|
--- |
|
language: |
|
- 'no' |
|
- nb |
|
- nn |
|
- se |
|
inference: false |
|
tags: |
|
- BERT |
|
- GPT-BERT |
|
- NorBERT |
|
- Norwegian |
|
- encoder |
|
- decoder |
|
license: apache-2.0 |
|
--- |
|
|
|
<img src="https://huggingface.co/ltg/norbert3-base/resolve/main/norbert.png" width=12.5%> |
|
|
|
|
|
# NorBERT 4 large |
|
|
|
The fourth generation of NorBERT models mainly improves their efficiency, but also performance and flexibility. |
|
|
|
<img src="https://huggingface.co/ltg/norbert4-large/resolve/main/model_performance.png" width=100%> |
|
|
|
- **Made to encode long texts**: these models were trained on 16384-token-long texts, the sliding-window attention can then generalize to even longer sequences. |
|
- **Fast and memory-efficient training and inference**: using FlashAttention2 with unpadding, the new generation of NorBERT models can process the long texts with ease. |
|
- **Better performance**: better quality of training corpora and carefully tuned training settings leads to an improved performance over NorBERT 3. |
|
- **BERT as well as GPT**: the models can flexibly function as both bidirectional encoders (BERT) or unidirectional decoders (GPT), which makes them very flexible to any downstream use. |
|
- **Trained from scratch**: the model is trained from scratch on 600B tokens of Norwegian Bokmål, Nynorsk and Northern Sámi. We used the HPLT 2.0 corpus, FineWeb2 and Mímir Core. |
|
- **Permissable license**: the checkpoints are distributed freely under Apache 2.0, anyone can use our models. |
|
|
|
> [!TIP] |
|
> We recommend installing Flash Attention 2 and `torch.compile`-ing your models to get the highest training and inference efficiency. |
|
|
|
|
|
|
|
## All sizes of the NorBERT4 family: |
|
- [NorBERT 4 xsmall (17M)](https://huggingface.co/ltg/norbert4-xsmall) |
|
- [NorBERT 4 small (40M)](https://huggingface.co/ltg/norbert4-small) |
|
- [NorBERT 4 base (149M)](https://huggingface.co/ltg/norbert4-base) |
|
- [NorBERT 4 large (360M)](https://huggingface.co/ltg/norbert4-large) |
|
- [NorBERT 4 xlarge (987M)](https://huggingface.co/ltg/norbert4-xlarge) |
|
|
|
|
|
## Example usage (bidirectional encoding) |
|
|
|
This model currently needs a custom wrapper from `modeling_norbert.py`, you should therefore load the model with `trust_remote_code=True`. |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
|
|
# Import model |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"ltg/norbert4-large" |
|
) |
|
model = AutoModelForMaskedLM.from_pretrained( |
|
"ltg/norbert4-large", |
|
trust_remote_code=True |
|
) |
|
|
|
# Tokenize text (with a mask token inside) |
|
input_text = tokenizer( |
|
f"Nå ønsker de seg en{tokenizer.mask_token} bolig.", |
|
return_tensors="pt" |
|
) |
|
|
|
# Inference |
|
with torch.inference_mode: |
|
output_p = model(**input_text) |
|
|
|
# Unmask the text |
|
output_text = torch.where( |
|
input_text.input_ids == tokenizer.mask_token_id, |
|
output_p.logits.argmax(-1), |
|
input_text.input_ids |
|
) |
|
|
|
# Decoding; should output: '<s>Nå ønsker de seg en ny bolig.' |
|
print(tokenizer.decode(output_text[0].tolist())) |
|
``` |
|
|
|
## Example usage (text generation) |
|
|
|
NorBERT now also supports unidirectional text decoding, it can generate text like any other GPT model: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
# Import model |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"ltg/norbert4-large" |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"ltg/norbert4-large", |
|
trust_remote_code=True |
|
) |
|
|
|
# Define zero-shot translation prompt template |
|
prompt = """Engelsk: {0} |
|
Bokmål:""" |
|
|
|
# Define tokens that should end the generation (any token with a newline) |
|
eos_token_ids = [ |
|
token_id |
|
for token_id in range(tokenizer.vocab_size) |
|
if '\n' in tokenizer.decode([token_id]) |
|
] |
|
|
|
# Generation function |
|
@torch.inference_mode() |
|
def generate(text): |
|
text = prompt.format(text) |
|
input_ids = tokenizer(text, return_tensors='pt').input_ids |
|
prediction = model.generate( |
|
input_ids, |
|
max_new_tokens=64, |
|
do_sample=False, |
|
eos_token_id=eos_token_ids |
|
) |
|
return tokenizer.decode(prediction[0, input_ids.size(1):]).strip() |
|
|
|
# Example usage |
|
generate("I'm a model that can generate text!") |
|
``` |
|
|
|
The following classes are currently implemented: `AutoModel`, `AutoModelMaskedLM`, `AutoModelForCausalLM`, `AutoModelForSequenceClassification`, `AutoModelForTokenClassification`, `AutoModelForQuestionAnswering` and `AutoModeltForMultipleChoice`. |
|
|
|
## Contact |
|
|
|
David Samuel: `davisamu@uio.no` |
|
|
|
## Cite us |
|
|
|
```bibtex |
|
@inproceedings{charpentier-samuel-2024-bert, |
|
title = "{GPT} or {BERT}: why not both?", |
|
author = "Charpentier, Lucas Georges Gabriel and |
|
Samuel, David", |
|
booktitle = "The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning", |
|
month = nov, |
|
year = "2024", |
|
address = "Miami, FL, USA", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2024.conll-babylm.24/", |
|
pages = "262--283" |
|
} |
|
``` |
|
|
|
```bibtex |
|
@inproceedings{samuel-etal-2023-norbench, |
|
title = "{N}or{B}ench {--} A Benchmark for {N}orwegian Language Models", |
|
author = "Samuel, David and |
|
Kutuzov, Andrey and |
|
Touileb, Samia and |
|
Velldal, Erik and |
|
{\O}vrelid, Lilja and |
|
R{\o}nningstad, Egil and |
|
Sigdel, Elina and |
|
Palatkina, Anna", |
|
booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)", |
|
month = may, |
|
year = "2023", |
|
address = "T{\'o}rshavn, Faroe Islands", |
|
publisher = "University of Tartu Library", |
|
url = "https://aclanthology.org/2023.nodalida-1.61", |
|
pages = "618--633" |
|
} |
|
``` |