|
activation (str): Activation function to use ('gelu' or 'relu'). |
|
""" |
|
super().__init__() |
|
self.num_layers = num_layers |
|
self.activation = activation |
|
self.output_dim = output_dim |
|
|
|
|
|
layers_list = [nn.Linear(input_dim, hidden_dim, device=device)] |
|
if activation == 'gelu': |
|
layers_list.append(nn.GELU()) |
|
elif activation == 'relu': |
|
layers_list.append(nn.ReLU()) |
|
else: |
|
raise ValueError("Unsupported activation function. Use 'gelu' or 'relu'.") |
|
|
|
|
|
for _ in range(1, num_layers): |
|
layers_list.append(nn.Linear(hidden_dim, hidden_dim, device=device)) |
|
if activation == 'gelu': |
|
layers_list.append(nn.GELU()) |
|
elif activation == 'relu': |
|
layers_list.append(nn.ReLU()) |
|
|
|
|
|
layers_list.append(nn.Linear(hidden_dim, output_dim, device=device)) |
|
self.mlp = nn.Sequential(*layers_list) |
|
|
|
|
|
if checkpoint_path: |
|
self.load_state_dict(torch.load(checkpoint_path, map_location=device), strict=False) |
|
print(f"Loaded MLPAdapter from {checkpoint_path}") |
|
|
|
if device: |
|
self.to(device) |
|
|
|
def forward(self, x): |
|
""" |
|
Forward pass through the MLPAdapter. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
|
|
Returns: |
|
torch.Tensor: Output tensor after passing through the MLP. |
|
""" |
|
return self.mlp(x) |
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import PIL.Image |
|
from typing import List |
|
|
|
from transformers import AutoModel, AutoImageProcessor |
|
|
|
|
|
class FastVitVisionTower(nn.Module): |
|
def __init__(self, pretrained_model_name_or_path, model_params={}, pad_to_square=True, **kwargs): |
|
super().__init__() |
|
|
|
self.is_loaded = False |
|
self.pretrained_model_name_or_path = pretrained_model_name_or_path |
|
self.model_params = model_params |
|
self.pad_to_square = pad_to_square |
|
self.load_model() |
|
|
|
@property |
|
def output_dim(self): |
|
return self.vision_tower.config.embed_dim if self.vision_tower else None |
|
|
|
def load_model(self): |
|
if self.is_loaded: |
|
return |
|
self.image_processor = AutoImageProcessor.from_pretrained(self.pretrained_model_name_or_path) |
|
self.image_processor.crop_size = self.image_processor.size |
|
self.vision_tower = AutoModel.from_pretrained( |
|
self.pretrained_model_name_or_path, |
|
**self.model_params, |
|
) |
|
self.vision_tower.requires_grad_(False) |
|
|
|
self.is_loaded = True |
|
|
|
def preprocess_images(self, imgs: List[PIL.Image.Image], pad_and_stack_tensors=True) -> torch.Tensor: |
|
img_mean = tuple(int(x * 255) for x in self.image_processor.image_mean) |
|
if self.pad_to_square: |
|
imgs = [expand2square(img, img_mean) for img in imgs] |
|
|
|
imgs = [self.image_processor(img, do_resize=True, do_center_crop=False, return_tensors="pt")['pixel_values'][0] for img in imgs] |
|
|
|
|
|
if pad_and_stack_tensors: |
|
imgs = pad_and_stack(imgs, pad_value=0.0) |
|
imgs = imgs.to(dtype=torch.float32, device=self.device) |
|
|
|
return imgs |
|
|
|
def forward(self, images): |
|
if type(images) is list: |
|
image_features = [] |
|
for image in images: |
|
image_feature = self.vision_tower( |
|
image.to(device=self.device, dtype=self.dtype).unsqueeze(0) |
|
) |
|
image_features.append(image_feature) |
|
else: |
|
image_features = self.vision_tower( |
|
images.to(device=self.device, dtype=self.dtype), |
|
) |
|
|
|
return image_features |
|
|
|
@property |
|
def dummy_feature(self): |
|
return torch.zeros(1, self.embed_dim, device=self.device, dtype=self.dtype) |
|
|
|
@property |
|
def dtype(self): |
|
return self.vision_tower.dtype |
|
|
|
@property |
|
def device(self): |
|
return self.vision_tower.device |
