segformer-b4-wall

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1537
  • Mean Accuracy: 0.9448
  • Mean Iou: 0.8993
  • Overall Accuracy: 0.9558
  • Per Category Accuracy: [0.9648476610683054, 0.9680509025433003, 0.9015647356112896, nan]
  • Per Category Iou: [0.9294668192886654, 0.9344825387850888, 0.8340281823830938, nan]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Accuracy Mean Iou Overall Accuracy Per Category Accuracy Per Category Iou
0.1398 5.3476 1000 0.1477 0.9424 0.8733 0.9420 [0.9375947027923643, 0.962438818648652, 0.9270677962243152, nan] [0.9071928258269675, 0.9154732958813474, 0.7971633247503161, nan]
0.1114 10.6952 2000 0.1329 0.9426 0.8878 0.9498 [0.9551513266050631, 0.9606741248023447, 0.9120448217426163, nan] [0.9197608920879746, 0.9255854097692368, 0.818153830444766, nan]
0.0683 16.0428 3000 0.1353 0.9473 0.8921 0.9516 [0.9527839457434386, 0.9691455504455139, 0.9198476394516605, nan] [0.922537499674425, 0.926305870761282, 0.8273726843249476, nan]
0.0753 21.3904 4000 0.1311 0.9437 0.8959 0.9540 [0.9633835386385788, 0.9611760655179852, 0.9066569940696604, nan] [0.9267602358926313, 0.9312805978213234, 0.8297698871401628, nan]
0.0505 26.7380 5000 0.1397 0.9442 0.8971 0.9545 [0.9627544499461427, 0.967327419780526, 0.9024453947068249, nan] [0.9272910775593762, 0.9304849186604474, 0.8333807013974415, nan]
0.0427 32.0856 6000 0.1414 0.9455 0.8992 0.9555 [0.9640187847053339, 0.9652081246861538, 0.9074073950598316, nan] [0.9289147168722637, 0.9321577805497577, 0.8366507705917902, nan]
0.0556 37.4332 7000 0.1477 0.9452 0.8984 0.9552 [0.9629165900233977, 0.9697602413261539, 0.9029026554269718, nan] [0.9285106797857617, 0.9331322728249959, 0.833620894806762, nan]
0.0424 42.7807 8000 0.1484 0.9439 0.8990 0.9557 [0.9653151526182964, 0.96949089540134, 0.8967977175922358, nan] [0.9292691886525306, 0.9343666443212755, 0.83323737535253, nan]
0.053 48.1283 9000 0.1537 0.9448 0.8993 0.9558 [0.9648476610683054, 0.9680509025433003, 0.9015647356112896, nan] [0.9294668192886654, 0.9344825387850888, 0.8340281823830938, nan]

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.19.1
Downloads last month
24
Safetensors
Model size
3.72M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support