|
import math |
|
import os |
|
from dataclasses import dataclass |
|
from pathlib import Path |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers import PreTrainedModel |
|
|
|
from .configuration_nanogpt import NanoGPTConfig |
|
|
|
|
|
def _rms_norm(x: torch.Tensor) -> torch.Tensor: |
|
return F.rms_norm(x, (x.size(-1),)) |
|
|
|
|
|
def _apply_rotary_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor: |
|
assert x.ndim == 4 |
|
d = x.shape[3] // 2 |
|
x1, x2 = x[..., :d], x[..., d:] |
|
y1 = x1 * cos + x2 * sin |
|
y2 = x1 * (-sin) + x2 * cos |
|
out = torch.cat([y1, y2], 3) |
|
return out.to(x.dtype) |
|
|
|
|
|
def _repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
if n_rep == 1: |
|
return x |
|
bs, n_kv_heads, slen, head_dim = x.shape |
|
return ( |
|
x[:, :, None, :, :] |
|
.expand(bs, n_kv_heads, n_rep, slen, head_dim) |
|
.reshape(bs, n_kv_heads * n_rep, slen, head_dim) |
|
) |
|
|
|
|
|
class CausalSelfAttention(nn.Module): |
|
def __init__(self, config: NanoGPTConfig, layer_idx: int): |
|
super().__init__() |
|
self.layer_idx = layer_idx |
|
self.n_head = config.n_head |
|
self.n_kv_head = config.n_kv_head |
|
self.n_embd = config.n_embd |
|
self.head_dim = self.n_embd // self.n_head |
|
assert self.n_embd % self.n_head == 0 |
|
assert self.n_kv_head <= self.n_head and self.n_head % self.n_kv_head == 0 |
|
self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False) |
|
self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False) |
|
self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False) |
|
self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False) |
|
|
|
def forward(self, x: torch.Tensor, cos_sin, kv_cache=None) -> torch.Tensor: |
|
B, T, C = x.size() |
|
q = self.c_q(x).view(B, T, self.n_head, self.head_dim) |
|
k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim) |
|
v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim) |
|
cos, sin = cos_sin |
|
q, k = _apply_rotary_emb(q, cos, sin), _apply_rotary_emb(k, cos, sin) |
|
q, k = _rms_norm(q), _rms_norm(k) |
|
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) |
|
Tq = q.size(2) |
|
Tk = k.size(2) |
|
nrep = self.n_head // self.n_kv_head |
|
k, v = _repeat_kv(k, nrep), _repeat_kv(v, nrep) |
|
if Tq == Tk: |
|
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) |
|
elif Tq == 1: |
|
y = F.scaled_dot_product_attention(q, k, v, is_causal=False) |
|
else: |
|
attn_mask = torch.zeros((Tq, Tk), dtype=torch.bool, device=q.device) |
|
prefix_len = Tk - Tq |
|
if prefix_len > 0: |
|
attn_mask[:, :prefix_len] = True |
|
attn_mask[:, prefix_len:] = torch.tril(torch.ones((Tq, Tq), dtype=torch.bool, device=q.device)) |
|
y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) |
|
y = y.transpose(1, 2).contiguous().view(B, T, -1) |
|
y = self.c_proj(y) |
|
return y |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, config: NanoGPTConfig): |
|
super().__init__() |
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False) |
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.c_fc(x) |
|
x = F.relu(x).square() |
|
x = self.c_proj(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, config: NanoGPTConfig, layer_idx: int): |
|
super().__init__() |
|
self.attn = CausalSelfAttention(config, layer_idx) |
|
self.mlp = MLP(config) |
|
|
|
def forward(self, x: torch.Tensor, cos_sin, kv_cache=None) -> torch.Tensor: |
|
x = x + self.attn(_rms_norm(x), cos_sin, kv_cache) |
|
x = x + self.mlp(_rms_norm(x)) |
|
return x |
|
|
|
|
|
class NanoGPTModel(PreTrainedModel): |
|
config_class = NanoGPTConfig |
|
|
|
def __init__(self, config: NanoGPTConfig): |
|
super().__init__(config) |
|
self.transformer = nn.ModuleDict({ |
|
"wte": nn.Embedding(config.vocab_size, config.n_embd), |
|
"h": nn.ModuleList([Block(config, layer_idx) for layer_idx in range(config.n_layer)]), |
|
}) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
self.rotary_seq_len = config.sequence_len * 10 |
|
head_dim = config.n_embd // config.n_head |
|
cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim) |
|
self.register_buffer("cos", cos, persistent=False) |
|
self.register_buffer("sin", sin, persistent=False) |
|
|
|
self.transformer.wte.to(dtype=torch.bfloat16) |
|
|
|
|
|
self.post_init() |
|
|
|
def _init_weights(self, module: nn.Module): |
|
if isinstance(module, nn.Linear): |
|
fan_out = module.weight.size(0) |
|
fan_in = module.weight.size(1) |
|
std = 1.0 / math.sqrt(fan_in) * min(1.0, math.sqrt(fan_out / fan_in)) |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=std) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=1.0) |
|
|
|
def _precompute_rotary_embeddings(self, seq_len: int, head_dim: int, base: int = 10000, device=None): |
|
if device is None: |
|
device = self.transformer.wte.weight.device |
|
|
|
if device.type == 'meta': |
|
device = torch.device('cpu') |
|
channel_range = torch.arange(0, head_dim, 2, dtype=torch.float32, device=device) |
|
inv_freq = 1.0 / (base ** (channel_range / head_dim)) |
|
t = torch.arange(seq_len, dtype=torch.float32, device=device) |
|
freqs = torch.outer(t, inv_freq) |
|
cos, sin = freqs.cos(), freqs.sin() |
|
cos, sin = cos.bfloat16(), sin.bfloat16() |
|
cos, sin = cos[None, :, None, :], sin[None, :, None, :] |
|
return cos, sin |
|
|
|
def forward(self, input_ids: torch.Tensor, labels=None, **kwargs): |
|
idx = input_ids |
|
B, T = idx.size() |
|
T0 = 0 |
|
cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T] |
|
x = self.transformer.wte(idx) |
|
x = x.float() |
|
x = _rms_norm(x) |
|
for block in self.transformer.h: |
|
x = block(x, cos_sin, None) |
|
x = _rms_norm(x) |
|
|
|
softcap = 15 |
|
logits = self.lm_head(x) |
|
logits = softcap * torch.tanh(logits / softcap) |
|
loss = None |
|
if labels is not None: |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1, reduction='mean') |
|
return {"loss": loss, "logits": logits} |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): |
|
config = kwargs.pop("config", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
device_map = kwargs.get("device_map") |
|
if device_map is not None: |
|
|
|
if subfolder is not None: |
|
kwargs["subfolder"] = subfolder |
|
if config is not None: |
|
kwargs["config"] = config |
|
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) |
|
|
|
base_path = Path(pretrained_model_name_or_path) |
|
if subfolder: |
|
base_path = base_path / subfolder |
|
|
|
weight_path = None |
|
if base_path.is_dir(): |
|
candidate_files = [ |
|
base_path / "pytorch_model.bin", |
|
base_path / "model.bin", |
|
] |
|
candidate_files.extend(sorted(base_path.glob("model_*.pt"), reverse=True)) |
|
candidate_files.extend(sorted(base_path.glob("*.bin"), reverse=True)) |
|
for cand in candidate_files: |
|
if cand.is_file(): |
|
weight_path = cand |
|
break |
|
|
|
if weight_path is None: |
|
|
|
if subfolder is not None: |
|
kwargs["subfolder"] = subfolder |
|
if config is not None: |
|
kwargs["config"] = config |
|
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) |
|
|
|
if config is None: |
|
config = NanoGPTConfig.from_pretrained(pretrained_model_name_or_path, subfolder=subfolder) |
|
|
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
strict = kwargs.pop("strict", True) |
|
|
|
state_dict = torch.load(str(weight_path), map_location="cpu") |
|
if isinstance(state_dict, dict) and "state_dict" in state_dict: |
|
state_dict = state_dict["state_dict"] |
|
state_dict = {k.lstrip("_orig_mod."): v for k, v in state_dict.items()} |
|
|
|
model = cls(config, *model_args) |
|
model.load_state_dict(state_dict, strict=strict) |
|
if torch_dtype is not None: |
|
model = model.to(dtype=torch_dtype) |
|
model.eval() |
|
return model |
|
|
|
|
|
|
|
|