|
|
|
@property |
|
def config(self): |
|
if self.is_loaded: |
|
return self.vision_tower.config |
|
else: |
|
return self.cfg_only |
|
|
|
@property |
|
def hidden_size(self): |
|
return self.config.embed_dim |
|
|
|
@property |
|
def num_patches(self): |
|
return (self.config.image_size // self.config.patch_size) ** 2 |
|
|
|
|
|
class FastVitVisionTowerS2(FastVitVisionTower): |
|
def __init__(self, pretrained_model_name_or_path, s2_scales, model_params={}, **kwargs): |
|
self.s2_scales = list(map(int, s2_scales.split(','))) |
|
self.s2_scales.sort() |
|
self.s2_split_size = self.s2_scales[0] |
|
self.s2_image_size = self.s2_scales[-1] |
|
|
|
super().__init__(pretrained_model_name_or_path, model_params) |
|
|
|
self.multiscale_forward = multiscale_forward |
|
|
|
@property |
|
def output_dim(self): |
|
return (2*self.vision_tower.config.embed_dim) if self.vision_tower else None |
|
|
|
def load_model(self): |
|
if self.is_loaded: |
|
return |
|
|
|
super().load_model() |
|
self.image_processor.size = self.image_processor.crop_size = { |
|
"height": self.s2_image_size, |
|
"width": self.s2_image_size |
|
} |
|
|
|
def forward_feature(self, images): |
|
image_size = self.vision_tower.config.image_size |
|
if images.shape[2] != image_size or images.shape[3] != image_size: |
|
images = F.interpolate( |
|
images, |
|
size=(image_size, image_size), |
|
mode="bilinear", |
|
align_corners=False, |
|
antialias=True |
|
) |
|
|
|
return self.vision_tower( |
|
images.to(device=self.device, dtype=self.dtype), |
|
) |
|
|
|
def forward(self, images): |
|
if type(images) is list: |
|
image_features = [] |
|
for image in images: |
|
image_feature = self.multiscale_forward( |
|
self.forward_feature, |
|
image.unsqueeze(0), |
|
img_sizes=self.s2_scales, |
|
max_split_size=self.s2_split_size |
|
) |
|
image_features.append(image_feature) |
|
else: |
|
image_features = self.multiscale_forward( |
|
self.forward_feature, |
|
images, |
|
img_sizes=self.s2_scales, |
|
max_split_size=self.s2_split_size |
|
) |
|
|
|
return image_features |
|
|
|
@property |
|
def hidden_size(self): |
|
return self.config.embed_dim * len(self.s2_scales) |
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
import PIL.Image |
|
from typing import List |
|
|
|
from transformers import SiglipVisionModel, SiglipImageProcessor, SiglipVisionConfig |
|
|
|
|
|
class SiglipVisionTower(nn.Module): |
|
def __init__(self, pretrained_model_name_or_path, model_params={}, pad_to_square=True, **kwargs): |
|
super().__init__() |
|
|
|
self.is_loaded = False |
|
self.pretrained_model_name_or_path = pretrained_model_name_or_path |
|
self.model_params = model_params |
|
self.pad_to_square = pad_to_square |
|
self.select_layer = -2 |
|
self.load_model() |
|
|
|
@property |
|
def output_dim(self): |
|
return self.vision_tower.config.hidden_size if self.vision_tower else None |
|
|
|
def load_model(self): |
|
if self.is_loaded: |
|
return |
|
self.image_processor = SiglipImageProcessor.from_pretrained(self.pretrained_model_name_or_path) |
|
self.image_processor.crop_size = self.image_processor.size |
|
self.vision_tower = SiglipVisionModel.from_pretrained( |
|
self.pretrained_model_name_or_path, |
|
**self.model_params, |
|
) |
|
self.vision_tower.requires_grad_(False) |
|
|
|
self.is_loaded = True |
|
|
|
def preprocess_images(self, imgs: List[PIL.Image.Image], pad_and_stack_tensors=True) -> torch.Tensor: |
|
img_mean = tuple(int(x * 255) for x in self.image_processor.image_mean) |
|
if self.pad_to_square: |
|
imgs = [expand2square(img, img_mean) for img in imgs] |
|
imgs = [self.image_processor(img, return_tensors="pt")['pixel_values'][0] for img in imgs] |
