Vyakyarth / README.md
Pushkar-singh-olakrutrim's picture
Update README.md
34147fd verified
---
tags:
- sentence-transformers
- embeddings
- multilingual
- NLP
- Indic-languages
- semantic-search
- similarity
library_name: sentence-transformers
license: other
license_name: krutrim-community-license-agreement-version-1.0
license_link: LICENSE.md
---
# Vyakyarth: A Multilingual Sentence Embedding Model for Indic Languages
[![Static Badge](https://img.shields.io/badge/Huggingface-Vyakyarth-yellow?logo=huggingface)](https://huggingface.co/krutrim-ai-labs/vyakyarth) [![Static Badge](https://img.shields.io/badge/Github-Vyakyarth-green?logo=github)](https://github.com/ola-krutrim/Vyakyarth) [![Static Badge](https://img.shields.io/badge/Krutrim_Cloud-Vyakyarth-orange?logo=)](https://cloud.olakrutrim.com/console/inference-service?section=models&modelName=Krutrim&artifactName=Vyakyarth&artifactType=model) [![Static Badge](https://img.shields.io/badge/Krutrim_AI_Labs-Vyakyarth-blue?logo=)](https://ai-labs.olakrutrim.com/models/Vyakyarth-1-Indic-Embedding)
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-xlm-r-multilingual](https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
[![Vyakyarth](https://img.youtube.com/vi/N1f8IlZCUi4/0.jpg)](https://www.youtube.com/watch?v=N1f8IlZCUi4)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
# Download from the 🤗 Hub
model = SentenceTransformer("krutrim-ai-labs/vyakyarth")
# Run inference
sentences = ["मैं अपने दोस्त से मिला", "I met my friend", "I love you"
]
embeddings = np.array(model.encode(sentences))
print(cosine_similarity([embeddings[0]], [embeddings[1]])[0][0])
# Score : 0.9861017
print(cosine_similarity([embeddings[0]], [embeddings[2]])[0][0])
# Score 0.26329127
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
### Evaluation/Benchmarking
### Dataset Name : Flores Cross Lingual Sentence Retrieval Task of IndicXtreme Benchmark
| **Language** | **MuRIL** | **IndicBERT** | **Vyakyarth** | **jina-embeddings-v3** |
|--------------|------|----------|----------|----------------|
| **Bengali** | 77.0 | 91.0 | **98.7** | 97.4 |
| **Gujarati** | 67.0 | 92.4 | **98.7** | 97.3 |
| **Hindi** | 84.2 | 90.5 | **99.9** | 98.8 |
| **Kannada** | 88.4 | 89.1 | **99.2** | 96.8 |
| **Malayalam**| 82.2 | 89.2 | **98.7** | 96.3 |
| **Marathi** | 83.9 | 92.5 | **98.8** | 97.1 |
| **Sanskrit** | 36.4 | 30.4 | **90.1** | 84.1 |
| **Tamil** | 79.4 | 90.0 | **97.9** | 95.8 |
| **Telugu** | 43.5 | 88.6 | **97.5** | 97.3 |
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## License
This code repository and the model weights are licensed under the [Krutrim Community License.](LICENSE.md)
## 7. Citation
```
@inproceedings{
author={Pushkar Singh, Sandeep Kumar Pandey, Rajkiran Panuganti},
title={Vyakyarth: A Multilingual Sentence Embedding Model for Indic Languages},
year = {2024},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/ola-krutrim/Vyakyarth}}
}
```
## Contact
Contributions are welcome! If you have any improvements or suggestions, feel free to submit a pull request on GitHub.