|
--- |
|
license: mit |
|
datasets: |
|
- mahdin70/cwe_enriched_balanced_bigvul_primevul |
|
metrics: |
|
- accuracy |
|
- precision |
|
- f1 |
|
- recall |
|
base_model: |
|
- microsoft/graphcodebert-base |
|
library_name: transformers |
|
--- |
|
|
|
# GraphCodeBERT-VulnCWE - Fine-Tuned GraphCodeBERT for Vulnerability and CWE Classification |
|
|
|
## Model Overview |
|
This model is a fine-tuned version of **microsoft/graphcodebert-base** on a curated and enriched dataset for vulnerability detection and CWE classification. It is capable of predicting whether a given code snippet is vulnerable and, if vulnerable, identifying the specific CWE ID associated with it. |
|
|
|
## Dataset |
|
The model was fine-tuned using the dataset [mahdin70/cwe_enriched_balanced_bigvul_primevul](https://huggingface.co/datasets/mahdin70/cwe_enriched_balanced_bigvul_primevul). The dataset contains both vulnerable and non-vulnerable code samples and is enriched with CWE metadata. |
|
|
|
### CWE IDs Covered: |
|
1. **CWE-119**: Improper Restriction of Operations within the Bounds of a Memory Buffer |
|
2. **CWE-20**: Improper Input Validation |
|
3. **CWE-125**: Out-of-bounds Read |
|
4. **CWE-399**: Resource Management Errors |
|
5. **CWE-200**: Information Exposure |
|
6. **CWE-787**: Out-of-bounds Write |
|
7. **CWE-264**: Permissions, Privileges, and Access Controls |
|
8. **CWE-416**: Use After Free |
|
9. **CWE-476**: NULL Pointer Dereference |
|
10. **CWE-190**: Integer Overflow or Wraparound |
|
11. **CWE-189**: Numeric Errors |
|
12. **CWE-362**: Concurrent Execution using Shared Resource with Improper Synchronization |
|
|
|
--- |
|
|
|
## Model Training |
|
The model was trained for **3 epochs** with the following configuration: |
|
- **Learning Rate**: 2e-5 |
|
- **Weight Decay**: 0.01 |
|
- **Batch Size**: 8 |
|
- **Optimizer**: AdamW |
|
- **Scheduler**: Linear |
|
|
|
### Training Loss and Validation Metrics Per Epoch: |
|
| Epoch | Training Loss | Validation Loss | Vul Accuracy | Vul Precision | Vul Recall | Vul F1 | CWE Accuracy | |
|
|-------|---------------|-----------------|--------------|---------------|------------|--------|--------------| |
|
| 1 | 1.2824 | 1.4160 | 0.7914 | 0.8990 | 0.5200 | 0.6589 | 0.3551 | |
|
| 2 | 1.1292 | 1.2632 | 0.8007 | 0.8037 | 0.6426 | 0.7142 | 0.4433 | |
|
| 3 | 0.8598 | 1.2436 | 0.7945 | 0.7669 | 0.6747 | 0.7179 | 0.4605 | |
|
|
|
#### Training Summary: |
|
- **Total Training Steps**: 5916 |
|
- **Training Loss**: 1.2380 |
|
- **Training Time**: 4785.0 seconds (~80 minutes) |
|
- **Training Speed**: 9.89 samples per second |
|
- **Steps Per Second**: 1.236 |
|
|
|
|
|
## How to Use the Model |
|
```python |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
model = AutoModel.from_pretrained("mahdin70/GraphCodeBERT-VulnCWE", trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/graphcodebert-base") |
|
|
|
code_snippet = "int main() { int arr[10]; arr[11] = 5; return 0; }" |
|
inputs = tokenizer(code_snippet, return_tensors="pt") |
|
outputs = model(**inputs) |
|
|
|
vul_logits = outputs["vul_logits"] |
|
cwe_logits = outputs["cwe_logits"] |
|
|
|
vul_pred = vul_logits.argmax(dim=1).item() |
|
cwe_pred = cwe_logits.argmax(dim=1).item() |
|
|
|
print(f"Vulnerability: {'Vulnerable' if vul_pred == 1 else 'Non-vulnerable'}") |
|
print(f"CWE ID: {cwe_pred if vul_pred == 1 else 'N/A'}") |
|
``` |