|
|
|
if pad_and_stack_tensors: |
|
imgs = pad_and_stack(imgs, pad_value=0.0) |
|
imgs = imgs.to(dtype=torch.float32, device=self.device) |
|
|
|
return imgs |
|
|
|
def feature_select(self, image_forward_outs): |
|
image_features = image_forward_outs.hidden_states[self.select_layer] |
|
|
|
return image_features |
|
|
|
def forward(self, images): |
|
if type(images) is list: |
|
image_features = [] |
|
for image in images: |
|
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), |
|
output_hidden_states=True) |
|
image_feature = self.feature_select(image_forward_out).to(image.dtype) |
|
image_features.append(image_feature) |
|
else: |
|
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), |
|
output_hidden_states=True) |
|
image_features = self.feature_select(image_forward_outs).to(images.dtype) |
|
|
|
return image_features |
|
|
|
@property |
|
def dummy_feature(self): |
|
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) |
|
|
|
@property |
|
def dtype(self): |
|
return self.vision_tower.dtype |
|
|
|
@property |
|
def device(self): |
|
return self.vision_tower.device |
|
|
|
@property |
|
def config(self): |
|
if self.is_loaded: |
|
return self.vision_tower.config |
|
else: |
|
return self.cfg_only |
|
|
|
@property |
|
def hidden_size(self): |
|
return self.config.hidden_size |
|
|
|
@property |
|
def num_patches(self): |
|
return (self.config.image_size // self.config.patch_size) ** 2 |
|
|
|
|
|
class SiglipVisionTowerS2(SiglipVisionTower): |
|
def __init__(self, pretrained_model_name_or_path, s2_scales, model_params={}, **kwargs): |
|
self.s2_scales = list(map(int, s2_scales.split(','))) |
|
self.s2_scales.sort() |
|
self.s2_split_size = self.s2_scales[0] |
|
self.s2_image_size = self.s2_scales[-1] |
|
|
|
super().__init__(pretrained_model_name_or_path, model_params) |
|
|
|
self.multiscale_forward = multiscale_forward |
|
|
|
self.image_processor.size['height'] = self.image_processor.size['width'] = self.s2_image_size |
|
self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size |
|
|
|
@property |
|
def output_dim(self): |
|
return (2*self.vision_tower.config.hidden_size) if self.vision_tower else None |
|
|
|
def load_model(self): |
|
if self.is_loaded: |
|
return |
|
|
|
super().load_model() |
|
self.image_processor.size['height'] = self.image_processor.size['width'] = self.s2_image_size |
|
self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size |
|
|
|
def forward_feature(self, images): |
|
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), |
|
output_hidden_states=True) |
|
image_features = self.feature_select(image_forward_outs).to(images.dtype) |
|
return image_features |
|
|
|
def forward(self, images): |
|
if type(images) is list: |
|
image_features = [] |
|
for image in images: |
|
image_feature = self.multiscale_forward( |
|
self.forward_feature, |
|
image.unsqueeze(0), |
|
img_sizes=self.s2_scales, |
|
max_split_size=self.s2_split_size |
|
) |
|
image_features.append(image_feature) |
|
else: |
|
image_features = self.multiscale_forward( |
|
self.forward_feature, |
|
images, |
|
img_sizes=self.s2_scales, |
|
max_split_size=self.s2_split_size |
|
) |
|
|
|
return image_features |
|
|
|
@property |
|
def hidden_size(self): |
|
return self.config.hidden_size * len(self.s2_scales) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torchvision import transforms |
|
|
|
from typing import List, Tuple, Optional, Union |
|
|
|
import PIL |
|
|
|
from transformers import AutoTokenizer, AutoConfig |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from .configuration_phi3 import Phi3Config |
|
