metadata
license: mit
language:
- en
- ko
tags:
- KT
- K-intelligence
- Mi:dm
- mlx
inference: true
pipeline_tag: text-generation
library_name: mlx
base_model: K-intelligence/Midm-2.0-Base-Instruct
litmudoc/Midm-2.0-Base-Instruct-MLX-Q8
This model litmudoc/Midm-2.0-Base-Instruct-MLX-Q8 was converted to MLX format from K-intelligence/Midm-2.0-Base-Instruct using mlx-lm version 0.25.3.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("litmudoc/Midm-2.0-Base-Instruct-MLX-Q8")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)