fineweb-mixtral-edu-score

This model is a fine-tuned version of intfloat/multilingual-e5-base on an transferred from English dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0636
  • Precision: 0.9335
  • Recall: 0.9445
  • F1 Macro: 0.9386
  • Accuracy: 0.9446

Model description

This model measure educational value of the given text for humans, as labelled by Mixtral model.

Intended uses & limitations

Data filtering and evaluation of pretraining data at scale.

Training and evaluation data

Take a look at https://github.com/lapa-llm/lapa-llm/blob/main/pretraining/quality-classifiers/fineweb_hf.py

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 0
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 256
  • total_eval_batch_size: 1024
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Macro Accuracy
No log 0 0 0.2341 0.4596 0.4913 0.4228 0.6411
0.0758 0.7968 200 0.0720 0.9193 0.9190 0.9191 0.9280
0.0682 1.5936 400 0.0664 0.9296 0.9352 0.9323 0.9393
0.0657 2.3904 600 0.0644 0.9323 0.9437 0.9375 0.9436
0.0648 3.1873 800 0.0642 0.6204 0.6303 0.6248 0.9431
0.064 3.9841 1000 0.0636 0.9335 0.9445 0.9386 0.9446

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.6.0a0+ecf3bae40a.nv25.01
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
20
Safetensors
Model size
0.3B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for lapa-llm/fineweb-mixtral-edu-score

Finetuned
(101)
this model

Space using lapa-llm/fineweb-mixtral-edu-score 1