from .modeling_phi3 import Phi3Model, Phi3ForCausalLM |
|
|
|
|
|
DEFAULT_CFG_SPECIAL_TOKENS = { |
|
"image_token_id": 200029, |
|
"image_start_token_id": 200030, |
|
"image_end_token_id": 200031, |
|
} |
|
DEFAULT_CFG_VISION_TOWER = { |
|
"pretrained_model_name_or_path": "kevin510/fast-vit-hd", |
|
"type": "fastvit", |
|
"s2_scales": "512,1024", |
|
"use_s2": True, |
|
"pad_to_square": True, |
|
"freeze": False, |
|
"model_params": { "trust_remote_code": True } |
|
} |
|
DEFAULT_CFG_VISION_ADAPTER = { |
|
"input_dim": 6144, |
|
"hidden_dim": 3072, |
|
"output_dim": 3072, |
|
"layers": 2, |
|
"activation": "gelu", |
|
"freeze": False, |
|
} |
|
|
|
|
|
class FridayConfig(Phi3Config): |
|
model_type = "friday" |
|
|
|
def __init__(self, |
|
base_model_name_or_path: str | None = "microsoft/Phi-4-mini-reasoning", |
|
delay_load=False, |
|
tokenizer_model_max_length=None, |
|
**kwargs |
|
): |
|
base_kwargs = {} |
|
if base_model_name_or_path is not None: |
|
base_cfg = Phi3Config.from_pretrained( |
|
base_model_name_or_path, |
|
trust_remote_code=True, |
|
) |
|
base_kwargs = base_cfg.to_dict() |
|
|
|
merged = {**base_kwargs, **kwargs} |
|
self.delay_load = delay_load |
|
self.tokenizer_model_max_length = tokenizer_model_max_length |
|
|
|
self._cfg_vision_tower = DEFAULT_CFG_VISION_TOWER.copy() |
|
if "cfg_vision_tower" in kwargs: |
|
self._cfg_vision_tower.update(kwargs["cfg_vision_tower"]) |
|
|
|
self._cfg_vision_adapter = DEFAULT_CFG_VISION_ADAPTER.copy() |
|
if "cfg_vision_adapter" in kwargs: |
|
self._cfg_vision_adapter.update(kwargs["cfg_vision_adapter"]) |
|
|
|
self._cfg_special_tokens = DEFAULT_CFG_SPECIAL_TOKENS.copy() |
|
if "cfg_special_tokens" in kwargs: |
|
self._cfg_special_tokens.update(kwargs["cfg_special_tokens"]) |
|
|
|
super().__init__(**merged) |
|
|
|
|
|
@property |
|
def cfg_vision_tower(self): |
|
return self._cfg_vision_tower |
|
|
|
@cfg_vision_tower.setter |
|
def cfg_vision_tower(self, value): |
|
if not value: |
|
raise ValueError("Name cannot be empty") |
|
self._cfg_vision_tower.update(value) |
|
|
|
|
|
@property |
|
def cfg_vision_adapter(self): |
|
return self._cfg_vision_adapter |
|
|
|
@cfg_vision_adapter.setter |
|
def cfg_vision_adapter(self, value): |
|
if not value: |
|
raise ValueError("Name cannot be empty") |
|
self._cfg_vision_adapter.update(value) |
|
|
|
@property |
|
def cfg_special_tokens(self): |
|
return self._cfg_special_tokens |
|
|
|
@cfg_special_tokens.setter |
|
def cfg_special_tokens(self, value): |
|
if not value: |
|
raise ValueError("Name cannot be empty") |
|
self._cfg_special_tokens.update(value) |
|
|
|
|
|
class FridayModel(Phi3Model): |
|
config_class = FridayConfig |
|
|
|
def __init__(self, config: FridayConfig): |
|
super().__init__(config) |
|
|
|
self.cfg_vision_adapter = config.cfg_vision_adapter |
|
self.cfg_vision_tower = config.cfg_vision_tower |
|
|
|
self.vision_tower = None |
|
self.mm_projector = None |
|
if not config.delay_load: |
|
self.initialize_vision_modules() |
|
|
|
def get_vision_tower(self): |
|
return self.vision_tower |
|
|
|
def initialize_vision_modules(self): |
|
if self.vision_tower is not None: |
|
return |
|
|
|
if self.cfg_vision_tower.get("type", "siglip").lower() == "siglip": |
|
if self.cfg_vision_tower.get("use_s2", True): |
|
self.vision_tower = SiglipVisionTowerS2(**self.cfg_vision_tower) |
|
else: |
|
self.vision_tower = SiglipVisionTower(**self.cfg_vision_tower) |
|
elif self.cfg_vision_tower.get("type", "siglip").lower() == "fastvit": |
|
if self.cfg_vision_tower.get("use_s2", True): |
|
self.vision_tower = FastVitVisionTowerS2(**self.cfg_vision_tower) |
|
else: |
|
