Synthstroke
Collection
8 items
•
Updated
Synthseg-style model trained on synthetic data derived from OASIS3 tissue maps and ATLAS binary lesion masks. Augmented with pseudo-labels from a private T1w dataset.
import torch
from synthstroke_model import SynthStrokeModel
# Load the model from Hugging Face Hub
model = SynthStrokeModel.from_pretrained("liamchalcroft/synthstroke-synth-pseudo")
# Prepare your input (example shape: batch_size=1, channels=1, H, W, D)
input_tensor = torch.randn(1, 1, 192, 192, 192)
# Get predictions (with optional TTA for improved accuracy)
predictions = model.predict_segmentation(input_tensor, use_tta=True)
# Get tissue probability maps
background = predictions[:, 0] # Background
gray_matter = predictions[:, 1] # Gray Matter
white_matter = predictions[:, 2] # White Matter
partial_volume = predictions[:, 3] # Gray/White Matter PV
csf = predictions[:, 4] # Cerebro-Spinal Fluid
stroke = predictions[:, 5] # Stroke lesion
# Alternative: Get logits without TTA
logits = model.predict_segmentation(input_tensor, apply_softmax=False)
Machine Learning for Biomedical Imaging
@article{chalcroft2025synthetic,
title={Synthetic Data for Robust Stroke Segmentation},
author={Chalcroft, Liam and Pappas, Ioannis and Price, Cathy J. and Ashburner, John},
journal={Machine Learning for Biomedical Imaging},
volume={3},
pages={317--346},
year={2025},
publisher={Machine Learning for Biomedical Imaging},
doi={10.59275/j.melba.2025-f3g6},
url={https://www.melba-journal.org/papers/2025:014.html}
}
For the original arXiv preprint:
@article{Chalcroft_2025,
title={Synthetic Data for Robust Stroke Segmentation},
volume={3},
ISSN={2766-905X},
url={http://dx.doi.org/10.59275/j.melba.2025-f3g6},
DOI={10.59275/j.melba.2025-f3g6},
number={August 2025},
journal={Machine Learning for Biomedical Imaging},
publisher={Machine Learning for Biomedical Imaging},
author={Chalcroft, Liam and Pappas, Ioannis and Price, Cathy J. and Ashburner, John},
year={2025},
month=aug, pages={317–346}
}
MIT License - see the LICENSE file for details.