fineweb-mixtral-edu-score
This model is a fine-tuned version of intfloat/multilingual-e5-base on an transferred from English dataset. It achieves the following results on the evaluation set:
- Loss: 0.0636
- Precision: 0.9335
- Recall: 0.9445
- F1 Macro: 0.9386
- Accuracy: 0.9446
Model description
This model measure educational value of the given text for humans, as labelled by Mixtral model.
Intended uses & limitations
Data filtering and evaluation of pretraining data at scale.
Training and evaluation data
Take a look at https://github.com/lapa-llm/lapa-llm/blob/main/pretraining/quality-classifiers/fineweb_hf.py
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 128
- seed: 0
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 256
- total_eval_batch_size: 1024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.2341 | 0.4596 | 0.4913 | 0.4228 | 0.6411 |
| 0.0758 | 0.7968 | 200 | 0.0720 | 0.9193 | 0.9190 | 0.9191 | 0.9280 |
| 0.0682 | 1.5936 | 400 | 0.0664 | 0.9296 | 0.9352 | 0.9323 | 0.9393 |
| 0.0657 | 2.3904 | 600 | 0.0644 | 0.9323 | 0.9437 | 0.9375 | 0.9436 |
| 0.0648 | 3.1873 | 800 | 0.0642 | 0.6204 | 0.6303 | 0.6248 | 0.9431 |
| 0.064 | 3.9841 | 1000 | 0.0636 | 0.9335 | 0.9445 | 0.9386 | 0.9446 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.6.0a0+ecf3bae40a.nv25.01
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 20
Model tree for lapa-llm/fineweb-mixtral-edu-score
Base model
intfloat/multilingual-e5-base