self.vision_tower = FastVitVisionTower(**self.cfg_vision_tower) |
|
else: |
|
raise ValueError(f"Unsupported vision tower type: {self.cfg_vision_tower.get('type', 'siglip')}. Supported types are 'siglip' and 'fastvit'.") |
|
|
|
self.vision_tower.load_model() |
|
self.mm_projector = MLPAdapter(**self.cfg_vision_adapter) |
|
|
|
if self.cfg_vision_tower.get("freeze", False): |
|
self.set_vision_tower_requires_grad(False) |
|
|
|
if self.cfg_vision_adapter.get("freeze", False): |
|
self.set_vision_adapter_requires_grad(False) |
|
|
|
def compute_image_features(self, imgs: torch.Tensor) -> torch.Tensor: |
|
features = self.vision_tower(imgs) |
|
if isinstance(features, list): |
|
features = torch.stack(features, dim=1) |
|
return self.mm_projector(features) |
|
|
|
def set_vision_tower_requires_grad(self, requires_grad: bool): |
|
if self.vision_tower is not None: |
|
for param in self.vision_tower.parameters(): |
|
param.requires_grad = requires_grad |
|
else: |
|
raise ValueError("Vision tower is not initialized. Please call initialize_vision_modules() first.") |
|
|
|
def set_vision_adapter_requires_grad(self, requires_grad: bool): |
|
if self.mm_projector is not None: |
|
for param in self.mm_projector.parameters(): |
|
param.requires_grad = requires_grad |
|
else: |
|
raise ValueError("Vision adapter is not initialized. Please call initialize_vision_modules() first.") |
|
|
|
def set_vision_tower_dtype(self, dtype: torch.dtype): |
|
if self.vision_tower is not None: |
|
for p in self.vision_tower.parameters(): |
|
p.data = p.data.to(dtype) |
|
else: |
|
raise ValueError("Vision tower is not initialized. Please call initialize_vision_modules() first.") |
|
|
|
def set_vision_adapter_dtype(self, dtype: torch.dtype): |
|
if self.mm_projector is not None: |
|
for p in self.mm_projector.parameters(): |
|
p.data = p.data.to(dtype) |
|
else: |
|
raise ValueError("Vision adapter is not initialized. Please call initialize_vision_modules() first.") |
|
|
|
def is_vision_tower_frozen(self): |
|
if self.vision_tower is not None: |
|
return all(not p.requires_grad for p in self.vision_tower.parameters()) |
|
else: |
|
raise ValueError("Vision tower is not initialized. Please call initialize_vision_modules() first.") |
|
|
|
def is_vision_adapter_frozen(self): |
|
if self.mm_projector is not None: |
|
return all(not p.requires_grad for p in self.mm_projector.parameters()) |
|
else: |
|
raise ValueError("Vision adapter is not initialized. Please call initialize_vision_modules() first.") |
|
|
|
|
|
class FridayForCausalLM(Phi3ForCausalLM): |
|
config_class = FridayConfig |
|
|
|
def __init__(self, config: FridayConfig): |
|
super().__init__(config) |
|
|
|
self.config = config |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.image_token_id = config.cfg_special_tokens["image_token_id"] |
|
self.image_start_id = config.cfg_special_tokens["image_start_token_id"] |
|
self.image_end_id = config.cfg_special_tokens["image_end_token_id"] |
|
|
|
self.model = FridayModel(config) |
|
self.post_init() |
|
|
|
def get_model(self) -> FridayModel: |
|
return self.model |
|
|
|
def get_vision_tower(self) -> SiglipVisionTower: |
|
return self.model.get_vision_tower() |
|
|
|
def get_vision_adapter(self) -> MLPAdapter: |
|
return self.model.mm_projector |
|
|
|
def get_llm_parameters(self, exclude_lora: bool = False): |
|
return [ |
|
p for n, p in self.named_parameters() |
|
if "vision_tower" not in n and "mm_projector" not in n and (not exclude_lora or ("lora_" not in n)) |
|
] |
|
|
|
def get_llm_named_modules(self): |
|
return {n: m for n, m in self.named_modules() if "vision_tower" not in n and "mm_projector" not in n} |
|
|
|
def set_llm_requires_grad(self, requires_grad: bool, exclude_lora: bool = True): |
|
for n, p in self.named_parameters(): |
|
if exclude_lora and ("lora_A" in n or "lora_B" in n): |
|
continue |
|
if "vision_tower" in n or "mm_projector" in n: |
|
continue |
|
p.requires_grad = requires_grad |
|
|
|
def set_vision_tower_requires_grad(self, requires_grad: bool): |
|
self.model.set_vision_tower_requires_grad(requires_grad) |
|
|
|
def set_vision_adapter_requires_grad(self, requires_grad: bool): |
|
self.model.set_vision_adapter_requires_grad(requires_grad) |
|
|
|
def set_llm_dtype(self, dtype: torch.dtype): |
|
for p in self.get_llm_parameters(): |
|
p.data = p.data.to(dtype) |
|
|
|
def set_vision_tower_dtype(self, dtype: torch.dtype): |
|
self.model.set_vision_tower_dtype(dtype) |
|
|
|
def set_vision_adapter_dtype(self, dtype: torch.dtype): |
|
self.model.set_vision_adapter_dtype(dtype) |
|
|
|
def is_llm_frozen(self): |
|
return all(not p.requires_grad for p in self.get_llm_parameters()) |
|
|
|
def is_vision_tower_frozen(self): |
|
return self.model.is_vision_tower_frozen() |
|
|
|
def is_vision_adapter_frozen(self): |
|
return self.model.is_vision_adapter_frozen() |
|
|
|
|
|
|
|
def initialize_vision_modules(self): |
|
self.model.initialize_vision_modules() |
|
|
|
def get_multimodal_input_embeddings(self, input_ids, image_features, return_labels=True) -> torch.Tensor: |
|
emb_start_image_id = self.model.embed_tokens(torch.tensor([self.image_start_id], device=self.device)) |
|
emb_end_image_id = self.model.embed_tokens(torch.tensor([self.image_end_id], device=self.device)) |
|
id_ignore = torch.tensor([IGNORE_INDEX], device=self.device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
embeds_list, labels_list = [], [] |
|
for batch_id, item_ids in enumerate(input_ids): |
|
|
|
image_token_positions = (item_ids == self.image_token_id).nonzero(as_tuple=True)[0] |
|
if len(image_token_positions) != image_features[batch_id].shape[0]: |
|
raise ValueError( |
|
f"Mismatch between number of image tokens ({len(image_token_positions)}) and number of image features ({image_features[batch_id].shape[0]})" |
|
) |
|
|
|
|
|
cursor = 0 |
|
emb_parts, lbl_parts = [], [] |
|
for indx_image, image_token_pos in enumerate(image_token_positions): |
|
if image_token_pos > cursor: |
|
span = item_ids[cursor:image_token_pos] |
|
emb_parts.append(self.model.embed_tokens(span)) |
|
lbl_parts.append(span) |
|
|
|
|
|
emb_parts.append(emb_start_image_id) |
|
lbl_parts.append(id_ignore) |
|
|
|
|
|
image_tokens = image_features[batch_id][indx_image] |
|
if image_tokens.shape[0] == 1 and image_tokens.ndim == 3: |
|
image_tokens = image_tokens.squeeze(0) |
|
emb_parts.append(image_tokens) |
|
lbl_parts.append(id_ignore.repeat(image_tokens.shape[0])) |
|
|
|
|
|
emb_parts.append(emb_end_image_id) |
|
lbl_parts.append(id_ignore) |
|
|
|
cursor = image_token_pos + 1 |
|
|
|
|
|
if cursor < item_ids.shape[0]: |
|
tail = item_ids[cursor:] |
|
emb_parts.append(self.model.embed_tokens(tail)) |
|
lbl_parts.append(tail) |
|
|
|
embeds_list.append(torch.cat(emb_parts, dim=0)) |
|
labels_list.append(torch.cat(lbl_parts, dim=0)) |
|
|
|
return (embeds_list, labels_list) if return_labels else embeds_list |
|
|
|
def prepare_inputs_for_multimodal( |
|
self, |
|
input_ids: torch.LongTensor, |
|
images: List[List[PIL.Image.Image]], |
|
position_ids: Optional[torch.LongTensor], |
|
attention_mask: Optional[torch.Tensor], |
|
past_key_values: Optional[List[torch.FloatTensor]], |
|
labels: Optional[torch.LongTensor], |
|
) -> Tuple[Optional[torch.Tensor], Optional[torch.LongTensor], Optional[torch.Tensor], Optional[List[torch.FloatTensor]], torch.Tensor, Optional[torch.Tensor]]: |
|
|
|
|
|
|
|
|
|
|
|
if past_key_values is not None and attention_mask is not None and input_ids.shape[1] == 1: |
|
tgt = past_key_values[-1][-1].shape[-2] + 1 |
|
attention_mask = torch.cat( |
|
[attention_mask, |
|
torch.ones((attention_mask.size(0), |
|
tgt - attention_mask.size(1)), |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device)], |
|
dim=1, |
|
) |
|
position_ids = (attention_mask.sum(dim=1, keepdim=True) - 1).long() |
|
|
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels |
|
|
|
|
|
if isinstance(images, list) and isinstance(images[0], list): |
|
|
|
|
|
assert len(images) == input_ids.shape[0], f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}" |
|
image_features = [] |
|
for sublst_images in images: |
|
if len(sublst_images) == 0: |
|
image_features.append(torch.zeros((0, self.get_model().mm_projector.output_dim), device=self.device)) |
|
else: |
|
if isinstance(sublst_images[0], PIL.Image.Image): |
|
image_features.append( |
|
self.model.compute_image_features( |
|
self.model.vision_tower.preprocess_images(sublst_images, pad_and_stack_tensors=True) |
|
) |
|
) |
|
elif isinstance(sublst_images[0], torch.Tensor): |
|
|
|
image_features.append( |
|
self.model.compute_image_features(sublst_images) |
|
) |
|
elif isinstance(images, list) and isinstance(images[0], PIL.Image.Image): |
|
|
|
|
|
assert input_ids.shape[0] == 1, f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}" |
|
image_features = [ |
|
self.model.compute_image_features( |
|
self.model.vision_tower.preprocess_images(images, pad_and_stack_tensors=True) |
|
) |
|
] |
|
elif isinstance(images, list) and isinstance(images[0], torch.Tensor): |
|
|
|
|
|
assert input_ids.shape[0] == len(images), f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}" |
|
image_features = [ |
|
self.model.compute_image_features(imgs) for imgs in images |
|
] |
|
elif isinstance(images, PIL.Image.Image): |
|
|
|
|
|
assert input_ids.shape[0] == 1, f"Batch size mismatch: {len(images)} vs {input_ids.shape[0]}" |
|
image_features = [ |
|
self.model.compute_image_features( |
|
self.model.vision_tower.preprocess_images([images]) |
|
) |
|
] |
|
else: |
|
raise ValueError(f"Unsupported images format: {type(images)}. Expected list of PIL images, a single PIL image or a Tensor of pre-processed images") |
|
|
|
|
|
if isinstance(image_features, list): |
|
assert input_ids.shape[0] == len(image_features), f"Incorrectly formatted image_features: list length should match batch size" |
|
assert isinstance(image_features[0], torch.Tensor), f"Incorrectly formatted image_features: list items should be tensors" |
|
elif isinstance(image_features, torch.Tensor): |
|
assert input_ids.shape[0] == image_features.shape[0], f"Incorrectly formatted image_features: tensor should match batch size" |
|
|
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
else: |
|
attention_mask = attention_mask.bool() |
|
if position_ids is None: |
|
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) |
|
|
|
input_ids_nopad = [ids[mask] for ids, mask in zip(input_ids, attention_mask)] |
|
embeds_list, labels_list = self.get_multimodal_input_embeddings( |
|
input_ids_nopad, |
|
image_features, |
|
return_labels=True |
|
) |
|
|
|
|
|
new_input_embeds = torch.nn.utils.rnn.pad_sequence( |
|
embeds_list, |
|
batch_first=True, |
|
padding_value=0.0 |
|
).to(dtype=self.dtype) |
|
|
|
new_labels = torch.nn.utils.rnn.pad_sequence( |
|
labels_list, |
|
batch_first=True, |
|
padding_value=IGNORE_INDEX |
|
).long() |
|
|
|
if self.config.tokenizer_model_max_length is not None: |
|
new_input_embeds = new_input_embeds[:, :self.config.tokenizer_model_max_length] |
|
new_labels = new_labels[:, :self.config.tokenizer_model_max_length] |
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = ( |
|
torch.arange(new_input_embeds.size(1), device=input_ids.device) |
|
.unsqueeze(0) |
|
< torch.tensor([e.size(0) for e in embeds_list], |
|
device=input_ids.device).unsqueeze(1) |
|
) |
|
|
|
raw_pos = attention_mask.cumsum(dim=1) - 1 |
|
position_ids = raw_pos.masked_fill(~attention_mask, 0).long() |
|
|
|
if not self.training: |
|
new_labels = None |
|
|
|
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
|
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
images: Optional[PIL.Image.Image] = None, |
|
**kwargs: Unpack[KwargsForCausalLM], |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
is_multi_modal = images is not None and not ( |
|
( |
|
isinstance(images, list) and (len(images) == 0 or all(i == [] for i in images)) |
|
) |
|
) |
|
|
|
|
|
if inputs_embeds is None and is_multi_modal: |
|
( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
labels |
|
) = self.prepare_inputs_for_multimodal( |
|
input_ids=input_ids, |
|
images=images, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
labels=labels, |
|
) |
|
|
|
if cache_position is not None and inputs_embeds is not None and cache_position.shape[0] != inputs_embeds.shape[1]: |
|
cache_position = torch.arange(inputs_embeds.shape[1], device=self.device) |
|
|
|
|
|
return Phi3ForCausalLM.forward( |
|
self, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
logits_to_keep=logits_to_keep, |
|
**kwargs |
|
) |
|
|
|
def print_device_configuration(self): |
|
print("*************Device Configuration*********") |
|
if len(self.get_llm_parameters()) > 0: |
|
llm_device = set({str(p.device) for p in self.get_llm_parameters()}) |
|
llm_dtype = set({p.dtype for p in self.get_llm_parameters()}) |
|
print(f"LLM Parameters:\t\t\tdevice: {llm_device}\tdtype: {llm_dtype}\tfrozen: {self.is_llm_frozen()}") |
|
else: |
|
print("LLM parameters have not been initialized") |
|
|
|
if self.get_model().vision_tower is not None: |
|
vt_device = set({str(p.device) for p in self.get_model().vision_tower.parameters()}) |
|
vt_dtype = set({p.dtype for p in self.get_model().vision_tower.parameters()}) |
|
print(f"Vision Tower Parameters:\tdevice: {vt_device}\tdtype: {vt_dtype}\tfrozen: {self.is_vision_tower_frozen()}") |
|
else: |
|
print("Vision tower parameters have not been initialized") |
|
|
|
if self.get_model().mm_projector is not None: |
|
mm_device = set({str(p.device) for p in self.get_model().mm_projector.parameters()}) |
|
mm_dtype = set({p.dtype for p in self.get_model().mm_projector.parameters()}) |
|
print(f"MM Projector Parameters:\tdevice: {mm_device}\tdtype: {mm_dtype}\tfrozen: {self.is_vision_adapter_frozen()}") |
|
else: |
|
print("MM Projector parameters have not been initialized") |
|
print("******************************************") |
|
|
|
|
|
|
|
def build_tokenizer(base_model_id: str) -> Tuple[AutoTokenizer, dict]: |
|
tok = AutoTokenizer.from_pretrained(base_model_id, padding_side="right") |
|
specials = {t: tok.convert_tokens_to_ids(t) for t in [IMAGE_TOKEN, IMG_START_TOKEN, IMG_END_TOKEN] if t in tok.vocab} |
|
if len(specials) < 3: |
|
n = tok.add_tokens([IMAGE_TOKEN, IMG_START_TOKEN, IMG_END_TOKEN], special_tokens=True) |
|
tok.pad_token = tok.eos_token |
|
specials = { |
|
"image": tok.convert_tokens_to_ids(IMAGE_TOKEN), |
|
"start": tok.convert_tokens_to_ids(IMG_START_TOKEN), |
|
"end": tok.convert_tokens_to_ids(IMG_END_TOKEN), |
|
} |
|
return tok, specials |
|
|
|
|